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PART - I

Overview of the Project Work

4



Development of Prosodically Guided Phonetic Engine for Searching Speech
Databases in Indian Languages

General

1 Name of the Project : Development of Prosodically Guided Phonetic
Engine for Searching Speech Databases in Indian Languages

2 Sanction Letter Reference No. : 11(6)/2011-HCC(TDIL), dated 23-12-2011

3 Executing Agency : IIIT Hyderabad (Overall Coordination)
: IIT Kanpur
: Thapar University Patiala
: IIT Guwahati
: Tezpur University
: North Eastern Hill University (NEHU) Shillong
: Rajiv Gandhi Institute of Technology (RIT) Kottayam
: Dhirubhai Ambani Institute of Information and Communication

Technology (DA-IICT) Gandhinagar
: IIT Hyderabad
: IIT Kharagpur

4 Consortium Leader : IIIT Hyderabad
Consortium Head : Prof. B. Yegnanarayana (PI)

Dr. Suryakanth V. Gangashetty (CO-PI)

5 (i) Prinicipal Investigators : Dr. Rajesh Hegde, IIT Kanpur
Prof. R. K. Sharma, Thapar University Patiala
Prof. S. R. Mahadeva Prasanna, IIT Guwahati
Dr. Utpal Sharma, Tezpur University
Dr. L. Joyprakash Singh, NEHU Shillong
Dr. Leena Mary, RIT Kottayam
Dr. Hemant Patil, DA-IICT Gandhinagar
Dr. K. Sri Rama Murty, IIT Hyderabad
Dr. K. Srinivasa Rao, IIT Kharagpur

5 (ii) Co-Investigators Prof. Harish Karnick, IIT Kanpur
Mr. Karun Verma, Thapar University Patiala
Prof. S. Dandapat, IIT Guwahati
Dr. Smriti Kumar Sinha, Tezpur University
Mr. Sushanta Kabir Dutta, NEHU Shillong
Mr. Riyas K. S.& Mr. Anish Babu K. K, RIT Kottayam
Prof. M. V. Joshi, DA-IICT Gandhinagar
Dr. C. Krishna Mohan, IIT Hyderabad
Dr. Pabitra Mitra, IIT Kharagpur
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6 Number of Project Staff : About 30

7 Total Cost of the Project as approved by DIT

i) Original : Rs. 492.54 Lakhs
ii) Revised, if any :

8 Project Sanction Date : 23-12-2011

9 Date of Completion : Not Applicable
i) Original :
ii) Revised, if any :

10 Date on which last progress : 28-02-2014
report was submitted
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Technical Report 
Objective: To develop a prosodically-guided phonetic engine to represent the spoken content and 
to search speech databases in Indian languages.

Tasks:
• Data  collection  and  manual  labeling  of  speech  into  phonetic  symbols  in  12  Indian 

languages.
• Identifying and marking important prosody events (syllable marking, pitch marking and 

prosodic breaks marking).
• Development of phonetic engine using prosodic and phonetic information.
• Developing speech-based search engine.

Deliverables:

• Overall System:
• Demonstration of a speech-based search to find data from large speech databases 

for 12 Indian languages

• Phonetic Engine Features:
• Search  3  hours  of  speech  database  in  a  language  using  voice  input  in  that 

language. This will  be demonstrated for 12 Indian languages (Hindi,  Punjabi, 
Assamese,  Manipuri,  Malayalam,  Kannada,  Gujarati,  Marathi,  Telugu,  Urdu, 
Bengali, and Odia).

• Speaker-independent search capabilities. 
• The query consists of 10-30 keywords selected from among the vocabulary of 

200-500 words, which are derived from the given databases for that language.
• Quantitative details  of  speech databases:  20 hours of  speech data in different 

contexts from at least 20 speakers will be collected for each of the 12 languages.

• Performance:
• From a vocabulary of 200-500, a topic described by about 10-30 words will be 

used to provide 70-90% relevant result(s) in the top 10 choices. This performance 
would be measured on 2-3 hours of test data, in each language.

• Evaluation method indicates precision and recall.

• Prosody Model:
Develop methodology for acquiring prosody knowledge for several (at least 12) 
Indian  languages   in  3  different  contexts  (read  speech,  lecturing,   and 
conversational speech).

• Speech Database:
              Details on Speech data collection and transcription is explained in Chapter 2.  

______________________________________________________________________________________
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Progress Report : 23-12-2011 to 31-03-2015

Meetings and Workshops:
• December 17, 2010: First preliminary meet
• December 18, 2011: Second preliminary meet 
• January 24, 2012: 1st Teleconference
• February 18-20, 2012: Tutorial on phonetic transcription by Prof.  Peri  Bhaskararao at 

IIIT Hyderabad  (1st Workshop).
• May  11-13,  2012:  Intensive  Workshop  on  phonetic  transcriptions  by  Prof.  Peri 

Bhaskararao at IIIT Hyderabad (2nd Workshop).
• October  25-28,  2012:  Workshop  on  prosodically-guided  phonetic  engine  at  IIIT 

Hyderabad  (3rd Workshop).
• December 18, 2012: Workshop on phonetic engine and speech-based search engine at IIT 

Hyderabad  (4th Workshop).
• February 1, 2013: 2nd Teleconference
• February 5, 2013: First Project Review of Steering Group  meeting at Dept of Electronics 

& Information Technology, Govt of India New Delhi.
• March 9-10, 2013: Workshop/Meeting at Thapar University Patiala  (5th Workshop)
• October 12-13, 2013: Workshop/Meeting at DA-IICT Gandhinagar  (6th Workshop)
• March 7-9, 2014: Workshop/Meeting at IIT Kharagpur  (7th Workshop)
• September 6-7, 2014: Workshop/Meeting at IIT Guwahati  (8th Workshop)
• December 12, 2014: Workshop/Meeting at IIIT Hyderabad  (9th Workshop)
• April 30, 2015: Second Project Review of Steering Group  meeting at Dept of Electronics 

& Information Technology, Govt of India New Delhi.

 

______________________________________________________________________________________
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Appendix–A: Summary of the Workshops/Meetings           

I.  Summary of the 1st workshop conducted by IIIT Hyderabad 
during February 21–24, 2012

• Introduction to workshop by Prof. B. Yegnanarayana (IIIT Hyderabad)
• International Phonetic Alphabet chart  by Prof. Peri Bhaskararao (IIIT Hyderabad)

List of participants ( 1st workshop)

1. Prof. B. Yegnanarayana, IIIT Hyderabad
2. Prof. Peri Bhaskararao, IIIT Hyderabad
3. Dr. Kishore S Prahallad, IIIT Hyderabad
4. Dr. S. Rajendran, IIIT Hyderabad
5. Shri. Vinay Kumar Mittal, IIIT Hyderabad
6. Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
7. Prof. Rajendra Kumar Sharma, Thapar University Patiala
8. Dr. K. Sri Rama Murty, IIT Hyderabad 
9. Dr. S. R. Mahadeva Prasanna, IIT Guwahati  
10. Dr Utpal Sharma, Tezpur University  
11. Mr. Sushanta Kabir Dutta, NEHU Shillong 
12. Dr. L. Joyprakash Singh, NEHU Shillong 
13. Dr. Hemant A. Patil, DA-IICT Gandhinagar 
14. Dr. K. Sreenivasa Rao, IIT Kharagpur 
15. Dr. Debadatta Pati, IIT Kharagpur 
16. Dr. R Kumaraswamy, SIT Tumkur 
17. Dr. Leena Mary, RIT Kottayam 
18. Rupinderdeep Kaur, Thapar University Patiala 
19. Ashwini, SIT Tumkur 
20. Harish Padaki, IIT Kanpur 
21. Deepak, IIT Guwahati  
22. Nandakishore, NEHU Shillong 
23. Aju Joseph,  RIT Kottayam 
24. Anish Agustine, RIT Kottayam 
25. Maulik C. Madhavi, DA-IICT Gandhinagar 
26. Kewal D. Malde, DA-IICT Gandhinagar 
27. Sudhamay Maity, IIT Kharagpur 
28. Manjunath K.E, IIT Kharagpur 
29. Sunil Kumar S. B., IIT Kharagpur 
30. Narendra, SIT Tumkur 
31. B. Rambabu, IIIT Hyderabad
32. Sudarsana Reddy Kadiri, IIIT Hyderabad
33. Aneeja G., IIIT Hyderabad
34. Karthik Venkat, IIIT Hyderabad
35. P. Gangamohan, IIIT Hyderabad
36. Nivedita Chennupati, IIIT Hyderabad
37. Vishala Pannala, IIIT Hyderabad

______________________________________________________________________________________
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38. Naresh Kumar Elluru, IIIT Hyderabad
39. Ravi Shankar Prasad, IIIT Hyderabad
40. Anandaswarup Vadapalli, IIIT Hyderabad
41. Sivanand A, IIIT Hyderabad
42. Bhargav Pulugundla, IIIT Hyderabad
43. Santhosh, IIIT Hyderabad
44. Sathya Adithya Thati, IIIT Hyderabad

______________________________________________________________________________________
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II.  Summary of the 2nd workshop conducted by IIIT Hyderabad 
during May 11 – 13, 2012

• Introduction to workshop by Prof. B. Yegnanarayana (IIIT Hyderabad)
• International Phonetic Alphabet chart (IPA)  by Prof. Peri Bhaskararao (IIIT Hyderabad)
• Prof.  Peri  Bhaskararao  has  shown sample  phonetic  transcriptions  for  the  audio  files 

provided by various consortium members.
• Practice sessions on phonetic transcription was held.
• Data from various consortium members (in different  languages) was collected in two 

modes, recorded in a close room environment with additional EGG setup..
• Read speech
• Conversational speech

 
List of participants ( 2nd workshop)

1. Prof. B. Yegnanarayana, IIIT Hyderabad
2. Prof. Peri Bhaskararao, IIIT Hyderabad
3. Dr. Kishore S Prahallad, IIIT Hyderabad
4. Dr. S. Rajendran, IIIT Hyderabad
5. Shri. Vinay Kumar Mittal, IIIT Hyderabad
6. Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
7. Dr. Anil Kumar Vuppula, IIIT Hyderabad
8. Dr. N Dhananjaya, IIIT Hyderabad
9. Dr. S. R. Mahadeva Prasanna, IIT Guwahati 
10. Mr. Sushanta Kabir Dutta, Co-PI, NEHU Shillong 
11. Riyas K.S, (Co-Investigator), RIT Kottayam 
12. Dr. Hemant A. Patil, DA-IICT Gandhinagar
13. Dr. K. Sri Rama Murty, IIT Hyderabad
14. Gaurav K Singh, IIT Kanpur  
15. Rameshwar Pathak, IIT Kanpur 
16. Deepak, IIT Guwahati  
17. Biswajit, IIT Guwahati 
18. Navanath Saharia, Tezpur University 
19. Bhaskar Jyoti Das, Tezpur University 
20. Salam Nandakishor, NEHU Shillong 
21. Laishram Rahul, NEHU Shillong  
22. Aju Joseph, RIT Kottayam  
23. Anish Agustine, RIT Kottayam 
24. Vachhani Bhavikkumar,  DA-IICT Gandhinagar 
25. Maulik C. Madhavi, DA-IICT Gandhinagar 
26. Kewal D. Malde, DA-IICT Gandhinagar 
27. Dipanjan Nandi, IIT Kharagpur  
28. Manjunath. K.E, IIT Kharagpur 
29. Narendra, SIT Tumkur  
30. Rupinderdeep Kaur, Thapar University Patiala
31. Harsimaran Kaur, Thapar University Patiala
32. Mohammad Rafi, IIT Hyderabad

______________________________________________________________________________________
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33. Naresh Reddy, IIT Hyderabad
34. Chandan Behra, IIT Hyderabad
35. Anjum Parveen, IIIT Hyderabad
36. Sameena Yasmeen, IIIT Hyderabad
37. Mohammed Younus, IIIT Hyderabad
38. Mohammed Dawood Khan, IIIT Hyderabad
39. Anand Joseph Xavier M., IIIT Hyderabad
40. Gautam Varma Mantena, IIIT Hyderabad
41. B. Rambabu, IIIT Hyderabad
42. Sudarsana Reddy Kadiri, IIIT Hyderabad
43. Aneeja G., IIIT Hyderabad
44. Karthik Venkat, IIIT Hyderabad
45. P. Gangamohan, IIIT Hyderabad
46. Nivedita Chennupati, IIIT Hyderabad
47. Vishala Pannala, IIIT Hyderabad
48. Naresh Kumar Elluru, IIIT Hyderabad
49. Ravi Shankar Prasad, IIIT Hyderabad
50. Anandaswarup Vadapalli, IIIT Hyderabad
51. Sivanand A, IIIT Hyderabad
52. Bhargav Pulugundla, IIIT Hyderabad
53. Santhosh, IIIT Hyderabad
54. Sathya Adithya Thati, IIIT Hyderabad
55. Bajibabu Bollepalli, IIIT Hyderabad
56. Abhijeet Saxena, IIIT Hyderabad
57. Apoorv Reddy, IIIT Hyderabad
58. Basil George, IIIT Hyderabad
59. Sama Vasantha Sai, IIIT Hyderabad
60. Harika Vuppala, IIIT Hyderabad
61. Patha Sreedhar, IIIT Hyderabad

______________________________________________________________________________________
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III. Summary of the 3rd workshop conducted by IIIT Hyderabad  
during 25th - 28th October, 2012

• Review of data collected (Appendix-B)
• Introduction to workshop by Prof. B. Yegnanarayana (IIIT Hyderabad)

• Syllable marking of spoken data
• Pitch marking 
• Prosodic break marking

• Data collection
• Total number of hours of data to be collected: 20 hours 

• 10 hours  of  read speech,  5  hours  of  extempore  speech and 5 
hours of conversational speech have to be collected.

• Data transcription
• Phonetic  transcription of  speech data  has  to  be  ready before  the  first 

PRSG meeting
• 5 hours of read speech, 2.5 hours of extempore speech and 2.5 

hours of conversational speech has to be transcribed.
• Verification

• Randomly 2 to 3 sentences of transcribed data from all the participating 
institutions has to be sent to IIIT-H which will be verified by Prof. Peri 
Bhaskararao (IIIT Hyderabad) .

• Suggestions on evaluation techniques were invited.
• Report on delivery of the data

• A format has been suggested by Prof. S.R.Mahadeva Prasanna (IIT-G) 
and will be passed to all consortium members.

• Ideas on prosodically-guided phonetic engine were suggested
• Phonetic engine based on Place of Articulation (POA) and Manner of 

Articulation (MOA) was suggested.
• Tree-based structure implementation was suggested.

• Sample demos were given by IIT-K and IIT-G.
• A basic  model  of  phonetic  engine  to  be  made  available  at the  forth  coming 

workshop.
• Discussion on syllable marking of spoken form  by Prof. Peri Bhaskararao (IIIT 

Hyderabad)
• Definitions of morpheme, word (lexicon), syllable (onset, complex onset, 

nucleus, coda and complex coda) were explained.
• The  difficulty  of  identifying  syllable  boundaries  in  “natural” 

conversational  speech due to morphophonemic changes was discussed.
• Discussion on syllable marking of different languages like Telugu and 

Punjabi language were done.
• Separate pane for syllabification is suggested in wavesurfer utility.

• Discussion on pitch marking by Prof. Peri Bhaskararao (IIIT Hyderabad)
• The  changes  in  intonation  (pitch  patterns)  which  leads  to  syntactic 

changes were discussed.

______________________________________________________________________________________
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• Discussion on capturing pitch patterns in spoken form.
• Pitch marking in symbolic form.
• Relative levels of pitch marking were identified, which has to be marked

• VL – Very Low
• L – Low
• H – High
• VH – Very High

• Issues in marking flatness was discussed and notation f100 to denote the 
flat pitch 100Hz of the segment (under consideration) was proposed.

• Separate pane for pitch marking is suggested  in wavesurfer utility.
• Discussion  on  prosodic  break  marking  by  Prof.  Peri  Bhaskararao  (IIIT 

Hyderabad)
• A brief discussion on other types of prosodic labeling methods like ToBI 

(Tones and Break Indices) was discussed.
• Prosodic break is obtained due to shift in prosody, but change in pitch 

patterns   is   not  the  only  feature  responsible  for  obtaining  prosodic 
breaks.

• Two types of break indices were discussed
• Physiological breaks (pauses in spoken form)
• Prosodical breaks

• Speech files from various languages were analyzed to show the breaks 
(b0, b1, b2)

• b0 – Prosodic break
• b1, b2– Physiological break

• In  some  cases,  prosody  breaks  are  identified  relatively  easily when 
compared  to  phonetic  information  as  discussed with Telugu language 
example.
(10 such examples from each language need to be identified)

• Separate pane for break marking is suggested in wavesurfer utility.
• Transcription to be done in the following format  by using wavesurfer 

utility.

Sl.No. File Extension Pane

1 .ph Phonetic Transcription

2 .sy Syllable Marking

3 .pt Pitch Marking

4 .bm Prosodic Break Marking

• A meta data format has been suggested by Dr. K.Sri Rama Murty (IIT-H) to be 
followed by all consortium members (Appendix-C)

• Summarization  of workshop by Prof. B. Yegnanarayana (IIIT Hyderabad).
• Suggestions and feedback from the participants were collected.

______________________________________________________________________________________
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List of participants ( 3rd workshop)

1. Prof. B. Yegnanarayana, IIIT Hyderabad
2. Prof. Peri Bhaskararao, IIIT Hyderabad
3. Dr. Kishore S Prahallad, IIIT Hyderabad
4. Dr. S. Rajendran, IIIT Hyderabad
5. Shri. Vinay Kumar Mittal, IIIT Hyderabad
6. Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
7. Prof. Rajesh M. Hegde, IIT Kanpur 
8. Rameshwar Pathak, IIT Kanpur 
9. D. Srinivasulu, IIT Kanpur 
10. Dinesh Agnihotri, IIT Kanpur 
11. Ms. Rupinderdeep Kaur, Thapar University Patiala 
12. Ms. Harsimaran Kaur, Thapar University Patiala 
13. Baljinder Baddhan, Thapar University Patiala 
14. Prof. S. R. Mahadeva Prasanna, IIT Guwahati 
15. Biswajit, IIT Guwahati 
16. Prof. Utpal Sharma, Tezpur University 
17. Navanath Saharia, Tezpur University 
18. Prof. L. Joyprakash Singh, NEHU Shillong 
19. Salam Nandakishor, NEHU Shillong 
20. Laishram Rahul, NEHU Shillong 
21. Prof. Leena Mary, RIT Kottayam 
22. Shri Anishbabu K. K. RIT Kottayam
23. Anish Augustine, RIT Kottayam 
24. Aju Joseph, RIT Kottayam 
25. Prof. Hemant Patil, DA-IICT Gandhinagar 
26. Maulik C. Madhavi, DA-IICT Gandhinagar 
27. Kewal Dhiraj, DA-IICT Gandhinagar 
28. Dr. K. Sri Rama Murty, IIT Hyderabad
29. N. Phanisankar, IIT Hyderabad
30. Mohammand Rafi, IIT Hyderabad
31. Naresh, IIT Hyderabad
32. Chandan Behera, IIT Hyderabad
33. Essa ali khan, IIT Hyderabad
34. Kallol Rout, IIT Hyderabad
35. Sunil Kumar. S. B, IIT Kharagpur 
36. Dipanjan Nandi, IIT Kharagpur 
37. Manjunath. K. E., IIT Kharagpur 
38. Apoorv Chaturvedi, IIT Kharagpur 
39. Ravi Kiran, IIT Kharagpur 
40. Dr. Debadatta Pati, BCET Balasore 
41. Biswajit Sathapathy, BCET Balasore 
42. Dr. R Kumaraswamy, SIT Tumkur 
43. Narendra K C, SIT Tumkur 
44. Shridhar M V, SIT Tumkur 

______________________________________________________________________________________
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45. Bapu K Banahatti, SIT Tumkur 
46. Dr. P. K. Sahu, IIT Bhubaneswar 
47. Dr. N.V.L.M Murthy, IIT Bhubaneswar 
48. Anand Joseph Xavier M, IIIT Hyderabad
49. B. Rambabu, IIIT Hyderabad
50. Sudarsana Reddy Kadiri, IIIT Hyderabad
51. Aneeja G, IIIT Hyderabad
52. Karthik Venkat, IIIT Hyderabad
53. P. Gangamohan, IIIT Hyderabad
54. Nivedita Chennupati, IIIT Hyderabad
55. Vishala Pannala, IIIT Hyderabad
56. Naresh Kumar Elluru, IIIT Hyderabad
57. Ravi Shankar Prasad, IIIT Hyderabad
58. Anandaswarup Vadapalli, IIIT Hyderabad
59. Ronanki Srikanth, IIIT Hyderabad
60. Sivanand A, IIIT Hyderabad
61. Bhargav Pulugundla, IIIT Hyderabad
62. Santhosh, IIIT Hyderabad
63. Sathya Adithya Thati, IIIT Hyderabad
64. Abhijeet Saxena, IIIT Hyderabad
65. Apoorv Reddy, IIIT Hyderabad
66. Basil George, IIIT Hyderabad
67. S. Vasanth Sai, IIIT Hyderabad
68. Patha Sreedhar, IIIT Hyderabad
69. Padmini Bandi, IIIT Hyderabad
70. G. V. S. Prasad  , IIIT Hyderabad
71. Bhanu Teja Nellore, IIIT Hyderabad
72. Sri Harsha Dumpala, IIIT Hyderabad
73. Raghu Ram Nevali, IIIT Hyderabad

______________________________________________________________________________________
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IV. Summary of the 4th workshop/meeting conducted at IIT Hyderabad 
on December 18, 2012

• Development of phonetic engine system
• Signal level features
• Acoustic level features (production based)

(2-3 classes, 10-15 classes, 40-50 classes)
• Prosody level features

• Syllable boundary marking
• Pitch marking
• Prosodic break marking
• Prosody models

• Sound unit level
• Syllable-like units
• Phonetic level units 

• Searching speech database
• Target (searching 3-5 hours of speech data in reading mode).

• Query formation using keywords
• Query in natural dialog mode (needs word spotting)

• Other approaches for audio search
• Other issues discussed at the meeting

• Constitution of internal testing and evaluation committee
• Suggested dates for PRSG (January 15th, 2013 at IIIT Hyderabad)
• 5 slides from each group for the PRSG meeting
• Progress report and UC for the 1st year before December 22, 2012
• Response to testing and evaluation by CDAC
• UCs for March & September 2013
• Discussion on final systems, deliverables and report
• Next project meeting at Thapar University, Patiala March 2, 2013
• Discussion in the next meeting will be focused on the systems for 

phonetic engine and search engine with some demo versions.

List of participants ( 4th workshop/meeting)

1. Prof. B. Yegnanarayana, IIIT Hyderabad
2. Prof. Peri Bhaskararao, IIIT Hyderabad
3. Dr. Kishore S Prahallad, IIIT Hyderabad
4. Dr. S. Rajendran, IIIT Hyderabad
5. Dr. Anil Kumar Vuppala, IIIT Hyderabad
6. Shri. Vinay Kumar Mittal, IIIT Hyderabad
7. Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
8. Rameshwar Pathak, IIT Kanpur
9. Preeti Singh Chauhan, IIT Kanpur
10. Sukhjeet Kaur, IIT Kanpur
11. Laxmi Pandey, IIT Kanpur

______________________________________________________________________________________
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12. Dinesh Agnihotri, IIT Kanpur
13. Dr. Rajendra Kumar Sharma, Thapar University Patiala
14. Rupinderdeep Kaur, Thapar University Patiala
15. Prof. S.R. Mahadeva Prasanna, IIT Guwahati
16. Dr. Utpal Sharma, Tezpur University
17. Navanath Saharia, Tezpur University
18. Dr. L. Joyprakash Singh, NEHU Shillong
19. S. K. Dutta, NEHU Shillong
20. Dr. Leena Mary, RIT Kottayam
21. Riyas K S, RIT Kottayam
22. Anish Babu K K, RIT Kottayam
23. Prof. Hemant A. Patil, DA-IICT Gandhinagar
24. Dr. K. Sri Rama Murty,  IIT Hyderabad
25. Dr. C. Krishna Mohan,  IIT Hyderabad
26. Dr. K. Sreenivasa Rao, IIT Kharagpur
27. Manjunath. K. E., IIT Kharagpur
28. Sunil Kumar S. B., IIT Kharagpur
29. Dr. R. Kumaraswamy, SIT Tumkur
30. Narendra K C, SIT Tumkur
31. Gautam Varma, IIIT Hyderabad
32. B. Rambabu, IIIT Hyderabad
33. Sudarsana Reddy Kadiri, IIIT Hyderabad
34. Aneeja G, IIIT Hyderabad
35. P. Gangamohan, IIIT Hyderabad
36. Nivedita Chennupati, IIIT Hyderabad
37. Vishala Pannala, IIIT Hyderabad
38. Naresh Kumar Elluru, IIIT Hyderabad
39. Ravi Shankar Prasad, IIIT Hyderabad
40. Anandaswarup Vadapalli, IIIT Hyderabad
41. Sivanand A, IIIT Hyderabad
42. Bhargav Pulugundla, IIIT Hyderabad
43. Santosh K, IIIT Hyderabad
44. Abhijeet Saxena, IIIT Hyderabad
45. Apoorv Reddy, IIIT Hyderabad
46. Basil George, IIIT Hyderabad
47. Patha Sreedhar, IIIT Hyderabad
48. Padmini Bandi, IIIT Hyderabad
49. G. V. S. Prasad, IIIT Hyderabad

______________________________________________________________________________________
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V. Summary of the First Project Review of Steering Group  meeting at Dept of 
Electronics & Information Technology, Govt of India New Delhi 

on February 5, 2013
The Meeting (1) of the Project Review of Steering Group  was held on Feb 5, 2013 at Dept of 
Electronics & Information Technology , Govt of India.  
1. Welcome Address

At the beginning, the member convener welcomed the PRSG Chairman and the members in 
the 1st. PRSG meeting of the ASR in Indian Languages Consortium.

2. The Chairman requested the consortium leader to present the progress of the work under 
the  consortium  from  the  date  of  initiation  of  the  project  [i.e  from  date  of  issue  of  the 
administrative approval -23-12-2011]

3. Presentation by Consortium Leader
 The Consortium Leader Prof. B. Yegnanarayana presented the progress of the project against 
the milestones specified in the objectives of the administrative approval.
Objectives and  Milestones 

for the 1st year
Progress Reported

• Collect speech data for a 
few  selected  languages 
for  studies  on  prosody 
and  for  development  of 
methodology  for 
searching  speech 
databases  in  assigned 
languages.

• Develop  algorithms  to 
extract  signal  level 
knowledge  to 
incorporate in the PE.

• Explore the prosody and 
language  constraints  to 
improve the performance 
of the PE

The  basic  algorithm  for  phonetic  based  search  is  developed  and  being 
studied for specific requirements for each languages

The work on Syllable marking, Pitch marking , Prosody break marking  for 
each of the above mentioned assigned languages are being carried out by 
the consortium members responsible for the particular languages. 

4. Observations of the PRSG
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Language Data Collected (in 
hours) 

Data transcribed phonetically (in 
hours) 

Assamese 27.40 14.00 

Bengali 17.42 09.98 

Gujarati 20.50 01.75 

Hindi 06.00 06.00 

Kannada 30.00 06.00 

Malayalam 21.00 04.00 

Manipuri 12.00 06.00 

Marathi 25.50 03.62 

Odiya 15.00 05.41 

Punjabi 18.00 00.42 

Telugu 16.50 09.50 

Urdu 07.00 01.00 



5. PRSG expressed satisfaction about the progress of the project and requested acceleration 

of the deployment efforts of the Phonetic engines in all assigned languages.

• After development of the Alpha version of the Phonetic engines, the systems may be 

tested through independent testing and evaluation agency namely C-DAC.

• PRSG  also  requested  to  expedite  the  development  process  so  that,  the  assigned 

horizontal  and  vertical  tasks  would  be  completed  within   the  project  duration  i.e. 

23.12.2013.

6.   Recommendations of PRSG.

The PRSG recommended the release of Next instalment of Grant-in-Aid to IIIT Hyderabad,  as 

per request from the consortium leader after submission of the Utilization Certificates  and their 

acceptance to DEITY. The Meeting ended with a vote of thanks to the Chair.

 The list of PRSG Members and the Consortium Members present in the meeting
PRSG Members
Sl No. Name Organization Designation

 Dr. P.K.Saxena Director   SAG , DRDO Chairman

 Prof. S.S. Agrawal Emeritus Scientist , CEERI Member

 Dr. Preeti .S. Rao IIT Bombay Member

 Prof. Hema Murthy           IIT Madras                                           Member

 Dr. K.Samudravijaya        TIFR , Mumbai                                    Member

 Ms. Swaran Lata              Director &Head, TDIL, DEITY Member

 Dr.Somnath-Chandra  Scientist-E , TDIL, DEITY Member Convener

Consortium Members
Sl No. Name Organization Designation

1. Prof. B.Yegnanarayana  IIIT Hyderabad Consortium Leader

2. Dr.  S.V. Gangashetty   IIIT Hyderabad Co-PI

3. Dr. Kishore.S. Prahallad IIIT Hyderabad Co-PI

4. Dr. Rajesh M Hegde IIT Kanpur Consortium Member

5. Prof. Rajendra Kumar 
Sharma

Thapar University Patiala Consortium Member

6. Dr. S R Mahadeva Prasanna IIT Guwahati Consortium Member

7. Dr. Utpal Sharma Tezpur University Consortium Member

8. Dr. L. Joyprakash Singh North Eastern Hill University (NEHU) , 
Shillong

Consortium Member

9. Dr Leena Mary Rajiv Gandhi Institute of Technology (RIT) 
Kottayam

Consortium Member

10. Dr. Hemant A Patil Dhirubhai  Ambani  Institute  of  Information 
and  Communication  Technology  (DA-IICT) 
Gandhinagar

Consortium Member

11. Dr. K S R Murty IIT Hyderabad Consortium Member

12. Dr. K Sreenivasa Rao IIT Kharagpur Consortium Member
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VI. Summary of the 5th workshop/meeting conducted at Thapar University Patiala
 during February 9th-10th, 2013

 
The following is the summary of the discussions of two days workshop at Thapar University 
Patiala: 

1. Tasks in the development of phonetic engine system 

1.1 Segmentation: Change in the acoustic features (mostly signal based) 
1.2 Feature stretching: Identify  10-15 features (like voicing, nasality, laterality, etc,) 
and segments the speech in terms of those features. 
1.3 Phone units: Select/make a subset of classes/labels/categories relevant to each of 
those 
features in Task 1.2 
1.4 Common phonetic units: Segment the speech based on a subset of common phonetic 
units 
relevant for each language. This is the direct signal-to-phonetic units, and hence the 
phonetic engine. 

2. Tasks in automating the manual labelling task 

1.1 Phonetic units - IPA chart 
1.2 Syllable boundary marking 
1.3 Pitch accent marking 
1.4 Break index marking 

3. Tasks in the development of the search engine system 
(Key issues are feature extraction, matching and scoring) 

3.1 Keyword spotting (phone level transcription of the query and the reference and 
matching) 
3.2 Posteriogram representation and DTW  
3.3 HMM based phone sequences matching  
3.4 Continuous feature vectors  
3.5 Representation by a sequence of a few features (10-15) and then match 
3.6 Vector quantization representation and then matching 
3.7 Spotting phonetic features 
3.8 Combination of some of the above ideas to develop a final system. 

4. Other issues 
4.1 Preparing common phonetic symbols from the collected data 
4.2 Identify data for benchmarking: 1 hour of read speech and 1 hour of conversational 
speech 
for each language, along with query consisting of words/phrases for each case. 
4.3 Prosody definitions: 
-What can be termed as prosody-like? 
-Suprasegmental is only one part 
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-Voice quality, rhythm, stress, etc. 
-Long vowel, segment level, sentence level 
-How to acquire prosody information, represent, and exploit it for phonetic engine and 
search 
engine systems. 
4.4 System development status and some demos at the next meeting in May 2013, before 
the PRSG  meeting 
4.5 Discussion and delivery of search engine system in July workshop at DA-IICT. 

     
    List of participants ( 5th workshop/meeting)

1. Prof. B. Yegnanarayana, IIIT Hyderabad 
2. Shri. Vinay Kumar Mittal, IIIT Hyderabad
3. Dr. Hemant A. Patil, DA-IICT Gandhinagar
4. Dr. K. Sreenivasa Rao, IIT Kharagpur    
5. Dr. Kishore S Prahallad, IIIT Hyderabad
6. Dr. S. R. Mahadeva Prasanna, IIT Guwahati
7. Dr. K. Sri Rama Murty, IIT Hyderabad
8. Dr. Leena Mary, RIT Kottayam
9. Swati Arora, W3C India
10. Dr. S. Rajendran, IIIT Hyderabad 
11. Dr. L. Joyprakash Singh, NEHU Shillong
12. Mr. Sushanta Kabir Dutta, NEHU Shillong
13. Anish Babu K K, RIT Kottaya
14. N Saharia,  Tezpur University
15. Deepak, IIT Guwahati
16. Biswajit Dev, IIT Guwahati
17. R Ravi Kiran, IIT Kharagpur
18. Apoorv Chaurvedi, IIT Kharagpur
19. Biswajit Satapathi, IIT Kharagpur
20. Manjunath K E, IIT Kharagpur
21. Baljinder Badham. Tezpur University
22. Kamal Preet Singh,  Tezpur University
23. Tarunima Prabhakar, DA-IICT Gandhinagar
24. Mansi Gokhale,  DA-IICT Gandhinagar
25. Maulik Madhavi, DA-IICT Gandhinagar
26. Ishtiyaq Husain, IIT Kanpur
27. Rameshwar Pathak, IIT Kanpur
28. Bhavik Vachhani, DA-IICT Gandhinagar
29. Kewal Dheeraj Malde, DA-IICT Gandhinagar
30. Rajesh Hegde, IIT Kanpur
31. Rupinderdeep Kaur, Thapar University Patiala
32. Vishal Kumar, Thapar University Patiala
33. Prof. Rajendra Kumar Sharma, Thapar University Patiala
34. Prof. Smriti K Sinha, Tezpur University
35. Mahinder Singh, Thapar University Patiala
36. Prof. Peri Bhaskararao, IIIT Hyderabad
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37. Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
38. Hansi Mean kaur, Thapar University Patiala
39. Dushyant Khurana, Thapar University Patiala
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VII. Summary of the 6th workshop/meeting conducted at DA-IICT Gandhinagar 
during  October 12th-13th, 2013

The following is the summary of the discussions of the two days workshop at DA-IICT 
Gandhinagar: 

I. (a) General points by each group
   (b) Presentation by each group on audio search and prosody modeling

II. Specifications and issues on audio search

      Specifications:
         - Refining the system at feature and search level
         - Adapting, i.e, improving the performance with usage
         - Not diluting the problem, i.e, read speech data (Audio input query: Language specific and 
mixture of languages)   
      
       Issues:
         - Input audio query in 5-10 sec data files
         - Data - 5 hours, each language in small 5-10 sec data files (for 10 languages), 100-200 
keywords.
         - Microphone or desktop or webenabled server - local audio search
         - Microphone or desktop or not webenabled server 
         - Query: Subset of keywords - Topic: Study the characteristics of keywords
         - Representation of inputs - (a) cluster of phones (b) acoustic features

         - Search
                  - Approximate string matching - Symbolic
                  - DTW variants - Representation and relative emphasis    
                  - Bag of words - Index (Mapping issues)
                  - Prosody constraints in search

III. Phonetic Engine
       - Use of acoustic phonetic features and prosody
       -  Combining different methods
       - Evaluation

IV. Prosody labeling
       - Syllable marking, pitch accent marking, prosody breaks

V. IIIT Hyderabad to host data from all sites
   

    List of participants ( 6th workshop/meeting)

 1. Prof. B.Yegnanarayana,  IIIT Hyderabad
 2. Dr. Suryakanth V Gangashetty,  IIIT Hyderabad
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 3. Prof.  S. R. Mahadeva Prasanna, IIT Guwahati
 4. Prof. K. S. R. Murthy,  IIIT Hyderabad
 5. Prof. Rajesh Hegde, IIT Kanpur
 6. Prof. Leena Mary, RIT Kottayam
 7. Prof. L. Joyprakash Singh, NEHU Shillong
 8. Prof. S. Rajendran, IIIT Hyderabad
 9. Prof. Utpal Sharma, Tezpur Uni., Assam
10. Dr S. K. Sinha, Tezpur Uni., Assam
11. Prof.R. K. Sharma. Thapar University Patiala
12. Dr. K. Sreenivasa Rao, IIT Kharagpur    
13. Biswajit Sharma,  IIT Guwahati
14. Manjunath K.E, IIT Kharagpur
15. Biswajit Satpathy, IIT Kharagpur
16. Ishtiyaq Husain, IIT Kanpur
17. Rameshwar Pathak, IIT Kanpur
18. Karan Nathwani,  IIT Kanpur
19. Deekshitha G,   RIT Kottayam
20. Gayathri M. R, RIT Kottayam
21. Shreejith A, RIT Kottayam
22. Shridhara M, V. SIT Tumkur
23. Bapu K Banahatti,  SIT,Tumkur
24. Himangshu Sarma, Tezpur University Assam
25. Baljinder, Thapar University Patiala
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VIII. Summary of the 7th workshop/meeting conducted at IIT Kharagpur 
during  March 7th-9th, 2014

The following is the summary of the discussions of the three days workshop at IIT Kharagpur: 

   
1.  Specific details of the following items were discussed during the concluding session [08-
03-2014, 2.30 to 4.00PM]

•  Database
•  Search engine
•  Phonetic engine
• Automatic prosodic transcription

2. Prof. B Yegnanarayana has proposed following things and all the members have agreed

• Form four sub-groups to handle four deliverables ( Database, Search engine, Phonetic 
engine  and Automatic phonetic transcription )

• Each sub-group is responsible for assigned deliverables ( specification, implementation, 
documentation and evaluation).

• Sub-groups should work on building systems in all languages.
• Sub-groups to meet in next session and discuss their deliverables.

3. Subgroup details

• Database
          1. Dr. S. Rajendran          2. Dr. Hemanth Patil          3. Dr. Utpal Sharma

• Search engine
          1. Dr. K S R Murthy         2. Dr. Rajesh Hegde          3. Prof. S R M Prasanna

• Phonetic engine 
          1. Dr. Suryakanth V G.     2. Prof. S R M Prasanna    3. Dr. Hemanth Patil

• Automatic prosodic transcription
          1. Prof. Leena Mary           2. Dr. K. Sreenivasa  Rao

4. Suggestion/concerns by consortium members:
• [Dr. Rajesh Hegde] concerns over form of delivery of systems: It was decided that for 

Search  engine,  Phonetic  engine  and  Automatic  prosodic  transcription,  three  totally 
independent systems will be delivered. Sub-groups are responsible for this system.

• [Prof.  B  Yegnanarayana] In  evaluation  of  the  search  engine,  in-database  and  out-of-
database key words should be considered.
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• [Dr. Rajesh Hegde] raised  the concern about the time to build systems in all languages.

• [Dr. K. Sreenivasa  Rao] Manual prosodic transcription.  
Conclusion: Each team should do manual  prosodic transcription for 3 modes (in their 
respective languages). 100 sentences per mode shloud be selected.

• [Dr. S. Rajendran] Time stamping of key-words: Key-words used in the search engine 
should be time stamped.  Each team should take this  responsibility in their  respective 
languages.

• [Dr. S. Rajendran] In database, for read speech text is not available.
Conclusion: No need to have text for read speech in database.

• [Prof. B. Yegnanarayana]  Comparison of evaluation results across various modes and 
languages should be done. Each team should take this responsibility in their respective 
languages.

Acknowledge DIT in the literature produced by this project. Database can be shared with 
anyone.

• Regarding report:
• First draft of the report is ready (done by Dr. Suryakanth V. Gangashetty)
• Report needs to be reviewed.
• List of accepted papers may be included in the report.

4.  Specific details of the following items were discussed during concluding session [08-03-
2014, 4.30 to 5.30 PM]

To begin with Prof. B Yegnanarayana gave a informal talk on "Evolution of phonetic 
engine". Aim of this talk was to throw light on "what should be done, as a follow up to 
this project”. 

After  this  talk,  Prof.  P.  Bhaskara  Rao  elaborated  on  the  need  of  acoustic  phonetic 
features. 
This was followed by discussion among four sub-groups namely Database group, Search 
engine group, Phonetic engine group and Prosody labeling group.

• Action points

[Leaders of sub-groups gave a ten minute presentation on the next day meeting about 
discussion in the sub-group.

• Evolution of phonetic engine [Prof. B Yegnanarayana]

Definition of phonetic  engine:  Aim of Phonetic  Engine (PE) is  "to  represent  what  is 
uttered by a speaker in the form of symbols".
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Based on type of symbols used, phonetic engines are classified into five generations.
5. Different approaches for the development of  of phonetic engines

• Generation-1 phonetic engine (G1PE)

G1PE  involves  representation  of  speech  using  parameters  (sometimes  features)  and 
learning them to identify phoneme. Basically G1PE sees speech as sequence of phoneme 
->  phoneme  to  text.  G1PE  features  are  not  pure  acoustic  phonetic.  Their  output  is 
constrained. For example in case of Speech->MFCC->HMM based PE lot of sequential 
information (may be language) is captured and constraints (lexical, phone sequence itself) 
the output. Also in G1PE phonemes are used as basic unit and phonemes are language 
dependent. Hence, there is a need to use unit which is more production oriented.

• Generation-2 phonetic engine (G2PE)

Phoneme is specific to a language. Hence sequence of phonemes is language specific. To 
overcome  this  limitation in  G2PE,  syllable  (syl)  is  used as  unit.  Syl  is  a  convenient 
production unit. Syl also imposes production constrains.

(Features: Something can be seen in acoustic signal: Ex : formant contours.Parameters: 
blindly extracted from signals using an algorithm: Ex : DFT, LPC, MFCC )

• Generation-3 phonetic engine (G3PE)

Syl could be language dependent. There was need for more production oriented approach. 
Hence, IPA was used in this project.

• Generation-4 phonetic engine (G4PE)

By transcribing speech using IPA, we might  have neglected some production aspects 
( refer section Acoustic phonetic features [ Prof. P. Bhaskara Rao]). Hence, there is a 
need to have acoustic phonetic description of speech. In G4PE speech will be represented 
using acoustic phonetic description. Extracting acoustic phonetic description of speech is 
the challenge.

• Generation-5 phonetic engine (G5PE)

In G5PE speech will be quantized in terms of movement of accumulators, oral cavity 
description, amount of excitation pressure and etc.

•  Application of acoustic phonetic features [Dr. K S R Murthy]

Most of the ASR groups are concentrating on low resource ( take model of rich resource 
language  and  adapt  model  to  low  resource  language),  zero  resource  language  and 
multilingual ASR. In traditional ASR Bayesian formulation will be used (probability of 
the word, given observation seq and model). In case of low and zero resource languages 
there will be no models and models from high resource languages will be used. In this 
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context, "word" from low or zero resource language cannot be treated in a traditional 
way. So word can be considered as sequence of acoustic phonetic description.

• Acoustic phonetic features [Prof. Peri Bhaskararao]

Prof.  P.  Bhaskararao  elaborated  on  neglected  information  when  a  "voiced  aspirated 
plosive" is transcribed. Aim of the talk was to emphasize on Acoustic phonetic (feature) 
representation of speech. He took four examples of Bengali bh (voiced aspirated) and 
showed  diversity  of  production  features  (murmured.  modal  vowel,  voice  bar,  instant 
release) and proved these will be lost in the regular transcription.

 List of participants ( 7th workshop/meeting)
 1.  Prof. B. Yegnanarayana ,  IIIT Hyderabad
 2. Dr. K. Sreenivasa Rao, IIT Kharagpur    
 3.  Mr. Vinay Mittal ,   IIIT Hyderabad
 4.  Prof. Peri Bhaskararao, IIIT Hyderabad
 5.  Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
 6.  Dr. S. Rajendran ,  IIIT Hyderabad
 7.  Dr. K S R Murthy, IIT Hyderabad 
 8.  Dr. Rajesh Hegde , IIT Kanpur
 9.  Prof. S R Mahadeva  Prasanna, IIT Guwahati 
10.  Dr. Hemanth Patil, DA-IICT Gandhinagar
11.  Prof. Leena Mary, RIT Kottayam
12.  Prof.  R. Kumaraswamy, SIT Tumkur 
13.  Prof. Rajendra Kumar Sharma, Thapar University Patiala
14.  Ms. Rupinderdeep Kaur, Thapar University Patiala
15.  Dr. L. Joyprakash Singh , NEHU Shillong 
16.  Dr. Utpal Sharma, Tezpur University
17.  Rameshwar Pathak,   IIT Kanpur
18.  Biswajit Satpathy, IIT Kharagpur
19.  Abhishek Dey , IIT Guwahati
20.  Biswajit Sarma, IIT Guwahati
21.  Maulik Madhavi, DA-IICT Gandhinagar
22.  Jubin James Thennattil,  RIT Kottayam
23.  Anil P Antony, RIT Kottayam
24.  Navanath Saharia, Tezpur University 
25.  Ishtiyaq Husain, IIT Kanpur
26.  Narendra N P, IIT Kharagpur 
27.  Sunil Kumar S. B., IIT Kharagpur 
28.  Manjunath K.E, IIT Kharagpur
29.  Dipanjan Nandi, IIT Kharagpur 
30.  Procheta Sen, IIT Kharagpur
31.  Parkranth Sarkar, IIT Kharagpur
32.  Hari Krishna, IIT Kharagpur
33.  Gurunath Reddy, IIT Kharagpur
34.  Arijul Haque, IIT Kharagpur
35.  Arup Datta, IIT Kharagpur
36.  Prasenjit Dhara, IIT Kharagpur
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IX. Summary of the 8th workshop/meeting conducted at IIT Guwahati 
during  September 6th-7th, 2014

 The meeting is for the purpose of assigning a role to each of consortium members. The following 
is the summary of the discussions of the two days workshop at IIT Guwahati: 

  1. Audio Search: [Dr. K. Sri Rama Murty] 
   
     - Description of supervised and unsupervised versions of the system with details and results. 
     - Demonstration of the system with proper user interface. 
     - Exploring the possibility of incorporating some of the ideas of Phonetic Engine (PE) and 
       prosody for improving the performance. 

2.  Phonetic Engine: [Prof. S. R. Mahadeva Prasanna] 
  
    - Hidden Markov  Model (HMM) based training using compressed set of phonetic units 
      derived from manually labelled data 
    - Graphical User Interface (GUI) for display of the system .
    - Language dependent and language independent systems .
    - Display of: speech waveform, sequence symbols output, symbols output with confidence  
      threshold, symbols  with confidence-based display.
    - Overlay of prosody information [Dr. K. Sreenivasa Rao]
    - Performance evaluation: % Recognition, subjective evaluation of unknown sentences by the 
      user for different displays above .

3. Prosody modelling: [Dr. K. Sreenivasa Rao]

     - Display of prosody analysis and evaluation results. 
     - Integration with PE .

4. Consolidated report: 

  - Individual reports by 7th October  2014: Dr. S. Rajendran, K. Sri Rama Murty, Prof. S. R. 
    Mahadeva Prasanna, Dr. K. Sreenivasa  Rao with Dr. Suryakanth V Gangashetty's  help for all. 
  - Overall report draft by end of October : Prof. B. Yegnanarayana  with inputs from Prof. Peri 
      Bhaskararao, also including some future directions. 

5. Next proposal: 
 
    - Draft by Prof. B. Yegnanarayana  by the end of September 2014. 

 List of participants ( 8th workshop/meeting)

 1.  Prof. B. Yegnanarayana ,  IIIT Hyderabad
 2.  Prof. S R Mahadeva  Prasanna, IIT Guwahati 
 3.  Prof. S. Dandapat,  IIT Guwahati 
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 4.  Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
 5.  Dr. K Sri  Rama Murthy, IIT Hyderabad 
 6.. Dr. Hemanth Patil, DA-IICT Gandhinagar
 7.  Dr. K. Sreenivasa Rao, IIT Kharagpur
 8.  Dr. L. Joyprakash Singh , NEHU Shillong
 9.  Deepak, IIT Guwahati  
10. Vivek C M, IIT Guwahati  
11. Biswajit Dev Sarma, IIT Guwahati  
12. Abhishek Dey,  IIT Guwahati  
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X. Summary of the 9th workshop/meeting conducted at IIIT  Hyderabad
on  December 12th, 2014

The objective of the meeting is to consolidate the work done and prepare for the following :

(a) Technical report and closure report in the DIT prescribed format 
(b) Deliverables 
(c) Demonstrations 
(d) Utilization Certificates and expenditure statement as per DIT norms 
(e) Further action (like next proposal in the direction of Rich Representation)

 The following is the summary of the discussions of the one day workshop at IIIT Hyderabad: 

    1. Prof.  B Yegnanarayana - Introduction, review, general format for discussions and writeup 
        and deliveries. 
    2. Dr. S Rajendran - Data collection effort. 
    3. Prof. S. R. Mahadeva Prasanna - Phonetic Engine effort - writeup, demo and delivery. 
    4. Dr. K Sreenivasa Rao - Prosody modelling effort. 
    5. Dr. K Sri Rama Murty - Audio search effort. 
    6. Summary, tasks ahead to wind up the project by December 31, 2014. 
        - Writeup consolidation - Dr. S Rajendran and Dr. Anil Kumar Vuppala
        - Demos consolidation - Prof. S. R. Mahadeva Prasanna and Dr. K Sri Rama Murty 
        - Finance and deliverables - Dr. Suryakanth V Gangashetty and Dr. Anil Kumar 
          Vuppala 

List of participants ( 9th workshop/meeting)

 1. Prof. B. Yegnanarayana, IIIT Hyderabad
 2. Dr. S. Rajendran, IIIT Hyderabad
 3. Dr. Anil Kumar Vuppala, IIIT Hyderabad
 4. Dr. Suryakanth V. Gangashetty, IIIT Hyderabad
 5. Prof. Rajendra Kumar Sharma, Thapar University Patiala
 6. Dr. K. Sri Rama Murty, IIT Hyderabad 
 7. Dr. S. R. Mahadeva Prasanna, IIT Guwahati  
 8. Dr Utpal Sharma, Tezpur University  
10. Dr. L. Joyprakash Singh, NEHU Shillong 
11. Dr. Hemant A. Patil, DA-IICT Gandhinagar 
12. Dr. K. Sreenivasa Rao, IIT Kharagpur 
13. Dr. R Kumaraswamy, SIT Tumkur 
14. Dr. Leena Mary, RIT Kottayam 
15. Gautam Varma Mantena, IIIT Hyderabad 
16. Vishala Pannala, IIIT Hyderabad
17. Patha Sreedhar, IIIT Hyderabad
18.. P. Gangamohan, IIIT Hyderabad
19. B. Rambabu, IIIT Hyderabad
20. Sudarsana Reddy Kadiri, IIIT Hyderabad
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21. Aneeja G., IIIT Hyderabad
22. Nivedita Chennupati, IIIT Hyderabad
23. Ravi Shankar Prasad, IIIT Hyderabad
24. Anandaswarup Vadapalli, IIIT Hyderabad
25. Sivanand A, IIIT Hyderabad
26. Bhargav Pulugundla, IIIT Hyderabad
27. Santhosh, IIIT Hyderabad
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Appendix–B: Data collection and transcription

1. Details of the data collected by IIIT Hyderabad 
   

Language Read speech 
(in minutes)

Conversational speech 
(in minutes)

Assamese 03.39 01.44

Bengali 03.50 05.57

Gujarati 03.19 05.23

Hindi 04.22 03.03

Kannada 03.19 04.03

Malayalam 03.10 05.07

Manipuri 03.32 04.05

Marathi 03.23 05.16

Odia 03.20 05.31

Punjabi 03.31 02.25

Total 34.05 41.14
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2. Data collected and transcribed by the consortium institutes  

Language Source from which data was collected Data 
collected 
(in hours)

Data 
transcribed 

phonetically 
(in hours)

Assamese 
(1)

Live recording from 4 speakers 13.35 06.00

Assamese 
(2)

www.newsonair.nic.in, Field recording 09.20 08.00

Bengali TV, Indoor recording, Field recording 14.10 05.93

Gujarathi Live recording 14.00 00.30

Hindi www.newsonair.nic.in, www.youtube.com 02.25 02.25

Kannada www.newsonair.nic.in, Field recording 35.40 01.50

Malayalam TV, Field recording 18.00 02.00

Manipuri www.newsonair.nic.in,  Live recording 04.91 04.91

Marathi Live recording 06.25 00.00

Odia Indoor recording 10.00 05.00

Punjabi www.youtube.com 06.10 00.42

Telugu TV, www.youtube.com 16.50 09.50

Urdu TV, www.youtube.com 07.00 01.00
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Appendix–C: Metadata format for the speech data

1. Metadata file for the speech data  

-------------------------------------------------------------------------------------------------------------------

File name: D_INID_GXXXX_LN_MYYYY.info

--------------------------------------------------------------------------------------------------------------------

• Data type : 

• Institute ID :

• Gender :

• Speaker ID :

• Recording language :

• Mode :

• File ID :

• Environment :

• Transcribed by :

• Verified by :

• Recording device :

• Close speaking  microphone :

• Speaker name :

• Age :

• Mother tongue :

• Home town :

• Home state :

• Place of long term stay :

• Place of stay till age 12 :

• Education :

• Profession :

• Languages :

2. Explanation of the fields in the metadata

______________________________________________________________________________________
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Fiel
d ID

Field NameDescription A set of 
possible values/
value type

Remarks

1 D: Data 
type

Raw data/ 
Transcribed 
data

            {R, T} R – Raw data, T – Transcribed data

2 INID Institute ID {IIITH, IITH, 
IITG, IITK, 
IITKG, RITK, 
SITT, DAIICT, 
NEHUS, TEZT, 
TUPT}

 

IIITH - International Institute of  Information 
Technology, Hyderabad
IITH - Indian Institute of    Technology, Hyderabad
IITG - Indian Institute of Technology, Guwahati
IITK - Indian Institute of Technology, Kanpur
IITKG - Indian Institute of Technology, Kharagpur
RITK - Rajiv Gandhi Institute of Technology, 
Kottayam
SITT- Sidda Ganga Institute of Technology, Tumkur
DAIICT - Dhirubhai Ambani Institute of Information 
and Communication Technology, Gandhinagar 
NEHUS - North Eastern Hill University, Shillong
TEZT - Tezpur University, Tezpur
TUPT- Thapar University, Patiala

3 G Gender             {M, F} M – Male, F - Female

4 XXXX Speaker ID              Integer Four digit integer [0001 - 9999]

5 LN Language of 
the audio file

{AS, BN, GJ, 
HN, KN,    MN, 
MR, OD, PN, 
TE, UR, ML}

 AS – Assamese, BN – Bengali, 
 GJ – Gujarati, HN – Hindi, 
 KN – Kannada, MN – Manipuri, 
 MR – Marathi, OD – Odiya, 
 PN – Punjabi, TE – Telugu,
 UR – Urdu, ML – Malayalam

6 M: Mode Read speech/

Extempore 
speech/

Conversational 
speech

              {1,2,3} 1 – Read speech

2 – Extempore speech

3 – Conversational speech

7 YYYY File number                Integer Four digit integer [0001 - 9999]

8 Environme
nt

Data collected 
environment

{Field, Open 
room, Closed 
room}

               

9 Transcribed 
by

Name of 
person who 
transcribed

              String Max. up to twenty characters
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10 Verified by Name of 
person who 
verified the 
transcription

              String Max. up to twenty characters

11 Recording 
device

Device used 
for recording 
with model 
number (if 
any) and 
manufacturer

{Zoom, Edirols, 
Set-up box, 
Others}

Zoom – Zoom model numbers,

Edirols – Edirol model numbers,

Set-up box – Type of set-up box used, 

Others  - Specify if other than above mentioned 
devices

12 Close 
speaking 
microphone

Whether close 
speaking 
microphone 
setup was used 
or not

              {Y , N}Y – Yes, N - No

13 Speaker 
name

Name of the 
speaker

               String Max. up to twenty characters

14 Age Age group of 
the speaker

{10-19, 20-40, 
41-60, 
  61-80 , 81-99} 

Age group of

10-19 Years, 20-40 Years, 

41-60 Years, 61-80 Years,

81-99 Years

15 Mother 
tongue

Mother tongue 
of the speaker

              String Max. up to twelve characters

16 Home town Home town of 
the speaker

              String Max. up to twenty characters

17 Home state Home state of 
the speaker

              String Max. up to twenty characters

18 Place of 
long term 
stay

Long term stay 
of the speaker

              String Max. up to twenty characters

19 Place of 
stay till age 
12

Place of stay 
till age 12 of 
the speaker

              String Max. up to twenty characters

20 Education Qualification 
of the speaker

{Below 10th 

class, 10+2, 
Graduation, 
Post 
Graduation, 
Other}           

                

21 Profession Profession of               String Max. up to thirty characters
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the speaker

22 Languages Languages 
known by the 
speaker with 
read, write, 
speak options

{Telugu(RWS), 
English(RS)}

R - Read, W - Write, S - Speak

3. Observations

• The actual file before any processing/modification is defined as a raw file in this 
document.

• Specifications for audio files:
Minimum sampling frequency : 16000 Hz
Minimum bits per sample : 16 bits
Format : MS WAV format
Number of channels : Mono/Stereo

A copy of ProPEn.conf will be sent through mail or will be made available for 
download in the portal shortly.
Copy this file to the path (in Linux based systems)  

        .wavesurfer/x.x/configurations/
(cp pathwherefileispresent/ProPEn.conf   ~/.wavesurfer/x.x/configurations/)
(x.x is your version of wavesurfer installed in your system e.g.: 1.8)
Copy this file to the path (in Windows based systems)  

        c:\\users\username\.wavesurfer\x.x\configurations\
(Username is the name of the user in your system)
(x.x is your version of wavesurfer installed in your system e.g.: 1.8)
All the data has to be transferred to the Consortium Manager (IIITH) in the 
following structure.

• Folder structure of data: 
        Each institute should send a directory in the name of its Institute ID 

which consists of folder(s) with Language ID(s) as name of the folder(s) 
corresponding to languages handled by them. This language folder(s) consists of 
two different folders namely raw_data and transcribed_data. Each of the 
raw_data and transcribed_data folders consists of 3 sub-folders. They are 
Read_speech, Extempore_speech, Conversational_speech corresponding to mode 
of speech.
              Each speech file in raw_data folder must have only .wav files                
              (R_INID_GXXXX_LANG_MYYYY.wav) and corresponding .info files.
              Each speech file (T_INID_GXXXX_LANG_MYYYY.wav) in                    

▪               transcribed_data folder should be associated with the following files:
         Phonetic Transcription : T_INID_GXXXX_LANG_MYYYY.ph

               Syllable marking : T_INID_GXXXX_LANG_MYYYY.sy
               Pitch Marking : T_INID_GXXXX_LANG_MYYYY.pt
               Prosodic Break Marking: T_INID_GXXXX_LANG_MYYYY.bm
               Metadata file : T_INID_GXXXX_LANG_MYYYY.info

Transcriptions should be done for continuous sentences. Word level or phoneme level 
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transcriptions must not be done.
To avoid variations and thus to maintain uniformity across all consortium members, 
an online metadata acquisition form will be provided shortly.  

                    Applicable only for those members who have done transcriptions in word document
• Open wave file with ProPEn configuration (or) IPA transcription configuration
• Mark (sentence/utterance) boundaries with some common label (say 'u') and 

silence (with say 'sil') and save the transcription     
• Open .ph file (transcription file) in any text editor and replace label (u) with the 

corresponding phonetic transcription from the word document and save .ph file 
(This is only one of the ways to convert .doc to .ph for the transcription, no 
compulsion          on following this procedure but one has to submit only .ph files 
not .doc/.docx/.odt/.txt etc.)

4. Example for the metadata format

---------------------------------------------------------------------------------------------------------------------

File name: R_IIITH_M0125_TE_23458.info

--------------------------------------------------------------------------------------------------------------------

• Data type : Raw

• Institute ID : IIITH

• Gender : M

• Speaker ID : 0125

• Recording language : TE

• Mode : 2

• File ID : 3458

• Environment : Field

• Transcribed by : John

• Verified by : Peter

• Recording device : Zoom 

• Close speaking microphone : No

• Speaker name   : David

• Age : 20-40

• Mother tongue  : Telugu

• Home town : Guntur

• Home state : Andhra Pradesh

• Place of long term stay : Hyderabad
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• Place of stay till age 12   : Vijayawada

• Education : Graduation

• Profession : Medical Representative

• Languages : English (RWS), Telugu (RS), Hindi (S)

--------------------------------------------------------------------------------------------------------------------
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PART - II

Progress Reports of the Individual Consortium
Members
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IIIT Hyderabad
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Progress Report of IIIT Hyderabad

A. General

A.1 Name of the Project : Prosodically Guided Phonetic Engine for

Searching Speech Databases in Indian Lan-

guages

Sanction Letter Reference No. : 11(6)/2011-HCC(TDIL), Dated 23-12-2011

A.2 Executing Agency : IIIT Hyderabad

A.3 Chief Investigator with : Prof. B. Yegnanarayana

Designation Institute Professor

Co-Chief Investigators with : (1) Dr. Suryakanth V Gangashetty, Assistant Professor

Designation (2) Dr. Kishore S. Prahallad, Associate Professor

A.4 Project staff with : (1) Dr. S. Rajendran, Senior Research Officer, Ph.D.

Qualification (2) Aneeja G., Research Scholar (PhD)

(engaged at different periods (3) Nivedita Chennupati, Research Scholar (PhD)

of time during the project (4) Sathya Adithya Thati, Research Scholar (PhD)

period) (5) P. Gangamohan, Research Scholar, (PhD)

(6) Apoorv Reddy, Research Scholar, (MS)

(7) Basil George, Research Scholar, (MS)

(8) Vishala Pannala, Research Scholar, (MS)

(9) B. Rambabu, Senior Research Scholar, (PhD)

(10) Karthik Venkat, Research Scholar, (PhD)

(11) Sudarsana Reddy K, Research Scholar, (PhD)

(12) Patha Sreedhar, Research Scholar, (PhD)

(13) Ravi Shankar Prasad, Research Scholar, (MS)

(14) Bhanu Teja Nellore, Research Scholar, (MS)

(15) Sri Harsha Dumpala, Research Scholar, (MS)

(16) Raghu Ram Nevali, Research Scholar, (MS)
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1. IIIT Hyderabad

A.5 Total Cost of the Project as approved by DIT

(i) Original : Rs. 100.05 Lakhs

(ii) Revised, if any :

A.6 Project Sanction Date : 23-12-2011

A.7 Date of Completion : Not Applicable

(i) Original :

(ii) Revised, if any :

A.8 Date on which last progress : 28-02-2014

report was Submitted
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B. Technical

B.1 Work in Progress (Details are given in technical report in Appendix 1.1)

(a) Database collection in three different modes:

(i) Read speech

(ii) Lecture mode

(iii) Conversational speech

(b) Transcription using IPA chart

(c) Development of prosody models

(d) Development of phonetic engine

(e) Development of speech search application

B.2 Proposed plan of work highlighting the action to be taken to achieve the proposed targets

(a) Report finalization

(b) Database finalization

(c) Code delivery

(d) Finance settlement
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1. IIIT Hyderabad

C. Project Outcomes

C.1 Papers Published: (See Appendix 1.2)

(i) G. Aneeja and B. Yegnanarayana, “Single Frequency Filtering Approach for Discriminating

Speech and Nonspeech,” IEEE/ACM Transactions on Audio, Speech, and Language Processing

(ASLP), vol. 23, no. 4, pp. 705-717, April 2015.

(ii) Vinay Kumar Mittal, B. Yegnanarayana, and Peri Bhaskararao, “Study of the effects of vo-

cal tract constriction on glottal vibration,” The Journal of the Acoustical Society of America

(JASA), vol. 136, no. 4, pp. 1932-1941, August 2014.

(iii) Anand Joseph Xavier M., Guruprasad Seshadri, and B. Yegnanarayana, “iExtraction of formant

bandwidths using properties of group delay functions,” Speech Communication, vol. 63-64, pp.

70-83, May 2014.

(iv) Gautam Mantena, Sivanand Achanta, and Kishore Prahallad, “Query-by-example spoken term

detection using frequency domain linear prediction and non-segmental dynamic time warping,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing (ASLP), vol. 22, no. 5,

pp. 946-955, May 2014.

(v) Gautam Varma Mantena and Kishore S. Prahallad, “Use of articulatory bottle-neck features for

query-by-example spoken term detection in low resource scenarios, ” in Proceedings of IEEE Int.

Conf. Acoust., Speech, and Signal Processing (ICASSP), Florence, Italy, pp. 7128-7132, May

2014.

(vi) B. George and B. Yegnanarayana, “Unsupervised query-by-example spoken term detection using

segment-based bag of acoustic words, ” in Proceedings of IEEE Int. Conf. Acoust., Speech, and

Signal Processing (ICASSP), Florence, Italy, pp. 7183-7187, May 2014.

(vii) Ravi Shankar Prasad and B. Yegnanarayana, “Acoustic segmentation of speech using zero time

liftering (ZTL),” in Proc. Interspeech, Lyon, France, pp. 2292-2296, August 2013.

(viii) Apoorv Reddy, Nivedita Chennupati and B. Yegnanarayana, “Syllable nuclei detection using

perceptually significant features,” in Proc. Interspeech, Lyon, France, pp. 963-967, August 2013

48



(ix) Dhananjaya N., B. Yegnanarayana, and Peri Bhaskararao, “Acoustic analysis of trill sounds,”

The Journal of the Acoustical Society of America (JASA), vol. 131, no. 4, pp. 3141-3152, April

2012.

C.2 Development of Database

(i) Data was collected from participants of workshops held in IIIT Hyderabad

C.3 Tools and Systems Developed

(i) Templates for data transcription and prosody labeling was developed

(ii) Phonetic engine template for syllable labeling

(iii) Audio search template

(iv) Acoustic phonetic labeling template

(v) Prosody labeling
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1. IIIT Hyderabad

Appendix 1.1

Detailed Technical Report of IIIT Hyderabad

1.1 Responsibilities

IIIT Hyderabad is responsible for overall coordination of the project. It has planned several

meetings and workshops as listed in the overview of the project. In addition the following tasks are

being carried out.

1.2 Database collection and transcription

• Data was collected from the participants in the workshop in their respective languages in different

contexts.

• This data will be transcribed for use in the development of prosody models and also the phonetic

engine

• The templates for data collection and labeling were designed and distributed to all the consortium

partners

1.3 Prosody Knowledge

The guidelines for acquiring the prosody knowledge were evolved for the following subtasks:

(a) Syllabification of spoken data

(b) Pitch marking

(c) Marking prosody breaks

1.4 Development of Phonetic Engine

Several versions of phonetic engine are under development
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1.5 Development of Speech-based Search Engine

(a) A system for speech signal to syllable transcription using the conventional HTK toolkit with some

modifications taking into account constraints only at syllable level (with no language constraints)

was developed. It gives a syllable level accuracy of about 50 %.

(b) Phonetic engine system using acoustic level features is being developed using less than 10 acoustic

features.

1.5 Development of Speech-based Search Engine

Three different approaches are being explored for keyword spotting in read speech

(a) Dynamic time warping (DTW) based system

(b) System based on phonetic/phonemic sequence representation

(c) System based on acoustic feature representation

1.6 Summary of the Work

IIIT Hyderabad is mainly engaged in coordinating the activities of different group working in dif-

ferent languages. In particular, workshops were organized to expose the participating groups to the

concepts of phonetic labeling and prosody labeling. Also the guidelines for phonetic engine system

and search system are being evolved and communicated to participating members.

In addition, small amount of data was collected in different languages and in different contexts for

phonetic labeling and prosody labeling by this group. These results will be used for the development

of phonetic engine modules and search engine. Versions of phonetic engine and search engine are

developed.
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1. IIIT Hyderabad

Appendix 1.2

List of Publications
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Single Frequency Filtering Approach for
Discriminating Speech and Nonspeech

G. Aneeja and B. Yegnanarayana, Fellow, IEEE

Abstract—In this paper, a signal processing approach is pro-
posed for speech/nonspeech discrimination. The approach is based
on single frequency filtering (SFF), where the amplitude envelope
of the signal is obtained at each frequency with high temporal
and spectral resolution. This high resolution property helps to
exploit the resulting high signal-to-noise ratio (SNR) regions in
time and frequency. The variance of the spectral information
across frequency is higher for speech and lower for many types of
noises. The mean and variance of the noise-compensated weighted
envelopes are computed across frequency at each time instant.
Decision logic is applied to the feature derived from the mean and
variance values on varieties of degradations, including NTIMIT,
CTIMIT and distance speech, besides degradation due to standard
noise types. In all cases, the proposed method gives significantly
better performance than the standard Adaptive Multi-rate VAD2
(AMR2) method. AMR2 method is chosen for comparison, as the
method adapts itself for different degradations, and is seen to give
good performance over different SNR situations. The proposed
method does not use training data to derive the characteristics
of speech or noise, nor makes any assumption on the nonspeech
beginning. The SFF method appears promising in other applica-
tions of speech processing, such as pitch extraction and speech
enhancement.
Index Terms—Single frequency filtering (SFF), spectral vari-

ance, speech/nonspeech discrimination, temporal variance, voice
activity detection (VAD), weighted component envelope.

I. INTRODUCTION

T HE objective of voice activity detection (VAD) is to deter-
mine regions of speech in the acoustic signal, even when

the signal is corrupted by additive or other types of degradations.
VAD is an essential first step for development of speech sys-
tems such as speech and speaker recognition. Human listeners
are able to distinguish speech and nonspeech regions by inter-
preting the signal in terms of speech characteristics, as well as
the context. If a machine has to discriminate these two regions,
it has to depend only on the characteristics of speech and degra-
dation. It is difficult to make a machine use the accumulated
knowledge of a human listener for this purpose.
Robustness of a VAD algorithm depends on the type of

degradation, the features extracted from the signal and the
models used to discriminate speech and nonspeech regions. The

Manuscript received July 19, 2014; revised November 14, 2014; accepted
January 31, 2015. Date of publication February 13, 2015; date of current version
March 06, 2015. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Yunxin Zhao.
The authors are with the International Institute of Information Technology,

Hyderabad 500 032, India (e-mail: aneeja.g@research.iiit.ac.in; yegna@iiit.ac.
in).
Digital Object Identifier 10.1109/TASLP.2015.2404035

acoustic features are usually based on the signal energy in dif-
ferent frequency bands, which includes standard melfrequency
cepstral coefficients (MFCC’s) [1]. Features based on speech
characteristics such as voicing and dynamic spectral character-
istics have also been explored [2], [3]. In [2], the phase of the
Fourier Transform is averaged over a window to compensate
for phase wrapping, and then processed over mel-frequency
bands. The phase information gives performance similar to
MFCCs even in the cases of degradation. But combination of
MFCCs and phase information seems to have improved the per-
formance. Some attempts have been made to explore features
in the excitation component of speech signal [4]. Features of
the discrete wavelet transform and Teager energy operator have
also been proposed for VAD with good results [5], [6]. Charac-
teristics of speech and noise can be captured well if the samples
are collected over long ( sec) durations, as some of the
studies below indicate. For example, the long-term divergence
measure (LTDM) measures the spectral divergence between
speech and noise over longer duration [7]. The LTDM measure
is calculated as the ratio of the long-term spectral energies of
speech and noise over different frequency bands. More recently
long-term spectral variability has been suggested for VAD [8].
The long-term feature is the variance across frequency of the
entropy computed over 300 msec of speech at each frequency.
It was shown to be robust at low signal-to-noise ratio (SNR)
conditions for a variety of noise degradations. The long-term
signal variability (LTSV) was extended to multi-band long-term
signal variability to accommodate multiple spectral resolutions
[9]. The long-term spectral variability feature together with
contextual, discriminative and spectral cues was shown to
give further improvement in performance of VAD [10]. New
features like Multi-Resolution cochleagram (MRCG) along
with boosted Deep Neural Networks (bDNNs) have been
proposed recently for VAD, which are shown to outperform the
state-of-the-art VADs even at low SNRs, for babble and factory
noises [11], [12]. The MRCG feature is derived using features
at multiple spectrotemporal resolutions [11] and the bDNN
uses aggregate of predictions of multiple weak classifiers [12].
In [13], a low variance for spectral estimate is assumed for

noise, and large amount of data is used for training. But low
variance criterion for noise may not be applicable for machine
gun noise and some other non-stationary noises, including dis-
tant speech. The method proposed in [13] assumes a nonspeech
beginning to estimate the noise statistics. Other models are also
considered for speech and nonspeech discrimination, which in-
clude artificial neural networks (ANNs) [14], Gaussian mixture
models (GMMs) [15], and deep belief networks (DBNs) [16].

2329-9290 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Several attempts have been made to improve the performance
of VAD, by exploiting the statistics of speech and noise char-
acteristics [17]. One such method is the statistical model-based
VAD, and its refinements proposed in [18]. Statistical methods
work well if labelled training data for speech and nonspeech in
different noise conditions are available for training the models.
These are called supervised learning systems [19]. In some
cases, the noise model derived from training data is used for ini-
tialization process. These methods are called semi-supervised
learning [17]. Methods based on universal models of speech,
without assuming any specific type of noise, are also proposed.
In [20], non-negative matrix factorization (NNMF) approach
is used to develop universal speech model. In practice, it is
preferable to develop a VAD algorithm that can operate without
any training data, i.e., unsupervised learning.
Most of the VAD algorithms are tested on data with simu-

lated degradation, either by adding noise or by passing the clean
signal through a degrading channel. This is necessary to eval-
uate new methods in comparison with known/existing methods.
Very few attempts have been made to assess the performance of
a VAD algorithm with data collected in practical environments.
The degradations in such environmentsmay not fit into any stan-
dard model. Moreover, it is difficult to obtain ground truth in
practice to evaluate the VAD methods. In general, the charac-
teristics of the environment in which speech signal is produced
vary, and hence are not predictable to model. The only option
available is to develop VAD algorithm by exploiting the char-
acteristics of speech that may be present even in the degraded
signal. For this, the features of excitation source and dynamic
vocal tract system need to be explored for robustness against
degradation. Also, it is necessary to develop methods to extract
those features from degraded signals.
In this paper, a signal processing approach is proposed to

highlight the features of speech even in degraded signal. The
method extracts the temporal variation of signal energy at each
frequency. The characteristics of speech signal (due to correla-
tions among speech samples) at each frequency are distinctly
different from the characteristics of noise (due to uncorrelated-
ness in noise samples in many cases) at each frequency. The
SNR of the speech signal is high at some frequencies, com-
pared to noise. The high SNR property of speech at several
single frequencies is exploited. Since the method is based on
extracting energy at a single frequency, it is called single fre-
quency filtering (SFF) method. Note that single frequency in-
formation can also be derived by computing the discrete Fourier
transform (DFT) over a block of data at every sampling instant.
Other methods of deriving similar information include gamma-
tone filters [21]. The temporal variation of signal energy at each
frequency is processed further to compensate for the effects of
noise in that band by determining a weighting factor for each
band. The mean and variance of the weighted signal energy
across frequency at each sampling instant are used to derive a
parameter contour as a function of time, to discriminate between
speech and nonspeech regions. An adaptive threshold is derived
from the parameter contour for each utterance, followed by a
decision logic based on the features of speech and noise in the
given utterance. The method is tested using simulated degrada-
tions on speech signals, and also using speech signals collected

in practical environments. Since the method exploits the proper-
ties of the speech signal, it is not necessary to have training data
of speech and nonspeech signals to build models. The present
approach does not rely on the appended silence/noise regions to
estimate the noise characteristics.
Many studies in literature compare VAD algorithms with the

Adaptive Multi-Rate (AMR) method [22]. The comparison is
done mainly at the score level. To have a fair comparison with
the AMR method, the VAD algorithms should consider the fol-
lowing other factors of the AMR method into account:
• Adaptability: AMR method is adaptable to various types
of noise, SNRs and environments.

• No prior information: It does not require training data or
any other prior information about the type of noise.

• Automatic threshold: The threshold estimation does not
require nonspeech beginning, and also does not use data
for training of statistical models.

In Section II, speech data collected in different types of
degradation is described. Section III discusses the basis for
the proposed single frequency filtering (SFF) method for pro-
cessing the signals. Section IV gives the development of the
proposed VAD algorithm. Section V gives results of evaluation
of the SFF-based method of VAD in comparison with the
AMR2 method for different types of degradations. This section
also includes a discussion on relative performance of SFF, DFT
and gammatone filtering methods of deriving information in
different frequency bands. Section VI gives a summary, and
indicates how the proposed SFF method can be exploited for
other speech processing applications.

II. DIFFERENT TYPES OF DEGRADATION

In this section different speech and noise databases and their
characteristics are discussed to indicate the variety of degrada-
tions considered for evaluation of the proposed VAD algorithm.
Note that, although some of the data was collected at 16 kHz
sampling rate and other data at 8 kHz sampling rate, the fre-
quencies in the range 300 - 4000 Hz are considered in both the
cases as explained in Section IV-A.

A. Adding Degradation at Different SNRs to Clean Speech
Signal
The TIMIT test corpus is used for evaluation [23]. The sam-

pling rate is 16 kHz. A VAD algorithm should ideally accept
speech and also reject nonspeech. In a situation where there is
more duration of speech than nonspeech, then if the algorithm
has a higher speech acceptance, then the algorithm shows better
performance even if the performance of nonspeech rejection is
poor. A similar situation of better performance would arise for
longer duration of nonspeech, with higher nonspeech detection
rate and lower speech detection rate of the algorithm. To over-
come this problem, each TIMIT utterance is appendedwith 2 sec
of silence at the beginning and end of the utterance as in [8]. Var-
ious samples of the thirteen types of noises from NOISEX-92
database [24] are added to the clean TIMIT speech signal at
SNRs of dB and 5 dB, to create degraded speech sig-
nals. The TIMIT data provides boundaries of the phone labels,
which are generated automatically and are then hand corrected
by experienced acoustic phoneticians. Hence these boundaries



ANEEJA AND YEGNANARAYANA: SFF APPROACH FOR DISCRIMINATING SPEECH AND NONSPEECH 707

are used as ground truth for comparing the results of the pro-
posed VAD algorithm on the noisy speech data. The silence and
pause labels are considered as nonspeech.
Most VAD algorithms use post processing techniques like

hangover scheme. The hangover scheme is used to reduce the
risk of lower energy regions of speech at the ends of speech re-
gions being falsely rejected [13]. This is based on the assump-
tion that speech frames are highly correlated in time [13], [17].
In hangover schemes decisions at the frame level are smoothed
by considering sequence of frames to arrive at a final decision.
Hangover schemes are applied to the VAD algorithm after the
initial VAD decision. In some regions, the features of speech
might not be evident even in clean speech, although those re-
gions are labelled as speech in the database. The ground truth
given in TIMIT database may not be a perfect reference for
comparing results of any VAD algorithm. This may be due to
mismatch between the perceptual evidence and speech data in
manual labelling. Hence the accuracy will not be 100% even in
the case of clean speech.

B. Telephone Channel Database
NTIMIT (Network TIMIT) database [25] was collected by

transmitting TIMIT data over telephone network. Speech ut-
terances are transmitted from a laboratory to a central office
and then back from the central office to the laboratory, thus
creating a loopback telephone path from laboratory to a large
number of central offices. These central offices were geograph-
ically distributed to simulate different telephone network con-
ditions. Half of the TIMIT database was sent over local tele-
phone paths, while the other half was transmitted over long dis-
tance paths. All recordings were done in an acoustically isolated
room. The NTIMIT test corpus is used for VAD evaluation. The
sampling rate is 16 kHz. In the NTIMIT case, 2 sec silence seg-
ments are not appended to the data, as this kind of degradation
can not be simulated in the appended regions. The ground truth
for the NTIMIT is same as for the TIMIT data.

C. Cellphone Channel Database
The CTIMIT read speech corpus [26] was designed to

provide a large phonetically-labelled database for use in the
design and evaluation of speech processing systems operating
in diverse, often hostile, cellular telephone environments.
CTIMIT was generated by transmitting and redigitizing 3367
of the 6300 original TIMIT utterances over cellular telephone
channels from a specially equipped van, in a variety of driving
conditions, traffic conditions and cell sites in southern New
Hampshire and Massachussetts. The recorded data was played
in the van over a loudspeaker and cellular handset combination.
Each received call was digitized at 8 kHz, segmented and
time-aligned with the original TIMIT utterances. The ground
truth of TIMIT labels can be used here also. CTIMIT test
corpus is used for VAD evaluation [26]. Note that here also the
2 sec silence segments are not appended to the data, as in the
case of NTIMIT database.

D. Distant Speech
The differences between the characteristics of speech signal

collected by a distant microphone (DM) and that collected by

a close-speaking microphone (CM) are as follows: (a) The
effects of radiation at far-field are different from those at the
near-field. (b) The SNR is lower in the DM speech signal due
to additive background noise. (c) The reverberant component
in the DM speech signal is also significant, due to reflections,
diffuse sound and reduction in amplitude of the direct sound.
(d) The DM speech signal may also be affected due to interfer-
ence from speech of other speakers present in the room. Hence,
the acoustic features derived from the DM speech signal are
not same as those derived from the corresponding CM speech
signal.
Speech signals from SPEECON database are used for eval-

uation of the VAD algorithm for distant speech [27]. The sig-
nals were collected in three different cases, namely, car inte-
rior, office and living rooms (denoted by public). The signals
were collected simultaneously using a close-speaking micro-
phone (a microphone placed just below the chin of the speaker),
and microphones placed at distances of 1 meter, 2 meters and
3 meters from the speaker. These four cases are denoted by
C0, C1, C2 and C3, respectively. Each case has 1020 utter-
ances. Speech signals collected in the office environment are
affected by noises generated by computer fans and air-condi-
tioning. Speech signals collected in living rooms are affected
by babble noise and music (due to radio or television sets).
Reverberation is present mostly in the office and living room
environments. The estimated reverberation time in these envi-
ronments varied from 250 msec to 1.2 sec. The average SNR
measured at the close speaking microphone (C0) was around
30 dB, while that measured at distances of 2 meters to 3 me-
ters was in the range 0 dB. The database consists of speech
signals collected from 30 male and 30 female speakers. For
each speaker, 17 utterances were recorded, resulting in about
one minute of speech data per speaker. People were asked to
record free spontaneous items, elicited spontaneous items, read
speech and core words. A manual voiced-unvoiced-nonspeech
labels are marked for every 1 msec in the SPEECON database
for C0 case. Since speech at all the distances are simultaneously
collected, the same labels are used for the data at all distances.
The manual labels (voiced-unvoiced labels for speech and non-
speech label for the rest) form the ground truth for the data at all
distances. The sampling rate is 16 kHz. Since the utterances of
each speaker are from different environments, it is not possible
to build statistical models with this kind of data. No silence data
is appended in this case also.

III. BASIS FOR SINGLE FREQUENCY FILTERING APPROACH

Speech signal has dependencies both along time and along
frequency. This results in signal to noise power ratio to be a
function of time as well as a function of frequency. For an ideal
noise of a given total power, the power gets divided equally over
frequency, whereas for a signal, the power is distributed nonuni-
formly across frequency. Thus is higher in some frequen-
cies and lower in some other frequency regions, where
and are signal and noise amplitudes as a function of fre-
quency. This gives a much higher value for the average of
over a frequency range, compared to the ratio of total signal
power to total noise power over the entire frequency range.
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Let

(1)

(2)

and

(3)

where ( ) is the th interval of the nonoverlap-
ping frequency bands, and . The following
inequality holds good.

(4)

The and are computed for degraded speech utter-
ance and for noise using 512-point DFT of Hann windowed seg-
ments of size 20 msec for every sample shift using . In
Table I, the mean values , , of , and respectively,
computed over the entire utterance are given. It is clear that

for different types of noises. In the case of uni-
form noise, (eg white), the values of , , are lower than the
values for the nonstationary noises (eg volvo and machine gun).
In the case of some nonstationary noises, the floor value is low
at some frequencies which makes the denominator small.
With small values of the denominator, the ratios of , , are
relatively higher as observed in Table I from the values of ,
, for volvo and machine gun noises. It is also interesting to

note that for nonuniformly distributed noises, such as machine
gun, f16 and volvo, the and values are much higher than for
the more uniformly distributed noises, such as white, pink and
buccaneer2, whereas the corresponding values are low in all
cases. This is due to regions having high in the time and
frequency domains for nonuniformly distributed noises.
The signal and noise power as a function of frequency can

be computed using either by block processing as in the DFT,
or by filtering through SFF, as described in the next section.
Table II shows that the inequality (4) holds good for SFF ap-
proach also. Both the DFT and SFF based approaches are ex-
pected to give similar results. The SFF approach is used here,
as it may avoid some effects due to block processing. Also, the
computation of SFF is faster compared to the computation of
DFT at each sampling instant.

IV. PROPOSED VAD ALGORITHM

A. Envelope of Speech Signal at Each Frequency

The discrete-time speech signal is differenced, and the
differenced signal is denoted by . The
sampling frequency is . The signal is multiplied by a
complex sinusoid of a given normalized frequency . The re-
sulting operation in the time domain is given by

(5)

TABLE I
VALUES OF , , FOR SPEECH SIGNAL DEGRADED

AT dB SNR USING DFT APPROACH

TABLE II
VALUES OF , , FOR SPEECH SIGNAL DEGRADED

AT dB SNR USING SFF APPROACH

where

(6)

Since we multiplied by , the resulting spectrum of
is a shifted spectrum of . That is,

(7)

where and are spectra of and , respec-
tively.
The signal is passed through a single-pole filter, whose

transfer function is given by

(8)

The single-pole filter has a pole on the real axis at a distance of
from the origin. The the location of the root is at in

the z-plane, which corresponds to half the sampling frequency
i.e., . The output of the filter is given by

(9)

The envelope of the signal is given by

(10)
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where and are the real and imaginary components
of . Since the filtering of is done at , the above
envelope corresponds to the envelope of the signal
filtered at a desired frequency of

(11)

The above method of estimating the envelope of the component
at a frequency is termed as single frequency filtering (SFF)
approach. The choice of the filter with a pole at for esti-
mating the envelopes of the filtered signals is likely to be more
accurate, as the envelopes are computed at the highest frequency
( ) possible. Also, choosing a filter at a fixed frequency for
any desired frequency avoids scaling effects due to different
gains of the filters at different frequencies. If the pole is chosen
on the unit circle, i.e., , it may result in the filtered
output becoming unstable. The stability of the filter is ensured
by pushing the pole slightly inside the unit circle. Hence is
chosen as 0.99.
In this study, the envelope is computed at every 20 Hz in the

range 300 Hz to 4000 Hz as a function of time. The frequency
range 300 - 4000 Hz is chosen, as it covers the useful spectral
band of speech. Thus we have envelopes for 185 frequencies as
a function of time. In principle, the envelope can be computed
at any desired frequency.

B. Weighted Component Envelopes of Speech Signal

Since speech signal has large dynamic range in the frequency
domain, the signal may have high power at some frequencies
at each instant. At those frequencies the SNR will be higher, as
the noise power is likely to be less due to more uniform distri-
bution of the power. Even for noises with nonuniform distribu-
tion of power, the lower correlations of noise samples result in
a lower dynamic range in the spread of noise power across fre-
quencies, compared to speech. Note that the spectral dynamic
range gives an indication of the correlation of the samples in
the time domain.
The noise power creates a floor for the envelope at each fre-

quency, and the floor level depends on the power distribution of
noise across frequency. The floor is more uniform across time if
the noise is nearly stationary. Even if the noise is nonstationary,
it is relatively stationary over larger intervals of time than in
speech. In such cases, the floor level can be computed over long
time intervals at each frequency, if needed.
To compensate for the effect of noise, a weight value at each

frequency is computed using the floor value. For each utterance,
the mean ( ) of the lower 20% of the values of the envelope
at each frequency is used to compute the normalized weight
value at that frequency. The choice of 20% of the values
is based on the assumption that there is at least 20% of silence
in the speech utterance. The normalized weight value at each
frequency is given by

(12)

Fig. 1. (a) Clean speech signal. (b) Speech signal corrupted by pink noise at
dB SNR. (c) Envelopes as a function of time. (d) Corresponding weighted

envelopes. (e) Envelopes as a function of time for clean speech shown in (a).

where is the number of channels. The envelope at each
frequency is multiplied with the weight value to compen-
sate for the noise level at that frequency. The resulting envelope
is termed as weighted component envelope. Note that by this
weighting, the envelope at each frequency is divided by the es-
timate of the noise floor ( ). Fig. 1 shows the envelopes and
the corresponding weighted envelopes at different frequencies
for a speech signal degraded by pink noise at dB SNR,
along with the envelopes for clean speech. It is observed that
features of speech are reflected better in the weighted envelopes
(Fig. 1(d)), as the weighting reduces the effects of noise. The
envelopes are scaled to the same value for comparison.
A small amount of white noise (at 100 dB SNR) is added to

all the signals (after appending with zeros in the case of TIMIT
utterances) to ensure that the floor value is not zero. For the
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Fig. 2. (a) Clean speech signal. (b) Speech signal corrupted by pink noise at
dB SNR. (c) . (d) . (e) . (f) along with sign.

(g) .

computation of , the values in the appended silence regions
are not considered.
At each time instant, the mean ( ) of the square of the

weighted component envelopes computed across frequency cor-
responds approximately to the energy of the signal at the in-
stant (Fig. 2(c)). The is expected to be higher for speech
than for noise in the regions where speech signal is present,
as the noise components are deweighted. At each time instant,
the standard deviation ( ) of the square of the weighted
component envelopes computed across frequency will also be
relatively higher for speech than for noise in the regions of
speech due to formant structure (Fig. 2(d)). Hence (

) is generally higher in the speech regions, and lower in
the nonspeech regions. Since the spread of noise (after compen-
sation) is expected to be lower, it is observed that the values
of ( ) are usually lower in the nonspeech regions
compared to the values in the speech regions (Fig. 2(e)). Mul-
tiplying ( ) with ( ) gives (

), which highlights the contrast between speech and non-
speech regions. Figs. 2 and 3 illustrate the features of ,
and ( ) for an utterance corrupted by pink noise at

dB and dB, respectively.
Due to large dynamic range of the values of ( ),

it is difficult to observe the speech regions with small values of
( ). To highlight the contrast between speech and
nonspeech regions, the dynamic range is reduced by computing

(13)

Fig. 3. (a) Clean speech signal. (b) Speech signal corrupted by pink noise at
5 dB SNR. (c) . (d) . (e) . (f) along with sign.
(g) .

where is chosen as 64.
The value of is not critical. Any value of in the range

of 32 to 256 seems to provide good contrast between speech
and nonspeech regions in the plot of . In computing ,
only the magnitude of ( ) is considered. If the
sign of ( ) is assigned to , the values will
be fluctuating around zero in the nonspeech regions for most
types of noise (see Fig. 2(f) for pink noise), but the short time
(20 msec) temporal average value will be small and fluc-
tuating, making the noise floor uneven. This makes it difficult
to set a threshold for deciding nonspeech regions. The values of

will have a high temporal mean value in the nonspeech re-
gions, with small temporal variance (Fig. 2(g)). This helps to set
a suitable threshold to isolate nonspeech regions from speech
regions. The range of with sign value (Fig. 2(f)) is dif-
ferent from values (Fig. 2(g)). The small temporal spread
of values in the nonspeech regions and its mean value helps
to fix a suitable threshold. The values in the nonspeech
regions is dictated by the noise level. The values in non-
speech regions are high for pink noise degradation at dB
SNR (Fig. 2(g)) than at 5 dB SNR (Fig. 3(g)). Note that, by
considering the values without sign, we are losing some
advantage in the discrimination of nonspeech regions, which
has both positive and negative values, compared to speech re-
gions which have mostly positive values. The values with

are used for further processing for decision making.
Note the changes in the vertical scales in Figs. 2(f) and 2(g),
and also in Figs. 3(f) and 3(g), to understand the significance of
using the absolute value, i.e., without sign.
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C. Decision Logic

The decision logic is based on for each utterance, by first
deriving the threshold over the assumed (20% of the low energy)
regions of noise, and then applying the threshold on temporally
smoothed values. The window size used for smoothing

is adapted based on an estimate of the dynamic range ( )
of the energy of the noisy signal in each utterance, assuming
that there is at least 20% silence region in the utterance. The
binary decision of speech and nonspeech at each time instant,
denoted as 1 and 0, respectively, is further smoothed (similar
to hangover scheme) using an adaptive window, to arrive at the
final decision. The following 5 steps describe the implementa-
tion details of the decision logic:
1) Computation of threshold ( ):

Compute themean ( ) and variance ( ) of the lower 20%
of the values of over an utterance. A threshold of

is used in all cases. The value depends
on each utterance. Thus the threshold value, corresponding
to the floor value of , is adapted to each utterance,
depending on the characteristics of speech and noise in that
utterance.

2) Determination of smoothing window :
The energy of the signal is computed over a frame
of 300 msec for a frame shift of 10 msec, where is the
frame index. The dynamic range ( ) of the signal is com-
puted as

(14)

The window length parameter for smoothing is obtained
from the dynamic range ( ) of the signal. Table III gives
the values for degraded speech at SNRs of dB and
5 dB for different noises. The values are high at 5 dB SNR
compared to the values at dB SNR for the same noise.
The values vary for different noises for the same SNR,
because the degradation characteristics of noises vary. For
distance speech, the histogram of values for utterances in
the C3 case is shown in Fig. 4. The SNR for distant speech
depends on the environmental conditions and on the dis-
tance of the speaker from microphone. It is observed that
the values for the distant speech are spread out, com-
pared to the values for different noises. This is mainly
due to the effects of reverberation. The distribution of
values depends on the distance as well. The value for
each utterance is used to determine some parameter values
for further processing of and for arriving at the deci-
sion logic. In cases where the represent the discrim-
inating characteristics of speech and nonspeech well, the
corresponding values are high, as observed for volvo,
leopard and machine gun noises. In such cases, small value
of the smoothing window parameter is used. The fol-
lowing values of are chosen based on experimentation
with speech degraded by different types of noises at dif-
ferent SNR levels:

(15)
(16)

Fig. 4. Histogram of values for distant speech (C3).

TABLE III
VALUES OF FOR SPEECH SIGNAL DEGRADED AT SNRS OF dB AND 5 dB
FOR DIFFERENT TYPES OF NOISES. THE VALUE FOR CLEAN SPEECH IS 65.28

(17)

3) Decision logic at each sampling instant:
The values of are averaged over a window of size
to obtain the averaged value at each sample index .
The decision is made as follows:

(18)
(19)

4) Smoothing decision at sample level:
The decision at each sample is processed over win-
dows of size 300 msec, 400 msec and 600 msec, respec-
tively, for the 3 ranges of indicated in (15), (16) and (17).
Let be the threshold on the proportion (in percentage
value) of values which are 1 in the window. If the
percentage of values which are 1 in the window is
above the value, then the final decision is made 1
at the sampling instant , otherwise it is 0. The value as-
signed to is 60%.

5) Decision at frame level:
The decision of the AMR methods is given for every
10 msec frame [28]. In order to compare the proposed
method with the AMR method, the decision is
converted to a 10 msec frame based decision. For each
10 msec nonoverlapping frame, if majority of
values are 1, then the frame is marked as speech, otherwise
it is marked as nonspeech. The ground truth of speech
signals is also derived for each 10 msec frame.
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TABLE IV
AVERAGED SCORES ACROSS ALL NOISE TYPES FOR

TWO SNR LEVELS FOR TIMIT DATABASE

V. EVALUATION OF PROPOSED APPROACH

The proposed method is compared with the state-of-the-art
AMR1 and AMR2 methods [28]. AMR1 and AMR2 methods
extract subband energies using filter banks. Several acoustical
features like pitch, tone, etc., are used to arrive at the decision.
Post-processing techniques like hangover are also used [22]. In
this paper, we use the version 3GPP TS 26.104 of the AMR
methods [28].
We use 5 parameters to evaluate our approach against AMR

methods [29] for comparison.
• CORRECT: Correct decisions made by the VAD.
• FEC (front end clipping): Clipping due to speech being
misclassified as noise in passing from noise to speech ac-
tivity.

• MSC (mid speech clipping): Clipping due to speech being
misclassified as noise during a speech region.

• OVER (carry over): Noise interpreted as speech in passing
from speech activity to noise.

• NDS (noise detected as speech): Noise interpreted as
speech within silence/noise region.

All the above parameters are divided by the total number of
frames (both speech and nonspeech frames), and thenmultiplied
by 100 to get the percentage value (%). Combining FEC and
MSC gives true rejection (TR). Combining OVER and NDS
gives false acceptance (FA). The TR indicates the percentage of
speech regions not detected as speech, whereas the FA indicates
the percentage of nonspeech regions accepted as speech. For
good performance, CORRECT should be high, and both TR and
FA should be low.
The AMR2 method performs better than AMR1 method in

all cases, which is evident from the averaged scores across all
noise types for the two different SNRs given in Table IV. Hence
we only consider AMR2 scores for comparison.
Tables V, VI, VII and VIII show the performance of the pro-

posed method in comparison with the AMR2 method for dif-
ferent type of degradations and at different SNR conditions. The
best performance in each case is indicated by boldface for COR-
RECT score.
In the following, the performance of the proposed method is

discussed for different types of degradation.

A. Performance on TIMIT Database for Different Types of
Noises

Performance of the proposed method under different noise
conditions of NOISEX database is given in Table V for two
different SNR values, i.e., at dB and 5 dB.

TABLE V
RESULTS FOR TIMIT DATABASE FOR DIFFERENT TYPES OF NOISES AT TWO

SNR LEVELS IN COMPARISON WITH AMR2 METHOD

TABLE VI
RESULTS FOR NTIMIT AND CTIMIT DATABASE

IN COMPARISON WITH AMR2 METHOD
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TABLE VII
RESULTS FOR DISTANT SPEECH FOR DIFFERENT VALUES OF IN

THE DECISION LOGIC IN COMPARISON WITH AMR2 METHOD

TABLE VIII
RESULTS FOR TIMIT CLEAN CASE FOR DIFFERENT VALUES OF IN THE

DECISION LOGIC IN COMPARISON WITH AMR2 METHOD

It is observed that performance of the proposed method is
higher than that of AMR2method for all types of noises. For five
types of noises, the performance is illustrated for an utterance in
the form of plots shown in Figs. 5 and 6 at SNRs of dB and
5 dB, respectively. For each type of noise, the degraded signal,
the corresponding values and the derived VAD decision
(thick line) are shown. In addition, the AMR2 decision is also
shown by thin solid lines for comparison. The ground truth is
marked in Figs. 5(a) and 6(a) by a thin line.
As can be seen from Figs. 5(a) and 6(a) for white noise case,

many speech regions are missed in the AMR2method, resulting
in high TR. In the case of babble noise at 5 dB SNR, the fea-
tures in the speech regions stand out over the nonspeech regions
(Fig. 6(e)), and hence the FA is lower for the proposed method
than for the AMR2 method (Fig. 6(f)).
Since most of the energy is concentrated in the low frequency

regions for volvo noise, it is relatively easier to reduce the effect
of this type of noise, and hence the proposed method performs
better at the two noise levels (Figs. 5(i) and 6(i)).
A significant lower TR is seen in the case of pink noise for the

proposed method compared to the AMR2 method. This is due
to attenuation of noise regions by weighting (Figs. 5(l)). This
can also be seen in the 3D plots given in Fig. 1.
Due to its high temporal variance, most VAD algorithms

detect the machine gun chunks as speech. The high temporal
resolution of the features in the proposed method gives better
performance for the proposed method than for the AMR2

Fig. 5. Illustration of results of VAD for different types of NOISEX data at
dB SNR. Each noise type has three subfigures: Degraded signal at dB

SNR, , and decision for the proposed method (thick line) and for AMR2
method (thin line). White noise (a, b, c), Babble noise (d, e, f), Volvo noise (g, h,
i), Pink noise (j, k, l), Machine gun noise (m, n, o). The ground truth is indicated
on top of the degraded speech signal in (a).

method as indicated in Table V. It is interesting to see in
Figs. 5(o) and 6(o) that the nonspeech regions affected by the
machine gun noise are identified as nonspeech by the proposed
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Fig. 6. Illustration of results of VAD for different types of NOISEX data at
5 dB SNR. Each noise type has three subfigures: Degraded signal at 5 dB SNR,

, and decision for the proposed method (thick line) and for AMR2 method
(thin line). White noise (a, b, c), Babble noise (d, e, f), Volvo noise (g, h, i), Pink
noise (j, k, l), Machine gun noise (m, n, o). The ground truth is indicated on top
of the degraded speech signal in (a).

method, whereas the AMR2 method accepts them as speech.
The LTSV method proposed in [8] shows poor performance

Fig. 7. (a) Close speaking speech (C0) with ground truth indicated on top.
(b) . (c) Decision of the proposed method at (thick line) and
the AMR2 method (thin line).

for this noise. The multi-band LTSV method [9] also fails to
discriminate transient noise from speech.

B. Performance on NTIMIT and CTIMIT Databases
Performance of the proposed method is similar to the AMR2

method for the NTIMIT data (Table VI), and is higher than for
the CTIMIT data (Table VI). This may be due to the cellphone
(coding) effects, which degrade speech more than the telephone
channel (NTIMIT). The value is 200 msec for most of the
utterances in these cases because of high value (see (17)).

C. Performance on Distant Speech
Distant speech is an amalgam of unknown degradations, and

the data for a given environment may be limited. The reverbera-
tion present in the distant speech signals has high variance in the
time domain, as does the speech. So VAD algorithms often con-
fuse reverberation component for speech. The VAD algorithms
which bank on temporal variance ([8]) may not perform well,
because the distant speech is highly nonstationary, and even the
nonspeech regions may have significant temporal variance.
Fig. 7 illustrates the decision obtained by the proposed

method and by the AMR2 method for the case of close speaking
speech (C0). The errors in the AMR2 method and the proposed
method are mostly due to FA (Fig. 7(c)). Note that the
values (Fig. 7(b)) have large fluctuations in the speech region,
and also it has low floor values as for any clean speech. It is
to be noted, that for distant microphone case the performance
of the proposed method gives results similar to the AMR2
method, indicating that the proposed method does not fail.
Table VII indicates that by proper choice of the value of the
parameter, there can be slight improvement. But the im-

provement may not be significant. The interesting aspect is that
most of the errors in this case are due to false acceptance (FA).
This occurs because the degradation in silence regions is not
uniform in the case of distant speech, making it difficult to set
proper threshold either in the proposed method or in the AMR2
method. One would notice larger fluctuations in the values of

in the nonspeech regions, which would result in higher
FA rate. It appears that reverberant effects also may be playing
a significant role in producing large fluctuations in the values
of , as it is difficult to compensate those effects by noise
deweighting.
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Fig. 8. (a) Distance speech (C3) with ground truth indicated on top. (b) .
(c) Decision of the proposed method at (thick line) and the AMR2
method (thin line).

It is also interesting to note that even for the relatively cleaner
speech (i.e., C0 case in distant speech), there will be large fluc-
tuations in the values in the silence regions, making it dif-
ficult to set the thresholds properly. Hence the performance by
both the proposed method and the AMR2 method is poorer for
C0 case than for the more degraded case of C1.
Fig. 8 illustrates the decision obtained by the proposed

method and by the AMR2 method for the distance speech
(case C3) for the same utterance shown in Fig. 7. The error is
mostly in FA for the AMR2 method (Fig. 8(c)). Note that the

values (Fig. 8(b)) have lower dynamic range in the speech
region. Also, it has high floor value, as for most degraded
speech.
Performance of distant speech can be improved by increasing

the value, as it reduces FA. Table VII shows the improvement
in the performance of the distant speech with increase in the
value for the proposed method in comparison with the AMR2
method. Note that the large values of can also cause increase
in the true rejection (TR), which may result in overall reduction
in correct decision.

D. Performance on TIMIT Database for Clean Speech

Performance of the proposed method on clean speech is
given in Table VIII. It is interesting to note that smoothing
and threshold logic for degraded speech smear the information
across time, thus reducing the temporal resolution of the final
decision. Hence when the decision logic is applied to clean
data, it appears to give poor performance. Due to the high
dynamic range in both time and frequency domains, the clean
speech signal needs to be treated differently in order to obtain
good performance.
In contrast to the C0 case of distant speech, for the clean

TIMIT data, the error is more in the true rejection (TR) as in
Table VIII. This is because for the clean TIMIT data in the si-
lence region, the values are very low and are fluctuating,
making it difficult to set the proper threshold. In this case the TR
can be reduced by reducing the threshold value, or equivalently
reducing the value.
The scores given in Tables V and VI are for fixed values of the

parameters in the decision logic (Section IV-C). The value has
been fixed at 60% for most of the cases. A better performance

TABLE IX
AVERAGED SCORES ACROSS DIFFERENT NOISE TYPES

FOR TWO SNR LEVELS FOR TIMIT DATABASE

TABLE X
AVERAGED SCORES ACROSS ALL NOISE TYPES FOR TWO SNR LEVELS OF

UNWEIGHTED AND WEIGHTED SFF OUTPUT FOR TIMIT DATABASE

may be achieved, if the parameters , , are adapted suitably
for each type of degradation.

E. Performance Comparison with DFT and Gammatone
Filters
The proposed method is evaluated using filterbank energy

contours using DFT and 128 gammatone filters [21]. After de-
riving the band energy contours, the subsequent processing, in-
cluding weighting, the energy contours, computation of ,
thresholding and decision logic, are all same in these cases as in
the SFF method described before.
The results are given in Table IX in terms of averaged per-

formance over 11 different noise types (except white and pink
noises), using 50 utterances of TIMIT data, for two different
noise levels ( dB and 5 dB). It is interesting to note that all
the three methods of preprocessing namely, SFF, DFT and gam-
matone filters, give similar results. All of them are significantly
better than the results using the AMR2 method.
Note that the three methods of preprocessing may perform

differently for different noise types. We have observed that for
synthetic noises like white and pink noises, the performance
by DFT and gammatone filtering is better than by SFF. This
is due to some temporal and spectral averaging of noises in
the high frequency region ( Hz) due to temporal aver-
aging in the case of DFT and due to spectral smoothing in the
case of gammatone filters. The performance improvement for
all the three methods will be similar even for these two types
of noises, if in the SFF method some smoothing is done in the
time and frequency domains, especially in the higher frequency
region, before computing mean and variance across frequency.
Note that the performance improvement of these three prepro-
cessing methods over the AMR2 method is due to the subse-
quent processing of the energy contours in each band, espe-
cially the weighting in (12). The effect of weighting can be seen
in the performance of the proposed method with and without
weighting as given in Table X. The average scores across all
noise types for two different SNR values ( dB and 5 dB)
are given using unweighted and weighted SFF output for 50 ut-
terances of TIMIT data.



716 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 23, NO. 4, APRIL 2015

VI. SUMMARY

A new VAD method is proposed based on single frequency
filtering (SFF) approach introduced in this paper. The method
exploits the fact that speech has high SNR regions at different
frequencies and at different times. The variance of speech across
frequency is higher than that for noise, after compensating for
spectral characteristics for noise. The spectral characteristics of
noise are determined using the floor of the temporal envelope at
each frequency, computed by the SFF approach.
The feature proposed for VAD decision is robust against

degradation, as evidenced by the high CORRECT percentage
scores obtained for all types of noises. The proposed method is
tested over standard TIMIT, NTIMIT and CTIMIT databases,
as well as for distance speech, thus covering varieties of
degradations.
While the results show significant improvement in perfor-

mance of the proposed method, in comparison with the AMR2
method, better results may be obtained, if the decision logic pa-
rameters ( , , ) are made degradation-specific. It was noticed
that adapting the parameters , , based on the degradation
characteristics estimated from has improved the overall per-
formance. Adapting the threshold with time in each utterance
may also improve the performance. Further improvement can
be expected if other characteristics of speech, such as voicing,
are also included in the decision logic.
The SFF method yields envelopes at any desired frequency,

with high temporal and spectral resolution. This property can be
exploited for many other applications in speech processing, such
as robust pitch extraction, speech enhancement, and deriving
robust features for speech and speaker recognition. Our prelim-
inary studies indicate that the SFF method is indeed showing
promise in some of these applications.
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Study of the effects of vocal tract constriction on glottal vibration
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Characteristics of glottal vibration are affected by the obstruction to the flow of air through the

vocal tract system. The obstruction to the airflow is determined by the nature, location, and extent

of constriction in the vocal tract during production of voiced sounds. The effects of constriction on

glottal vibration are examined for six different categories of speech sounds having varying degree

of constriction. The effects are examined in terms of source and system features derived from the

speech and electroglottograph signals. It is observed that a high degree of constriction causing

obstruction to the flow of air results in large changes in these features, relative to the adjacent

steady vowel regions, as in the case of apical trill and alveolar fricative sounds. These changes are

insignificant when the obstruction to the airflow is less, as in the case of velar fricative and lateral

approximant sounds. There are no changes in the excitation features when there is a free flow of air

along the auxiliary tract, despite constriction in the vocal tract, as in the case of nasals. These stud-

ies show that effects of constriction can indeed be observed in the features of glottal vibration as

well as vocal tract resonances. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4894789]

PACS number(s): 43.72.Ar [CYE] Pages: 1932–1941

I. INTRODUCTION

Speech is produced by exciting the time-varying vocal

tract system. The major source of excitation is the quasi-

periodic vibration of the vocal folds at the glottis (Fant,

2004), referred to as voicing. The mode of glottal vibration

can be controlled voluntarily for producing different phona-

tion types such as modal, breathy, and creaky voices (Laver,

1994; Ladefoged and Johnson, 2011). The rate of glottal

vibration can also be controlled voluntarily, giving rise to

changes in pitch. Glottal vibration may also be affected due to

coupling of the vocal tract system with the glottis. These

changes in the glottal vibration may be viewed as involuntary.

In the production of some speech sounds, the source of

excitation is affected due to coupling of the vocal tract sys-

tem with the glottis. The interaction of glottal source and the

vocal tract system has been studied by several researchers

(Fant and Lin, 1987; Chi and Sonderegger, 2007; Titze

et al., 2008; Titze, 2008; Lucero et al., 2012). The involun-

tary changes in the glottal vibration occur during changes in

the “intrinsic pitch” (fundamental frequency F0) of some

high vowels (Ewan and Ohala, 1979; Shadle, 1985; Ohala

and Eukel, 1987). The effect could be due to either coupling

between the vocal tract and glottis (Ewan, 1977; Ohala and

Eukel, 1987), or due to tongue-pull effect (Ewan and Ohala,

1979; Ohala and Eukel, 1987). The effects of coupling

between oral and subglottal cavities were examined through

vowel formants (Perkell and Cohen, 1989; Sonderegger,

2004; Chi and Sonderegger, 2007). Discontinuity in the sec-

ond formant frequency and signal attenuation were observed

in diphthongs near the subglottal resonance in the range of

1280–1620 Hz, due to subglottal coupling (Chi and

Sonderegger, 2007). Subglottal resonances were also

measured in the case of nasalization (Stevens et al., 1975).

Studies on the source-system interaction were also carried

out for other categories of speech sounds, such as fricatives

and stops (Stevens, 1971).

Other studies on source-tract interaction focused mainly

on the physical aspects (Stevens, 1977; Titze and Story,

1997; Hatzikirou et al., 2006; Zhang et al., 2006). The physi-

cal models of the acoustic interaction of the voice source

with subglottal vocal tract system were studied in Titze

(1988), Titze and Story (1997), and Hatzikirou et al. (2006).

The effect of glottal opening on the response of the vocal

tract system was studied in Fant and Lin (1987), Barney

et al. (1999, 2007), and Ruty et al. (2008). The nonlinear

phenomenon due to source-tract coupling is related to the air

flow across glottis during phonation (Rothenberg, 1981;

Chan and Titze, 2006; Zhang et al., 2006; Titze, 2008;

Lucero et al., 2012). The source-tract interaction was

observed to induce, under certain circumstances, some com-

plex voice instabilities, such as sudden frequency jumps,

subharmonic generation, and random changes in frequency,

especially during F0 and F1 (i.e., fundamental and first form-

ant frequencies) crossovers (Hatzikirou et al., 2006; Titze

et al., 2008; Titze, 2008).

In the current study, we examine the effect of degree

and location of the constriction of the vocal tract system on

the glottal vibration for a selected set of six categories of

voiced consonant sounds, namely, apical trill, alveolar frica-

tive, velar fricative, apical lateral approximant, alveolar

nasal, and velar nasal. The degree of constriction to the air

flow is determined by the size, type, and location of the stric-

ture in the vocal tract. These consonant sounds are consid-

ered in the context of vowel [a]. Three types of occurrences,

namely, single, geminated, and prolonged are examined for

each of the six categories of sounds. The speech signal along

with the electroglottograph (EGG) signal (Fourcin and

Abberton, 1971; Fant et al., 1985) is used for analysis of

a)Author to whom correspondence should be addressed. Electronic mail:

vinay.mittal@iiit.ac.in
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these sounds. Changes in the system characteristics are ana-

lyzed using two dominant peak frequencies (FD1
and FD2

)

derived using linear prediction (LP) analysis (Makhoul,

1975). Source features such as the instantaneous fundamental

frequency (F0) and strength of impulse-like excitation (SoE)

are extracted from the speech signal using the zero-frequency

filtering (ZFF) method (Murty and Yegnanarayana, 2008;

Yegnanarayana and Murty, 2009).

The paper is organized as follows. In Sec. II, some pro-

duction details of the strictures for the six categories of

sounds are discussed. In Sec. III, the details of data collec-

tion are given. Features extracted from the speech signal are

discussed in Sec. IV. In Sec. V, the changes in the glottal

source characteristics and associated changes in the vocal

tract system characteristics are analyzed qualitatively in

terms of the features derived from both the EGG and speech

signals, for geminated occurrences of the different categories

of sounds. In Sec. VI, the effects of vocal tract constriction

on the glottal vibration characteristics are discussed using

quantitative changes in the features derived from the speech

signals, for all three types of occurrences of the six catego-

ries of sounds. In Sec. VII, a summary is given along with a

scope for further work in this research area.

II. STRICTURES IN THE VOCAL TRACT

The different sound categories selected for study in this

paper differ in cross-sectional area of stricture, besides

place of articulation, i.e., location of stricture (Fant, 1970;

Catford, 2001) during production. Differences in the stric-

ture for stop, trill, fricative, and approximant sounds are

schematically represented in Figs. 1(a)–1(d), respectively

(Catford, 2001). In the production of apical trill ([r]) sound,

the oral stricture opens and closes periodically [as shown in

Fig. 1(b)], at the rate of 25–50 Hz (McGowan, 1992;

Dhananjaya et al., 2012). This periodic opening and closing

of the oral cavity produces time-varying constriction in the

vocal tract. In recent studies on the production of apical

trills, the effect of the system on the source characteristics

(Dhananjaya et al., 2012) and the role of source-system

coupling (Mittal et al., 2012) were examined. In this paper,

we examine the excitation source characteristics of apical

trills ([r]) using the EGG signal along with the speech

signal.

Production of fricatives involves narrow constriction of

the vocal tract at some point along its length [Fig. 1(c)],

which may affect the glottal vibration characteristics.

Different locations of the constriction point along the vocal

tract cause changes in the glottal vibration characteristics

differently. Two variants of fricatives are examined, namely,

alveolar fricative ð½z�Þ and velar fricative ([Ç]), which

involve two different locations for the points of constriction

of the vocal tract.

In the production of the apical lateral approximant ([l])

sound, the lateral stricture is relatively wide open for the

entire steady-state duration [Fig. 1(d)], unlike that for [r]

sound [Fig. 1(b)]. If the glottal vibration characteristics of

the trill sounds are changed to normal modal vibration, then

trills may sound like approximants (Mittal et al., 2012).

Apical lateral approximant ([l]) sounds are examined to

understand the differences in the excitation characteristics

from those of trills ([r]).

Nasal sounds involve closure at some location in the

oral tract, while the nasal tract is kept open. Two variants

of nasal sounds are examined, namely, alveolar nasal ([n])

and velar nasal ([N]), to study whether the high stricture

(nearly closed constriction) along the vocal tract, concurrent

with the open nasal tract, has any effect on the glottal

vibration.

Production of consonants ([r], [l], [z], [Ç], [n], and [N])

sounds in the context of vowel [a] are considered in this

study. The sounds are only representative of a few sound cat-

egories. The single, geminated, and prolonged occurrences

of these sounds are included in each category. The analysis

of the effects of constriction is carried out using the gemi-
nated occurrence type for each of the six categories of

sounds, as in this case the consonants can be produced in a

sustained manner. The single cases are considered as these

are the cases that usually occur in normal speech, and pro-
longed cases are studied to examine the effects due to

prolongation.

III. SPEECH DATA FOR ANALYSIS

In natural production, speech sounds are produced as

part of one or more syllables of the structure /CV/, /VCV/, or

/VCCV/, consisting of vowels (/V/) and consonants (/C/). If

the vowel on both sides is in modal voicing, then it is easier

to distinguish the vowel and consonant regions for analysis.

Consonants in the context of the open vowel [a] are consid-

ered in this study. Sometimes, changes in the production

characteristics may not be highlighted in a single occurrence

of consonant in the vowel context (/VCV/). Hence, sustained

production of the consonants is considered. Sustained

FIG. 1. (Color online) Illustration of strictures for voiced sounds: (a) stop,

(b) trill, (c) fricative, and (d) approximant. Relative difference in the stric-

ture size between upper articulator (teeth or alveolar/palatal/velar regions of

palate) and lower articulator (different areas of tongue) is shown schemati-

cally, for each case. Arrows indicate the direction of air flow passing

through the vocal tract.

J. Acoust. Soc. Am., Vol. 136, No. 4, October 2014 Mittal et al.: Analysis of source-system interaction 1933



production of consonants are either geminated (double) or

prolonged (longer than geminated), i.e., in the form of

/VCCV/ or /VCC…CV/ sound units, respectively. The dis-

tinctive characteristics of consonants may fade sometimes

when they are prolonged. Hence, geminated type is used for

detailed analysis.

Data were collected for the following six categories of

voiced speech sounds: (1) Apical trill ([r]), (2) alveolar frica-

tive ([z]), (3) velar fricative ([Ç]), (4) apical lateral approx-

imant ([l]), (5) alveolar nasal ([n]), and (6) velar nasal ([N]).

All these sounds are considered in the context of vowel [a]

on both sides, in modal voicing. For each category of sound,

three types of occurrences are considered: Single, gemi-

nated, and prolonged occurrence. Utterances of each type for

each of the six categories were repeated three times. Thus

the data consist of a total of 54 (¼6� 3� 3) utterances. The

data were collected in the voice of a male expert phonetician

so as to have reliable and authentic data of production of

these sounds. The data were also collected in the voice of a

(less trained) female phonetics research student. Thus, total

data have 108 (¼54þ 54) utterances.

The data were recorded in a sound treated recording

room. Simultaneous recordings of the speech signal and the

EGG signal (Fourcin and Abberton, 1971; Fant, 1979; Fant

et al., 1985) were obtained for each utterance. The speech

signal was recorded on a digital sound recorder with a high

quality condenser microphone (Zoom H4n, Zoom Corp.,

Japan), kept at a distance of around 10 cm from the mouth.

The EGG signal was recorded using an EGG recording de-

vice (Miller, 2012). The audio data were acquired at a sam-

pling rate of 4400 samples/s, with 16 bits/sample. The data

were downsampled to 10 000 samples/s before analysis. The

collected data are available for download at the website of

‘Speech and Vision Laboratory’, IIIT, Hyderabad.

IV. FEATURES FROM SPEECH SIGNAL

A. Extraction of glottal excitation source
characteristics

The features of the glottal source of excitation are

derived from the speech signal using the ZFF method (Murty

and Yegnanarayana, 2008; Yegnanarayana and Murty,

2009). In ZFF, the features of the impulse-like excitation of

the glottal source are extracted by filtering the differenced

speech signal through a cascade of two zero-frequency

resonators (ZFRs). The key steps involved (Murty and

Yegnanarayana, 2008) are as follows:

(a) A differenced speech signal s[n] is considered. This

preprocessing step removes the effect of any slow (low

frequency) variations during recording of the signal,

and produces a zero mean signal.

(b) The differenced signal s[n] is passed through a cascade

of two ZFRs, each of which is an all-pole system with

two poles located at z¼þ1 in the z-plane. The output

of the cascaded ZFRs is given by

y1½n� ¼ �
X4

k¼1

aky1½n� k� þ s½n�; (1)

where a1 ¼ �4, a2 ¼ 6, a3 ¼ �4, and a4 ¼ 1. It is

equivalent to four successive cumulative sum (integra-

tion) operations in time-domain, which leads to a

polynomial-like growth/decay of the ZFR output signal.

(c) The fluctuations in the ZFR output signal can be high-

lighted using a trend removal operation, which

involves subtracting the local mean from the ZFR out-

put signal at each time instant. The local mean is com-

puted over a moving window of size 2N þ 1 samples.

The window size is about 1.5 times the average pitch

period (in samples), which is computed using autocor-

relation function of a 50 ms segment of the signal. The

output of the trend removal operation is given by

y2 n½ � ¼ y1 n½ � � 1

2N þ 1

XN

m¼�N

y1 nþ m½ �; (2)

where 2N þ 1 is the size of the window in number of

samples. The resultant local mean subtracted signal is

called the zero-frequency filtered signal. An illustration

of the ZFF signal (zs½n�) for a vowel segment is shown

in Fig. 2(b), which is derived from the corresponding

speech signal (s½n�) shown in Fig. 2(a).

(d) The positive to negative going zero-crossings

correspond to the instants of glottal closure (GCIs),

which are also referred to as epochs (Murty and

Yegnanarayana, 2008). The interval between successive

epochs corresponds to the fundamental period (T0),

inverse of which gives the instantaneous fundamental

frequency (F0) (Yegnanarayana and Murty, 2009).

(e) The slope of the ZFF signal around the epochs

gives a measure of the strength of the impulse-like

excitation (SoE) (Murty and Yegnanarayana, 2008;

Yegnanarayana and Murty, 2009).

The SoE (denoted by w) at an epoch thus represents the rela-

tive amplitude of impulse-like excitation around that instant

of significant excitation (i.e., GCI).

FIG. 2. (Color online) Illustration of waveforms of (a) input speech and (b)

ZFF output signals, and (c) F0 contour, (d) SoE values at epochs, (e) FD1

(“�”) and FD2
(“�”) derived from the speech signal for a vowel segment.
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An illustration of F0 contour and SoE impulse sequence

is given in Figs. 2(c) and 2(d), respectively. The SoE impulse

sequence represents the glottal source excitation, in which

the location of each impulse corresponds to an epoch and its

amplitude indicates relative strength of excitation around the

epoch. The F0 contour reflects the changes in successive

epoch intervals.

B. Extraction of the vocal tract system characteristics

The vocal tract system characteristics are studied using

the first two dominant frequencies FD1
and FD2

of the short-

time spectral envelope. The features FD1
and FD2

of the vocal

tract system are derived from the speech signal using LP spec-

trum (Makhoul, 1975). The steps involved are as follows:

(a) The vocal tract system characteristics are derived using

LP analysis (Makhoul, 1975). Let a1; a2;…; ap be the p
LP coefficients. The corresponding all-pole filter HðzÞ
is given by

H zð Þ ¼ 1

1�
Xp

k¼1

akz�k

 ! : (3)

For a fifth order filter, there will be maximum of two

peaks in the LP spectrum corresponding to two com-

plex conjugate pole pairs. The frequencies correspond-

ing to these peaks are called dominant peak

frequencies, and are denoted as FD1
and FD2

.

(b) The group delay function ðsgðxÞÞ is the negative deriv-

ative of the phase response of the all-pole filter

(Murthy and Yegnanarayana, 1991), and is given by

sg xð Þ ¼ � dh xð Þ
dx

; (4)

where hðxÞ is the phase angle of the frequency

response HðejwÞ of the all-pole filter. The frequency

locations of the peaks in the plot of the group delay

function give the dominant peak frequencies (FD1
and

FD2
).

The dominant peak frequencies FD1
and FD2

are derived for

each pitch period using pitch synchronous LP analysis, anch-

ored around GCIs. An illustration of FD1
and FD2

contours

for the vowel segment in Fig. 2(a) is shown in Fig. 2(e).

C. Features for analysis

In this study, observations from the EGG and speech sig-

nals and the derived features are used for analysis of the six

categories of sounds. Both qualitative and quantitative obser-

vations are discussed. Qualitative observations are made

using waveforms of signals. Four waveforms are used for vis-

ual observation in each case: Speech signal, EGG signal, de-

rivative of electroglottograph (dEGG), and ZFF output.

Quantitative changes are measured from features extracted

using speech signals, i.e., F0, SoE ðwÞ, FD1
, and FD2

.

It is generally observed that changes in EGG, dEGG,

and F0 reflect the effect of glottal vibration, changes in FD1

and FD2
reflect the changes in the vocal tract system, and

changes in the speech signal waveform, ZFF, and SoE may

reflect changes in both the source and vocal tract system

characteristics.

V. STUDY OF THE EFFECTS OF VOCAL TRACT
CONSTRICTION USING EGG AND SPEECH SIGNALS

In this section the effects of vocal tract constriction

in the production of different categories of sounds are exam-

ined in terms of observed and derived characteristics from

EGG and speech signals. The effects caused by the size,

type, and location of the stricture in the vocal tract are dis-

cussed in detail. The cross-sectional area of the opening at

the stricture determines the size of the stricture, which in

turn determines the extent of the (high, low, no) stricture.

Very narrow to closed constriction in the vocal tract corre-

sponds to high stricture, which occurs, for example, in trills

([r]) and alveolar fricatives ([z]), as in Figs. 1(b) and 1(c),

respectively. The intermediate case of a relatively wider

opening corresponds to low stricture, which occurs in the

case of the approximant ([l]) [Fig. 1(d)] and the velar frica-

tive ([Ç]). A completely open vocal tract corresponds to no
stricture, as in the case of open vowel [a].

Two different types of strictures are considered in this

study: cyclic {as in [r] in Fig. 1(b)} and steady {as for [z] in

Fig. 1(c) and [l] in Fig. 1(d)}. Two different locations of

strictures in the vocal tract are considered, namely alveolar
(as in [z]) and velar (as in [Ç]). In addition, the effects of

closed vocal tract (high stricture) during production of nasal

sounds are considered for any possible effect in terms of the

observed and derived characteristics from EGG and speech

signals. Two different locations of the stricture for nasals are

considered, namely, alveolar nasal ([n]) and velar nasal ([N]).

All these categories of sounds are produced in the context of

the open vowel [a], where there is no stricture. Only gemi-

nated utterances of these different categories of sounds are

analyzed in this section, as gemination of consonants pro-

duces sustained output that facilitates study of the effects of

constriction, while eliminating possible effects of vowel-

consonant transition.

Figures 3–8 show the waveforms of speech and EGG

signals for the six categories of sounds chosen for analysis in

this section. Each figure displays, besides the waveforms of

speech, EGG, dEGG, and ZFF output signals, the contours of

instantaneous fundamental frequency (F0), strength of excita-

tion (SoE), and the dominant peak frequencies (FD1
and FD2

).

A. Apical trill ([r])

In the production of apical trill ([r]) sound, the high
stricture is formed due to a narrow opening between the al-

veolar/palatal region and the apical region of the tongue.

This stricture gets broken, releasing the air pressure built in

the oral cavity, and it is formed again due to the Bernoulli

effect (Catford, 2001). Thus this stricture is cyclic in nature,

due to opening and closing of the stricture in each trill cycle

[Fig. 1(b)].

The cyclic high stricture affects the rate of vibration of

the vocal folds and the strength of excitation (Dhananjaya

J. Acoust. Soc. Am., Vol. 136, No. 4, October 2014 Mittal et al.: Analysis of source-system interaction 1935



et al., 2012). These effects are reflected in the F0 and SoE
contours in Figs. 3(e) and 3(f), respectively. This is because

the pressure gradient across the glottis reduces during the

closed phase of the trill cycle, which in turn reduces F0.

Thus the coupling effect of the system on the source is sig-

nificant in this case.

There are also changes in the resonances of the vocal

tract system due to changes in the shape of the tract during

FIG. 3. (Color online) Illustration of waveforms of (a) input speech signal, (b)

EGG signal, (c) dEGG signal, (d) ZFF output, and features (e) F0, (f) SoE, (g)

FD1
(“�”) and FD2

(“�”) for geminated occurrence of apical trill ([r]) in the

vowel context [a]. The sound is for [arra], produced in male voice.

FIG. 4. (Color online) Illustration of waveforms of (a) input speech signal,

(b) EGG signal, (c) dEGG signal, (d) ZFF output, and features (e) F0, (f)

SoE, (g) FD1
(“�”) and FD2

(“�”) for geminated occurrence of alveolar fri-
cative ([z]) in the vowel context [a]. The sound is for [azza], produced in

male voice.

FIG. 5. (Color online) Illustration of waveforms of (a) input speech signal, (b)

EGG signal, (c) dEGG signal, (d) ZFF output, and features (e) F0, (f) SoE, (g)

FD1
(“�”) and FD1

(“�”) for geminated occurrence of velar fricative ([Ç]) in

the vowel context [a]. The sound is for [aÇÇa], produced in male voice.

FIG. 6. (Color online) Illustration of waveforms of (a) input speech signal,

(b) EGG signal, (c) dEGG signal, (d) ZFF output, and features (e) F0, (f)

SoE, (g) FD1
(“�”) and FD2

(“�”) for geminated occurrence of apical lat-
eral approximant ([l]) in the vowel context [a]. The sound is for [alla], pro-

duced in male voice.
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each trill cycle. These changes are seen as cyclic variations

of FD1
and FD2

[Fig. 3(g)], where FD1
is higher during the

closed phase of the trill cycle.

The effects of constriction due to dynamic vocal tract

configuration can be seen in the waveforms of EGG, dEGG,

and the speech signal (Fig. 3). The contrast between the

steady vowel region and the trill region can be seen in all

signals and in the features derived from the signals.

B. Alveolar fricative ([z])

Production of alveolar fricative ([z]) involves a narrow

opening of the constriction between the upper articulator (al-

veolar ridge) and the lower articulator (tongue tip), as shown

in Fig. 1(c). The constriction is narrow enough to produce

frication or turbulence. Thus [z] is produced by a high steady
stricture, unlike the high cyclic stricture in the case of [r].

There is pressure buildup behind the constriction, causing

pressure differential across the glottis. Thus in this case, the

constriction effect can be seen in the signal waveform, as

well as in the source and system features derived from the

signals.

Amplitudes of the speech signal, EGG, dEGG, and ZFF

are low, relative to the adjacent vowel (Fig. 4). The con-

striction results in lowering of F0 and SoE values, relative to

the adjacent vowel region, as can be seen in Figs. 4(e) and

4(f), respectively. Due to frication, both the dominant peak

frequencies (FD1
and FD2

) show high values, compared to

those in the vowel region [Fig. 4(g)]. The constriction

effects are similar to the trill case ([r]), except that in the

case of alveolar fricative ([z]) the effects are steady, and not

cyclic.

C. Velar fricative ([Ç])

The production of velar fricative ([Ç]) involves steady
but relatively lower stricture due to more opening in the con-

striction between the upper and lower articulators, than for

the alveolar fricative ([z]). Since the constriction area has to

be small enough to produce turbulence, this stricture may be

termed as steady high-low stricture, and the constriction

effects are expected to be similar to those for the alveolar

fricatives.

While there are no significant changes in the EGG signal

waveform, relative to the adjacent vowel region [Fig. 5(b)],

changes can be seen better in the waveform of dEGG signal

[Fig. 5(c)]. Constriction effects can be seen in the derived

source information, i.e., F0 contour [Fig. 5(e)] and SoE con-

tour [Fig. 5(f)], whereas the changes are less evident in the

ZFF signal [Fig. 5(d)].

The changes in the speech signal waveform for velar fri-

cative ([Ç]) relative to that for vowel [a] can be attributed to

the changes in the vocal tract characteristics. Turbulence

generated at the stricture is lower in the case of [Ç], than in

the case of [z]. As a result, the FD1
is lower than for the

vowel [a] [Fig. 5(g)]. Also, the frication effect is not as high

as in the case of [z], and hence the behavior of FD1
and FD2

are more vowel-like, in the sense that they are in the same

range as that for the vowel [a] [Fig. 5(g)], unlike for [z]

where both FD1
and FD2

are high [Fig. 4(g)].

FIG. 7. (Color online) Illustration of waveforms of (a) input speech signal,

(b) EGG signal, (c) dEGG signal, (d) ZFF output, and features (e) F0, (f)

SoE, (g) FD1
(“�”) and FD2

(“�”) for geminated occurrence of alveolar
nasal ([n]) in the vowel context [a]. The sound is for [anna], produced in

male voice.

FIG. 8. (Color online) Illustration of waveforms of (a) input speech signal,

(b) EGG signal, (c) dEGG signal, (d) ZFF output, and features (e) F0, (f)

SoE, (g) FD1
(“�”) and FD2

(“�”) for geminated occurrence of velar nasal
([N]) in the vowel context [a]. The sound is for [aNNa], produced in male

voice.
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D. Approximant ([l])

An apical lateral approximant ([l]) is formed by a clo-

sure between the alveolar/palatal region (upper articulator)

and the apical tongue region (lower articulator), along with a

simultaneous lateral stricture. In this case, the lateral stric-

ture is wide enough, as shown in Fig. 1(d), to allow free flow

of air in the vocal tract. Thus the stricture is low, i.e., rela-

tively more open than for the high stricture cases considered

so far ([r] and [z]), and is also steady, i.e., not cyclic as in

the case of trill [r]. Since there is no significant pressure gra-

dient buildup in this case, the constriction effect is negligible

in comparison with the high stricture case. One does not

notice any significant changes in the amplitudes in the wave-

forms of speech signal, EGG, dEGG, and ZFF output, rela-

tive to the adjacent vowel regions, as can be seen in Figs.

6(a)–6(d).

There are no major changes in the excitation features as

well [see F0 and SoE contours in Figs. 6(e) and 6(f), respec-

tively]. However, due to a wider lateral opening, the corre-

sponding change in the shape of the vocal tract affects the

first two dominant peak frequencies [Fig. 6(g)]. The FD1
is

reduced and FD2
is increased, relative to the values in the

neighboring vowel region. This shows that if the stricture is

not high, the constriction effects are negligible.

E. Alveolar nasal ([n]) and velar nasal ([N])

Nasal sounds are produced with complete closure of the

vocal tract at some location in the oral cavity, and simultane-

ous flow of air through the nasal tract, which is facilitated by

the velic opening. Here, the constriction along the vocal tract

is like a high stricture case, but due to the coupling of the

nasal tract there is hardly any obstruction to the egressive

flow of air. Nasal sounds are considered to examine whether

the high stricture in the vocal tract has any effect on the glot-

tal excitation. Two variants of the high stricture along the

vocal tract are considered, corresponding to two different

locations, namely, alveolar nasal ([n]) and velar nasal ([N]).

Figures 7 and 8 show the waveforms and other features

for [n] and [N], respectively. Due to the absence of

constriction effect on the glottal vibration, there are no visi-

ble changes in EGG and dEGG waveforms, in relation to the

adjacent vowel. Also, there is hardly any significant change

in the F0 contours [Figs. 7(e) and 8(e)], indicating that the

glottal vibration is not affected.

However, there is reduction in the amplitude of the

waveform of the speech signal in both cases of [n] and [N], as

shown in Figs. 7(a) and 8(a), respectively. This is primarily

due to a narrow constricted (turbinated) path of the nasal

tract, especially at the nares. The effect of this constriction

can also be seen in the significantly lower amplitudes of ZFF

output [Figs. 7(d) and 7(f)] and SoE contour [Figs. 8(d) and

8(f)], as compared to the adjacent vowel [a]. As expected, the

resonance frequency due to nasal tract coupling is signifi-

cantly lower than for the vowel, as can be seen in the FD1

contours in Figs. 7(g) and 8(g), for [n] and [N], respectively.

In fact, even the FD2
is also lower in both cases, although this

change is more clearly visible in the case of [N] [Fig. 8(g)].

In summary, in the case of nasal sounds ([n] and [N]),

the high stricture in the vocal tract does not cause any con-

striction effect on the glottal excitation. However, there are

significant changes in the speech signal, ZFF signal, SoE,

FD1
, and FD2

, relative to the adjacent vowel. These changes

are primarily due to narrow constriction in the nasal tract.

In Table I, comparisons among different sound catego-

ries are made, based on the level of stricture in the vocal

tract. In each case, the difference in the stricture size, type,

and location in the vocal tract that causes the difference in

the constriction effect, is highlighted. The signal waveforms

and the derived features that are mostly/sometimes/not

affected for each sound type are marked to provide a com-

plete picture of the effects of constriction of the vocal tract.

VI. QUANTITATIVE ASSESSMENT OF THE EFFECTS
OF VOCAL TRACT CONSTRICTION

The effects of constriction were examined for geminated

cases of the six sound categories, where the production of

sound is sustained. It would be interesting to observe

changes in the features for single and prolonged occurrences

TABLE I. Comparison between sound types based on stricture differences for geminated occurrences. Abbreviations: alfric: alveolar fricative [z], vefric: velar

fricative [Ç], approx/appx: approximant [l], frics: fricatives ([z], [Ç]), alnasal: alveolar nasal [n], venas: velar nasal [N], stric: stricture, H/L indicates relative

degree of low stricture.

# Categories of sounds

Main causes for difference in

effects of constriction

Qualitative observations

(using waveforms)

Quantitative observations

(using features)

(a) s[n] (b) e[n] (c) de[n] (d) zs[n] (e) F0 (f) w (g) FD1 (h) FD2

1. trill vs vowel ([r] vs [a]) cyclic high stric:[r] steady no stric:[a] � � � � � � � �

2. alfric vs trill ([z] vs [r]) steady high stric:[z] cyclic high stric:[r] � � � � � � � �

3. vefric vs alfric ([Ç] vs [z]) steady Hlow stric:[Ç] steady high stric:[z] � � � � � � � �

4. approx vs vefric ([l] vs [Ç]) steady low stric:[l] steady Hlow stric:[Ç] � � � � � � � �

5. approx vs vowel ([l] vs [a]) steady low stric:[l] steady no stric:[a] � � � � � � � �

6. trill vs approx ([r] vs [l]) cyclic high stric:[r] steady low stric:[l] � � � � � � � �

7. frics vs trill/appx ([z],[Ç] vs [r],[l]) high stric:[z],[r] H/L low stric:[Ç],[l] � � � � � � � �

8. nasals vs vowel ([n], [N] vs [a]) nasal low stnc:[n], [N] steady no stric:[a] � � � � � � � �

9. nasals vs approx ([n], [N] vs [l]) nasal low stric:[n], [N] steady low stric:[l] � � � � � � � �

10 alnasal vs venas ([n] vs [N]) nasal high stric:[n], nasal Hlow stric:[N] � � � � � � � �

Legend:- �: mostly evident, �: sometimes/less evident, �: rarely/not evident changes
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of these sounds, relative to the geminated occurrences. In

this section, changes in the vibration characteristics due to

vocal tract constriction are examined using the average val-

ues of the features.

Average values of the features F0, SoE, FD1
, and FD2

are

obtained in the regions of consonant and the vowel for each

case, and are given in Tables II and III. The average values of

each sound category over the three types of occurrences (sin-

gle, geminated, and prolonged) are given in Tables IV and V.

Changes in F0 and SoE in comparison to those for the

vowel [a] are given in Table II. The average values of F0 for

vowel [a], minimum F0 and maximum F0 (i.e., F0½a� , F0min
,

and F0max
) for each sound category are given (in Hz) in col-

umns (a), (b), and (c), respectively. The values are rounded

off to a single decimal. The percentage change in F0 relative

to F0½a� , i.e., DF0=F0 ½a� ð¼ ðF0max
� F0min

=F0½a� Þ%Þ is given in

column (d). Likewise, the values of the feature SoE (denoted

as w) are given in columns (e)–(h). The features are normal-

ized relative to those for the vowel (i.e., F0½a� and w½a�), to

facilitate comparison across sound categories. Since the

number of points (GCIs) for feature values is less in some

cases of sounds such as single or geminated occurrences of

trill ([r]) sounds, the range of deviation in the feature is com-

puted using minimum and maximum values, rather than

computing the standard deviation.

Significant changes in F0 and SoE in comparison to the

vowel [a] can be observed for apical trill ([t]) and alveolar

fricative ([z]), in columns (d) and (h) in Table II. A dip in F0

for alveolar fricative ([z]) is due to constriction of the nearly

closed vocal tract (to produce fricative noise for sound [z])

on the vibration of the vocal folds. The strength of excitation

(w) is also reduced for [z] due to constriction in the vocal

tract. A sharp change (a dip) in SoE for both nasals ([n] and

[N]) can be observed from column (h). This is because of the

constriction in the nasal tract, and not due to glottal

vibration, as in the case for [r] or [z]. Absence of the effect

of vocal tract constriction on excitation is evident from the

negligible changes in the F0 values in the case of nasals.

In Table III, the average values of FD1
for the vowel [a]

(FD1½a�
), FD1min

(minimum FD1
) and FD1max

(maximum FD1
)

are given in columns (a), (b), and (c), respectively.

Percentage changes in FD1
for these sounds relative to FD1½a�

(for vowel), i.e., DFD1
=FD1=a=

ð¼ ðFD1max
� FD1min

=F0½a� Þ%Þ,
are given in column (d). Likewise, the average values of FD2

are given in columns (e)–(h). The values of FD1
and FD2

are

rounded off to the nearest integers, and the percentage

changes to a single decimal. Large changes can be observed

in FD1
for trill [r] and alveolar fricative [z], relative to the

vowel [a]. In comparison, the changes in FD1
for velar frica-

tive ([Ç]) and lateral approximant ([l]) are relatively low.

The changes in FD1
for nasals ([n] and [N]) are significant,

due to lowering of the first formant of the nasal tract.

Changes in FD2
are high mainly for the trill ([r]) sound, as

can be seen in column (h).

A summary of percentage changes in F0, SoE, FD1
, and

FD2
, relative to those for vowel [a], for the six categories of

sounds for the male voice, is given in Table IV. The average

values of the changes in these feature computed across the

three types of occurrences are given for each sound category.

In each case, the relative increase or decrease (i.e., the direc-

tion of change) in the average values of these features, in

comparison to those for the vowel [a], is marked as (þ) or

(�), respectively. Significant changes in F0 are due to the

effect of vocal tract constriction on the glottal vibration, and

in FD1
due to changes in the system characteristics. The sum-

mary table clearly illustrates the changes in different sound

categories as discussed before.

The summary of changes in features F0, SoE, FD1
, and

FD2
for a subset of the data collected for a female voice

is given in Table V in columns (a)–(d), respectively.

TABLE II. Changes in glottal source features F0 and SoE (w) for six categories of sounds (for male voice). Column (a) is F0 (Hz) for vowel [a], (b) and (c) are

F0min
and F0max

for the specific sound, and (d) is DF0=F0½a� (%). Column (e) is SoE (i.e., w) for vowel [a], columns (f) and (g) are wmin and wmax for the specific

sound, and column (h) is Dw=w½a�(%). Suffixes a, b, and c in the first column indicate single, geminated, or prolonged occurrences, respectively. Note: “alfric”/

“vefric” denotes alveolar/velar fricative and “alnasal”/“venasal” denotes alveolar/velar nasal.

Sl. # Sound category Sound Symbol (a) F0½a� (b) F0min
(c) F0max

(d)(%) DF0=F0½a� (e) w½a� (f) wmin (g) wmax (h)(%) Dw=w½a�

1a trill [ara] 112.1 88.5 117.7 26.00 0.820 0.237 0.987 91.34

1b trill [arra] 111.1 85.8 118.3 29.26 0.665 0.119 0.753 95.31

1c trill [arr…ra] 111.4 89.4 118.5 26.06 0.734 0.146 0.634 66.50

2a alfric [aza] 111.4 95.9 117.0 18.91 0.617 0.074 0.751 109.6

2b alfric [azza] 110.6 94.6 116.3 19.59 0.509 0.057 0.566 99.96

2c alfric [azz…za] 111.5 95.6 117.7 19.85 0.641 0.075 0.740 103.8

3a vefric [aÇa] 112.7 111.1 117.7 5.81 0.813 0.627 0.943 38.90

3b vefric [aÇÇa] 112.2 110.9 119.1 7.34 0.608 0.393 0.735 56.23

3c vefric [aÇÇ…Ça] 112.1 111.7 117.7 5.30 0.798 0.538 0.957 52.57

4a lateral [ala] 114.9 117.6 119.1 1.22 0.787 0.889 0.933 5.67

4b lateral [alla] 113.3 114.0 119.8 5.11 0.720 0.819 0.903 11.64

4c lateral [all…la] 114.6 112.8 120.1 6.42 0.616 0.582 0.707 20.24

5a alnasal [ana] 112.7 114.7 118.6 3.48 0.744 0.299 0.814 69.09

5b alnasal [anna] 113.0 113.4 119.1 5.08 0.748 0.304 0.861 74.39

5c alnasal [ann…na] 115.7 113.2 117.7 3.85 0.793 0.251 0.813 70.81

6a venasal [aNa] 112.7 114.3 119.0 4.15 0.722 0.311 0.862 76.30

6b venasal [aNNa] 114.8 115.0 119.8 4.20 0.828 0.331 0.879 66.14

6c venasal [aNN…Na] 115.6 117.1 119.9 2.46 0.748 0.315 0.880 75.59
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Tables IV and V show some differences. The extent of

changes in F0, SoE, FD1
, and FD2

for [r] seem to be less for

the female speaker. The signs of changes in SoE (Dw) for

both nasals ([n] and [N]), as compared to the vowel [a], are

also different for both the speakers. It could possibly be

related to a higher average pitch of the female voice in com-

parison to the male voice. Another reason for the differences

in Tables IV and V could be that the data for Table IV were

obtained from an expert phonetician, whereas the data for

Table V were obtained from a research scholar with only

basic training in phonetics. It is likely that the female speaker

could not articulate some of the sounds clearly.

VII. SUMMARY AND CONCLUSIONS

In this study, the effects of constriction of the vocal tract

system on the vibration characteristics of the vocal folds are

examined for different types of constrictions that occur in

the production of some speech sounds. Involuntary changes

in glottal vibrations in the production of some specific cate-

gories of sounds are examined. Six categories of sounds are

considered for illustration, which differ in the size, type, and

location of stricture in the vocal tract. The study considers

sounds uttered in modal voicing, in the context of vowel [a].

Single, geminated, and prolonged occurrences are examined

for each sound category. We have considered features

describing the glottal vibration and the vocal tract system to

demonstrate the effect of system-source coupling. Changes

due to different types of constrictions are observed in the

amplitudes of the waveforms of speech signal, EGG, dEGG,

and ZFF output, and also in the features F0, SoE, FD1
, and

FD2
. The glottal source features F0 and SoE are derived from

the speech signal using the ZFF method. The vocal tract sys-

tem characteristics are represented through two dominant

peak frequencies FD1
and FD2

, which are derived by LP anal-

ysis of the speech signal.

The general observation is that a high degree of con-

striction causing obstruction to the flow of air results in large

changes in F0 and strength of impulse-like excitation,

TABLE III. Changes in vocal tract system features FD1
and FD2

for six categories of sounds (for male voice). Column (a) is FD1
(Hz) for vowel [a], (b) and (c)

are FD1min
and FD1max

for the specific sound, and (d) is DFD1=FD1½a� ð%Þ. Column (e) is FD2
(Hz) for vowel [a], columns (f) and (g) are FD2min

and FD2max
for the

specific sound, and column (h) is DFD2=FD2 ½a� ð%Þ. Suffixes a, b, and c in the first column indicate single, geminated, or prolonged occurrences, respectively.

Note: “alfric”/“vefric” denotes alveolar/velar fricative and “alnasal”/“venasal” denotes alveolar/velar nasal.

Sl. # Sound category Sound Symbol (a) FD1½a�
(b) FD1min

(c) FD1max
(d)(%) DFD1

=FD1½a�
(e) FD2½a�

(f) FD2min
(g) FD2max

(h)(%) DFD2
=FD2½a�

1a trill [ara] 761 525 1499 128.1 2022 1377 3506 105.3

1b trill [arra] 763 402 1837 188.0 2006 1655 3933 113.6

1c trill [arr…ra] 791 397 1882 187.7 2399 1863 3793 80.5

2a alfric [aza] 856 278 2723 285.6 2892 3612 4451 29.0

2b alfric [azza] 844 227 2873 313.6 3092 3678 4538 27.8

2c alfric [azz…za] 886 288 2749 277.7 3250 3875 4536 20.4

3a vefric [aÇa] 735 363 913 74.9 3195 3245 3752 15.9

3b vefric [aÇÇa] 867 342 968 72.2 3131 3062 3884 26.3

3c vefric [aÇÇ…Ça] 889 359 1031 75.6 3114 3182 3855 21.6

4a lateral [ala] 804 562 732 21.3 2301 1748 3725 85.9

4b lateral [alla] 862 480 652 20.0 2361 2349 4229 79.6

4c lateral [all…la] 815 361 495 16.4 2774 2589 3746 41.7

5a alnasal [ana] 1137 327 1410 95.3 3483 2454 4010 44.7

5b alnasal [anna] 1103 241 1387 103.9 3440 2491 3523 30.0

5c alnasal [ann…na] 1084 267 1240 89.7 3513 2842 3694 24.3

6a venasal [aNa] 1177 261 1316 89.6 3335 2438 3925 44.6

6b venasal [aNNa] 1119 244 1149 80.8 3277 2778 3650 26.6

6c venasal [aNN…Na] 1118 214 1195 87.7 3329 2713 3689 29.3

TABLE IV. Changes in features due to the effects of vocal tract constriction

on the glottal vibration, for six categories of sounds (male voice). Columns

(a)–(d) show percentage changes in F0, SoE, FD1
, and FD2

, respectively. The

direction of change in a feature in comparison to that for vowel [a] is

marked with 6sign. Note: “alfric”/“vefric” denotes alveolar/velar fricative

and “alnasal”/“venasal” denotes alveolar/velar nasal.

S1. #

Sound

category

IPA

Symbol (a)(%) DF0 (b)(%) Dw (c)(%) DFD1
(d)(%) DFD2

1 trill [r] �27.1 �84.8 þ167.9 þ99.8

2 alfric [z] �19.5 �104.5 þ292.3 þ25.7

3 vefric [Ç] þ6.1 �49.2 �74.2 þ21.2

4 lateral [l] þ4.3 þ12.5 �19.2 þ69.1

5 alnasal [n] þ4.1 �71.4 �96.3 �33.0

6 venasal [N] þ3.6 �72.7 �86.0 �33.5

TABLE V. Changes in features due to the effects of vocal tract constriction

on the glottal vibration, for six categories of sounds (female voice).

Columns (a)–(d) show percentage changes in F0, SoE, FD1
, and FD2

, respec-

tively. The direction of change in a feature in comparison to that for vowel

[a] is marked with 6sign. Note: “alfric”/“vefric” denotes alveolar/velar fri-

cative and “alnasal”/“venasal” denotes alveolar/velar nasal.

S1. #

Sound

category

IPA

Symbol (a)(%) DF0 (b)(%) Dw (c)(%) DFD1
(d)(%) DFD2

1 trill [r] þ15.5 �49.1 þ72.4 þ30.9

2 alfric [z] �29.4 �116.2 þ273.3 þ43.8

3 lateral [l] þ2.9 þ35.0 �51.7 þ17.1

4 alnasal [n] þ6.6 þ46.4 �108.7 �21.0

5 venasal [N] þ6.6 þ22.5 �72.4 �26.3
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relative to the values in the adjacent steady vowel regions.

This happens in the cases of apical trill ([r]) and alveolar fri-

cative ([z]) sounds. The stricture in the vocal tract is high
(i.e., narrow constriction) in these cases. There is also a sig-

nificant increase in the first dominant peak frequency (FD1
)

in the spectrum. Changes in these features are less significant

in the cases when the obstruction to the airflow is low, as in

the cases of velar fricative ([Ç]) and lateral approximant ([l])

sounds. If there is no obstruction to the airflow as in the case

of nasal sounds ([n] and [N]), then there is hardly any change

in the characteristics of the glottal vibration in relation to the

adjacent vowel. Note that in the case of nasals the strength

of excitation is reduced due to constriction in the nasal tract.

Associated changes (reduction) in the dominant peak fre-

quencies FD1
and FD2

are primarily due to increasing effec-

tive length caused by coupling of the nasal tract. Thus this

study shows that the features of the glottal vibration such as

F0 and strength of excitation as well as the dominant peak

frequencies, all of which can be derived from the signal, can

be used to infer the degree of constriction in the vocal tract

during production of speech sounds.

The study examines the nature of involuntary changes in

the glottal vibration characteristics due to the vocal tract

constriction, along with associated changes in the vocal tract

system characteristics. Only a select set of sounds are exam-

ined in this study. More variety of sounds and their variants

need to be studied further. Also, the effects of different

vowel contexts need to be examined. Different features may

also be needed to understand the differences in the character-

istics of sounds from production point of view.
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Abstract

Formant frequencies represent resonances of vocal tract system during the production of speech signals. Bandwidths associated with
the formant frequencies are important parameters in analysis and synthesis of speech signals. In this paper, a method is proposed to
extract the bandwidths associated with formant frequencies, by analysing short segments (2–3 ms) of speech signal. The method is based
on two important properties of group delay function (GDF): (a) The GDF exhibits prominent peaks at resonant frequencies and (b) the
influence of one resonant frequency on other resonances is negligible in GDF. The accuracy of the method is demonstrated for synthetic
signals generated using all-pole filters. The method is evaluated by extracting bandwidths of synthetic signals in closed phase and open
phase regions within a pitch period. The accuracy of the proposed method is also compared with that of two other methods, one based on
linear prediction analysis of speech signals, and another based on filterbank arrays for obtaining amplitude envelopes and instantaneous
frequency signals. Results indicate that the method based on the properties of GDF is suitable for accurate extraction of formant band-
widths, even from short segments of speech signal within a pitch period.
� 2014 Elsevier B.V. All rights reserved.

Keywords: Formant frequency; Bandwidth; Group delay function; Short segments; Closed phase; Open phase

1. Introduction

During the production of speech, the nature of speech
sounds depends on the time-varying characteristics of the
source of excitation and those of the vocal tract system.
Formants are resonances of the vocal tract system, and
they represent important sound-specific and speaker-
specific information (Fant, 1960). Bandwidths associated
with the formant frequencies are useful parameters in the
analysis and synthesis of speech signals. Accurate
extraction of formant bandwidths from speech signals is

a difficult task, since the formant frequencies and their
bandwidths vary across pitch periods. Formant frequencies
and their bandwidths vary even within a pitch period, from
closed phase of glottis to the open phase. This is due to
decoupling of trachea and vocal tract during the closed
phase of glottis, and coupling of source-tract during the
open phase of glottis. These issues necessitate analysis of
short segments of speech (typically less than a pitch period)
for extraction of formant bandwidths.

Some methods proposed in the literature for the extrac-
tion of formant bandwidths use model-based approaches
for representation of speech signal. An approach based
on AM–FM modeling of speech signal was proposed by
Cohen et al. (1992), and an expression for formant
bandwidth was obtained in terms of the parameters of
the model. Potamianos and Maragos (1995) employed a
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bank of Gabor bandpass filters to decompose the speech
signal, and the signal in each band was demodulated
to obtain amplitude envelope and instantaneous frequency
signals. Bandwidth estimates were obtained from the
instantaneous frequency signals. An exponentially
weighted autoregressive (EWAR) spectral model was pro-
posed to extract the bandwidths of formant frequencies
(Zheng and Hasegawa-Johnson, 2003). A method called
clustered line-spectrum modeling was proposed to decom-
pose the speech signal into three dominant resonant oscil-
lations with nearly exponentially decaying envelopes
(Yasojima et al., 2006). The bandwidths were estimated
from the decaying constants of the resonant frequencies.
In the above cases, the accuracy of extraction of band-
widths depends on the fitness of the models, and on the
accuracy of estimation of model parameters from the
speech signal. These methods typically use more than one
pitch cycle of speech signal, a duration over which the
bandwidths of formants tend to vary. Hence, there is need
for methods to extract bandwidths from short segments
(2–3 ms in duration) of voiced speech signals.

Linear prediction (LP) analysis is commonly used for
extracting formant frequencies (Makhoul, 1975). The esti-
mation of autoregressive parameters in LP analysis is based
on an error minimization criterion. Reddy and Swamy
(1984) proposed a method to extract bandwidths of for-
mants, by observing the phase slope of the z-transform
around the poles obtained using LP analysis of speech sig-
nal. However, the accuracy of formant frequencies and
bandwidths depends on the choice of order of LP analysis.
Also, the error minimization criterion in LP analysis
focuses on matching spectral peaks, and bandwidth is only
an additional outcome of the process.

In this paper, we propose a method for extraction of for-
mant bandwidths by exploiting the properties of phase of
Fourier transform. The method assumes that the speech
signal in voiced regions can be modeled as the output of
an all-pole filter. The key idea is based on the evaluation
of group delay function at the resonant frequencies. In
Section 2, some important properties of phase response
of all-pole systems are revisited. These properties are
exploited in Section 3, which describes the analytical basis
for the proposed method. This section also examines the
effectiveness of bandwidth extraction for all-pole systems.
The method is evaluated for the case of synthetic speech
signals in Section 4. Accuracy of the method is compared
with two other methods of bandwidth extraction, and
results are discussed. Conclusions are given in Section 5.

2. Properties of phase response of all-pole systems

In this section, we summarize the observations reported
by Yegnanarayana (1978) on the significance of processing
phase response and its derivative for extraction of formant
frequencies from speech signals. These observations provide
a background for the method proposed in Section 3.1, for

extraction of formant bandwidths from discrete-time
speech signals.

Let us consider a cascade of M resonators. The fre-
quency response of the ith resonator is given by

HiðxÞ ¼
1

ðjx� ðai þ jbiÞÞðjx� ðai � jbiÞÞ
; ð1Þ

where ai � jbi is the complex pair of poles of the ith resona-
tor, x is the analog angular frequency and j ¼ ffiffiffiffi�p 1. The
expression is simplified as

HiðxÞ ¼
1

a2
i þ b2

i � x2 � 2jxai

: ð2Þ

The squared magnitude response of the ith resonator is
given by

jH iðxÞj2 ¼
1

ða2
i þ b2

i � x2Þ2 þ 4x2a2
i

: ð3Þ

The squared magnitude response of the overall filter, i.e.,
the cascade of M resonators, is given by

jHðxÞj2 ¼
YM
i¼1

jH iðxÞj2: ð4Þ

The phase response of the ith resonator is given by

HiðxÞ ¼ tan�1 2xai

a2
i þ b2

i � x2

 !
: ð5Þ

Group delay function of the ith resonator, which is the neg-
ative derivative of the corresponding phase response, is
given by Yegnanarayana (1978)

GiðxÞ ¼ �
2aiða2

i þ b2
i þ x2Þ

ða2
i þ b2

i � x2Þ2 þ 4x2a2
i

: ð6Þ

The group delay function of the overall filter is given by

GðxÞ ¼
XM

i¼1

GiðxÞ: ð7Þ

It can be verified that the magnitude response jH iðxÞj2 (Eq.
(3)) has a peak at x2 ¼ b2

i � a2
i , and a half power

bandwidth of ai. For sharp resonant peaks in the
magnitude response, b2

i � a2
i . We now note the following

properties of GiðxÞ (Yegnanarayana, 1978).

(a) From Eq. (3) and (6)

GiðxÞ ¼ �2aiða2
i þ b2

i þ x2ÞjH iðxÞj2: ð8Þ

For b2
i � a2

i , the group delay function GiðxÞ can be approx-
imated around the resonant frequency x2 ¼ b2

i � a2
i as

follows:

GiðxÞ ¼ KijH iðxÞj2; ð9Þ

where Ki is a constant. It is to be noted that GiðxÞ too has a
peak near x2 ¼ b2

i � a2
i .
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(b) At frequencies much lower than the resonant

frequency b2
i � a2

i ;GiðxÞ � � 2ai

b2
i
, which is a small

constant quantity (since b2
i � a2

i ).
(c) At frequencies much higher than the resonant

frequency b2
i � a2

i ;GiðxÞ � � 2ai
x2 .

From (a) above, we observe that resolution of neighbor-
ing formants with different bandwidths is easier from the
group delay function than from the magnitude response,
due to two reasons: (i) The group delay function is
proportional to the square of magnitude response in the
neighborhood of resonant frequencies (Eq. (9)). (ii) The
group delay function corresponding to the overall filter is
the summation of the individual group delay functions
(Eq. (7)), whereas the magnitude response corresponding
to the overall filter is the product of the individual magni-
tude responses (Eq. (4)). From the properties (b) and (c)
above, we observe that the group delay function of a given
resonator has relatively less influence on that of the other
resonators, since the group delay function assumes low
values for frequencies that are much smaller or much larger
that the resonant frequency. Although the above observa-
tions are made in the context of analog signals, we verify
that the observations are valid in the context of discrete-
time signals too.

3. Basis for the proposed method

We first establish a relation between the bandwidth of a
resonant frequency and the group delay function of the
corresponding all-pole system. The bandwidth is then
expressed in terms of the group delay function computed
from the discrete-time signal. Extraction of bandwidth is
discussed for three cases, namely, all-pole systems
described by (a) a single complex pole, (b) a pair of
complex conjugate poles, and (c) multiple pairs of complex
conjugate poles. Some issues in the computation of group
delay function from natural speech signals are also
discussed in this section.

3.1. Relation between bandwidth and group delay function

for discrete-time signals

Let us consider a discrete-time signal, which can be
modeled as the output of a single-pole system. Let
HðzÞ ¼ 1

1�z0z�1 represent the transfer function of a system
which has a pole at z ¼ z0, where z0 ¼ r0ejx0 . Here, r0

denotes the radial distance of the pole from the origin
(z ¼ 0) and x0 denotes the resonant frequency in radians.
The frequency response of the system is given by
Oppenheim et al. (1999)

HðxÞ ¼ 1

1� r0ejx0 e�jx
: ð10Þ

In this case, the impulse response is complex. The fre-
quency response consists of magnitude response and phase

response. Group delay function (GDF) is defined as the
negative derivative of the phase of Fourier transform.
For the system described by Eq. (10), the GDF is given
by Oppenheim et al. (1999)

sðxÞ ¼ � r2
0 � r0 cosðx� x0Þ

1þ r2
0 � 2r0 cosðx� x0Þ

: ð11Þ

The GDF can also be computed from the samples of a given
discrete-time signal x½n�. Let X ðxÞ ¼

P1
n¼�1x½n�e�jxn denote

the discrete-time Fourier transform of x½n�. Also, X ðxÞ can
be expressed in terms of its magnitude jX ðxÞj and phase
/ðxÞ as X ðxÞ ¼ jX ðxÞjej/ðxÞ. Applying logarithmic trans-
formation on both sides, and differentiating with respect
to x, we have (Oppenheim and Schafer, 1975a)

1

X ðxÞ
d

dx
ðX ðxÞÞ ¼ d

dx
ðlog jX ðxÞjÞ þ j

d
dðxÞ ð/ðxÞÞ: ð12Þ

Since GDF is defined as the negative derivative of phase of
Fourier transform, it follows (from Eq. (12)) that gðxÞ can
be expressed as

gðxÞ ¼ �Im
1

X ðxÞ
d

dx
ðX ðxÞÞ

� �
: ð13Þ

We make use of the relation that the Fourier transform of
y½n� ¼ nx½n� is given by Y ðxÞ ¼ j d

dx ðX ðxÞÞ (Oppenheim and
Schafer, 1975b). Thus,

gðxÞ ¼ �Im
1

j
Y ðxÞ
X ðxÞ

� �
: ð14Þ

The above equation can be simplified as (Oppenheim and
Schafer, 1975a)

gðxÞ ¼ X RðxÞY RðxÞ þ X IðxÞY IðxÞ
X 2

RðxÞ þ X 2
I ðxÞ

; ð15Þ

where X ðxÞ ¼ X RðxÞ þ jX IðxÞ and Y ðxÞ ¼ Y RðxÞþ
jY IðxÞ, and the subscripts R and I denote the real and
imaginary parts, respectively.

Thus, sðxÞ (in Eq. (11)) gives the analytical expression
for the GDF of a digital resonator represented by a single
pole, while gðxÞ (in Eq. (15)) is the GDF as computed from
the discrete-time signal x½n�. If x½n� is assumed to be the
impulse response of a single-pole digital resonator, then
the two representations of GDF are equivalent. This equiv-
alence can be exploited to obtain bandwidths associated
with resonant frequencies.

Assuming x½n� to be the impulse response of a single-
pole digital resonator, the GDF computed from segments
of x½n� using Eq. (15) should be equivalent to the GDF
obtained using Eq. (11), for all values of x. However, the
GDF computed from a discrete-time signal is affected by
the length, shape and location of the analysis window.
Fig. 1(a) shows the GDF of an all-pole filter with a single
pole (as obtained by Eq. (11)), which has a resonant
frequency at 2,000 Hz and r0 ¼ 0:939 (corresponding to a
bandwidth of 200 Hz at a sampling frequency of
10,000 Hz). Fig. 1(b) shows the GDF computed from the
samples of the impulse response of the all-pole filter

72 A.J.X. Medabalimi et al. / Speech Communication 63–64 (2014) 70–83



(as obtained by Eq. (15)). For generating the impulse
response, sampling frequency of 10000 Hz was used. The
GDF was computed from a 5 ms window of the impulse
response. The effect of windowing is visible in Fig. 1(b).
The correspondence between the two representations of
GDF is observed to be most prominent at the resonant
frequency (2000 Hz). We evaluate the two representations
of GDF at x ¼ x0, and equate them. From Eq. (11),
sðx0Þ ¼ r0

1�r0
. From Eqs. (11) and (15), we have

r0 ¼
gðx0Þ

1þ gðx0Þ
; ð16Þ

where gðx0Þ is evaluated using Eq. (15). Thus, r0 associated
with a single pole can be expressed in terms of its GDF.
The bandwidth b (in Hz) of the resonator can be computed
from the radial distance r0 of the pole using the relation
r0 � e�pbT , where T (in seconds) is the sampling interval
of the discrete-time signal. We will discuss the significance
of length of analysis window in Section 3.4.

We now examine the accuracy of extraction of band-
width for three cases, where the all-pole filter is defined
by (a) a single complex pole, (b) a pair of complex conju-
gate poles, and (c) multiple pairs of complex conjugate
poles. In each case, the values of resonant frequency and
its bandwidth are assumed in order to generate the impulse
response of the all-pole filter. The GDF is then computed
from the samples of the impulse response, and is compared
to the analytical expression of GDF for that all-pole filter.
This comparison results in a solution for the bandwidth
associated with the resonant frequency.

3.2. Single complex pole

The radial distance r0 of the single complex pole can be
computed from Eq. (16), as discussed above. We denote the
value computed from Eq. (16) as r̂0, to distinguish it from
the true/reference value r0. The accuracy of extraction of r0

is evaluated by generating the impulse response of the res-
onator for different values of r0 and x0. The value of r0 is
varied between 0.90 and 0.995, in steps of 0.01. The value
of f0 ¼ x0

2p is varied between 300 Hz and 4,000 Hz, in steps
of 50 Hz. A sampling frequency of 10,000 Hz was used.
The percentage error in the extraction of r0 is given by
d ¼ r̂0�r0

r0
� 100. The GDF is computed from the impulse

response using four different window lengths (W), namely
(a) 2 ms, (b) 3 ms, (c) 5 ms and (d) 10 ms. The distribution
of error for the four cases is shown in Fig. 2. The average
(E) of the absolute values of error is also indicated in the
figure. Due to the effect of windowing, the estimated radial
distance r̂0 of the pole is lesser than the true value r0.
Hence, the distributions in Fig. 2 are skewed toward nega-
tive values of d. The method estimates a higher bandwidth
(in Hz) relative to the true value. Smaller the window
length, larger is the estimated bandwidth and greater is
the spread of d. The spread of the error reduces as the
length W of the analysis window increases, since the accu-
racy of computation of GDF improves with increase in W.
Computation of GDF using Eq. (15) is affected by the sam-
pling rate. A higher sampling rate is desirable for accurate
estimation of bandwidth, particularly for short windows of
analysis. The effect of windowing is more pronounced for
short windows of analysis (W = 2 ms and W = 3 ms), than
for larger windows (W = 5 ms and W = 10 ms).

3.3. Single pair of complex conjugate poles

Let us consider an all-pole filter defined by a pair of com-
plex conjugate poles. The transfer function of the digital res-
onator in this case is given by HðzÞ ¼ 1

ð1�z0z�1Þð1�z�
0
z�1Þ, where

z0 ¼ r0ejx0 and z�0 denotes the complex conjugate of z0. The
impulse response of the digital resonator is a real signal.
Due to additive nature of phase, the GDF has two terms,
corresponding to the poles at x ¼ x0 and x ¼ �x0. The
GDF is given by sðxÞ ¼ sþðxÞ þ s�ðxÞ, where
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Fig. 1. (a) Group delay function (GDF) of a single pole digital resonator. (b) GDF computed from the samples of impulse response of the resonator.
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sþðxÞ ¼ �
r2

0 � r0 cosðx� x0Þ
1þ r2

0 � 2r0 cosðx� x0Þ
;

s�ðxÞ ¼ �
r2

0 � r0 cosðxþ x0Þ
1þ r2

0 � 2r0 cosðxþ x0Þ
:

ð17Þ

In this case, the peaks in sðxÞ do not occur exactly at
x ¼ �x0, but are shifted depending on the value of the
bandwidth (Yegnanarayana, 1978). The shift is smaller
for poles closer to the unit circle (jzj ¼ 1). The value of r0

can be obtained by solving sðx0Þ ¼ gðx0Þ, where gðx0Þ
and sðx0Þ are evaluated using Eqs. (15) and (17), respec-
tively. The exact solution involves a third order polynomial
in r0. An approximate solution can be obtained by observ-
ing the condition under which the effect of s�ðxÞ on sðxÞ at
x ¼ x0 can be ignored. The contribution of s�ðxÞ to sðxÞ
at x ¼ x0 can be measured in terms of the ratio a, which is

given by a ¼ jsþðx0Þj
js�ðx0Þj. To observe the variation of a, the value

of r0 is varied between 0.90 and 0.995, in steps of 0.01. The
value of f0 ¼ x0

2p is varied between 300 Hz and 4,000 Hz, in

steps of 50 Hz. A sampling frequency of 10,000 Hz was
used. In all the cases, the value of a was observed to be
greater than 19, indicating that the contribution of
s�ðx0Þ to sðx0Þ can be ignored. Thus, sðx0Þ � r0

1�r0
, and

the solution to obtain r0 in the case of a pair of complex
conjugate poles is same as that in the case of a single com-
plex pole. However, for smaller values of r0, the contribu-
tion of s�ðx0Þ to sðx0Þ is significant. Fig. 3 shows the
accuracy of extraction of r0 for the case of a pair of com-
plex conjugate poles. The GDF is computed from the
impulse response of the digital resonator using four

different window lengths (W), namely (a) 2 ms, (b) 3 ms,
(c) 5 ms and (d) 10 ms. The average (E) of the absolute
values of error is also indicated in the figure. The accuracy
in this case is similar to that of the single complex pole,
indicating that the effect of s�ðx0Þ on sðx0Þ is negligible
for larger values of r0.

3.4. Multiple pairs of complex conjugate poles

Let us consider an all-pole system defined by N pole
pairs. Let the poles of the system be represented by zk

and z�k , where zk ¼ rkejxk ; k ¼ 1; . . . ;N . Here, rk and xk rep-
resent the radial distance and resonant frequency, respec-
tively, of the kth pole. The GDF is given by

sðxÞ ¼
XN

k¼1

fsk;þðxÞ þ sk;�ðxÞg; where

sk;þðxÞ ¼ �
r2

k � rk cosðx� xkÞ
1þ r2

k � 2rk cosðx� xkÞ
;

sk;�ðxÞ ¼ �
r2

k � rk cosðxþ xkÞ
1þ r2

k � 2rk cosðxþ xkÞ
:

ð18Þ

In the case of multiple resonances, the influence of one res-
onant peak on the other peaks is negligible in group delay
function, if the formants have relatively small bandwidths
(Yegnanarayana, 1978). This observation is valid even for
closely spaced formants, but it is not valid for resonant fre-
quencies with large bandwidths (Yegnanarayana, 1978).
When the GDF is evaluated at x ¼ xi, the influence of
the additional 2N � 1 terms can be measured in terms of
the ratio ai; i ¼ 1; . . . ;N , given by
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Fig. 2. Case of an all-pole filter which is represented by a single complex pole. Distribution of error in the extraction of bandwidth is shown for different
lengths (W) of the analysis window, namely, (a) W = 2 ms, (b) W = 3 ms, (c) W = 5 ms, and (d) W = 10 ms. The average (E) of the absolute values of error
is also shown.
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ai ¼
jsi;þðxiÞj

jsi;�ðxiÞ þ
P

k–ifsk;þðxiÞ þ sk;�ðxiÞgj
: ð19Þ

Here, the denominator represents the contribution of other
resonances on the GDF evaluated at x ¼ xi. We consider
the case of three pole pairs, i.e., N ¼ 3, for computing the
values of ai. This computation requires the choice of three
resonant frequencies and the corresponding bandwidths.
The values of resonant frequencies are chosen from vocal
tract resonance (VTR) database (Deng et al., 2006). This
choice is relevant in the context of analysis of voiced speech
signals, which typically consist of three or four prominent
resonances. The formant frequencies of speech signals in
the database have been marked in a semi-automatic man-
ner, by observing speech signals and their spectrograms.
Another reason for using formant frequencies from VTR
database is to simulate the time varying nature of formants
in voiced speech signals.

Formant frequencies marked from 50 speech utterances
of VTR database are used, leading to 14,620 sets of values,
where each set consists of first three formant frequencies
(denoted by F 1; F 2 and F 3). Two cases are considered: (i)
Bandwidths are assumed to be same for all the three for-
mants, corresponding to rk ¼ 0:97; k ¼ 1; 2; 3. (ii) Band-
widths are assumed to be one-tenth (10%) of the formant
frequencies. In cases (i) and (ii), the values of a1; a2 and
a3 are computed. Note that this computation is done
according to Eq. (19), and does not involve analysis of sig-
nals. For case (i), distributions of a1; a2 and a3 are shown in
Fig. 4(a)–(c), respectively. The mean values l1; l2 and l3 of
the distributions indicate that the effect of the other two

formants on a given formant is less than 7%. For case
(ii), distributions of a1; a2 and a3 are shown in Fig. 4(d)–
(f), respectively. The values of l1 and l2 indicate that the
effect of the other two formants on a given formant is less
than 6% in the case of F 1 and F 2. Contribution of the term
s3;�ðx3Þ to sðx3Þ is significant (about 16%) due to larger
bandwidth of F 3. This results in lower value of l3, com-
pared to those of l1 and l2. These observations give a basis
for ignoring the effect of other resonances on the GDF of
the resonance of interest, when computing bandwidths.

In the context of speech signals, bandwidths are related
to formant frequencies. Hence, we consider case (ii) for
extraction of bandwidths. The impulse response of all-pole
filter is generated at sampling frequency of 10,000 Hz using
the formant frequencies from VTR database, and by
assuming the bandwidths to be one-tenth (10%) of the for-
mant frequencies. The impulse response is analysed and
formant bandwidths are extracted using the relation

ri ¼ gðxiÞ
1þgðxiÞ ; i ¼ 1; 2; 3. The GDF is computed from the

impulse response for two different window lengths
(W = 3 ms and W = 10 ms). Distributions of errors in the
extraction of bandwidths corresponding to the three for-
mant frequencies are shown in Fig. 4(g)–(i) for W = 3 ms,
and in Fig. 4(j)–(l) for W = 10 ms. The averages (Ei) of
the absolute values of errors are also indicated in
Fig. 4(g)–(l). Errors in the extraction of bandwidths are
lower when a longer analysis window (W = 10 ms) is used,
compared to the errors when a shorter analysis window
(W = 3 ms) is used. The low error rates (even for short
analysis window) indicate the accuracy of the proposed
method.
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Fig. 3. Case of an all-pole filter which is represented by a pair of complex conjugate poles. Distribution of error in the extraction of bandwidth is shown
for different lengths (W) of the analysis window, namely, (a) W = 2 ms, (b) W = 3 ms, (c) W = 5 ms, and (d) W = 10 ms. The average (E) of the absolute
values of error is also shown.
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3.5. Computation of group delay function from natural

speech signals

In voiced regions, speech signal can be modeled as the
output of an all-pole filter which is defined by multiple
pairs of complex conjugate poles. The signal segment
within a pitch period can be modeled as the impulse
response of the all-pole filter. However, the excitation
component of speech signal is not an ideal impulse. Also,
the vocal tract system is not exactly equivalent to an
all-pole system. Due to these factors, the GDF computed
from natural speech signals differs somewhat from the
GDF computed from synthetic signals. Fig. 5 illustrates
the difference between the group delay functions
computed from natural and synthetic speech signals. A
segment of natural speech signal corresponding to one
pitch period (of 10 ms) is shown in Fig. 5(a). This is a
segment between two successive instants of glottal
closure. A segment of synthetic speech signal, corre-
sponding to the natural speech signal, is shown in
Fig. 5(c) and (e). The synthetic speech signal is obtained
as follows:

(a) The segment of natural speech (shown in Fig. 5(a)) is
analyzed to extract the first three formant
frequencies.

(b) For each formant frequency, a 3 dB bandwidth equal
to 10% of the formant frequency is assumed.

(c) An all-pole filter is constructed by using the formant
frequencies and their corresponding bandwidths.

(d) The all-pole filter is excited using a unit sample
sequence.

The signals in Fig. 5(a) and (b) are sampled at
32,000 Hz. Fig. 5(b) and (d) shows the GDF computed
from the segments of natural and synthetic speech
signals, respectively. In both the cases, the GDFs are
computed using Eq. (15). In the expression for GDF
computed from signal samples (Eq. (15)), the denomina-
tor is the square of magnitude of the short-time
spectrum of the signal. Due to the effect of windowing,
the term in the denominator has values that are close to
zero, causing the GDF to assume very large values.
Such large values in the GDF can be observed in both
Fig. 5(b) and (d). Peaks due to all the three formant
frequencies are prominent in Fig. 5(d). This is due to
two reasons:

(i) In the neighborhood of resonant frequencies, the
GDF is proportional to the square of magnitude of
the short-time spectrum.

(ii) The signal is the output of an all-pole filter.
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Fig. 4. Case of an all-pole filter which is represented by three pairs of complex conjugate poles. (a), (b) and (c) Show the distribution of a1; a2 and a3,
respectively, when equal bandwidths are assumed. (d), (e) and (f) Show the distribution of a1; a2 and a3, respectively, when bandwidths are assumed to be
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Peaks due to the first two formant frequencies are visible
in Fig. 5(b) also, due to the reason (i) given above.
However, the signal Fig. 5(a) is not exactly the output of
an all-pole model, and hence, the GDF in Fig. 5(b) appears
different from that in Fig. 5(d). The third formant
frequency is not prominent at all in Fig. 5(b). Fig. 5(f)
shows the GDF of the all-pole filter, as given by Eq.
(18). All the three formant frequencies are prominent in
Fig. 5(f). It is to be noted that the sðxÞ in Eq. (18) is effec-
tively derived from the infinite length impulse response of
the all-pole filter, whereas gðxÞ (in Eq. (15)) is computed
from a finite length of the signal. Hence, the GDF in
Fig. 5(f) is free of the effect of windowing. Also, the values
of GDF at the formant frequencies are similar (but not
same) across Fig. 5(b), (d), and (f). When computing
gðxÞ (as given by Eq. (15)) from samples of synthetic or
natural speech signal, the length of analysis window should
be less than or equal to a pitch period. Such a choice
ensures that gðxÞ is closer to sðxÞ, where the latter is com-
puted using Eq. (18). If gðxÞ is computed from more than
one pitch period of speech signal, the equivalence between
gðxÞ and sðxÞ is not valid. Hence, it is necessary to ensure
that the analysis window is less than or equal to one pitch
period, and that the analysis window begins immediately
after an instant of glottal closure.

We now examine the effect of the nature of excitation on
the group delay function. Fig. 6(a), (d) and (g) represent
three different impulse-like excitation signals, but with
varying sharpness/abruptness. However, all the three sig-
nals have the same value of overall energy. The signal in
Fig. 6(a) is closest to an ideal impulse (unit sample
sequence), while the signals in Fig. 6(d) and (g) progres-
sively deviate from the ideal impulse. Fig. 6(b), (e) and
(h) shows the signals synthesized using the excitation

signals in Fig. 6(a), (d) and (g), respectively. The formant
frequencies and bandwidths used for synthesis were the
same for each excitation signal. A pitch period of 10 ms
and a sampling frequency of 32,000 Hz were used for syn-
thesis. The GDFs computed from the synthesized signals
are shown in Fig. 6(c), (f) and (i). The effect of change in
the impulse-like nature of excitation signal on the charac-
teristics of GDF is not significant. The peaks due to for-
mant frequencies are prominent in Fig. 6(c), (f) and (i)
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Fig. 5. (a) A segment of natural speech signal and (b) GDF computed from the segment. (c) A segment of synthetic speech signal (synthesized using the
first three formant frequencies of the natural speech segment). (d) GDF computed from the signal in (c). (e) This signal is same as the signal shown in (c).
(f) GDF of the all-pole filter used for synthesizing the signal in (e).
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with similar values of GDF at formant frequencies. It has
been observed that a change in the impulse-like nature of
the excitation signal affects the spectral tilt/slope of the syn-
thesized signal, but not the position of formant frequencies
(Gauffin and Sundberg, 1989). It is the response of vocal
tract system which has a greater influence on the nature
of GDF, than the excitation signal. This is mainly due to
the presence of zeros in the short-time magnitude spectrum
of the signal, which affect the nature of GDF.

4. Evaluation of bandwidth extraction methods for synthetic

speech signals

In this section, we describe the synthesis of speech sig-
nals with known values of formant frequencies and their
bandwidths. The synthesized signals are used to evaluate
three different methods of extraction of bandwidths. These
methods are described in the section. Accuracy of band-
widths extracted from the three methods are compared.

4.1. Synthesis of signals for evaluation

Extraction of formant bandwidths from speech signals is
a difficult problem, primarily due to time-varying charac-
teristics of speech signal. Formant frequencies vary across
pitch periods, and even within a single pitch period, during
the open and closed phases of glottis. During the closed
phase of glottis, there is no coupling (or minimal coupling)
between the trachea and the vocal tract. During the open
phase of glottis, the trachea and the vocal tract are cou-
pled, resulting in an increase in the effective length of the
vocal tract. Hence, formant frequencies have slightly lesser
values during the open phase, compared to those during
the closed phase. Also, there is greater damping of reso-
nances during the open phase, compared to that during
the closed phase. Hence, formant bandwidths are greater
during the open phase compared to the closed phase.

In order to evaluate the accuracy of a given method of
extraction of formant bandwidths from speech signals,
the true/reference values of formant frequencies and their
bandwidths are required. While manual/semi-automatic
labeling of formant frequencies from speech signals and
their spectrograms is reliable, the same is not true for band-
widths. Hence, we generate synthetic signals using known
formant frequencies, and by assuming 3 dB bandwidths
as fractions of the corresponding formant frequencies.
We use VTR database, where formant frequencies are
marked corresponding to speech signals for 516 utterances.
The formant frequencies are marked for every 10 ms. The
synthesis of speech signals is performed as follows:

(a) In the closed phase of glottis, coefficients of the all-
pole filter are derived using three formant frequencies
(F 1; F 2 and F 3) and their bandwidths (F 1=10; F 2=10
and F 3=10). In the open phase of glottis, coupling
between vocal source and vocal tract results in an
increase in the effective length of the vocal tract. This

causes a slight decrease (of about 3–6%) in the values
of formant frequencies in the open phase relative to
those in the closed phase. Also, damping of
resonances in the open phase is greater than that in
the closed phase. Hence, in the open phase of glottis,
coefficients of the all-pole filter are derived
using three formant frequencies whose values are
0:95F 1; 0:95F 2 and 0:95F 3, and the corresponding
bandwidths whose values are 0:95F 1=8; 0:95F 2=8
and 0:95F 3=8. Thus, the coefficients of the all-pole fil-
ter change within each pitch period.

(b) In each pitch period, first half of the pitch period is
considered as the closed phase, while the second half
is considered as the open phase. In a pitch period
consisting of 2L samples (where L is an integer), the
glottal closure instant is located at the first sample
while the glottal opening instant is located at
ðLþ 1Þth sample.

(c) The amplitude of excitation signal is 1 unit at the
instant of glottal closure, and 0.1 unit at the instant
of glottal opening. The excitation signal consists of
zeros at all other sample indices within each pitch
period.

(d) For each utterance in the VTR database, three signals
are synthesized, corresponding to pitch periods of
5 ms, 8 ms and 10 ms. Although the formant frequen-
cies are marked for every 10 ms in VTR database, we
use one set of formant frequencies (F 1; F 2 and F 3) to
synthesize the signal within one pitch period. The
pitch period in a synthesized signal is constant, but
the formant frequencies vary from one pitch period
to another.

(e) All signals are synthesized at two sampling rates,
10,000 Hz and 16,000 Hz.

4.2. Methods for extraction of bandwidths

We evaluate three methods of extraction of formant
bandwidths from the synthesized speech signals. These
are: (a) The proposed method based on the properties of
group delay functions (GDF), (b) the method based on lin-
ear prediction analysis (LPA) (Makhoul, 1975), and (c) the
method proposed by Potamianos and Maragos (1995),
which processes speech signal through a filter bank array
(FBA). In each method, we use the true locations of glottal
closure instants and glottal opening instants, so that the
regions of closed phase and open phase are available for
analysis. Signal segments in the regions of closed phase
and open phase are analyzed for extraction of formant
bandwidths. The three methods for extraction of formant
bandwidths are summarized below.

4.2.1. Method based on properties of GDF

This method has been described in Section 3.4. In this
method, the knowledge of formant frequencies is necessary
to extract the bandwidths. Formant frequencies are
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extracted from the regions of open and closed phase of
glottis, using the method proposed by Xavier et al.
(2006). The method proposed by Xavier et al. (2006) for
extraction of formant frequencies is also based on the prop-
erties of GDF. The GDF is computed from the samples of
the speech signal in the regions of closed/open phase. Using
the knowledge of formant frequencies, radial distances cor-
responding to the formant frequencies are derived using the
proposed method (Section 3.4). For extraction of formants
and bandwidths, signals synthesized at 16,000 Hz are used.

Since the proposed method depends on the knowledge
of formant frequencies for extraction of bandwidths, it is
necessary to evaluate the accuracy of the method used
for extraction of formants. Let F denote the true value of

a formant frequency, and let bF denote the value extracted
from synthetic signal. The percentage deviation dF is given

by dF ¼ jF�
bF j

F � 100. Table 1 shows the accuracy of formant

extraction, when the formant frequencies are extracted
using the method proposed by Xavier et al. (2006). In the
table, each entry denotes the percentage of pitch periods
for which the percentage deviation dF is lesser than a cer-
tain value (such as 2%, 5% and 10%). It is observed from
Table 1 that the method of formant extraction is more
accurate in the closed phase than in the open phase. In
more than 90% of pitch periods, formant frequencies are
extracted with a percentage deviation of less than 10%.
Also, the accuracy of formant extraction improves as the
pitch period increases from 5 ms to 10 ms, since a greater
length of signal segment is available for analysis at longer
pitch periods. The effect of accuracy of formant extraction
on that of bandwidth extraction is discussed in Section 4.3.

Fig. 7 illustrates the extraction of formant bandwidths
using the proposed method, from short segments (3 ms)
of speech signal in the regions of closed and open phases
of glottis. Glottal closure instants are detected using the
method proposed by Murty and Yegnanarayana (2008).
This method has high accuracy of detection of GCIs, and
low rates of false acceptance and missed detection,

compared to other existing methods of GCI detection
(Murty and Yegnanarayana, 2008). Formant frequencies
are extracted from the regions of open and closed phase
of glottis, using the method proposed by Xavier et al.
(2006). For the speech signal in Fig. 7(a), bandwidths of
the first three formants are shown in Fig. 7(c)–(e). Due to
increased damping of resonances in the regions of open
phase, bandwidths obtained from the open phase (shown
by ‘.’) are larger in value, compared to those obtained from
the closed phase (shown by ‘+’).

4.2.2. Method based on linear prediction analysis
In this method, signals synthesized at 10,000 Hz are

processed using linear prediction (LP) analysis, which
represents a signal as the output of an all-pole filter. A
prediction order of 10 is used, and signal segments in closed
and open regions of glottis are analyzed to extract the
poles of the all-pole filter. Real poles are ignored and

Table 1
Performance of GDF-based method of formant extraction (Xavier et al., 2006). Each entry denotes the percentage of pitch periods for which the
percentage deviation of the extracted formants is lesser than a certain value (such as 2%, 5% and 10%). The results are given for signals synthesized using
three different values of the pitch period T 0 (5 ms, 8 ms and 10 ms). For each pitch period, formant extraction is performed in the closed phase and in the
open phase.

T 0 (ms) Closed phase Open phase

dF < 2% dF < 5% dF < 10% dF < 2% dF < 5% dF < 10%

5 F 1 81.0 91.1 94.9 37.2 80.4 94.1
F 2 86.4 92.3 96.0 47.8 78.4 94.1
F 3 90.5 93.1 94.1 25.9 60.7 90.8

8 F 1 94.1 98.0 98.4 58.8 93.5 98.6
F 2 95.8 97.4 98.0 62.0 91.0 98.4
F 3 97.2 97.6 98.3 39.4 80.9 98.2

10 F 1 98.6 99.4 99.6 76.3 98.1 99.6
F 2 98.6 98.9 99.1 73.9 95.9 99.6
F 3 98.9 99.1 99.5 54.0 93.9 99.4
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Fig. 7. (a) Speech signal and (b) its spectrogram. Bandwidths corre-
sponding to first three formants are shown in (c), (d) and (e), respectively,
at the GCIs. Bandwidths derived from regions of closed and open phase
are shown by ‘+’ and ‘.’ symbols, respectively.
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complex-conjugate pole pairs are considered. Formant
frequencies are obtained from the angle/phase of the com-
plex-conjugate pole pairs, while bandwidths are obtained
from the radial distance of the poles from the origin. Due
to minimization of error in linear prediction analysis, esti-
mates of formant frequencies and bandwidths are obtained
simultaneously.

Table 2 shows the accuracy of formant extraction using
linear prediction analysis. In the table, each entry denotes
the percentage of pitch periods for which the percentage
deviation dF of the extracted formant is lesser than a cer-
tain value (such as 2%, 5% and 10%). It is observed from
Table 2 that the difference between the accuracy of formant
extraction in closed and open phases is higher than that
due to the GDF based method (Table 1). The spectral
matching formulation used in LP analysis is more suitable
for the closed phase regions than for the open phase
regions, since the spectral peaks are smeared in the open
phase due to increased damping of resonances. Again,
the accuracy of formant extraction improves as the pitch
period increases from 5 ms to 10 ms, since the estimates
of autocorrelation sequence improve due to increase in
the length of the available signal segment. From Tables 1
and 2, a comparison of the entries in the column corre-
sponding to dF < 2% for closed phase indicates that the
GDF based method is more accurate for formant extrac-
tion than the method based on LP analysis. The accuracy
of LP analysis for bandwidth extraction is discussed in
Section 4.3.

4.2.3. Method based on filter bank analysis
We describe the method proposed by Potamianos and

Maragos (1995), for extraction of bandwidths associated
with resonances. A resonance rðtÞ is isolated by filtering
the input signal, and is then demodulated to obtain the
constituents aðtÞ and f ðtÞ, which represent the amplitude-
modulated (AM) and frequency-modulated (FM) compo-
nents, respectively. A multiband demodulation analysis is
used for this purpose (Tsiakoulis et al., 2013). For each

filter with an impulse response hðtÞ and center frequency
fc, an array of 2K þ 1 filters is created by varying the center
frequency in the vicinity of fc as follows:

fc;k ¼ fc þ kDf ; k ¼ �K . . . ;�1; 0; 1; . . . K; ð20Þ

where Df is the distance (in frequency) between adjacent
filters. A time–frequency distribution of amplitude enve-
lopes (aðt; kÞ) and instantaneous frequency signals
(f ðt; kÞ) are obtained for each resonance. Each filter in
the filter bank is Gabor filter. Ten filters spaced within
�20% of the center frequency are used for estimating the
formant frequencies and their bandwidths. The method
starts with a center frequency and then estimates the
resonant frequency and its bandwidth. For bandwidth
extraction from speech signals, the center frequencies (fc)
are chosen as the true/reference formant frequencies from
VTR database. The short-time resonant frequency and
bandwidth are estimated as follows:

F A ¼
P

kð
R t0þT

t0 f ðt; kÞa2ðt; kÞdtÞP
kð
R t0þT

t0 a2ðt; kÞdtÞ
ð21Þ

BA¼
P

kð
R t0þT

t0 ½ð _aðtÞ=2pÞ2þðf ðt;kÞ�F AÞ2a2ðt;kÞ�dtÞP
kð
R t0þT

t0 a2ðt;kÞdtÞ
ð22Þ

where t0 denotes the instant of glottal closure or opening
(depending on the position of the analysis window), and
T denotes the duration of analysis window (half of the
pitch period in this case). Synthesized signals sampled at
16,000 Hz are used for extraction of bandwidths. The
accuracy of filter bank analysis for bandwidth extraction
is discussed in Section 4.3.

4.3. Performance of different methods of bandwidth

extraction

In this section, we discuss the performance of the three
methods of bandwidth extraction, which were described
in Section 4.2. We refer to the three methods as GDF,
LPA and FBA. Let B denote the true value of bandwidth

Table 2
Performance of LP analysis – based method of formant extraction. Each entry denotes the percentage of pitch periods for which the percentage deviation
of the extracted formants is lesser than a certain value (such as 2%, 5% and 10%). The results are given for signals synthesized using three different values of
the pitch period T 0 (5 ms, 8 ms and 10 ms). For each pitch period, formant extraction is performed in the closed phase and in the open phase.

T 0 (ms) Closed phase Open phase

dF < 2% dF < 5% dF < 10% dF < 2% dF < 5% dF < 10%

5 F 1 27.1 59.7 94.7 19.6 46.9 81.3
F 2 68.4 93.8 99.1 25.5 54.7 83.5
F 3 79.1 94.1 99.0 15.1 39.4 76.2

8 F 1 27.9 61.4 95.6 20.0 48.7 84.9
F 2 71.1 95.6 99.7 20.8 49.2 82.6
F 3 81.0 94.8 99.4 15.7 39.1 76.6

10 F 1 28.7 62.4 96.1 21.3 51.1 86.2
F 2 71.8 96.5 99.4 21.5 47.1 80.9
F 3 83.3 94.5 99.7 15.6 39.3 77.7
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(i.e., 3 dB bandwidth in Hz) associated with a formant fre-

quency, and let bB denote the value of bandwidth extracted
from the synthetic signal. The percentage deviation dB is

given by dB ¼ jB�
bB j

B � 100. The accuracy of extraction of

bandwidths is measured in terms of the percentage of signal
frames (pitch periods) for which the deviation dB is lesser
than a certain value (such as 5%, 10% and 20%).

Table 3 shows the performance of bandwidth extraction
using the GDF method, when true/reference formant fre-
quencies are used to extract bandwidths. Table 4 shows
the performance of bandwidth extraction using the GDF
method, when formant frequencies are estimated from
the signals. In Tables 3 and 4, the accuracy of bandwidth
extraction is better in the closed phase than in the open
phase, for different pitch periods. In both cases, the accu-
racy of bandwidth improves as the pitch period increases.
Since the formant frequencies extracted from the signal
are less accurate for short windows of analysis, the accu-
racy of bandwidth extraction in Table 4 is somewhat
poorer at 5 ms (columns dB < 5% and dB < 10%), com-
pared to that in Table 3. The difference between Tables 3
and 4 is more significant in open phase regions than in
closed phase regions, due to poorer estimates of formant
frequencies in the open phase regions. The accuracy of
extraction of bandwidth is highest for third formant fre-
quency, followed by the second and the first formant fre-
quency. This observation holds for both Tables 3 and 4,
for all the pitch periods, and for both closed and open
phases. This is due to the greater bandwidth associated
with the higher formant frequencies. For instance, an error
of 30 Hz amounts to a deviation of 10% for a bandwidth of
300 Hz, but the same error of 30 Hz amounts to a deviation
of 20% for a bandwidth of 150 Hz.

Table 5 shows the accuracy of bandwidth extraction
using the LPA method. There is an improvement in the
accuracy with the increase in pitch period, primarily due
to improved estimates of autocorrelation coefficients from
the signal. In the case of LP analysis, bandwidth is a

consequence of an error minimization/ spectral matching
process, which is mainly intended to match the spectral
peaks of the signal with those due to the all-pole model.
From Tables 4 and 5, it is observed that the GDF method
has a better accuracy of bandwidth extraction compared to
the LPA method, for all the three pitch periods, and in
closed and open phases. The accuracy of LPA method is
affected by the choice of order of LP analysis. A 10th order
LP analysis was used to account for the three pole-pairs
used for synthesis, and to account for spectral slope. Such
a choice of the order of LP analysis is suitable for most
pitch periods, but the extracted formants (and hence the
bandwidths) could be erroneous in some pitch periods.
The extent of degradation in the accuracy from closed
phase to open phase is similar in GDF and LPA methods.

Table 6 shows the accuracy of bandwidth extraction
using the FBA method. This method averages the instanta-
neous amplitude and frequency signals across filterbank
arrays. For a short window of analysis, spectral resolution
using filterbank arrays is poor. Accuracy of the method
improves significantly, when the pitch period increases
from 5 ms to 10 ms. This method assumes an AM–FM
model of speech signal. Hence, estimation of formant
bandwidths is dependent on the amplitude envelopes and
the instantaneous frequency signals. The method also
requires some initial estimates of center frequencies for esti-
mation of formant frequencies. In this study, we have pro-
vided the formant frequencies themselves as the initial
estimates of center frequencies, so that formant extraction
(and hence bandwidth extraction) is accurate. In practice,
the accuracy of formant extraction has an effect on that
of bandwidth extraction in the FBA method.

From Tables 5 and 6, it is observed that the FBA
method has a better accuracy of bandwidth extraction
compared that of the LPA method. Although both LPA
and FBA are model-based methods, the averaging of
instantaneous amplitude and frequency signals across filt-
erbank arrays in the FBA method ensures better accuracy
of bandwidth extraction compared to the LPA method.

Table 3
Performance of GDF method of bandwidth extraction, using true/reference values of formant frequencies. Each entry denotes the percentage of pitch
periods for which the deviation of the extracted bandwidths is lesser than a certain value (such as 5%, 10% and 20%). The results are given for signals
synthesized using different values of the pitch period T 0 (5 ms, 8 ms and 10 ms). For each pitch period, bandwidth extraction is performed in the closed
phase and in the open phase.

T 0 (ms) Closed phase Open phase

dB < 5% dB < 10% dB < 20% dB < 5% dB < 10% dB < 20%

5 B1 32.0 58.3 88.1 30.4 54.7 85.5
B2 38.4 62.1 89.9 33.8 57.6 88.0
B3 53.0 81.0 96.0 52.0 80.7 97.1

8 B1 24.5 49.5 89.6 26.4 49.1 87.4
B2 40.1 65.4 93.0 33.0 56.7 90.4
B3 53.0 81.3 97.7 43.4 72.0 95.2

10 B1 26.8 52.1 91.8 35.4 59.2 89.2
B2 40.2 65.5 93.2 31.9 57.9 92.5
B3 51.7 79.9 97.6 43.3 71.1 95.2
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The LPA method is essentially an error minimization pro-
cess which does not actively search for spectral peaks of the
signal. Both LPA and FBA methods are sensitive to the
choice of model parameters. The GDF method is partly
model-based, in the sense that it relies on the equivalence

of the theoretical GDF of an all-pole filter and the GDF
computed from the speech signal. A comparison of Tables
4 and 6 indicates that the accuracy of the GDF method is
better than that of the FBA method. In the case of GDF
and FBA methods, formant tracking can be employed to

Table 4
Performance of GDF method of bandwidth extraction, using estimated values of formant frequencies. Each entry denotes the percentage of pitch periods
for which the deviation of the extracted bandwidths is lesser than a certain value (such as 5%, 10% and 20%). The results are given for signals synthesized
using three different values of the pitch period T 0 (5 ms, 8 ms and 10 ms). For each pitch period, bandwidth extraction is performed in the closed phase and
in the open phase.

T 0 (ms) Closed phase Open phase

dB < 5% dB < 10% dB < 20% dB < 5% dB < 10% dB < 20%

5 B1 26.5 53.7 86.8 13.7 37.3 83.9
B2 28.6 52.9 86.2 22.3 47.8 84.2
B3 39.7 72.7 94.5 32.7 64.7 91.4

8 B1 24.0 49.1 89.5 20.8 43.3 85.4
B2 27.5 55.9 90.5 20.2 45.5 87.2
B3 35.1 68.5 95.4 37.5 68.2 94.4

10 B1 26.6 51.9 91.4 32.5 57.1 88.6
B2 27.9 56.3 91.2 24.0 50.8 90.6
B3 34.7 68.1 95.7 36.5 66.8 94.3

Table 5
Performance of LPA method of bandwidth extraction. Each entry denotes the percentage of pitch periods for which the deviation of the extracted
bandwidths is lesser than a certain value (such as 5%, 10% and 20%). The results are given for signals synthesized using three different values of the pitch
period T 0 (5 ms, 8 ms and 10 ms). For each pitch period, bandwidth extraction is performed in the closed phase and in the open phase.

T 0 (ms) Closed phase Open phase

dB < 5% dB < 10% dB < 20% dB < 5% dB < 10% dB < 20%

5 B1 19.1 38.5 78.2 18.9 38.5 76.7
B2 20.5 39.5 80.3 18.2 37.3 76.0
B3 19.7 40.7 81.0 19.7 39.1 77.7

8 B1 21.8 42.2 83.4 19.8 39.5 79.3
B2 21.3 46.9 86.8 17.1 36.7 78.5
B3 21.6 43.3 84.8 20.4 40.1 80.0

10 B1 23.2 44.6 86.9 20.3 40.1 82.7
B2 24.3 47.6 89.6 22.6 44.1 84.7
B3 22.7 45.0 87.9 20.1 41.0 83.3

Table 6
Performance of FBA method of bandwidth extraction. Each entry denotes the percentage of pitch periods for which the deviation of the extracted
bandwidths is lesser than a certain value (such as 5%, 10% and 20%). The results are given for signals synthesized using three different values of the pitch
period T 0 (5 ms, 8 ms and 10 ms). For each pitch period, bandwidth extraction is performed in the closed phase and in the open phase.

T 0 (ms) Closed phase Open phase

dB < 5% dB < 10% dB < 20% dB < 5% dB < 10% dB < 20%

5 B1 19.8 38.0 77.0 15.0 32.5 74.0
B2 21.3 42.4 80.7 14.0 29.7 76.2
B3 33.6 59.2 87.1 12.9 28.2 74.8

8 B1 19.9 40.7 82.1 18.8 36.8 79.4
B2 29.4 56.1 91.8 20.4 40.9 83.7
B3 33.6 59.2 89.8 13.0 28.9 80.4

10 B1 22.7 45.1 87.8 15.0 31.7 81.9
B2 36.2 63.4 94.3 23.7 46.5 89.2
B3 35.2 61.6 91.6 13.7 30.2 83.5
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exploit the temporal continuity of formant frequencies, to
improve the accuracy of formant extraction. This can help
in improving the accuracy of bandwidth extraction.

5. Conclusion

A new method for extraction of bandwidths of formant
frequencies is proposed in this paper, based on the proper-
ties of group delay function (GDF). The method exploits
the presence of prominent peaks in the GDF at resonant
frequencies, and the relatively less influence of one resonant
peak on the other peaks in GDF. An all-pole model of
vocal tract system was assumed to illustrate the basis for
the method. Accuracy of the method for extraction of
bandwidths was evaluated for synthesized signals. An
important feature of the method is that it can extract band-
widths from short segments of signals. Accuracy of the
method is demonstrated by comparing with two existing
methods of bandwidth extraction. In practice, the effective-
ness of the GDF-based method depends on the accuracy of
extraction of formant frequencies, and also on the pitch
period available for analysis.
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Query-by-Example Spoken Term Detection using
Frequency Domain Linear Prediction and
Non-segmental Dynamic Time Warping

Gautam Mantena, Sivanand Achanta and Kishore Prahallad

Abstract—The task of query-by-example spoken term detection
(QbE-STD) is to find a spoken query within spoken audio data.
Current state-of-the-art techniques assume zero prior knowledge
about the language of the audio data, and thus explore dynamic
time warping (DTW) based techniques for the QbE-STD task. In
this paper, we use a variant of DTW based algorithm referred to
as non-segmental DTW (NS-DTW), with a computational upper
bound of O(mn) and analyze the performance of QbE-STD with
Gaussian posteriorgrams obtained from spectral and temporal
features of the speech signal. The results show that frequency
domain linear prediction cepstral coefficients, which capture the
temporal dynamics of the speech signal, can be used as an
alternative to traditional spectral features such as linear pre-
diction cepstral coefficients, perceptual linear prediction cepstral
coefficients and Mel-frequency cepstral coefficients.

We also introduce another variant of NS-DTW called fast NS-
DTW (FNS-DTW) which uses reduced feature vectors for search.
With a reduction factor of α ∈ N, we show that the computational
upper bound for FNS-DTW is O

(
mn
α2

)
which is faster than NS-

DTW.

Index Terms—Query-by-example spoken term detection, dy-
namic time warping, fast search, frequency domain linear pre-
diction.

EDICS Category: SLP-SMIR

I. INTRODUCTION

The task of query-by-example spoken term detection (QbE-
STD) is to find a spoken query within spoken audio. A key
aspect of QbE-STD is to enable searching in multi-lingual and
multi-speaker audio data. A traditional QbE-STD approach
is to convert spoken audio into a sequence of symbols and
then perform text based search. In [1]–[3], the audio is first
converted to a sequence of symbols using automatic speech
recognition (ASR) and then lattice based search techniques
are incorporated.

ASR based techniques assume the availability of labelled
data for training the acoustic and language models. Such
approaches are not scalable for languages where there is no
availability or the resources to build an ASR. To overcome this
limitation, zero prior knowledge is assumed about the language
of the spoken audio, and thus dynamic time warping (DTW)
based techniques are exploited for QbE-STD [4]–[9]. One of
the popular DTW based techniques is the segmental DTW
(S-DTW) [4], which uses a windowed (or segmental) type of
approach to search a spoken query within spoken audio. In this
paper, we use a variant of DTW referred to as non-segmental
DTW (NS-DTW) which has been applied for segmentation of
large speech files [10], [11] and also for QbE-STD tasks [6],

[8], [9]. In [12], the NS-DTW is referred to as subsequence
DTW.

Database

Spoken query

Indexing

Retrieval

Search

and
Results

Representation

Representation
Feature

Feature

Fig. 1. A general architecture for a QbE-STD system.

Fig. 1 shows a general architecture of a QbE-STD system.
Speech features are extracted from the audio database and are
indexed for quick retrieval during the search process. In [4],
[8], [13], Gaussian posteriorgrams are shown to be a good
feature representation to suppress speaker characteristics and
to perform search across multi-lingual data.

In general, Gaussian posteriorgrams used for QbE-STD
are computed from short-time spectral features such as Mel-
frequency cepstral coefficients. In [14], [15], it is shown
that frequency domain linear prediction cepstral coefficients
(FDLP) perform better than the short-time spectral features
for speech recognition in noisy environments. In FDLP, the
temporal dynamics of the speech signal are captured by
applying an all-pole model in the spectral domain. Athineos
et. al. [16] provides a detailed mathematical analysis of
extracting the temporal envelope of the signal using autore-
gressive modelling. In this paper, we show that Gaussian pos-
teriorgrams computed from FDLP, which capture the temporal
dynamics of the speech signal, can be used as an alternative
to traditional spectral parameters such as linear prediction
cepstral coefficients (LPCC), perceptual linear prediction cep-
stral coefficients (PLP) and Mel-frequency cepstral coefficients
(MFCC).

In [7], [17], indexing based approaches such as locality
sensitive hashing and hierarchical clustering are used to build
sparse similarity matrices for searching the spoken query.
Use of indexing techniques is not in the scope of this work.
Thus a spoken utterance is represented by a sequence of
Gaussian posteriorgrams and a full similarity matrix is used
for searching a spoken query.

The brief set of contributions of our work is as follows:
• We provide a comparison of time complexity of NS-
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DTW and S-DTW [4]. We experiment with different local
constraints in NS-DTW based method, and report results
on the common MediaEval 2012 dataset [18].

• In this work, we introduce a faster method of searching
a spoken query. This method exploits the redundancy
in speech signal, and averages the successive Gaussian
posteriorgrams to reduce the length of the spoken audio
and the spoken query. However with such an approach
there is a trade-off between search performance and
accuracy and these results are reported. We show that
the search time of the proposed fast NS-DTW is lower
than that of the randomized acoustic indexing method
described in [19].

• We provide experimental results to show that the Gaus-
sian posteriorgrams obtained from FDLP can be used for
QbE-STD as an alternative to other short-time spectral
features such as MFCC.

II. DATABASE

The experiments conducted in this work use MediaEval
2012 data which is a subset of Lwazi database [18]. The
data consists of audio recorded via telephone in 4 of 11
South African languages. We have considered two data sets,
development (dev) and evaluation (eval) which contain spoken
audio (reference) and spoken query data. The statistics of the
audio data is shown in Table I.

TABLE I
STATISTICS OF MEDIAEVAL 2012 DATA.

Data Utts Total(min) Average(sec)
dev reference 1580 221.9 8.42
dev query 100 2.4 1.44
eval reference 1660 232.5 8.40
eval query 100 2.5 1.50

III. FEATURE REPRESENTATION FOR SPEECH

Feature representation of the speech signal was obtained by
a two step process. In the first step, parameters were extracted
from the speech signal. In the second step, Gaussian posteri-
orgrams were computed from these parameters. The different
parameters extracted from the speech signal were as follows:
(a) Linear prediction cepstral coefficients (LPCC), (b) Mel-
frequency cepstral coefficients (MFCC), (c) Perceptual linear
prediction cepstral coefficients (PLP) [20] and (d) Frequency
domain linear prediction cepstral coefficients (FDLP).

X[k] = a[k]
N−1∑
n=0

x[n] cos
(

(2n+ 1)πk
2N

)
k = 0, 1, ..., N − 1

where:

a[k] =


1√
N

k = 0

√
2
N k = 1, 2, ..., N − 1

(1)

In linear prediction (LP) analysis of speech an all-pole
model was used to approximate the vocal tract spectral en-
velope [21]. MFCC, PLP and FDLP use a series of band pass
filters to capture speech specific characteristics. To compute
MFCC, signal was passed through a bank of filters to compute
the energy of the signal in each of the bands. This energy from
each band is referred to as Mel-spectrum. Cepstral coefficients
were then computed by performing DCT on these sub-band
energies. In PLP analysis of speech, the power spectrum was
modified before applying the LP all-pole model. The modified
spectrum was obtained as follows [20]: (a) speech signal is first
passed through the filter banks, (b) pre-emphasis by an equal
loudness curve on the filtered signal and (c) cubic compression
of the spectrum.

In LPCC, MFCC and PLP the short-time spectral properties
of the speech signal are captured. In order to capture the
temporal dynamics of the speech signal, frequency domain
linear prediction (FDLP) was developed [14]–[16]. FDLP
technique relies on all-pole modeling in the spectral domain
to characterize the temporal dynamics of the frequency com-
ponents. In [15], the performance of FDLP parameters for
phoneme recognition was evaluated in noise conditions such as
additive noise, convolutive noise and telephone channel. It was
shown that, in such noise conditions, FDLP was performing
better as compared to other parameters such as PLP. This
motivated us to explore FDLP based features for QbE-STD.

Following the work in [22], FDLP parameters were com-
puted as follows – (a) DCT was computed over the entire
signal using Eq. (1), (b) Filter bank analysis was performed
on the DCT output. (c) An all-pole model was applied on the
spectral components in each sub-band, (d) For each sub-band,
time domain envelope was computed by taking the frequency
response of the all-pole model, (e) Short-time analysis was
performed on the envelopes from each of the sub-bands to
compute the FDLP spectrum, and (f) DCT was then applied
on the FDLP spectrum to obtain cepstral coefficients.

A. Representation using Gaussian Posteriorgrams
Gaussian posteriorgrams were computed from the 39 di-

mensional LPCC, MFCC, PLP and FDLP parameters. A 25
ms window length with 10 ms shift was considered to extract
13 dimensional parameters along with delta and acceleration
coefficients for all the parameters. An all-pole model of order
12 was used for LPCC, PLP and an order of 160 poles/sec
for the FDLP parameters. A set of 26 filter banks were used
for computing MFCC, PLP and 37 filter banks for the FDLP
parameters.

Gaussian posteriorgrams were computed from these param-
eters as described in [8]:

1) K-means was used to initialize the means of the Gaus-
sian mixture models (GMM). The initialization started
by computing the mean µ and standard deviation σ from
the entire data. Then a split operation was performed and
the new centers were given by µ ± 0.2σ. The process
of clustering and splitting continued till the required
number of means were reached.

2) GMMs were trained with its centers initialized by K-
means.
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3) As a final step, feature vectors were pooled for each
Gaussian having a maximum likelihood and the means
and covariances were recomputed.

IV. SEARCH USING NON-SEGMENTAL DTW

Dynamic time warping (DTW) algorithm performs a non-
linear alignment of two time series. During this process,
the warping constraints such as (1) start and end point, (2)
monotonicity, (3) local, (4) global and (5) slope weighting are
considered [23].

In segmental DTW (S-DTW), we use global constraints to
restrict the alignment within a certain segment of the spoken
audio. Segmenting the spoken audio using global constraints
and then performing DTW is computationally expensive. As
an alternative, we use non-segmental DTW (NS-DTW), where
we approximate the start and end point constraints.

Let Q be a spoken query (or query) containing n feature
vectors. Let R be the spoken audio (or reference) containing
m feature vectors. The sequence of feature vectors are denoted
as follows:

Q = {q1,q2, . . . ,qi, . . . ,qn},
R = {u1,u2, . . . ,uj, . . . ,um}.

Each of these feature vectors represent a Gaussian posteri-
orgram as computed in Section III-A. The distance measure
between a query vector qi and a reference vector uj is given
by Eq. (2)

d(i, j) = −log
(

qi

||qi|| ·
uj

||uj||
)

(2)

We define the term search hit as the region in the reference
R that is likely to contain the query Q. In NS-DTW, we use
only the local constraints as shown in Fig. 2 to obtain the
search hits. The choice of these local constraints is motivated
by their use in isolated word recognition [24] and in large vo-
cabulary speech recognition [25], [26]. These local constraints
are often referred as Bakis topology [25]. In Section V-D, we
compare the performance of different sets of local constraints
for QbE-STD tasks.

R
ef

er
en

ce

Query

ii−1

j − 2

j − 1

j

wd

w e

ws

Fig. 2. A pictorial representation of the local constraints along
with the weights ws, wd and we associated with each of the
arcs.

We compute a similarity matrix S of size m × n, where
m, n are the number of feature vectors of the reference
and the query. The query can start from any point in the
reference. Initially, S(1, j) = d(1, j), where d(1, j) is the

distance measure given by Eq. (2). The entries in the rest of
the similarity matrix is given by Eq. (3) [8].

S(i, j) = min


d(i, j) + S(i− 1, j − 2)
T (i− 1, j − 2) + we

d(i, j) + S(i− 1, j − 1)
T (i− 1, j − 1) + wd
d(i, j) + S(i− 1, j)
T (i− 1, j) + ws

 , (3)

where T is called the transition matrix. T (i, j) represents
the number of transitions required to reach i, j from a start
point, and normalizes the accumulated score with the length
of the aligned path. The update equation for the transition
matrix T is given by Eq. (4).

T (i, j) =


T (i− 1, ĵ) + we if ĵ = j − 2
T (i− 1, ĵ) + wd if ĵ = j − 1
T (i− 1, ĵ) + ws if ĵ = j

(4)

where

ĵ = argmin︸ ︷︷ ︸
ĵ∈{j, j−1, j−2}


d(i, j) + S(i− 1, j − 2)
T (i− 1, j − 2) + we

d(i, j) + S(i− 1, j − 1)
T (i− 1, j − 1) + wd
d(i, j) + S(i− 1, j)
T (i− 1, j) + ws

 .

In Eq. (4), we, wd, ws are the weights associated for each
transition. In Section V-A, we show the effect of weights on
the search performance of NS-DTW and thereby select the
optimum values for the weights.

A. Selection of Start and End Time Stamps

In order to detect the start and end time stamps of the
search hit, we obtain the reference index that contains the best
alignment score, i. e., the end point of the search hit as given
by j = min

j
{S(n, j)} for j = 1, 2, ...,m. Once the end point

j is obtained, the corresponding start point could be obtained
by using a token passing algorithm as shown in Eq. (5) and
Eq. (6).

P (i, 1) = i for i = 1, 2, 3, ...,m (5)
P (i, j) = P (i− 1, ĵ), (6)

where P is a matrix to record the path transitions. The
values in the matrix P (i, j) are updated when the similarity
matrix is being computed and thus avoiding the need for path
traceback to obtain the start time stamp of the search hit.

Fig. 3(a) shows an example similarity matrix plot of a
query and a reference where the dark bands represent the
segments that are similar between the query and the reference.
To visualize the similarity matrix, each value in the matrix is
scaled using an exponential function and then each column is
normalized by the maximum value of the column. Please note
that a full similarity matrix is computed and the white regions
(as shown in Fig. 3) does not imply that we do not compute
the values of the matrix in those regions.
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Fig. 3. (a) An example similarity matrix plot obtained using
NS-DTW when a query is present in the reference and (b) A
plot of the alignment scores obtained from the last column
of the similarity matrix. Please note that, to visualize the
similarity matrix, the values in the matrix are scaled using
an exponential function and then each column is normalized
with the maximum value of the column.

The dark bands that have reached the end of the query
are the required search hits. They can be obtained from the
alignment scores from the last column of the similarity matrix
S. Fig. 3(b) shows the alignment scores where the minimum
values represent the end of the search hits and from these
points the start time stamps are obtained using Eq. (5) and
Eq. (6).

As shown in Fig. 3(a), the query could have more than one
match in the reference and hence k-best alignment scoring
indices are selected from the similarity matrix. In Section V-B,
we show the effect of the choice of k-best alignment scores
on the search performance of NS-DTW and thereby select the
optimum k value.

Fig. 4(a) shows an example similarity matrix plot when a
query is not present in the reference. The partial bands that
are observed in Fig. 4(a) show a partial match between the
query and the reference. From Fig. 4(b), it can be seen that
the alignment scores of the search hits are higher than that of
the scores of a search hit shown in Fig. 3(b).

B. Analytical Comparison with Segmental-DTW

Segmental DTW (S-DTW) [4] is a popular technique that
overcomes the start and end point constraints by dividing the
spoken audio into a series of segments, and then DTW is
performed on each segment. S-DTW is computationally not
efficient due to this segment based DTW approach that it
performs to obtain the search hits.

Two constraints are imposed on the alignment. The first one
is a parameter r which dictates the length of the segment to
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Fig. 4. (a) An example similarity matrix plot obtained using
NS-DTW when a query is not present in the reference and
(b) A plot of the alignment scores obtained from the last
column of the similarity matrix. Please note that, to visualize
the similarity matrix, the values in the matrix are scaled using
an exponential function and then each column is normalized
with the maximum value of the column.

be taken from the reference. This is given by the inequality
|i− j| ≤ r (Sakoe-Chiba band [23]), where i, j are the frame
indices of the query and the reference. This constraint prevents
the warping from going too far ahead or behind.

Q
u
er
y

Referencej

i

Fig. 5. An example of segmental DTW (S-DTW) with the first
two segments for r = 2.

The second constraint is the number of such segments to be
considered. Fig. 5 shows the first two segments of S-DTW for
r = 2. Normally one would shift the segment by one frame as
the query could start from any point in the reference, but due
to the huge computational overload a shift of r is considered.

The total number of computations required is
equal to number of computations in each segment ×
number of segments. Given a query Q of size n, the
length of the segment taken from reference R is n + r
(∵ j ≤ i + r). Thus the number of computations required in
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each segment is of the order O(n2). For r = 1, searching in
a reference of size m, we need to initiate m DTW searches
each of order O(n2). The overall computation would be of
the order O(mn2).

In NS-DTW, we are computing a similarity matrix of
size m × n and so the upper bound of NS-DTW would
be O(mn). This is computationally faster than the S-DTW
whose upper bound is O(mn2). The upper bound on the
distance computation between two vectors is O(d), where d
is the dimensions of the vector. This distance computation is
common across S-DTW and NS-DTW and so it is omitted for
calculating the computational upper bound.

In NS-DTW, in order to avoid path traceback to obtain the
start and end time stamps, we use a matrix P (as given by Eq.
(6)). However, one can always use path traceback for obtaining
the start time stamp. In such a case, the total time complexity
of searching using NS-DTW is O(mn)+O(n), where O(n) is
time complexity of path traceback. With m >> n, O(mn) +
O(n) = O(mn). Thus, the time complexity of NS-DTW is
O(mn) irrespective of whether path traceback or a matrix P
is used. It is to be noted that the use of a matrix P will result
in a higher memory requirement for computation.

C. Variants of NS-DTW

In [6], [8], [9], variants of NS-DTW are used for QbE-STD.
These variants differ in the type of local constraints, values of
weights and frame-based normalization. In [6], frame-based
normalization is used by dividing the values in the column by
the maximum value of the column. In this work, we do not
perform frame-based normalization. However, we normalize
each value in the similarity matrix, S(i, j), by a transition
matrix value, T (i, j) (as given by Eq. (3)). Further details of
our implementations are described in Section V.

V. EVALUATION AND RESULTS

All the evaluations are performed using 2006 NIST eval-
uation criteria [27] and the corresponding maximum term
weighted values (MTWV) are reported. To compute the
MTWV, the average miss probability (MP) and false alarm
probabilities (FAP) are computed for all the queries. More
details on the evaluation can be found in [28].

A. Weights of Local Constraints

As given by Eq. (3) and Eq. (5), we use weights for
each of the local constraints to normalize the scores. During
alignment, many deletions and insertions are an indication of
the mismatch between the two sequence of feature vectors
and hence more importance is given to the diagonal transition
(wd). Fig. 6 shows MTWV for various values of wd (with
we = ws = 1). NS-DTW is evaluated using 128 dimensional
Gaussian posteriorgrams computed from LPCC, PLP, MFCC
and FDLP. From Fig. 6, it can be seen that (a) MFCC and
FDLP based features have similar MTWV for wd = 3 on
the dev dataset, and (b) NS-DTW performs best for FDLP
at wd = 2. For all of the experiments reported in this work,
wd = 2 is considered based on the performance of Gaussian
posteriorgrams of FDLP.
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Fig. 6. Maximum term weighted value (MTWV) obtained using
various values of wd for dev dataset.

B. Selection of Number of Search Hits
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Fig. 7. MTWV obtained using various values of k using dev
dataset.

In NS-DTW, after computing the similarity matrix, we select
k-best alignment score indices. Using matrix P (as described
in Section IV), we obtain the start time stamps of the search
hits given k-best indices. After obtaining the k-best search
hits, a post processing step is performed on the overlapping
search hits. If there is an overlay of more than 50% between
any two search hits, the search hit with the best alignment
score is considered.

In a reference, there might be a possibility of multiple
occurrences of the query. In such a case, k = 1 will result
in an increase in miss probability. On the other hand a large
value of k will increase in the number of false alarms. Thus, an
appropriate value of k is needed. Fig. 7 shows the performance
of NS-DTW for different values of k on dev dataset across
different parameters. From Fig. 7, it can be seen that the
MTWVs are similar for various values of k and thus the choice
of k = 5 is chosen.

C. Number of Gaussians

Table II shows the MTWV and the search speed (in minutes)
obtained using LPCC, PLP, MFCC and FDLP parameters
by varying the number of Gaussians for the dev dataset. In
Table II, we show the rate of improvement in the MTWV
(indicated within the brackets for each of the MTWV values)
by increasing the number of Gaussians. For example, the rate
of improvement in MTWV for FDLP by increasing the number
of Gaussians from 64 to 128 is 0.050.
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TABLE II
MAXIMUM TERM WEIGHTED VALUE (MTWV) AND SEARCH SPEED1ON DEV DATASET BY VARYING THE NUMBER OF GAUSSIANS FOR EACH OF THE

PARAMETERS. THE VALUES INDICATED IN THE BRACKETS SHOW THE RATE OF IMPROVEMENT IN THE MTWV ON INCREASING THE NUMBER OF
GAUSSIANS.

No. of MTWV Search
Gaussians LPCC PLP MFCC FDLP Speed (mins)
8 0.031 (-) 0.080 (-) 0.059 (-) 0.084 (-) 18.39
16 0.127 (0.096) 0.128 (0.048) 0.119 (0.06) 0.207 (0.123) 22.57
32 0.218 (0.091) 0.271 (0.143) 0.246 (0.127) 0.292 (0.085) 30.60
64 0.252 (0.034) 0.319 (0.048) 0.347 (0.101) 0.349 (0.057) 47.53
128 0.301 (0.049) 0.345 (0.026) 0.377 (0.030) 0.399 (0.050) 80.24
256 0.310 (0.009) 0.387 (0.042) 0.410 (0.033) 0.410 (0.011) 145.07
512 0.311 (0.001) 0.399 (0.012) 0.410 (0.000) 0.422 (0.012) 274.98
1024 0.319 (0.008) 0.404 (0.005) 0.413 (0.003) 0.432 (0.010) 534.15

In Table II, we also show the search speed, i.e. the time
required to search all the queries within the dataset. The
distance computation, given by Eq. (2), between a query
feature (qi) and a reference feature (uj) is O(d), where d
is the dimension of the feature. This distance computation is
common across S-DTW and NS-DTW and so it is omitted
for calculating the computational upper bound. However, the
feature dimension has an impact on the search speed of NS-
DTW and is shown in Table II. The search speed of NS-DTW
using a d dimensional Gaussian posteriorgram will be similar
irrespective of the parameters (such as MFCC, FDLP) used
to build a GMM. Thus, we have reported the search speed of
NS-DTW using Gaussian posteriorgrams of FDLP by varying
the number of Gaussians (as shown in Table II).

From the MTWV reported in Table II, it can be seen that
(a) The performance of NS-DTW improves by increasing the
number of Gaussians. However, the rate of improvement in
performance for NS-DTW decreases when the number of
Gaussians exceeds 128, (b) With the increase in number of
Gaussians, MTWV of FDLP, MFCC and PLP seems to be
converging, and (c) FDLP performs similar to that of MFCC
for 256 Gaussians.

From Table II, it can also be seen that there is a trade-off
between the performance of NS-DTW and the search speed by
increasing the number of Gaussians. Considering the MTWV
and the search speed on dev dataset we have chosen 128
Gaussians as an optimum number for NS-DTW.
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Fig. 8. Maximum term weighted values (MTWV) on eval
dataset by varying the number of Gaussians for each of the
parameters.

Although we have chosen 128 to be the optimum number
of Gaussians, we would want to verify the effect of search
performance on the eval dataset by varying the number of
Gaussians. Fig. 8 shows the performance of NS-DTW using
different number of GMMs trained with LPCC, MFCC, PLP
and FDLP parameter streams using the eval dataset. In Fig.
8, we observe the following: (a) The curve flattens after
256 Gaussians for the features obtained from FDLP. Thus
there is no further improvement in the search performance by
increasing the number of Gaussians, (b) FDLP is performing
better than the other acoustic parameters such as LPCC, PLP
and MFCC. However, on increasing the number of Gaussians,
the MTWVs of MFCC and PLP seems to be converging
towards that of FDLP, and (c) Drop in the search performance
for LPCC at 512 Gaussians which may be an indication of
model over-fitting.

D. Effect of Different Local Constraints

In this section, we analyse the performance of DTW-based
techniques with other local constraints as shown in Table III.
In [6], local constraints T2 and in [8], [9], local constraints
T3 are used for QbE-STD.

Fig. 9(a) and 9(b) show the MTWV obtained using 128
dimensional Gaussian posteriorgrams of LPCC, PLP, MFCC
and FDLP parameters for dev and eval datasets using T1, T2
and T3 local constraints. T1 is the local constraints used in
NS-DTW (also shown in Fig. 2).

From Fig. 9(a), T2 is performing better than the other local
constraints on the dev dataset. In Fig. 9(b), it can be seen
that T1 is performing similar to that of T2 on eval dataset.
T2 allows insertions in a query which can be interpreted as
a deletion operation on the reference and this might be the
reason for T1 and T2 to perform similarly on eval dataset.
However, the results are not consistent, i.e., T2 performs better
than T1 on dev dataset (as shown in Fig. 9). One could argue
that T2 allows insertions within a query and thus more suitable
for QbE-STD. As described in Section IV, we are motivated
to use T1 for NS-DTW by their use in large vocabulary speech
recognition and feasibility in usage of embedded training for
unsupervised acoustic models with left-to-right Bakis topology
[29], [30].

1Please note that, for a given number of Gaussians, the search speed (in
NS-DTW) will be similar for each of the parameters. Thus, the search speed
is reported using Gaussian posteriorgrams of FDLP.



7

TABLE III
SOME OF THE TYPES OF LOCAL CONSTRAINTS USED IN DTW-BASED

QBE-STD.

Local Constraints
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Fig. 9. MTWV obtained using 128 dimensional Gaussian
posteriorgrams of various parameters using T1, T2 and T3
local constraints for (a) dev, and (b) eval datasets.

E. Use of FDLP for QbE-STD

Speech parameters such as LPCC, PLP and MFCC are
obtained by windowing the speech signal and followed by
estimating the spectrum from each window. However, speech
signal has information spread across longer temporal context
and this information can be captured by using FDLP parame-
ters. In Table II, it can be seen that FDLP performs similar to

that of MFCC using 256 Gaussians. Thus, we show that FDLP
parameters, which capture the temporal characteristics of a
speech signal, can be used as an alternative to other spectral
parameters such as MFCC. In Fig. 8, it can be seen that
FDLP performs better than MFCC for 128 and 256 GMMs and
thus a motivation to use FDLP parameters for QbE-STD. To
summarize the search performance of the various parameters,
in Table IV we show detail results in terms of MP, FAP and
MTWV using 128 dimensional Gaussian posteriorgrams.

TABLE IV
MISS PROBABILITY (MP), FALSE ALARM PROBABILITY (FAP) AND

MAXIMUM TERM WEIGHTED VALUE (MTWV) OBTAINED FOR NS-DTW
USING GAUSSIAN POSTERIORGRAMS OBTAINED FROM LPCC, MFCC,

PLP AND FDLP.

Feats.
dev eval

MP FAP MTWV MP FAP MTWV
(10−2) (10−2)

LPCC 0.575 0.802 0.301 0.564 1.529 0.253
MFCC 0.492 0.848 0.377 0.572 0.860 0.325

PLP 0.504 0.982 0.345 0.505 1.441 0.322
FDLP 0.426 1.136 0.399 0.402 1.766 0.387

VI. FAST NS-DTW

The computational analysis shown in Section IV indicates
that NS-DTW is faster, than S-DTW, with an upper bound
of O(mn). Even with this computational improvement, DTW
based techniques are still slow as compared to other model
based techniques [1]–[3].

Some of the standard techniques to improve the computa-
tional performance of DTW are [31]:
• Constraints: Use of constraints such as Sakoe-Chiba band

[23] or Itakura parallelogram [24] to limit the number of
computations in the similarity matrix.

• Data Abstraction: Use a reduced feature representation
to perform DTW. To improve the computational perfor-
mance of NS-DTW, we use reduced Gaussian posterior-
grams to perform the search.

• Indexing: Indexing based techniques retrieve the reference
feature vectors used to construct a sparse similarity
matrix, which makes the search efficient [7], [17]. Use
of indexing techniques is not in the scope of this paper
and we compute a full similarity matrix to perform the
search.

In this section, we introduce a modification to NS-DTW
by reducing the query and reference Gaussian posteriorgram
vectors before performing search. We refer to this algorithm
as fast NS-DTW (FNS-DTW). Given a reduction factor α ∈
N, a window of size α is considered over the posteriorgram
features and a mean is computed. The window is then shifted
by α and another mean vector is computed. The posteriorgram
vectors are replaced with the reduced number of posteriorgram
features during this process. With a reduction factor of α, the
new size of the query and the reference would be n

α and m
α

respectively. This would result in a computational upper bound
of O

(
mn
α2

)
for FNS-DTW. This technique is independent of

the local constraints used and we use T1 local constraints for
FNS-DTW.
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Fig. 10. Gaussian posteriorgrams of a reference segment for
(a) α = 1, (b) α = 2, (c) α = 4, (d) α = 6. The y-axis
represents the indices of the Gaussian components in GMM.
Please note that the frames on the x-axis are repeated for α
times to visualize the smoothed Gaussian posteriorgrams on
the same scale. For visualization, we normalize each of the
columns with the maximum value of the column.

Fig. 10 shows the 128 dimensional Gaussian posteriorgrams
of a reference segment for α = 1, 2, 4, 6, where α = 1
represents no reduction in the Gaussian posteriorgrams. In
Fig. 10, the frames on the x-axis are repeated for α times to
visualize the smoothed Gaussian posteriorgrams on the same
scale. From Fig. 10 and Table V, it is evident that for smaller
values of α, such as α = 2, the Gaussian posteriorgrams are
similar to that of α = 1 resulting in a fast search and yet
obtaining a similar MTWV.

Fig. 11 show the alignment paths of FNS-DTW for α =
2, 4, 6 (represented with dotted lines) in comparison with the
alignment path of NS-DTW. The query and reference frames

are reduced in FNS-DTW. For a graphical comparison with
NS-DTW, the alignment path of FNS-DTW is stretched by a
factor of α. From Fig. 11, it can be seen that the alignment
path of FNS-DTW fluctuates around the alignment path of
NS-DTW and the deviation is minimum for smaller values of
α. This indicates that the search hits can be obtained by using
FNS-DTW.

TABLE V
MISS PROBABILITY (MP), FALSE ALARM PROBABILITY (FAP) AND

MAXIMUM TERM WEIGHTED VALUE (MTWV) OBTAINED FOR NS-DTW
FOR VARIOUS VALUES OF α.

α
dev eval

MP FAP MTWV MP FAP MTWV
(10−2) (10−2)

1 0.426 1.136 0.399 0.402 1.766 0.387
2 0.423 1.159 0.399 0.468 1.302 0.376
3 0.482 0.940 0.374 0.536 1.079 0.334
4 0.494 0.994 0.353 0.528 1.251 0.322
5 0.555 0.791 0.323 0.543 1.307 0.301
6 0.503 1.236 0.307 0.576 1.279 0.271

Table V shows the MTWV using FNS-DTW for dev and
eval datasets for various values of α. The alignment path of
FNS-DTW is similar to that of NS-DTW for smaller values
of α. Thus the performance of FNS-DTW is much better for
α = 2 as compared to other values of α.

Fig. 12 shows QbE-STD runtime for FNS-DTW and NS-
DTW (FNS-DTW for α = 1). In Fast NS-DTW, there is a
trade-off between search performance and accuracy. However,
for low values of α (α = 2) the MTWV is comparable to the
original system on the dev dataset and slightly worse on the
eval dataset (as shown in Table V). From Fig. 12 it is evident
that FNS-DTW is 4 times faster than NS-DTW for α = 2.

[19] describes a fast indexing based search approach called
Randomized Acoustic Indexing and Logarithmic-time Search
(RAILS) whose results were reported for MediaEval 2012
database. RAILS technique is as follows: (a) Locality sensi-
tive hashing for indexing the data, (b) Approximate nearest
neighbor search for each query frame in logarithmic time
and constructing a similarity matrix, (c) Image processing
techniques applied on the similarity matrix to obtain the
search hits. The computation performance of the system was
measured by the total size of the database in seconds divided
by the average search time in seconds per query. The measure
was referred to as speedup.

In [19], two search systems, RAILS-I and RAILS-II, were
evaluated on MediaEval 2012 dev data and MTWV and
speedup reported are shown in Table VI. From Table VI, it
is shown the FNS-DTW-I (FNS-DTW for α = 2) and FNS-
DTW-II (α = 4) are performing better than the RAILS system
[19].

In [17], hierarchical K-Means clustering is used as an
indexing technique and subsequently for computing the DTW
scores. The estimated speedup time as reported on MediaEval
2012 dev data is 2400X with an MTWV of 0.364. In FNS-
DTW with α = 4, a speedup of 4100X is obtained with a
slightly lower MTWV of 0.353 on the same dataset.

In other relevant works of [32], [33], a constraint based
search was used to prune out the audio references. The
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Fig. 11. Alignment paths for an example query and reference using NS-DTW and FNS-DTW using (a) α = 2, (b) α = 4, (c)
α = 6.
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Fig. 12. Runtime of FNS-DTW for various α = 1, 2, 3, 4, 5, 6
using dev dataset. This curve follows the trend of 1

α2 due to
computational upper bound of FNS-DTW being O(mnα2 ).

TABLE VI
MTWV AND SPEEDUP FOR FNS-DTW AND RAILS EVALUATED ON DEV

DATA.

MTWV Speedup
RAILS-I 0.381 1000X

FNS-DTW-I 0.399 1000X
RAILS-II 0.331 1600X

FNSDTW-II 0.353 4100X

pruning process was implemented by computing a lower bound
estimate for DTW. It was shown that the computation of
lower bound estimate is of the order O(mn) [33]. Thus the
total computational upper bound for such approaches would
be O(mn) plus the time taken to perform DTW alignment
score. In our proposed fast NS-DTW, we use the reduced
feature representation by averaging the successive Gaussian
posteriorgrams. Thus the total computation time of fast NS-
DTW would be O(mn) plus the time taken to smooth the
average the posteriorgrams. It should be noted that the fast
NS-DTW is a one-stage process, whereas the lower bound

estimate methods are implemented in two stages (pruning and
score estimation).

VII. CONCLUSION AND FUTURE WORK

In this paper we used a DTW based algorithm called
non-segmental DTW (NS-DTW), with a computational upper
bound of O(mn). We have analyzed the performance of NS-
DTW for query-by-example spoken term detection (QbE-STD)
with Gaussian posteriorgrams obtained from different features
of the speech signal. The results indicate that frequency
domain linear prediction cepstral coefficients (FDLP), which
capture the temporal dynamics of the speech signal, can be
used as an alternative to traditional spectral features such
as linear prediction cepstral coefficients (LPCC), perceptual
linear prediction cepstral coefficients (PLP) and Mel-frequency
cepstral coefficients (MFCC).

We have introduced a fast NS-DTW (FNS-DTW) which
uses reduced Gaussian posteriorgrams for QbE-STD. We have
shown that, for a given reduction factor α ∈ N, the compu-
tational upper bound of FNS-DTW is O(mnα2 ). The reduction
of the feature vectors was done via arithmetic mean and it
was shown that for α = 2, maximum term weighted values
(MTWV) of FNS-DTW were similar or slightly lower to that
of NS-DTW but three times faster.

We have also compared FNS-DTW with a fast indexing
based search approach called Randomized Acoustic Indexing
and Logarithmic-time Search (RAILS) whose results were
reported for MediaEval 2012 database. It was shown that FNS-
DTW was performing better than RAILS system with 0.353
MTWV search performance and a speedup of 4100X. One of
the primary advantages of RAILS system over FNS-DTW is
its indexing based technique to search over large databases
and hence RAILS performance is better in terms of memory
consumption. As a future work we plan to incorporate indexing
based techniques in building sparse similarity matrix for FNS-
DTW type of approach.
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ABSTRACT

For query-by-example spoken term detection (QbE-STD), genera-
tion of phone posteriorgrams requires labelled data which would be
difficult for languages with low resources. One solution is to build
models from rich resource languages and use them in the low re-
source scenario. However, phone classes are not language universal
and alternate representation such as articulatory classes is explored.
In this paper, we use articulatory information and their derivatives
such as bottle-neck (BN) features (also referred to as articulatory BN
features) for QbE-STD. We obtain Gaussian posteriorgrams of artic-
ulatory BN features in tandem with the acoustic parameters such as
frequency domain linear prediction cepstral coefficients to perform
the search. We compare the search performance of articulatory and
phone BN features and show that articulatory BN features are a bet-
ter representation. We also provide experimental results to show that
low amounts (30 mins) of training data could be used to derive artic-
ulatory BN features.

Index Terms— Query-by-example spoken term detection,
multi-layer perceptron, articulatory features, bottle-neck features,
low resource.

1. INTRODUCTION

The task of a query-by-example spoken term detection (QbE-STD)
is to search a spoken query in a spoken audio data. A traditional
QbE-STD approach is to convert spoken audio into a sequence of
symbols and then perform text based search. In [1–3], the audio is
first converted to a sequence of symbols using large vocabulary con-
tinuous speech recognition (LVCSR) and then lattice based search
techniques are incorporated. LVCSR based approaches have been
shown to be accurate for well resourced languages. However, such
approaches are not scalable for languages where there is no avail-
ability or the resources to build an LVCSR system. To overcome
this limitation dynamic time warping (DTW) based techniques are
exploited for QbE-STD [4–8].

Phone [4, 5] and Gaussian posteriorgrams [6–8] are some of the
feature representations used for DTW-based QbE-STD. Generation
of phone posteriorgrams require labelled data which would be dif-
ficult for languages with low resources. One solution is to build
models from rich resource languages and use them in the low re-
source scenario [5,9]. However, phone classes are not language uni-
versal and thus alternate representation such as articulatory classes
is explored. Articulatory classes are language independent repre-
sentation of speech sounds and classifiers could be trained on rel-
atively low amounts of data [10, 11]. Articulatory information has
been extensively used in LVCSR for (a) Robust recognition in noisy
conditions [11–13], and (b) Multi-lingual and cross-lingual speech
recognition [14–16]. In [17], spoken audio is decoded to a sequence

of articulatory classes which is used to prune out the spoken audio
before performing the DTW-based search.

In this paper, we use articulatory information and their deriva-
tives such as bottle-neck (BN) features (also referred to as articu-
latory BN features) for QbE-STD. BN features have been used ex-
tensively in multi-lingual LVCSR and were shown to improve the
word error rate [18–21]. In the context of QbE-STD, BN features
of phone classes have been used to build a hierarchical neural net-
work structure (referred to as BN universal context network) [22].
To our knowledge, BN features of articulatory classes have not been
explored in the context of DTW-based QbE-STD.

The contributions of our work are as follows: (a) Use of articu-
latory information and its derivatives such as BN features for QbE-
STD, (b) Use of BN features in tandem with the acoustic parameters
such as frequency domain linear prediction cepstral coefficients to
compute Gaussian posteriorgrams, (c) Comparison of Gaussian pos-
teriorgrams obtained using articulatory and phone BN features, and
(d) Experimental results to show that low amounts of training data
could be used to obtain articulatory BN features.

The organization of the paper is as follows: Section 2 describes
the database used in this work. In Section 3, we describe the DTW-
based algorithm used to perform the search. Section 4 describes
the acoustic parameters of the speech signal and the computation of
Gaussian posteriorgrams. Section 5 describes the use of articulatory
BN features for QbE-STD and its comparison with the phone BN
features. In Section 6, we provide experimental results to show that
20-30 mins of training data can be used to derive articulatory BN
features.

2. DATABASE

The experiments conducted in this work use MediaEval 2012 data
which is a subset of Lwazi database [23]. The data consists of audio
recorded via telephone in 4 of 11 South African languages. We con-
sider two data sets, development (dev) and evaluation (eval) which
contain spoken audio (reference) and spoken query data. The statis-
tics of the audio data is shown in Table 1.

Table 1: Statistics of MediaEval 2012 data.

Data Utts Total(mins) Average(sec)
dev reference 1580 221.863 8.42
dev query 100 2.372 1.42
eval reference 1660 232.541 8.40
eval query 100 2.537 1.52

All the evaluations are performed using 2006 NIST evaluation
criteria [24, 25] and the corresponding actual term weighted val-
ues (ATWV) and maximum term weighted values (MTWV) are re-



ported. To compute the ATWV and MTWV, an average miss proba-
bility and false alarm probabilities are computed for all the queries.
In this paper, an optimum threshold to retrieve the search results is
computed using the dev dataset. This threshold is then applied on
the eval dataset to obtain the ATWV.

3. QBE-STD USING NON-SEGMENTAL DTW

QbE-STD is performed using a variant of DTW-based search re-
ferred to as non-segmental DTW (NS-DTW) [5, 8, 26]. Let Q =
{q1,q2, . . . ,qi, . . . ,qn} be a spoken query (or query) containing
n feature vectors. Let R = {u1,u2, . . . ,uj, . . . ,um} be the spo-
ken audio (or reference) containing m feature vectors.

Each of these feature vectors represent a Gaussian, articulatory
or phone posteriorgrams as computed in Sections 4 and 5. The dis-
tance measure between a query vector qi and a reference vector uj

is given by:

d(i, j) = −log

(
qi

||qi|| ·
uj

||uj||
)

(1)

We define the term search hit as the region in the reference R
that is likely to contain the query Q. The query can start from any
point in the reference. Initially, S(1, j) = d(1, j), where d(1, j) is
the distance measure. The entries in the rest of the similarity matrix
for NS-DTW is given by Eq. (2).

S(i, j) = min


d(i, j) + S(i− 1, j − 2)

T (i− 1, j − 2) + 1
d(i, j) + S(i− 1, j − 1)

T (i− 1, j − 1) + 2
d(i, j) + S(i− 1, j)

T (i− 1, j) + 1

 , (2)

where T is called the transition matrix. T (i, j) represents the
number of transitions required to reach i, j from a start point. In
order to detect the start and end time stamps of the search hit, we
obtain the reference index that contains the best alignment score,
i. e., the end point of the search hit is given by j = min

j
{S(n, j)} for

j = 1, 2, ..., m. Once the end point j is obtained, the corresponding
start point could be obtained by a path trace back. Thus we obtain
the location of the query in the reference.

4. FEATURE REPRESENTATION USING GAUSSIAN
POSTERIORGRAMS

In general, Gaussian posteriorgrams are obtained by a two step
process [7, 8]. In the first step, acoustic parameters such as Mel-
frequency cepstral coefficients (MFCC) or frequency domain linear
prediction cepstral coefficients (FDLP) are extracted from the speech
signal. In the second step, Gaussian posteriorgrams are computed
by training a Gaussian mixture model (GMM) on the speech data
and the posterior probability obtained from each Gaussian is used
to represent the acoustic parameter. In this paper, we train a GMM
containing 128 Gaussians to obtain 128 dimensional Gaussian pos-
teriorgrams.

In [8], we show that the Gaussian posteriorgrams of FDLP per-
form better than that of MFCC. In MFCC, the short-time spectral
properties of the speech signal is captured. In order to capture the
temporal dynamics of the speech signal, FDLP was developed [27–
29].

A 25 ms window length with 10 ms shift is considered to ex-
tract 13 dimensional features along with delta and acceleration co-
efficients for MFCC and FDLP. An all-pole model of order 160
poles/sec and 37 filter banks are considered to extract FDLP. A set
of 26 filter banks are used for computing MFCC.

Table 2: MTWV obtained using 128 dimensional Gaussian poste-
riorgrams (GPost.) of 39 dimensional MFCC and FDLP. The val-
ues indicated in the brackets show the ATWV computed for the eval
dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

MFCC 39 128 0.377 0.325 (0.323)
FDLP 39 128 0.399 0.387 (0.358)

Table 2 shows the MTWV using 128 dimensional Gaussian pos-
teriorgrams of 39 dimensional MFCC and FDLP. The search is per-
formed using NS-DTW as described in Section 3. From Table 2,
it can be seen that Gaussian posteriorgrams of FDLP performs bet-
ter than that of MFCC. Hence, we are motivated to use FDLP as
the acoustic features for QbE-STD. A more detailed analysis of the
performance of NS-DTW using FDLP is described in [8].

To obtain Gaussian posteriorgrams of the acoustic parameters
such as FDLP, no class information such as phone or articulatory
classes is used. In this paper, we derive bottle-neck (BN) features
from an articulatory model (also referred to as articulatory BN fea-
tures). We show that the Gaussian posteriorgrams of articulatory
BN features in tandem with FDLP perform better than that of FDLP.
Section 5 describes the use of articulatory BN features in detail.

5. ARTICULATORY BOTTLE-NECK FEATURES

Availability of labelled data is an issue for building supervised mod-
els such as multi-layer perceptron (MLP). To overcome such an issue
we train models on a high resource language and use it in a low re-
source scenario.

Table 3: Articulatory classes of speech sounds

Articulatory Property Classes # bits
Voicing ±voicing 1

Vowel length short, long, diphthong 3
Vowel height high, mid, low 3

Vowel frontness front, central, back 3
Lip rounding ±rounding 1

Manner of stop, fricative, affricative 5
articulation nasal, approximant

Place of velar, alveolar, palatal, 5
articulation labial, dental
Aspiration ±aspiration 1

Silence ±silence 1

We train an articulatory MLP using 24 hours of labelled Telugu
database consisting of 49 phones [30]. These 49 phones are repre-
sented by 23 articulatory classes which characterize the speech pro-
duction process such as vowel properties, place of articulation, man-
ner of articulation, etc. We modify the articulatory classes described
in [31] to suit the training data available. We use nine different artic-
ulatory properties (as shown in Table 3). Each articulatory property
is further divided into sub classes resulting in a 23 dimensional ar-
ticulatory posteriorgram.

The architecture used for training an articulatory MLP is 39L
120N 13L 120N 23S. For comparison we also train a phone MLP
with an architecture 39L 120N 13L 120N 49S. The integer values in
the MLP architecture indicate the number of nodes, and L (linear),
N (non-linear) and S (sigmoid) represent the activation functions in
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Fig. 1: A general block diagram for computing Gaussian posteriorgrams of bottle-neck features in tandem with the acoustic parameters such
as FDLP.

each of the layers. We use 39 dimensional acoustic parameters as
the input for the articulatory and phone MLPs.

Table 4 shows MTWV obtained using 23 dimensional articula-
tory, 49 dimensional phone and 128 dimensional Gaussian posterior-
grams. From Table 4, it can be seen that the Gaussian posteriorgrams
perform better than the articulatory and phone posteriorgrams. Thus,
phone and articulatory posteriorgrams under-perform when the lan-
guage they were trained on differs from the target language [7, 32].

Table 4: MTWV obtained using 23 dimensional articulatory, 49 di-
mensional phone and 128 dimensional Gaussian posteriorgrams of
FDLP. The values indicated in the brackets show the ATWV com-
puted for the eval dataset.

Posteriorgrams Post. MTWV (ATWV)
dim. dev eval

Art. Post. 23 0.212 0.172 (0.156)
Phone Post. 49 0.265 0.217 (0.209)

Gaussian Post. 128 0.399 0.387 (0.358)

5.1. Bottle-neck (BN) features

In order to exploit the class information captured by an MLP, we de-
rive features from the bottle-neck layer (as shown in Fig. 1). These
are referred to as bottle-neck (BN) features and are of 13 dimen-
sions. The advantages of BN features are as follows [33]: (a) They
are compressed features and are of lower dimension, and (b) Classi-
fication properties of the target class is reflected in the BN features.

5.2. Compressed (CP) features

An alternative representation to BN features can be obtained by post
processing the articulatory posteriorgrams as follows: (a) A nega-
tive logarithm is applied on the articulatory posteriorgrams to scale
the dynamic range and then followed by dimensionality reduction
[14,16]. These post processed posteriorgram features are referred to
as compressed posteriorgram (CP) features, and (b) We then obtain
Gaussian posteriorgrams of CP features in tandem with FDLP.

In the literature, CP features are referred to as tandem connec-
tionist features [34] or probabilistic features [20, 33]. In [9], Gaus-
sian posteriorgrams of CP features derived from phone MLPs were
used for QbE-STD. However, it was shown that the Gaussian pos-
teriorgrams of CP features were performing similar to that of the
acoustic parameters. In this paper, we show that the search perfor-
mance can be improved by using BN (or CP) features in tandem with
the acoustic parameters such as FDLP.

To compress the log posteriorgram features, we perform a non-
linear PCA using an auto associative neural network (AANN) with

an architecture 23L 100N 13L 100N 23L. Thus we obtain 13 dimen-
sional CP features from 23 dimensional articulatory posteriorgrams.
These features are similar to that of the BN features as described in
Section 5.1. However, an advantage of BN over CP features is that
they do not require an explicit dimensionality reduction.

5.3. Comparison of BN and CP features

Table 5 shows MTWV obtained using Gaussian posteriorgrams of
articulatory CP (AR-CP), articulatory BN (AR-BN), FDLP, FDLP +
AR-CP and FDLP + AR-BN. From Table 5, it can be seen that: (a)
Gaussian posteriorgrams of FDLP + AR-BN (or AR-CP) perform
better than that of FDLP, and (b) Gaussian posteriorgrams of FDLP
+ AR-BN perform better than of FDLP + AR-CP. Thus we choose
articulatory BN features to obtain Gaussian posteriorgrams for QbE-
STD.

Table 5: MTWV obtained using Gaussian posteriorgrams of AR-CP,
AR-BN, FDLP, FDLP + AR-CP and FDLP + AR-BN features. The
values indicated in the brackets show the ATWV computed for the
eval dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

AR-CP 13 128 0.336 0.331 (0.323)
AR-BN 13 128 0.419 0.390 (0.389)
FDLP 39 128 0.399 0.387 (0.358)

FDLP + AR-CP 52 128 0.465 0.467 (0.463)
FDLP + AR-BN 52 128 0.494 0.492 (0.467)

5.4. Selecting an Optimum Dimension for Articulatory BN Fea-
tures

In this Section, we perform experiments to select an optimum dimen-
sion for AR-BN features. We derive AR-BN features of dimensions
5, 9, 13, 17 and 21 to obtain Gaussian posteriorgrams.

Fig. 2 shows MTWV obtained for dev data using Gaussian pos-
teriorgrams of FDLP + AR-BN. We derive 5, 9, 13, 17 and 21 dimen-
sional AR-BN features and use them in tandem with 39 dimensional
FDLP parameters. MLP architecture used to derive AR-BN features
is as follows: 23L 100N ΦL 100N 23L, where Φ = 5, 9, 13, 17, 21.
From Fig. 2, it can be seen that the best performance is with 13 di-
mensional AR-BN features in tandem with FDLP. Thus, we choose
13 as the optimum AR-BN feature dimension.

5.5. Comparison with Phone BN Features

In this Section, we derive 13 dimensional phone BN features and
compare it with articulatory BN features. The MLP architecture
used to derive phone BN features is 39L 120N 13L 120N 49S. Table
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Fig. 2: MTWV obtained for dev data using Gaussian posteriorgrams
of FDLP + AR-BN. AR-BN features of 5, 7, 13, 17 and 21 dimen-
sions are used in tandem with 39 dimensional FDLP.

6 shows MTWV obtained using Gaussian posteriorgrams of phone
and articulatory BN features in tandem with FDLP. The phone and
articulatory BN features are denoted as PH-BN and AR-BN respec-
tively.

Table 6: MTWV obtained using Gaussian posteriorgrams of FDLP
+ PH-BN and FDLP + AR-BN features. The values indicated in the
brackets show the ATWV computed for the eval dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

FDLP + PH-BN 52 128 0.469 0.452 (0.425)
FDLP + AR-BN 52 128 0.494 0.492 (0.467)

From Table 6, it can be seen that the Gaussian posteriorgrams
of FDLP + AR-BN perform better than that of FDLP + PH-BN. Ar-
ticulatory classes are more language universal than phones. Thus
AR-BN features are a better representation than PH-BN features to
obtain Gaussian posteriorgrams.

6. USE OF LOW AMOUNTS OF TRAINING DATA FOR
ARTICULATORY AND PHONE MLPS

In Section 5, we use an articulatory and phone MLPs trained on 24
hours of spoken audio data. However, access to such large amounts
of labelled data is expensive and not always feasible. In this Section,
we derive BN features from articulatory and phone MLPs trained on
low amounts of spoken audio data.

Fig. 3 shows MTWV obtained for dev data using Gaussian pos-
teriorgrams of FDLP, FDLP + PH-BN and FDLP + AR-BN. The
articulatory and phone MLPs are trained using 10, 20, 30, 50 and 75
mins of audio data. MTWV obtained using Gaussian posteriorgrams
of FDLP is the baseline performance and is denoted as an horizon-
tal line (as shown in Fig. 3). From Fig. 3, we observe that 20-30
mins of training data can be used to derive AR-BN features. This
is because each phone is represented by more than one articulatory
class. This leads to a large amount of training material for each ar-
ticulatory class, which often exceeds the amount of phone training
data [11, 35].

Table 7 shows MTWV obtained using Gaussian posteriorgrams
of FDLP, FDLP + PH-BN and FDLP + AR-BN. PH-BN and AR-
BN features are derived from MLPs trained on 30 mins of labelled
data. From Table 7, it can be seen that 30 mins can be used to derive
AR-BN features to obtain Gaussian posteriorgrams. However, there
is a trade-off between the performance of the BN features and the
amount of data used for training (as shown in Fig. 3)
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Fig. 3: MTWV obtained for dev data using Gaussian posteriorgrams
of FDLP, FDLP + PH-BN and FDLP + AR-BN. The x-axis represent
the amount of labelled data used to train the MLPs.

Table 7: MTWV obtained using Gaussian posteriorgrams of FDLP,
FDLP + PH-BN and FDLP + AR-BN. The BN features are obtained
from 30 mins of training data. The values indicated in the brackets
show the ATWV computed for the eval dataset.

Feats. dim. GPost. MTWV (ATWV)
dim. dev eval

FDLP 39 128 0.399 0.387 (0.358)
FDLP + PH-BN 52 128 0.387 0.391 (0.338)
FDLP + AR-BN 52 128 0.455 0.442 (0.425)

7. CONCLUSIONS

In this paper, we have used articulatory information and its deriva-
tives such as bottle-neck (BN) features (also referred to as artic-
ulatory BN features) for query-by-example spoken term detection
(QbE-STD). We compared the search performance using Gaussian
posteriorgrams of articulatory BN (AR-BN) and phone BN (PH-BN)
features and have shown that AR-BN features are a better represen-
tation. We have also provided experimental results to show that 30
mins of training data could be used to derive AR-BN features.
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[1] I. Szöke, M. Fapso, L. Burget, and J. Cernocky, “Hybrid word-
subword decoding for spoken term detection,” in Workshop
on Searching Spontaneous Conversational Speech, 2008, pp.
4–11.

[2] M. Saraclar and R. Sproat, “Lattice-based search for spoken
utterance retrieval,” in Proc. of HLT-NAACL, 2004, pp. 129–
136.

[3] D. R. H. Miller, M. Kleber, C.-L. Kao, O. Kimball,
T. Colthurst, S. A. Lowe, R. M. Schwartz, and H. Gish, “Rapid
and accurate spoken term detection,” in Proc. of INTER-
SPEECH, 2007, pp. 314–317.



[4] T. J. Hazen, W. Shen, and C. White, “Query-by-example spo-
ken term detection using phonetic posteriorgram templates,” in
Proc. of ASRU, 2009, pp. 421–426.

[5] V. Gupta, J. Ajmera, A., and A. Verma, “A language indepen-
dent approach to audio search,” in Proc. of INTERSPEECH,
2011, pp. 1125–1128.

[6] Y. Zhang and J. R. Glass, “Unsupervised spoken keyword spot-
ting via segmental DTW on Gaussian posteriorgrams,” in Proc.
of ASRU, 2009, pp. 398–403.

[7] X. Anguera, “Speaker independent discriminant feature ex-
traction for acoustic pattern-matching,” in Proc. of ICASSP,
2012, pp. 485–488.

[8] G. Mantena, S. Achanta, and K. Prahallad, “Query-by-example
spoken term detection using frequency domain linear predic-
tion and non-segmental dynamic time warping,” accepted for
publication in IEEE Trans. Audio, Speech and Lang. Process-
ing, 2014.

[9] H. Wang, T. Lee, C.-C. Leung, B. Ma, and H. Li, “Using paral-
lel tokenizers with DTW matrix combination for low-resource
spoken term detection,” in Proc. of ICASSP, 2013.

[10] A. W. Black, T. Bunnell, Y. Dou, P. Muthukumar, F. Metze,
D. Perry, T. Polzehl, K. Prahallad, S. Steidl, and C. Vaughn,
“Articulatory features for expressive speech synthesis,” in
Proc. of ICASSP, Kyoto, Japan, 2012.

[11] K. Kirchhoff, G. A. Fink, and G. Sagerer, “Combining acoustic
and articulatory feature information for robust speech recogni-
tion,” Speech Communication, vol. 37, no. 3-4, pp. 303–319,
2002.
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ABSTRACT

In this work, we present an unsupervised framework to ad-
dress the problem of spotting spoken terms in large speech
databases. The segment-based Bag of Acoustic Words
(BoAW) framework proposed is inspired from the Bag of
Words (BoW) approach widely used in text retrieval systems.
Since this model ignores the sequence information in speech
samples for efficient indexing of the database, a Dynamic
Time Warping (DTW) based temporal matching technique is
used to re-rank the results and restore the time sequence in-
formation. The speech data is stored efficiently in an inverted
index which makes the retrieval very fast, thus making this
framework particularly useful for searching large databases.
We address the issue of choosing the appropriate size of
the segment of speech for reliable indexing. Comparison
with other query-by-example spoken term detection systems
shows that the proposed system outperforms the rest.

Index Terms— query-by-example, spoken term detec-
tion, Bag of Acoustic Words, template matching, unsuper-
vised learning, segment ranking

1. INTRODUCTION

In the digital era, huge amount of audio data is being pro-
duced and consumed every day in a large variety of languages.
This may be in the form of music, TV news, classroom lec-
tures, audio books, podcasts, call center archives and even
personal audio recordings. With this exponential growth of
digital multimedia content, audio search becomes essential
for fast retrieval of information from audio archives. Query-
by-example (QbE) spoken term detection (STD) is a speech
search framework in which spoken queries are used to retrieve
matching portions from a speech database.

State of the art approaches rely on automatic speech
recognition (ASR) frameworks which have shown good
performance in well-resourced contexts [1, 2]. But, such
LVCSR-based systems can only be built for resource-rich
languages where huge amounts of transcribed speech data is
available to train statistical and acoustical models. Another
requirement for good performance of ASR based systems
is the large vocabulary coverage during the training phase

so that out-of-vocabulary (OOV) terms are not presented for
recognition during the searching phase. This may not be pos-
sible in practical systems, thus causing higher word error rates
(WER) and deteriorating the overall performance. Though
some methods to tackle the OOV problem like making the
system vocabulary independent, sub-word unit modeling of
OOV terms, phonetic search frameworks etc. have been
proposed, it continues to be a challenging task [3, 4, 5, 6].

2. RELATION TO PRIOR WORK

Due to various limitations of ASR-based systems, template
matching based methods for QbE STD have been explored
in recent years [7, 8, 9, 10, 11]. In these methods, audio
data is stored as templates that are generated by acoustic-
phonetic models. When a spoken query is presented to the
system, its template is generated, which is then searched in
the database, typically by using a variant of the Dynamic
Time Warping (DTW) algorithm. Recently, the posterior-
gram representation has become a very popular choice for
the template [7, 8, 10, 12]. It is a representation of speech
as a sequence of posterior probability vectors. Each vector
denotes the posterior probability of a speech frame belong-
ing to different classes. Depending on the way these classes
are defined, different posteriorgrams such as phonetic, neural-
network and Gaussian posteriorgrams are obtained.

But the absence of efficient indexing techniques makes
posteriorgram-based systems not scalable for practical use, as
the entire database is searched in a linear fashion even for very
short queries. Recently, some attempts have been made to
address this limitation by using locality sensitive hashes and
subspace-indexing techniques for efficient storage of speech
data [13, 14]. In this work, we propose an inverted index-
ing framework using Gaussian posteriorgrams for achieving
fast reduction of the search space. The segment-based Bag
of Acoustic Words (BoAW) framework proposed is inspired
from the Bag of Words (BoW) model widely used in text re-
trieval systems. In recent years, similar techniques have been
explored in other related fields such as object matching in
videos, word image retrieval etc. which have shown great
potential [15, 16].



3. BAG OF ACOUSTIC WORDS AND INVERTED
INDEX

The BoAW model used in this work is inspired from the Bag
of Words (BoW) model widely employed in text retrieval sys-
tems. A spoken document can be represented as an unordered
collection of discrete acoustic units. These discrete acous-
tic units are termed as acoustic words. The acoustic words
may be interpreted as the sounds or the frame-wise phonetic
content present in the documents. Each document gets repre-
sented as a bag of discrete acoustic words. Similarly, a spoken
document can be represented as a bag of syllables or a bag
of spoken lexical words. The challenge in these approaches
is to reliably segment speech into syllables or words. The
work presented in this paper can be described as a bag of dis-
crete sounds in which the frame-wise phonetic information
of speech is chosen as the acoustic unit of the BoAW model.
In this work, a GMM-based soft clustering approach is used
which models the speech using a set of Gaussian distributions.
The number of such distributions (K) is predetermined and
can be loosely associated with the number of phonetic units
present in the data.

TheK mean vectors and covariance matrices obtained af-
ter this unsupervised training phase becomes the vocabulary
of the system. This audio vocabulary is then used to quantize
the extracted features by choosing the clusters with the high-
est posterior probabilities. The final representation for a spo-
ken document is the frequency counts or a histogram of the
quantized acoustic features [f1, f2, ...fi, ...fK ], where fi is
the number of occurrences of the ith cluster or acoustic word
in the spoken document and K is the vocabulary size. The
differences in the durations of different spoken documents is
accounted for by normalizing the BoAW histogram with re-
spect to the segment size. From this normalized histogram,
those acoustic words or clusters having frequency above a
threshold (δ) are chosen to represent the document in the in-
verted index. These are termed as ‘significant acoustic words’
of the document. The inverted index is an indexed data struc-
ture which stores a mapping from content to locations in the
database. The location of the document in the database is
associated with the significant acoustic words in the inverted
index. Once the entire database is indexed, the location of ev-
ery spoken document can be determined from the significant
acoustic words obtained from that document.

An important issue to note in this approach is the loss
of temporal information of speech. For example, the words
‘tale’ and ‘late’ may have the same phonetic content and
hence, similar histogram representations, which reduces the
precision of the system during the retrieval task. We address
this issue, while exploiting the computational advantages of
the BoAW approach, as explained in the next section. An-
other crucial point is the duration of a spoken document that
should go into the index. The duration of the segments should
be chosen in such a way that the significant acoustic words
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Fig. 1. (a) Gaussian posteriorgram and (b) normalized BoAW
histogram of a speech segment with K=100, along with his-
togram threshold δ = 0.3 marked in the figure.

obtained from their BoAW histogram should be able to fully
represent these segments. The segment histogram must be
robust enough to reduce the false positive and false negative
rates while maintaining the time taken for retrieval within
practical terms. Detailed experiments are conducted to ob-
tain the optimum segment size to index the documents for
queries of different durations. In this segment-based inverted
indexing paradigm, the term ‘spoken document’ will now be
referred to as a ‘segment’ as it is a segment of speech, along
with its time information (location within a file), that goes
into the index. Figure 1 shows the Gaussian posteriorgram
and BoAW histogram of a segment of length 1s.

4. RETRIEVAL SYSTEM

The task of the retrieval system is to return the best matches
of an audio query from the indexed database. The frame-
wise features are extracted from the query and the BoAW
histogram is generated using GMM clustering. The signifi-
cant acoustic words from the histogram are obtained by us-
ing a threshold (δq), which may be different from the thresh-
old (δ) used while indexing the database. The choice of the
threshold needs to be determined experimentally to balance
the false rejection rate, false acceptance rate and the amount
of the search space reduction achieved. Using the significant
acoustic words obtained from the query, the list of database
segments associated with them are retrieved from the inverted
index. This is a very quick process which helps in locating the
most probable segments in the database which match with the
query.

In the BoAW approach, the sequence information in
speech was ignored while performing efficient database in-
dexing. But, as was mentioned earlier, this reduces the effec-
tiveness of the system due to the possibility of a large num-
ber of false acceptances. Hence, a Dynamic Time Warping
(DTW) approach is used to restore the sequence information



in the retrieved segments. DTW is performed between the
Gaussian posteriorgrams of the query segment and that of the
most probable database segments. The distance function used
for DTW is:

D(p, q) = −log(p.q) (1)

where p and q are two Gaussian posterior vectors. The dot
product gives the probability of these two vectors drawing
from the same distribution [7].

The ranking of database segments is performed not only
using the DTW score but also including the BoAW histogram
score to form a final merged score. The histogram score of an
indexed database segment is the number of times that segment
is retrieved by the significant acoustic words of the query seg-
ment. For example, suppose a query segment has 50 signifi-
cant acoustic words for a vocabulary size of 100. For each
of these 50 words, the system retrieves the most probable
database segments from the inverted index. Suppose a partic-
ular indexed segment si was retrieved by 40 of these signifi-
cant acoustic words. Then, the histogram score of the segment
si is 40. Higher the histogram score, higher the probability of
the segment being a correct match. The merged score SMi

of
a database segment si is computed as:

SMi = α.SDTWi +
β

SHisti

(2)

where SDTWi
and SHisti

are the DTW and histogram scores
of the segment si, respectively, and α and β are scaling pa-
rameters which are determined empirically. Lower values of
the DTW and merged scores are expected from matching por-
tions. Thus, the database segments are ranked in the ascend-
ing order of their merged scores, and are presented as the out-
put of the system (file name and time stamp).

Fig. 2. (a) P@N and (b) MAP scores vs. BoAW histogram
threshold δ with δq=δ, α=0.8, β=10(1-α), γ1=1, γ2=400 and
Q=10.

5. EXPERIMENTS AND EVALUATION

This unsupervised QbE STD framework is tested on the
TIMIT corpus using 30 queries of varying lengths. The
TIMIT corpus is divided into 3 sets: development set (1000
files, 50 minutes), database set (4500 files, 3.8 hours) and
test set (800 files). The development set is used to obtain the
vocabulary using unsupervised GMM training of frame-wise
39-dimensional MFCC features as explained in the previ-
ous sections. Once the GMM is trained for K clusters, the
database set is divided into segments which are added to the
inverted index. Queries presented to the system are excised
from the test set utterances. The generalizing capability of
this framework is evaluated by keeping all the three sets
non-overlapping. A query has, on average, about 5 relevant
occurrences in the database. Hence, the evaluation metrics
used are: i) P@1: Average precision of the top result re-
turned by the system; ii) P@3: Average precision of the top
3 results; iii) P@5: Average precision of the top 5 results;
iv) P@N: Average precision of the top N results, where N
is the number of occurrences of each query in the database;
v) MAP: Mean average precision which is the mean of the
precision scores after each query hit is retrieved.

Table 1. Precision scores for different segment sizes with
threshold δ=0.2.

P@1 P@3 P@5 P@N MAP
Seg.Size = 0.8s 0.5357 0.4405 0.3643 0.3642 0.3294
Seg.Size = 1.0s 0.7333 0.5667 0.4400 0.4405 0.4570
Seg.Size = 1.2s 0.7333 0.6333 0.5200 0.5028 0.5051
Query-guided 0.8000 0.6222 0.4933 0.4789 0.5214

As mentioned earlier, the choice of the segment size be-
comes crucial in the overall performance of the system. To
determine the optimum segment length, we conduct exper-
iments with two kinds of segmentation: query-guided seg-
mentation and hard segmentation. In hard segmentation, the
entire database is indexed prior to query submission by di-
viding it into segments of a pre-determined duration. In this
case, the query may also need to be segmented as its length
may be much larger than the segment duration, which may
result in highly skewed warping paths during the DTW. This
segmentation of a query implies that the database is searched
for those segments which match with each of the query seg-
ments. Hence, the system returns scored results pertaining to
different segments of the query and not for the entire query
altogether. Hence, we need a way of merging the nearby
database segments and obtain a combined score for these por-
tions using their individual segment scores. A novel scoring
strategy is employed which uses the positional weights (w)
and merged scores (SM ) of individual database segments to
obtain the final scores. Each database segment, ranked in the
ascending order of the merged score (SM ), is grouped with its



Fig. 3. (a) P@N and (b) MAP scores for different query
groups (G) based on duration DG. 0 < DG1 < 0.8s, 0.8s ≤
DG2 < 1.0s, 1.0s ≤ DG3 < 1.2s and 1.2s ≤ DG4 < 1.6s.

(L− 1) neighboring segments to form larger segments called
files. The number of segments (L) in each file is fixed to
match the query length. Suppose N such files are present in
the database. SFi

is the score of file i, taking into account the
positions pij of the L segments within a file along with their
merged scores SMij , j = 1, 2, ..L, which is computed as:

SFi = γ1.(wi1 + SMi1)− γ2

L∑
j=2

1
wijSMij

(3)

where i = 1, 2, ...N and

wij = bpij − 1
Q
c+ 1; j = 1, 2, ...L (4)

where wij is the positional weight of the jth segment of file
i. Segment index j within a file is obtained by ranking the file
segments using their merged scores. The scaling factors γ1

and γ2 are determined empirically. The quantization factor Q
is used to divide the positional weights, depending on the ini-
tial ranking based on merged scores, into discrete levels. For
example, results 1 through 10 and 11 through 20 are grouped
into different levels, if Q = 10. This scoring criteria, given in
(3), penalizes segments within a file based on their positional
proximity and signal alignment to the best matched segment
within a file. Such positional weighting, when combined with
signal similarity scores, gives a good mechanism to rank dif-
ferent database files.

To compare the performance of the hard segmentation
technique to a scenario where segmentation could be per-
formed after a query is submitted, database is divided into
overlapping segments of duration same as that of the query
and populated into the inverted index. The histogram and
DTW scores are merged and the segments are ranked. This
experiment is conducted to study the correlation between
database segment duration and query length.

6. RESULTS AND DISCUSSION

Figure 2 shows the relationship between P@N and MAP
scores and histogram threshold (δ) with vocabulary size (K)
as 100, query histogram threshold δq=δ and empirically de-
termined scaling factors α=0.8, β=10(1-α), γ1=1, γ2=400.
α is fixed to give greater weightage to the DTW score as
compared to the histogram score. The quantization factor Q
is set as 10. From the figure, we observe that the precision
scores are maximum for δ = 0.2. Table 1 gives precision
scores for different segment sizes when δ = 0.2. For a seg-
ment size of 1.2s, P@N and MAP of 0.5028 and 0.5051,
respectively, are obtained, which outperforms other systems
proposed in literature. Table 2 shows the comparison of the
proposed system with a system which uses a segmental vari-
ation of DTW [8] which is considered as the baseline for our
experiments. To better understand the relationship between
query duration and segment size, queries are grouped into
groups (G) based of their duration (DG). The durations of
the groups are: 0 < DG1 < 0.8s, 0.8s ≤ DG2 < 1.0s,
1.0s ≤ DG3 < 1.2s and 1.2s ≤ DG4 < 1.6s. From figure 3,
we see that precision scores are high when the query duration
is large (groups 1 and 2). Also, for larger durational queries,
segment size nearer to query size gives better results. This
suggests that BoAW histogram representation becomes more
reliable when a greater number of acoustic words are present
in a segment. But segment size cannot be very different from
the query size as it may lead to highly skewed warping paths.
Hence, the segment size and the histogram threshold need to
be chosen carefully to obtain the best results from the system.

Table 2. Comparison of performance

System P@N
SDTW (#Examples=1) 0.4133

BoAW+DTW (proposed) 0.5028

7. CONCLUSION

In this paper, a new unsupervised framework for performing
query-by-example spoken term detection was proposed. The
Bag of Acoustic Words (BoAW) model enables efficient stor-
age of speech in an inverted index data structure which helps
in fast retrieval of matching segments. Further, temporal sim-
ilarity is obtained by employing the Dynamic Time Warping
technique. A new method of ranking audio documents which
combines positional weights and similarity scores was also
proposed. It was observed that the system gives very good
performance when the query size is larger. In future, better
segmentation techniques, such as those based on similarity of
neighboring speech frames, need to be explored to help store
the speech more efficiently.
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Abstract

Automatic segmentation of speech signals has been a constant

engineering challenge. Even after the advances with super-

vised and unsupervised techniques, there still lies a challenge

to equal the manually labelled segments. HMM-based segmen-

tation techniques with modifications and corrections have been

the state-of-art. These techniques are supervised in nature and

thus require availability of large corpus transcribed with phone

boundaries. The unsupervised techniques, on the other hand,

explore gradients in various spectral and temporal properties of

the speech signals. This paper presents a new and unsupervised

method based on signal processing techniques to segment the

speech signals. A recently developed method known as Zero

Time Liftering (ZTL) is used for the analysis of speech signals,

which provides fine temporal resolution of the spectral features

of the segment being analyzed. It uses the Hilbert envelope

of Numerator Group Delay (HNGD) of the signal to highlight

its spectral activity. This representation is used to extract high

SNR regions of the spectra, which in turn proves to be useful

in representation of the production characteristics of the speech

signal.Performance of the proposed analysis is at par with the

existing baseline systems for unsupervised segmentation.

Index Terms: zero time liftering (ZTL), hilbert envelope of

numerator group delay (HNGD), zero-frequency filter (ZFF),

speech segmentation

1. Introduction

Segmentation of speech signals is a critical pre-processing task

for several speech applications. These applications mostly rely

on the availability of a corpus containing speech segments usu-

ally rich in linguistic and signal contents. Along with this, the

corpus is also expected to contain information about its acous-

tic content with corresponding segment boundaries. The most

precise way of maintaining such a corpus with well defined

boundaries of speech and corresponding linguistic units with

proper time alignment relies on manual efforts, till date. Manual

segmentation and annotation of these databases require a large

amount of time and effort, and therefore is a tedious job. Most

speech processing applications generally use Hidden Markov

Models (HMMs) and utilize the availability of such a corpus

for training the models. Automatic speech segmentation tech-

niques find their application with speech recognition, phonetic

analysis, speech coding and other related areas of speech tech-

nology. A major advantage with automatic speech segmentation

techniques is the consistency in their results. Studies indicate

that manual labelling and segmentation processes are subjec-

tive, and thus may result in significant differences in the tran-

scriptions by different people [1].

Automatic segmentation of speech signals is broadly clas-

sified into the explicit or implicit categories [2]. Explicit, be-

ing the text-dependent case, where a known phonetic sequence

is time aligned against speech segments using a set of phone

models or reference patterns. Implicit or text-independent tech-

niques are those where there is no prior knowledge of corre-

sponding phonetic sequence. Therefore, for these techniques,

given a continuous speech, there is always non-compliance

of the number of phones segments detected, to those actually

present. In either of these cases the most commonly used ap-

proach includes trained HMM models. This process requires

extraction of spectral characteristics of the speech signal fol-

lowed by the forced alignment of HMM phone or syllable mod-

els using Viterbi alignment techniques. These techniques em-

ploying phone models to segment are termed as supervised

techniques. In earlier attempts, a phone segmentation score of

87� was obtained using HMMs on TIMIT database [3]. Since

then, several post-processing techniques have been combined

with the HMM-based segmentation techniques to improve the

detection scores for boundaries of phonetic segments. A statis-

tical correction method was introduced to attune for the errors

encountered with the HMM-based segmentation methods [4]. A

speaker adaptation technique was also employed for error mini-

mization along with the corrections of hypothesized boundaries

to improve the results by almost 10� in both context-dependent

and context-independent HMMs. Fusion techniques with multi-

ple features [5] or multiple base segmentation engines [6] using

regression methods have also been attempted to improve seg-

mentation results.

The other class of techniques for automatic speech segmen-

tation focuses on identifying changes in the signals in the tem-

poral as well as in the spectral domain. These techniques em-

phasize on parameterization of speech signal and observing the

behavior of these parameters over the entire signal. These are

termed as unsupervised techniques and do not require any pre-

acquired knowledge with respect to the data. These methods are

bottom up approaches, where the lexical context integration is

performed after the acoustic processing. In an attempt towards

segmentation, the acoustic-phonetic knowledge of various man-

ners and places of articulations was successfully employed with

statistical pattern recognition approaches to obtain results com-

parable to HMM-based methods [7]. A comparative study, on

phoneme segment detection using acoustic changes, with manu-

ally transcribed boundaries proved that unsupervised techniques

are fairly effective and can be improved with infusion of addi-

tional information about broader classes based on energy, dura-

tion and articulatory cues [8]. An analysis of the hypothesized

and missed boundaries with an unsupervised algorithm called

the maximum margin clustering (MMC) was performed to im-

prove the results obtained by the algorithm[9]. Another work

proposed a delta spectral function (DSF) to represent the gradi-

ents in band energy for a specific band to measure the spectral

changes [10]. Characterization of the rate of spectral transi-

tion to detect phoneme boundaries has also been employed to

identify phoneme segment boundaries [11]. All these automatic
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segmentation techniques have produced more or less similar re-

sults for a given tolerance level. The segmentation results are

presented using the correct detection rate (CDR) �, which is

given by,

α(in�) =
Ndetected

Ntruth

∗ 100 (1)

where Ndetected refers to the total number of boundaries de-

tected for a given tolerance level and Ntruth is the number of

boundaries in the ground truth segmentation. The tolerance

level is generally expressed in milliseconds. For a segment

boundary to be correct it has to fall within a tolerance window

from the boundary marked for the ground truth.

In this paper we propose a method for unsupervised seg-

mentation of speech based on recently developed signal pro-

cessing techniques. In this method, information about the seg-

ments present or any related phone models is not used. The

proposed method is independent of language, speaker or con-

text. It has the advantage in terms of representation of vocal

tract characteristics of the speech signal. The idea of the zero

time liftering (ZTL) [12] method was conceived from a recently

developed technique for identifying the glottal closure instants,

the zero frequency filtering (ZFF) method. ZTL is an analy-

sis technique which has capabilities to provide good temporal

and spectral resolution for speech signals. It highlights the high

SNR regions in the spectral domain. These advantages of the

ZTL analysis technique served as a motivation for the develop-

ment of the segmentation algorithm presented in this paper.

The paper is organized as follows: Sections 2 and 3 dis-

cusses the development of the ZTL technique and extraction of

resonant frequency peaks. Section 4 presents the propoased seg-

mentation method, the database used for evaluation, results and

comparison with the existing techniques. Section 5 discusses

the possible causes of errors in segment boundary detection as

well as the further studies along these lines.

2. Zero Time Liftering : motivation and
method

Zero time liftering (ZTL) [12] is a recently proposed method for

the analysis of speech signals which provides high temporal res-

olution maintaining simultaneously a good spectral resolution.

ZTL involves multiplying of the speech signal with a highly de-

caying impulse-like window, ensuring high resolution in time.

The window function is given by

h[n] =
1

8 sin4 (πn/N)
� n = 0� 1� 2� ...� N � 1 (2)

This filter is used to multiply the signal s[n] starting at

a reference point n=0, and this imparts a polynomial-type

growth/decay to DFT samples in the frequency domain. The

hidden spectral features are highlighted by successive differenc-

ing of the numerator of the group delay (NGD) function, which

is given by

g(ω) = X�(ω)YR(ω)�XR(ω)Y�(ω) (3)

whereX(ω) =XR(ω) + jX�(ω) is the DTFT of x[n] and Y (ω)
= YR(ω) + jY�(ω) is the DTFT of nx[n].The spectrum is rep-

resented by the Hilbert envelope of the NGD (HNGD) which

has a good resolution around the formants[13]. ZTL analysis

involves the windowing of speech signal using h[n] with a shift

of one sample to calculate the spectrum. The spectral charac-

teristics for a signal can be obtained for segments starting at

any instant of time, and hence the results can be interpreted as

Figure 1: Analysis of a speech segment using ZTL method and

DRFs. The figure shows the speech waveform and the corre-

sponding HNGD spectra after ZTL analysis.

instantaneous spectral features. The energy profile of the

ZTL spectra at every instant can be attributed mostly to the sig-

nal sample at that instant, and to a few other samples in the

vicinity. Figure 1 shows a speech signal for the utterance ‘ad-

vertising’ and the corresponding ZTL spectrum computed using

a window length of 10ms at a sampling rate of fs = 16kHz,
i.e., for N = 160, and shifting this window by every sample.

The capabilities of the HNGD spectra to provide a high tem-

poral resolution and highlighting the spectral peaks for a given

speech signal is well evident from the figure.

3. Obtaining DRF using ZTL and
segmentation of speech

ZTL provides an insight to the production characteristics for

different acoustic segments of speech signals. Analysis of

speech using this method can help in understanding the differ-

ence in spectral behavior for segments corresponding to various

acoustic events. Figure 1 shows the change in spectra corre-

sponding to various acoustic events. The location of the spec-

tral peaks and their corresponding strengths in the spectra led

to the development of representation of speech signal using the

most prominent peak. These spectral peaks correspond to high

SNR regions which are less affected by environmental factors,

and thus are robust in representing the speech signals.

The given speech signal is analyzed using ZTL and the fre-

quency of the dominant peaks from the spectra with their am-

plitudes are obtained. When these frequencies are plotted along

the signal, it was observed that there is clear distinction of var-

ious acoustic segments. These frequencies represent the dom-

inant resonances of speech segment being analyzed, and can

equivalently be associated with the dimensions of the promi-

nent cavity in the vocal tract responsible for the production of

that segment. These resonance peaks are thus called dominant

resonant frequencies (DRFs), and are considered as representa-

tion of the production characteristics for a speech signal. Figure

2 shows speech signals corresponding to some acoustic events

and their DRFs with their respective amplitudes. It can be ob-

served from the figure that DRFs relate to the instantaneous pro-

duction characteristics for a speech signal and thus provide ev-

idence to identify distinct acoustic segments in the speech sig-

nal. The temporal resolution obtained by ZTL helps in plotting

DRFs at every sampling instant.
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Figure 2: Different acoustic segment of speech and correspond-

ing DRFs along with their magnitude. Plots ‘a’ show speech

segments for voiced, nasal, frication and stop respective and

plots ‘b’ and ‘c’ show the corresponding DRFs and respective

spectral magnitude.

3.1. Distinct acoustic events and respective DRF behavior

The DRFs of the speech signal help demarcate boundaries for

distinct acoustic events in the speech signal with good accuracy.

The acoustic events correspond to the change in the shape of the

vocal tract which produce different phonetic classes of sounds.

Multi-dimensional representation of the source and system re-

sponses are used to build models to learn the changes during

the production of the speech signal. These learning processes

are supervised in nature, and thus require a large number of in-

stances for each of such transitions. Employing DRFs on the

other hand doesn’t require any training but just the pre-acquired

knowledge of production mechanism for different classes of

sounds. Voiced segments, for instance, are produced with a cav-

ity which is wide open without creating any constriction in the

vocal tract. Whereas obstruents are produced by creating con-

strictions at various locations using different articulators, and

this gives rise to different cavity shapes for these sounds. Such

cavities, being smaller in length compared to the voiced sounds

results an increase in the frequency of resonance. Nasals are

other class of sounds which are produced by the coupling of the

vocal and nasal tracts by lowering of the velum. This results

in a cavity length longer as compared to vowel sounds and thus

resonate at frequencies lower than vowels. Plosives are classes,

where a closure in the vocal tract is followed by a burst which

is impulsive in nature, and thus results in energy distribution in

multiple frequency components with a short onset and offset.

These and many more acoustic segment transitions are captured

efficiently using DRF representation. Experiments were con-

ducted to test the consistency of DRFs across different utter-

ances and speakers. In the case of clean speech, DRFs proved

to be quite robust and consistent in representing the production

characteristics for the speech signals.

4. Database, method and segmentation
results

The segmentation problem requires ZTL analysis to be per-

formed on the given speech signals. An analysis with different

window length, N (= 2� 5� 10 and 20ms) as given in Eq (2),

was carried out for speech, and DRFs were obtained from the

corresponding HNGD spectra. On examination of the DRF pat-

terns, we choose N = 10ms where the DRF representations

appear smooth, and segmentation can be done easily.

The algorithm to perform the segmentation tries to identify

the changes in the acoustic properties of the signal. To segment

the speech signal, we first differentiate between obstruent and

sonorant regions based on the characteristics of of the respec-

tive DRFs as explained in section 3.1. Further, a 3-point me-

dian filtering is performed in the sonorant regions to smoothen

the DRF curves. Changes in vocal tract cavity shape within

sonorant regions can identified with a transition in location of

DRFs. The transition parameter ftr controls the number of seg-

ment boundaries being generated by the proposed algorithm. It

is observed that a range of ftr = 30 to 120Hz provides al-

most similar values of α. Multiple boundaries occuring within

a window of 20ms are then merged to one to avoid ambiguity.
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Figure 3: Segmentation results based on DRF representation of

speech signal. Plot ‘a’ shows a speech signal and the corre-

sponding manually transcribed boundaries. Plot ‘b’ shows the

corresponding DRFs and boundaries obtain with this represen-

tation. Plot ‘c’ shows the sonorant regions with corresponding

boundaries with 3-point median filtered DRF curves.

The segmentation algorithm was evaluated on a subset cho-

sen from the TIMIT database [14]. TIMIT is the most widely

used corpus for phone segmentation task. It consists of micro-

phone quality recordings of 630 American-English speakers (10

sentences per speaker), with sampling frequency 16kHz and

resolution 16-bit. The chosen subset contains 182 sentences

from TIMIT dataset, uttered by an equal number of male and

female speakers. Figure 3 shows one such waveform with the

manual transcription boundaries and the corresponding DRF

representation of the signal with the boundaries generated by

the proposed method. We can see that DRFs represents the

changes in production characteristics in the given signal.

The performance of segmentation is reported by comparing

the algorithmic segmentation with manual labels provided with

the TIMIT database in terms of CDR(α). A tolerance window

of 20ms is generally chosen to report the performances [8]. We

computed the results for the segmentation using DRFs for toler-

ance levels of 5ms, 10ms, 15ms and 20ms, which are shown

in Table 1.

Another parameter comparing the performance of segmen-

tation algorithms is the over-segmentation rate (OSR) β, for the

algorithm. The percentage of over-segmentation is given as

β(in�) =

�
Ndetected

Ntruth

� 1

�

∗ 100� (4)
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Table 1: Performance of segmentation using DRFs on TIMIT

database for different tolerance levels. The CDR is expressed

in � and tolerance is expressed in ms.

Tolerance 5ms 10ms 15ms 20ms

α 33.7 58.4 70.9 79.6

Table 2: Comparison of segmentation results for a tolerance

level of 20ms. The CDR(α) is expressed in � and tolerance is

expressed in ms.

Segmentation (supervised) α
HMM+SVR 88.18

(HMM+SVM)� 94.9

(HMM+SVM)2 95.4

Segmentation (unsupervised) α
MMC 67.9

APseg 77.2

DSF 77.2

DRF 79.6

where a negative β suggests the under-segmentation rate. Si-

lence regions in speech signals have been reported as problem-

atic for unsupervised speech segmentation algorithms [8] and

therefore we ignored the segment boundaries within the silence

regions for calculating β. For the rest of the segments bound-

aries, the proposed algorithm gives a β of around 11�. As

stated in the previous sections, the segment boundaries detected

using DRFs correspond to acoustic changes, which sometimes

may not correspond to any of the manually transcribed phoneme

boundaries.

Table 2 shows the results obtained for the proposed method

in comparison with results obtained by other methods over the

same database. The comparison is made with respect to su-

pervised as well as unsupervised segmentation techniques. For

instance, HMM + SVR employs multiple base segmentation

engines (BSEs) which are implemented with HMMs trained

on different parameterization methods such as MFCC, LPCC,

HFCC, PLP etc. and using support vector �egression for bound-

ary fusion. This method is explicit in nature, whereas both

HMM + SVM methods are implicit, which is basically a seg-

mentation method used for TTS systems. The (HMM+SVM)�
and (HMM+SVM)2 are similar models trained on the TIMIT

database but tested on TIMIT and TTS datasets, respectively.

They use trained phone models as HMMs and perform SVM

(support vector machine) based refinement of local boundaries.

Unsupervised methods like the maximum margin clustering,

MMC, is a kernel based unsupervised form of SVMs which

maximizes the separation margin between a set of unlabelled

feature vectors. STM (Spectral transition measure) measures

the magnitude of the spectral rate of change and DSF (delta

spectral function) represents variation of band energy for a spe-

cific band for each frame. Phoneme transitions are usually re-

flected as peaks of such functions. The APseg method includes

acoustic-phonetic features such as zero crossing rate ZCR, en-

ergy onset and offsets and formant energy ratio along with sta-

tistical learning methods to detect segment boundaries. When

compared to the unsupervised methods, the proposed DRF

based method gives better performance with a low β. There

still lies some gap between performances of supervised and un-

supervised segmentation methods which can be overcome by

further refinements.

5. Error analysis and conclusions

The boundaries obtained by segmentation using the DRFs helps

demarcating the acoustic events for a signal. These events

boundaries signify the transition in vocal tract characteristics

during the production of speech and ZTL analysis helps in

marking these accurately. Yet Table 1 shows a low value of

α at 5ms and 10ms tolerance levels. An error analysis was

carried out over the segment boundaries obtained with DRFs

and observation of the signal characteristics in the vicinity of

these boundaries. This analysis suggests that the manual tran-

scriptions might be wrongly placed in some cases. The event

boundaries demarcation process with DRFs is based on the ex-

traction of acoustic properties of the signal, and therefore are

likely to be more accurate.

There are several advantages with the proposed method for

representing the speech signals. This method is unsupervised,

as it has no requirements in terms of the acquiring knowledge

and learning from examples. The results obtained prove the ca-

pability of DRFs as consistent evidence to identify the acoustic

boundaries of speech signals. Furthermore, this method is inde-

pendent of language, gender and several other speaker and cor-

pus based dependencies. The representation provided by DRFs

for the segments in speech signal also helps in visualizing the

boundaries manually, primarily for annotation purposes. Reso-

lution of automatic methods depend on their frame sizes which

is generally 10-20ms in size, whereas ZTL has a high resolu-

tion comparable to manual segmentation process.

Future work is planned to incorporate other speech produc-

tion based features, which together with DRFs can help in im-

proving the segmentation performance. It is also proposed to

automatically label the acoustic segments into different cate-

gories.
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Abstract

Speech can be segmented into syllables by identifying the syl-

lable nuclei, which are points of high sonority. The excitation

peaks in the linear prediction (LP) residual and the formant

peaks can be interpreted as perceptually significant point fea-

tures which contribute to the loudness of speech. In this paper,

the use of these two point features is described for the use of

detecting syllable nuclei. Each of these evidences contain in-

formation about different aspects of speech production, namely

the glottal vibrations and the time varying vocal tract system.

Thus it is possible that they contain complementary information

about the syllable nuclei. Performance of the proposed syllable

nuclei detection algorithm is evaluated for the TIMIT, Switch-

board and the NTIMIT corpus. The proposed method performs

comparably against two other state of the art syllable nuclei de-

tection methods, and is shown to perform better for conversa-

tional speech. It is very fast and requires no training.

Index Terms: sonority, syllable nuclei detection, glottal closure

instant, group delay function, LP residual

1. Introduction

At the perceptual level, the syllable nuclei are attributed to high

energy sonorants or resonant sounds, which are relatively loud

and carry a clear pitch. These attributes lead us to infer that the

acoustic correlates of syllable nuclei are energy and periodicity

properties [1]. An energy-based syllable detection method was

proposed in [2], where energy peaks in the range 250 to 2500

Hz are shown to be well correlated with the syllable nuclei. A

smoothed modified loudness contour is used to detect vowels

for the purpose of estimating speaking rate in [3]. Speech rate

estimation methods have mainly used the durations between the

syllable nuclei as a method to find an estimate of the speaking

rate [4, 5]. Syllable detection in [4] uses spectral correlation en-

velopes using selected sub-bands with temporal correlation and

smoothing. Monte-carlo simulations are performed to find op-

timal settings for subband selection and the thresholds used for

peak picking. A rhythm guided syllable detection algorithm is

proposed in [5] where the rhythmic feature of the sequence of

syllables in continuous speech is exploited. The parameters of

an optimal sinusoid are calculated on the basis of peaks detected

apriori in the energy envelope. A least squares fitting criterion is

used to calculate the frequency and phase offset of the sinusoid

based on the detected peaks. Then the next peak is detected in

the energy envelope in a range around the next sinusoid peak.

This range is dictated by the frequency of the sinusoid. The si-

nusoid is updated after calculation of each peak. A hierarchical

hidden Markov model (HMM) based method is proposed in [6],

which automatically syllabifies the input speech by generating

syl and garbage tags for the input frame. A multilayer percep-

tron based automatic syllable boundary detection method is de-

scribed in [7]. Here, the neural network tries to estimate the

posterior probabilities of a phoneme being in syllable nuclear

position in the context of neighbouring phonemes. Then pos-

sible errors are corrected automatically by parsing the decision

output string which was obtained from the posterior probabili-

ties of each phoneme. Wu et. al proposed the use of a multilayer

perceptron based classifier to detect syllabic onsets which were

subsequently shown to improve speech recognition [8]. In [9],

a bidirectional long short-term memory neural network model

is used to identify potential syllable nuclei in spontaneous and

read speech. The neural network uses a 79 dimensional in-

put vector including a 20 sub-band modulation spectrum, their

first differences, 12 PLP coefficients, log energy and their first

and second differences. The output was specified by Gaussian

curves spanning the duration of the syllable nuclei, and setting

the rest of the output as zero. The neural network was trained

using the gradient descent algorithm.

The acoustic correlates used for detection of syllable nuclei

are based on our limited understanding of the production fea-

tures relating to the perception of the syllable, such as a high

energy sonorant or a relatively loud sound carrying clear pitch.

The concepts of perception of energy and pitch are due to some

features derived from a finite duration segment of speech. For

example, energy is generally computed over 20-30 ms, assum-

ing stationarity of the vocal tract system during that interval.

Likewise, pitch periodicity can be perceived only if the signal

is processed over a few cycles of the glottal vibration. In fact

the least periodic sounds like whispers, fricatives, affricates and

stops do not correpsond to the syllable nuclei. Most voiceless

sounds do not possess the characteristics of syllable nuclei.

In this paper, we examine a set of new acoustic correlates

that can contribute to the perception of high energy sonorants

and relatively loud sound for detecting syllable nuclei. The new

acoustic correlates are based on the fact that in voiced speech,

the primary source of excitation of the vocal tract system is by

the impulse-like characteristics due to the sharp closure of the

vocal folds in each glottal cycle. It is well known that sharper

the closure, the louder is the speech sound [10]. This can hap-

pen without any relation to the periodicity or energy of the sig-

nal. Also, the vowels or sonorants are perceived louder due to

the resonances of the obstruction free vocal tract. The sharper

the resonances, i.e., lower the bandwidths, the louder is the cor-

responding sound. These two properties, the impulse-like ex-

citation and low bandwidth resonances, can be interpreted as

some kind of point properties, in the sense that impulse-like be-

haviour is confined to a very short (< 1ms) region in the time

domain and the sharp low bandwidth formants have the spectral

energy concentration around the formant frequencies.

We hypothesize that the perception of high energy (loud-

ness) and sonority could be due to the impulse-like excitation

in time domain and sharp resonances in the frequency domain.

Both these are point properties (as opposed to spread) in their

respective domains. Subjective experiments on speech, synthe-
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sized by suppressing and enhancing these two point features,

confirm this hypothesis. Note that both these features are robust

in the sense that they are local high SNR regions in their respec-

tive domains. We develop acoustic correlates that reflect these

features, and show that they can help in identifying syllable nu-

clei.

In Section 2 we conduct subjective experiments to justify

the hypothesis by modifying the excitation and resonance fea-

tures in the signal. Section 3 gives an algorithm to detect the

syllable nuclei. Section 4 gives the performance of the sylla-

ble nuclei detection method on TIMIT and Switchboard data.

Robustness of the method is examined by evaluating its perfor-

mance on the NTIMIT corpus. Section 5 gives a summary of

the work reported in this paper.

2. Subjective experiments

In the speech signal the characteristics of the time varying vo-

cal tract system can be represented approximately by the linear

prediction coefficients (LPCs) derived for each frame (about 10-

30 ms) of data using LP analysis. The LP residual represents

some of the features of the time varying excitation. In partic-

ular, in voiced segments the impulse-like excitation is reflected

as large energy of the residual signal around the glottal closure

instants (GCIs). The impulse-like behaviour can be seen better

in the Hilbert envelope (HE) of the LP residual. The sharpness

of these peaks around the GCIs gives a perception of loudness

[10]. The sharpness can be increased by multiplying the resid-

ual using a sequence of Gaussian-shaped pulses located around

the GCIs. The modified LP residual is used to excite the time

varying all-pole model represented by the LPCs for each frame.

On the other hand, to decrease the sharpness of the exci-

tation peaks, each sample of the LP residual is divided by the

square root of the corresponding sample in the Hilbert envelope

of the LP residual.

The LPCs for each frame represent the shape of the vocal

tract for that frame, and hence contain the information of the

resonances or formants of the vocal tract system. The sharpness

of the resonances in the LP spectrum may add to the perception

of loudness caused by increasing sharpness of the peaks in the

HE of the LP residual around the GCIs. To increase the sharp-

ness of the peaks around the formant peaks, the speech signal

(sampled at 8KHz) is passed through an all-pole filter repre-

sented by LPCs, which are derived from the LP residual signal

of the speech signal obtained using a 1st order LP analysis. The

first order LP analysis reduces the slope of the spectrum in the

LP residual signal. A 7th order LP analysis of the 1st order LP

residual gives LPCs which has peaks at the formant locations,

however with a nearly flat overall slope. Hence passing the orig-

inal speech signal through an all-pole filter represented by the

LP7 coefficients emphasize the formants without changing the

overall spectral slope.

On the other hand, the sharpness of the formant peaks can

be decreased by passing the original signal through an inverse

filter represented by the LP7 coefficients.

The original signal is thus modified in four ways, where the

formant peaks are enhanced and de-emphasized, and the excita-

tion peaks in the LP residual are sharpened and de-emphasized.

DR (de-emphasized residual) and EG refer (emphasized

GCI) to the modified signals generated from the de-emphasized

residual and the enhanced residual respectively. FS (formant

suppressed)and FE (formant enhanced) represent the modified

signal with suppressed formant peaks and emphasized formant

peaks respectively.

DR EG FS FE

Sentence 1 -0.5 0.125 -0.625 0.75

Sentence 2 -0.5 0.125 -0.75 0.5

Sentence 3 -0.75 0.25 -0.75 0.75

AOS -0.583 0.167 -0.708 0.67

Table 1: Average opinion scores for the modified signals with

respect to the original signal.

Listeners were asked to listen to the original speech and the

corresponding modified signals to mark the loudness level com-

pared to the original signal. There were overall 3 sentences of

2-3 seconds duration each. Eight subjects were asked to give

a score of +1 or -1 and 0 for the modified signals if they per-

ceived the modified signals to be louder, muffled or the same as

the original signal, respectively. The sentences were presented

in the following manner: original, DR, EG, original, FS and FE.

Table 1 gives the average opinion scores for the various modi-

fied signals on a scale of -1 to +1.

The the average opinion score (AOS) for the modifica-

tions for all three sentences calculated by averaging the opinion

scores across all 8 listeners. The AOS indicates that there is a

loss in perception of loudness if any one of the two, excitation

source information or formant peaks are suppressed.

The subjective listening tests of the signal and modified

speech signals indeed confirm that perception of loudness

changes if any one of the two, excitation source information

or the vocal tract system information is changed. The absence

of the sharpness of the excitation peaks in the LP residual and

the high bandwidth of the formant peaks in the modified signals

give a perception of less loudness as compared to the original

signal.

This can be seen in the spectrogram plots of the original

signal as compared to the modified signals in Fig.1. The spec-

trograms in Fig.1 have been computed with a frame length of

20ms and a shift of 10ms. In Fig.1(b) and 1(c), the formant

peaks have been suppressed and enhanced, respectively. The

formant structure can not be easily observed in Fig.1(b), while

it can be clearly seen in Fig.1(c). Fig. 1(d) and 1(e) correspond

to the modified signals with a de-emphasized residual and en-

hanced residual, respectively. We can clearly observe from Fig.

1(d) and 1(e) that though the formant information is preserved,

the formant magnitude is de-emphasized in 1(d) and empha-

sized in 1(e).

This observation gives us motivation to look at the excita-

tion peaks and the formant peaks as acoustic correlates of loud-

ness of speech, and thus to derive an envelope-based syllable

nuclei detection method.

3. Envelope-based syllable nuclei detection

In this section we will describe the two evidences which are

used to derive envelopes for syllable nuclei detection. They are

based on the two point properties discussed before, namely, the

excitation peaks in the LP residual and the formant peaks in the

group delay spectrum.

3.1. Short time energy of the Hilbert envelope of LP resid-

ual (EHE)

A 14th order LP analysis is performed for each frame of 20ms

with an overlap of 10ms at a sampling rate of Fs = 8kHz.
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Figure 1: Spectrograms for the Hindi sentence ‘mujhe niran-

tar ki ja:nka:ri acchi lagi’ corresponding to (a) Original speech

signal (b) Formant suppressed (FS) (c) Formant Enhanced (FE)

(d) De-emphasized LP residual (DR) (e) Emphasized LP resid-

ual (EG) .

The excitation peaks can be enhanced by computing the Hilbert

envelope of the LP residual, as it serves to remove the phase

information present in the excitation source [11]. The Hilbert

envelope is the magnitude of the analytic signal s��n) of the

LP residual e�n). The analytic signal s��n) is,

s��n) = e�n) + jeh�n) (1)

where eh�n) is the Hilbert transform of the LP residual e�n),
where eh�n) is calculated as follows:

eh�n) =

�
���{−j�{e�n)}}� if f ≥ 0

���{j�{e�n)}}� if f < 0
(2)

where f is the frequency and � denotes the Fourier transform.

The Hilbert envelope he�n) of the LP residual e�n) is com-

puted as follows,

he�n) =
�

e2�n) + e2h�n) (3)

The GCIs of the speech signal are extracted using the zero

frequency filtering (ZFF) method [12]. Energy of the HE of the

LP residual is calculated around the GCIs with a window length

of 1 ms and a shift of 1 sample. We take the local maxima of the

energies calculated in this region as a measure of the loudness

of the speech signal. We will call this energy profile as EHE.

To extract the syllable nuclei we need only observe gross

level changes in the EHE. Thus to smear the local variations

in the EHE we convolve it with a Hamming window of length

50ms. However a small peak corresponding to a syllable nu-

cleus and lying in the neighbourhood of a relatively large peak

will tend to get de-emphasized by this smoothing operation.

Thus the square root of the EHE profile is taken before con-

volving it with the Hamming window.

3.2. Maximum formant magnitude envelope (MFME)

It is known that the group delay spectrum (GD) of a signal is

proportional to the squared magnitude spectrum around the for-

mant frequencies [13]. That is,

τg�ω) ∝ |X�ω)|2 (4)

whereX�ω) is the Fourier transform of the signal x�n).
The group delay function (GD) can be represented as a

function of the real and imaginary parts of the signal spectrum

in the following way [14],

τg�ω) =
Xi�ω)X

�

r�ω)−Xr�ω)X
�

i�ω)

X2
r �ω) +X2

i �ω)
(5)

where,

X�ω) = Xr�ω) + jXi�ω) and
X ��ω) = X �

r�ω) + jX �

i�ω) is the Fourier transform of the sig-

nal nx�n).
The GD function is computed using the method described

in [15] for each frame of 20 ms with a shift of 10 ms at a sam-

pling rate of Fs = 8kHz. The formant peak with the highest

magnitude in the GD spectrum will carry the most energy for

that segment of speech. A contour is constructed by taking the

formant peak in the GD spectrum with the maximum amplitude

for each frame. The square root of this contour is taken as the

MFME contour. The MFME contour is also smoothed by con-

volving it with a Hamming window of 50ms.

3.3. Combined evidence

Before combining the two evidences, we enhance each evi-

dence. Each evidence is enhanced in the following manner. The

first order difference (FOD) of the evidence is calculated. Spu-

rious peaks in the individual evidences are eliminated using a

simple slope counting method. The evidence is then amplitude

normalized between two consecutive negative to positive zero

crossings of the differenced evidence signal. The evidences

EHE and MFME are then combined by taking their samplewise

mean. This combined evidence is then normalized. A simple

peak picking algorithm is used to find the local peaks. These

peaks correspond to potential syllable nuclei.

Each peak in the individual evidences will have an ampli-

tude of 1. So an amplitude threshold of 0.5 is used to remove

spurious peaks in the combined evidence which fall below this

threshold. A minimum spacing threshold of 75ms is used to re-

move a smaller peak if it lies in the neighbourhood of a larger

peak. An adaptive thresholding technique described in [3] is

used to further validate the detected peaks. For a peak, the com-

bined evidence must fall below a threshold t, which is a fraction

of the local maxima within a rangeD around the peak. We have

taken t = 0.8 and D = 75ms. Peaks lying in unvoiced regions

are removed by performing voice/unvoiced segmentation on the

speech signal. Voiced/unvoiced segmentation of speech is done

on the basis of the strength of excitation of the voiced epochs

[16]. These spurious peaks may correspond to fricatives which

have high energy.

Fig.2 illustrates the working of the syllable nuclei detection

algorithm. The shaded regions correspond to the vowel regions

in the sentence. The peaks in Fig.2(f) marked green are hits.

4. Evaluation

To evaluate the proposed method for syllable nuclei detection,

the phonetically transcribed TIMIT and Switchboard corpora
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Figure 2: Syllable nuclei detection (a) Speech signal for the

TIMIT sentence ‘How permanent are their records?’. (b) Max-

imum Formant Magnitude Envelope (MFME). (c) Enhanced

MFME. (d) Energy of Hilbert Envelope of LP residual (EHE)

(e) Enhanced EHE. (f) Combined Evidence. The shaded area

correpsonds to the ground truth for syllable nuclei durations.

are used as the ground truths for the location of the vowel

phones. If a detected syllable nuclei lies in the region of the

vowel phone, it is marked as a hit. First, the performance of

peak picking in the individual evidences on the TIMIT database

is evaluated, and then compared with the performance of the

combined evidence (COMB1).

In addition, the traditional energy contour is used to set a

baseline for detecting syllable nuclei. The energy contour is

smoothed by convolving it with a 50ms Hamming window and

then normalized. The differenced energy contour is calculated.

The energy contour is then normalized between the consecu-

tive negative to positive zero crossings of the differenced energy

contour.

For the purpose of validating the EHE evidence with the

MFME evidence, another system is designed where the two ev-

idences are combined by taking their product instead of their

mean. We shall call this system as COMB2.

[�] Energy EHE MFME COMB1 COMB2

Recall 68.75 87.84 82.34 92.67 74.37

Precision 98.53 89.95 90.19 91.06 96.02

F-measure 80.99 88.88 86.09 91.86 83.82

Table 2: Comparison of syllable nuclei detection using the en-

ergy envelope, EHE envelope, MFME envelope and the com-

bined envelopes COMB1 and COMB2.

The performance of the individual evidences and the com-

bined evidence are tabled in Table 2. Recall is defined as the

ratio of the number of hits to the number of syllable nuclei in

the ground truth. Precision is defined as the ratio of the hits to

the number of detected nuclei, while the F-measure is the har-

monic mean of the recall and precision. The COMB1 system

has a higher hit rate and a better F-measure than the COMB2

system, although its precision is lower. The energy contour

guided method has the best precision, however its recall rate

is very low. From Table 2, we can infer that in most cases,

the individual evidences EHE and MFME reinforce each other,

though they also provide complementary information to each

other when one of the evidences is missing in a syllable nuclear

position. This can also be seen in Fig. 2(c). The strength of

(a) TIMIT

[�] RG BLSTM COMB1 COMB1 + Energy

Recall 86.59 92.22 92.67 91.24

Precision 98.86 95.82 91.06 95.6

F-measure 92.07 93.98 91.86 93.37

(b) STP

[�] BLSTM COMB1 COMB1+Energy

Recall 84.44 87.98 85.7

Precision 83.11 83.31 85.47

F-measure 83.74 85.58 85.61

Table 3: Comparison of rhythm guided syllable nuclei detection

(RG), BLSTM syllabification method and proposed method for

the TIMIT and Switchboard corpora.

the impulse like events in the error residual for the phone /ix/ in

Fig. 2 is very low, which results in a small EHE evidence and

is thus not considered for evidence normalization. For purposes

of comparing with other syllable nuclei detection methods, we

will consider the COMB1 system.

We compare our results against the state of the art speech

rhythm guided syllable nuclei detection (RG) algorithm de-

scribed in [5] and the bidirectional long-short-term memory

neural network (BLSTM) syllabification method proposed in

[9]. Table 3(a) and 3(b) compare the performance of the pro-

posed method with RG and BLSTM for the phonetically tran-

scribed TIMIT and Switchboard (STP) corpora respectively.

We have not compared our method with RG for conversational

speech as we couldn’t find enough time to implement it on our

own. The precision of the energy contour based syllable nuclei

detection method has been exploited to subsequently reduce the

false alarms. The individual evidences EHE and MFME are

set to zero if the amplitude of the corresponding sample in the

energy contour lies below a certain threshold. The proposed

method performs comparably for the TIMIT database, but out-

performs the BLSTM and RGmethods for the Switchboard cor-

pus. To test the robustness of the proposed syllable nuclei de-

tection method, we have tested it on the NTIMIT database and

obtained a recall rate of 91.46�, precision of 79.11� and an

F-measure of 84.83�.

5. Summary

The syllable nuclei positions are usually occupied by sonorants

which are perceptually louder than other speech sounds. In this

paper, we have explored two perceptually significant acoustic

features which may be helpful for syllable nuclei detection. The

short time energy of the HE of the LP residual and the formant

peak information, both are features which are point properties in

their respective domains, i.e., time and frequency. We have con-

ducted subjective listening tests which validate that these point

features are important for the perception of loudness in speech.

These two features are used to generate a profile whose peaks

may correpsond to potential syllable nuclei. We then evaluate

the performance of our syllable nuclei detection method against

RG [5] and BLSTM [9] and find that the results are on par with

the current state of the art methods in case of the TIMIT corpus

and significantly better for the Switchboard corpus. The advan-

tage of our proposed method is that no training is required, and

it is computationally fast.
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Acoustic analysis of trill sounds
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In this paper, the acoustic–phonetic characteristics of steady apical trills—trill sounds produced by

the periodic vibration of the apex of the tongue—are studied. Signal processing methods, namely,

zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation

source and the resonance characteristics of the vocal tract system, respectively. Although it is natural

to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that

trilling influences the glottal source of excitation as well. The excitation characteristics derived using

zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal

epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-

time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract

system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel

contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.3688470]

PACS number(s): 43.72.Ar [SSN] Pages: 3141–3152

I. INTRODUCTION

Trills are a stricture type (Catford, 1977, p. 127), charac-

terized primarily by ‘the vibration of one speech organ

against another, driven by aerodynamic conditions’ (Lade-

foged and Maddieson, 1996, p. 217). The most common

trills involve the tip of the tongue vibrating against a contact

point in the dental/alveolar region, and are called apical trills
(McGowan, 1992; Ladefoged and Maddieson, 1996). Apical

trills are the most common variety of trills among Indian lan-

guages. The objective of this paper is to derive the acoustic

characteristics of apical trills from the speech signal. The

effect of trilling on the glottal source of excitation and on the

resonance characteristics of the vocal tract system is studied.

The effect of different vowel context on the resonance char-

acteristics of apical trills is also studied. The phonetic con-

vention of the vowel context is indicated with a superscript

to the base phoneme, such as [ra] to denote a voiced apical

trill [r] adjacent to the vowel [a]. In this paper, characteris-

tics of the voiced apical trill [r] are studied in the context of

three different vowels [a], [i], and [u].

The phonological aspects of trills, such as their occur-

rences in various world languages, and their relationship

with other phonemes, have been reported by Maddieson

(1984), Ladefoged and Maddieson (1996), and Ruhlen

(1987). The production of an apical trill involves satisfying

several articulatory, as well as aerodynamic constraints. The

articulatory constraints concern the lingual and vocal tract

configurations. The aerodynamic constraints concern the

maintenance of the right amount of tension at the apex

(tongue tip) and the requisite volume velocity of air flow

through the stricture, which are essential for the initiation

and sustenance of the apical vibration. The articulatory

mechanics of tongue-tip vibration have been described by

Catford (1977), Ladefoged and Maddieson (1996), Recasens

(1991), and Spajic et al. (1996), and modeled by McGowan

(1992). The aerodynamic characteristics and the phonologi-

cal patterns of trills across languages are studied in detail by

Solé (2002). Estimates of the transglottal (subglottal and

supraglottal) pressure values with respect to the atmospheric

pressure, and the pressure gradient across the lingual con-

striction, essential for initiating and sustaining voicing and

trilling, respectively, have been obtained based on oropha-

ryngeal pressure and oral air flow measurements. Solé

(2002) has also studied some of the phonological patterns,

such as the absence of nasal trills, preference for voiced

trills, alternation and co-occurrence of trilling and frication,

and trill devoicing, from an aerodynamic point of view.

Ladefoged and Maddieson (1996) have reported that

acoustic trills in linguistic use usually consist of two to five

periods, whereas apical trills typically consist of two to three

periods of vibration (geminate occurrences may be longer).

Based on spectrographic measurements made for Finnish

and Russian apical trills, Ladefoged and Maddieson (1996)

report a typical trill period of 50 ms (open and closed phases

each of 25 ms duration), and hence a trilling rate of about 20

cycles in a second. Lindau (1985) reports a mean trilling rate

of 25 Hz (18–33 Hz) measured over 25 speakers from seven

different languages. An estimate of the trilling frequency of

the tongue tip based on mechanical lumped element model-

ing of trill aerodynamics is given by McGowan (1992). The

trilling rate of the tongue tip can be estimated using the for-

mula Fr ¼ 1= 2p
ffiffiffiffiffiffiffiffi
MC
p� �

¼ 30 Hz, where M is the mass of the

tongue tip, estimated to be �1 g (by assuming an approxi-

mate surface area of the tongue tip involved in vibration to

be 1 cm2), and C is the mechanical compliance (inverse of

stiffness) per unit area of the tongue tip (approximated to be

3� 10�5 cm3/dyne) (McGowan, 1992; Stevens, 1999). Sev-

eral studies on phonemic trills in Spanish have been

reported, such as categorization of the Spanish dialect con-

tinuum (Lipski, 1994), acoustic correlates to distinguish one
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phonemic trill from another (Colantoni, 2006), and acoustic

characterization of trills (Henriksen and Willis, 2010). The

acoustic correlates studied mostly concern the number of

occlusions (or trill cycles) and the duration of the trill. Man-

ual measurements of these parameters are made by observ-

ing the acoustic waveforms and the spectrograms. Based on

these acoustic parameters, a detailed statistical analysis of

trills in Spanish in terms of its sociolinguistic implications

has been made by Diaz-Campos (2008) and Henriksen and

Willis (2010). Studies made in deriving the acoustic–-

phonetic characteristics of trills from speech data are limited

by the standard spectrographic tools derived from short-time

spectral analysis. The dynamic nature of the vocal tract sys-

tem during production of trills is likely to have an effect on

the excitation source due to coupling of the excitation source

and the vocal tract system.

Currently available signal processing techniques may not

be adequate to study the dynamic source and system charac-

teristics of the trill sounds. In this paper, some recently pro-

posed signal processing techniques, together with

conventional methods, are examined for the study of dynamic

characteristics of the excitation source and the vocal tract sys-

tem resonances. As discussed in the later sections, the new

analysis techniques provide an interpretation of the results in

terms of production characteristics of the trill sounds.

Murty and Yegnanarayana (2008) have proposed an

approach based on the zero-frequency filtering (ZFF) of

speech signals for analysis of impulse-like characteristics in

the excitation source. The ZFF-based approach gives a sim-

ple but effective method for detection of the instants of glot-

tal closure (GCIs) or epochs in voiced sounds. The method

also provides a measure of the strength of excitation at the

epochs and the instantaneous fundamental frequency (Yeg-

nanarayana and Murty, 2009; Murty et al., 2009). The

regions around the GCIs have high signal-to-noise ratio

(SNR), and hence are useful as anchor points for analysis of

the characteristics of the vocal tract system. Traditional

short-time spectral analysis of speech involves processing

the signal in blocks of 10–30 ms. Magnitude spectrum

computed over block sizes less than 10 ms is not useful for

analysis of the vocal tract system, due to issues caused by

time-frequency resolution. Recently, a new technique called

zero-time liftering (ZTL) of speech signals for analysis of

resonance characteristics of the vocal tract system has been

proposed (Dhananjaya, 2011). The ZTL technique provides

high resolution of the spectral characteristics in temporal do-

main. Multiplication of the speech signal in time domain by

an impulse-like window function provides the high temporal

resolution. This is called the “liftering” operation analogous

to the operation done in cepstrum analysis of speech (Bogert

et al., 1963). Good resolution of the spectral characteristics

in frequency domain is achieved using the group delay anal-

ysis (Yegnanarayana, 1978; Yegnanarayana and Murthy,

1992; Joseph et al., 2006), where group delay is defined as

the negative derivative of the phase of the Fourier transform

of the signal (Oppenheim and Schafer, 1975, p. 19).

The paper is organized as follows: Production character-

istics of lingual trills, primarily the tongue-tip trills, are

described in Sec. II. Section III describes the zero-frequency

filtering-based analysis for extracting the features of the ex-

citation source from the speech signal. Section IV describes

the zero-time liftering technique for analyzing the spectral

characteristics of trills. Analysis of trill sounds in terms of

excitation source and vocal tract resonance characteristics is

given in Sec. V. Characteristics of trills in different vowel

contexts are examined. The acoustic features for spotting

trills in continuous speech are discussed. Characteristics of

the voiceless apical trill, as well as the voiced and voiceless

labial trills are also examined in this section. Similarities

and/or contrasts between apical and labial trills are dis-

cussed. A summary of the paper along with directions for

further research is given in Sec. VI.

II. PRODUCTION CHARACTERISTICS OF APICAL
TRILLS

In the production of an apical trill the apex is voluntarily

positioned by the speaker to make a contact (Ladefoged and

Maddieson, 1996, p. 218) with the corresponding upper ar-

ticulator. Almost immediately, the pulmonic egressive air-

stream that is flowing into the oral cavity increases the

pressure gradient across the stricture. Due to the fine interac-

tion between “tongue-tension and volume-velocity of the

air-flow” (Catford, 1977, p. 127), the apical stricture gets

broken and the apex falls down to some extent releasing part

of the positive pressure gradient in the oral cavity. Then due

to the Bernoulli effect, the apex recoils to meet the upper ar-

ticulator and forms the next event of stricture. Thus, the

closure–opening cycle repeats itself a few times, and the

total number of such cycles constitutes the complete trill.

One such closure–opening cycle may be referred to as a “trill

cycle,” and the different phases of an apical trill are depicted

in Fig. 1. The typical rate of trilling of the tongue is

�20–30 Hz, and can be measured from the acoustic wave-

form or the spectrogram (McGowan, 1992; Stevens, 1999;

Lindau, 1985; Ladefoged et al., 1977).

Trill sounds usually have at least two trill cycles for

them to be discriminated from another category of sounds,

namely taps ([�]), which have one single movement of the

tongue from any arbitrary position to the roof of the oral cav-

ity and back, analogous to a trill cycle. Lindau (1985,

p. 166) observed that “from an acoustic point of view, a trill

can be regarded as a series of taps.” On the other hand, as

observed by Recasens (1991), and Recasens and Pallars

(1999), an apical trill differs from an apical tap in the overall

tongue body configuration. Based on electropalatographic

FIG. 1. (Color online) Illustration of different phases of the trill cycle for an

apical trill. The durations and rate of change of articulator shown are only il-

lustrative, and not actuals.
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data, they observed that apical trills have a lower predorsum

and a retracted postdorsum positions as compared to that of

apical taps. Each of the constituent trill cycle is produced

due to the Bernoulli effect, than due to voluntary movement

of the apex of the tongue as in the case of a tap. But it should

be noted here that the production of a trill still requires vol-

untarily maintaining the correct tongue body position, the

right amount of tension (or stiffness) at the apex, and the req-

uisite volume velocity of air flow across the stricture. In con-

tinuous speech two to three trill cycles are common (Lindau,

1985; Ladefoged and Maddieson, 1996; Henriksen and Wil-

lis, 2010), whereas in isolation they can be produced as a

steady sustained sound with several (> 3) trill cycles.

III. ZERO FREQUENCY FILTERING FOR ANALYSIS OF
EXCITATION CHARACTERISTICS

Recently a zero-frequency filtering method was pro-

posed for extracting the impulse-like characteristics of the

excitation source from the speech signal, such as the GCIs,

instantaneous fundamental frequency (F0), and strength of

excitation (Murty and Yegnanarayana, 2008; Yegnanarayana

and Murty, 2009). The idea behind filtering the speech signal

at zero frequency is that the effect of an impulse-like excita-

tion source is equally felt throughout the spectrum, including

around the zero frequency, whereas the vocal tract informa-

tion is predominantly concentrated around the formant

peaks. The method involves filtering the speech signal

through a cascade of zero-frequency resonators. A zero-

frequency resonator is an all-pole system with two poles at

z¼þ1 in the z-plane, which is equivalent to a sequence of

two cumulative sum operations in time-domain. This leads

to a polynomial-type growth/decay of the output signal. The

polynomial-type growth/decay can be removed by a trend re-

moval operation, which involves subtracting the local mean

from the signal at each time instant (Murty and Yegnanar-

ayana, 2008; Yegnanarayana and Murty, 2009). The result-

ing signal is referred to as the zero-frequency filtered signal.
The positive zero crossings (negative to positive) of the fil-

tered signal correspond to the instants of glottal closure, also

referred to as epochs. The slope of the filtered signal around

the epochs gives a measure of the strength of excitation.
Figure 2(a) shows an example of a steady or prolonged

trill sound uttered in isolation as a CV (consonant–vowel)

unit [raraa] in the context of the vowel [a]. Note that in this

paper, the repetition of the phone label [ra] is used to denote

the prolonged utterance of the phone, and the superscript

denotes the vowel context. The output of cascade of two

zero-frequency resonators, and the ZFF signal obtained after

trend removal are shown in Figs. 2(c) and 2(d), respectively.

The epoch locations given by the positive zero crossings of

the ZFF signal [Fig. 2(d)] are shown in Fig. 2(a) by

downward-pointing arrows. The strength of excitation

(measured at the epoch locations as the slope of the ZFF sig-

nal) and the instantaneous fundamental frequency (measured

as the reciprocal of the time interval between adjacent

epochs) are shown in Figs. 2(e) and 2(f), respectively. The

epoch locations occur at regular instants in most of the

voiced regions (0.1–0.8 s), governed by strong impulse-like

excitations imparted at the instants of glottal closure. The

measured strengths of excitation at these epoch locations are

also large for the voiced regions. In the silence regions

(0–0.1 s and 0.82–0.92 s) and voiceless regions (not shown),

the epoch locations occur at irregular instants due to lack of

any regular impulse-like excitations, and the excitation

strengths measured at these epochs are significantly lower

compared to those in the voiced regions (Murty and Yegna-

narayana, 2008). A simple threshold on the excitation

strength helps to isolate the regions of voiced excitation. The

voiced/nonvoiced decision based on the excitation strength

is shown in Fig. 2(d). The ZFF-based method for extraction

of epoch locations and their strengths has been shown to be

robust against additive noise (Murty and Yegnanarayana,

2008; Dhananjaya and Yegnanarayana, 2010).

Trilling of the tongue tip affects the measured strength

of the glottal excitation, as can be seen in Fig. 2(e). The

strength of excitation varies within a trill cycle, and it is less

during the closed phase as compared to the open phase. This

may be due to the loading of the vocal folds by the closing

of the oral cavity. It is also seen from Fig. 2(f) that the in-

stantaneous fundamental frequency varies due to the trilling

of the tongue tip. In contrast, the contours of the excitation

strength and the instantaneous F0 are relatively smooth

within the vowel region (0.65–0.8 s in Fig. 2). A portion of

the trill region of the waveform in Fig. 2(a) is shown

expanded in Fig. 3 to show the details of the excitation char-

acteristics of the trill. The fundamental frequency F0 seems

to reach a minimum value in the closed phase just before the

release of apical contact, and increases gradually as the api-

cal contact is forced open. At the same time, the F0 move-

ment toward the point of apical contact is not smooth, which

probably hints toward a faster recoil of the apex than the

opening as is observed in the case of vocal folds. More

FIG. 2. (Color online) Zero frequency analysis of a steady or sustained api-

cal trill produced as an isolated CV (consonant–vowel) [raraa]. (a) Speech

waveform and the estimated epoch locations shown by downward

arrows, (b) wideband (WB) spectrogram, (c) output of a cascade of two

zero-frequency resonators, (d) ZFF signal after trend removal along with the

V/NV decision, (e) excitation strength, and (f) instantaneous fundamental

frequency (F0).
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evidence from other modalities such as eletroglottograph

and/or magnetic resonance imaging (MRI) may be required

to comment on the behavior of F0 toward the point of apical

contact. As per the aerodynamics of a pair of stretched mem-

branes, analogous to the vocal folds, a minimum pressure

gradient across the membrane is essential, depending on the

mass and tension of the membrane, for the membrane to flut-

ter or vibrate (Solé, 2002; Herman, 2007). As the subglottal

pressure builds up behind the closed glottis, the pressure gra-

dient between the subglottal and supraglottal air pressures

increases, forcing the vocal folds to open with a burst of air

rushing across the glottis. This results in a temporary reduc-

tion of the subglottal pressure, and hence reduction in the

pressure gradient, allowing the vocal folds to recoil back to

their initial stretched position due to the inherent myoelastic

tension in the membrane. This cycle repeats itself. The pres-

sure gradient has a direct relationship with the rate of vibra-

tion of the vocal folds, meaning, higher the gradient, higher

the rate of vibration (van den Berg, 1957; Fant, 1960, p.

266). When there is a supraglottal oral constriction, as in the

case of closed phase of the trills, the supraglottal oral pres-

sure increases, reducing the pressure gradient across the glot-

tis. This in turn may lead to the reduction in the rate of

vibration of the vocal folds temporarily, which increases

again gradually as the oral constriction is released, causing

an increase in the pressure gradient across the glottis. Such a

phenomenon is also reported by van den Berg (1957) and

Fant (1960, p. 266) during the production of voiced occlu-

sions. Assuming a constant lung effort and a constant tension

in the vocal fold membranes, vibration of the vocal folds is

directly influenced by the pressure gradient across the glottis,

which in turn is influenced by the trilling of the tongue tip.

The pressure gradient decreases during the closed phase,

thus reducing the rate of vibration of the vocal folds. The

pressure gradient increases during the open phase, resulting

in an increase in the rate of vibration of the vocal folds.

Reduction in the excitation strength during the closed phase

can be explained by the reduced air flow due to a reduction

in the transglottal pressure gradient, as observed by West-

bury (1983) in the case of voiced occlusions. It can be seen

from Figs. 2(e) and 2(f) that the fluctuating pattern in the ex-

citation strength and in the instantaneous F0 repeats itself

over a few glottal cycles.

IV. ZERO-TIME LIFTERING FOR ANALYSIS OF
DYNAMIC FEATURES OF VOCAL TRACT SYSTEM

Recently, a new method for analysis, called zero-time
liftering of speech signals was proposed (Dhananjaya, 2011).

The method provides high temporal resolution, simultane-

ously maintaining a good spectral resolution. Liftering of

speech signal in the time domain with a heavily decaying

impulse-like window provides high temporal resolution,

whereas the group delay analysis provides good resolution

of the spectral characteristics. The use of a heavily decaying

liftering function smoothes the spectrum severely resulting

in a polynomial-type growth/decay, analogous to that in the

zero-frequency filtering (Murty and Yegnanarayana, 2008).

The masked or hidden spectral features can be highlighted

by successive differencing of the numerator of the group-

delay function. Phase inconsistencies of some weak higher

formants are handled by computing the Hilbert envelope of

the differenced numerator of the group delay function (Jo-

seph et al., 2006). The resulting spectrum is referred to as

HNGD function.
Figure 4 shows the HNGD plots computed at every

sampled time instant for a prolonged utterance of the trill

[rara] in the context of following vowel [a]. The speech

waveform and the instants of glottal closure (downward

FIG. 3. (Color online) A portion of Fig. 2 expanded to illustrate the trill fea-

tures. (a) Speech waveform along with estimated epoch locations, (b) excita-

tion strength, and (c) instantaneous F0.

FIG. 4. (Color online) Waveform of a steady apical trill [rara] and the corresponding HNGD plots computed for every sample shift. The epoch locations are

marked by downward arrows above the waveform.
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arrows) are also shown along with the HNGD plots for refer-

ence. The HNGD plots are computed over segments of

length 4 ms (M¼ 40 at the sampling rate Fs¼ 10 000), and

using a discrete Fourier transform length of N¼ 2048. The

segment of speech shown in Fig. 4 has approximately five

trill cycles over 200 ms of duration, which is equivalent to a

trilling frequency of �25 Hz. The SNR of the speech signal

varies continuously with time, and it can be seen that the

HNGD plots around the high SNR regions (i.e., around the

instants of glottal closure) are large compared to the HNGD

plots in other portions of the signal. The time-varying nature

of the spectral features can be seen better in Fig. 5, which

shows one trill cycle of the speech signal and its HNGD

plots computed at intervals of 1 ms. The GCIs are marked as

downward pointing arrows. It can be seen from the wave-

form that at the beginning of the opening phase (�118 and

�150 ms) there is a burst along with a bit of frication due to

the sudden opening of the tongue tip. The effect of the burst

and the frication can be seen in the spectrum as a large peak

around 3 kHz. The burst is more prominent around the time

instant 150 ms compared to that around 118 ms, depending

on the synchronization between the instant of opening of the

tapping and the instants at which the spectrum is computed.

This shows that one may fail to capture the instantaneous

changes in the spectral characteristics, if the signal is

sampled only at the epochs or even at a finer sampling rate

of every 1 ms. Also, the trill sound seems to have character-

istics of a voice bar [predominant low frequency band

around the fundamental frequency without any significant

formant structure as in the case of voiced occlusions (Dha-

nanjaya et al., 2008; Clark et al., 2007, p. 278)] during the

closed phase, which is partly apparent from the signal (in the

region 145–150 ms), but cannot be seen in the HNGD plots

of Fig. 4. The large dynamic range between the HNGD plots

in the open phase and the closed phase within a trill cycle,

and between the closed and open phases of the glottal cycle

(region around the GCI), makes it difficult to observe the

dynamic spectral characteristics of all regions of a trill sound

simultaneously. One way of observing the instantaneous

dynamic nature of the trill sounds is by normalizing the

HNGD plots computed at every time instant. Figures 6(a)

and 6(b) show the HNGD plots for one trill cycle with and

without normalization. In Fig. 6(b) the HNGD plots are nor-

malized by dividing each plot by its maximum value, so that

all the HNGD plots are now in the range of 0–1. The instan-

taneous or time-varying spectral characteristics of the trill

sounds, such as the large spectral peaks around 3.5 kHz

(�118 and �150 ms) due to bursts, and the voice-bar-like

characteristics �145 ms, can be observed better in Fig. 6(b)

compared to Fig. 6(a).

V. ANALYSIS OF TRILLS IN CONTINUOUS SPEECH

Like other continuants, trills are influenced by the adja-

cent vowel(s). In this section we examine the characteristics

of a trill sound in the context of vowels [a], [i], and [u],

which form the vertices of the vowel triangle in the F1–F2

formant space. Trills can also undergo transitions from one

FIG. 5. (Color online) Waveform for one trill cycle of an apical trill [rara], and the corresponding HNGD plots computed for every 1 ms shift.

FIG. 6. (Color online) Waveform for one trill cycle of an apical trill [rara]

and the corresponding HNGD plots. (a) Unnormalized HNGD plots and (b)

normalized HNGD plots.

J. Acoust. Soc. Am., Vol. 131, No. 4, April 2012 Dhananjaya et al.: Analysis of trill sounds 3145

Downloaded 13 Apr 2012 to 203.199.213.66. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



vowel context to another, when they occur in between two

vowels. Other categories of trills, namely, voiceless apical

trills and bilabial trills, are also examined in comparison

with the voiced apical trills.

A. Effect of vowel context on trills

A comparative study between the tap [�] and the apical

trill [r] by Recasens and Pallars (1999) shows that trills are

less affected by adjacent vowels as compared to taps, which

is mainly due to the more constrained lingual position

required for the production of an apical trill as against a tap.

Recasens and Pallars (1999) studied the coarticulation

effects of apical trills with adjacent vowels using electropa-

latographic data, as well as formant frequency data, to show

that a trill cannot be considered as a geminate correlate of a

tap. Nevertheless, apical trills can be produced with varying

vocal tract configurations irrespective of the small degree of

freedom for variability. In this section, apical trills produced

by a trained phonetician (male) in the context of three vow-

els [a], [i], and [u] are used to study the effect of vowel con-

text on the trill. The three vowels provide three distinct

vocal tract configurations.

Figure 7 shows the HNGD plots for trills uttered in three

different vowel contexts, [araraa], [iririi], and [ururuu]. The

trill sounds have been uttered as isolated VCVs (vowel–-

consonant–vowel), where the consonant C is the trill [r] and

the vowel V is one of [a], [i], and [u]. The HNGD plots

clearly show that the spectral peaks in the region of trill

sounds are different in each of the three vowel contexts. This

shows that the production of trill sounds need not have a

unique vocal tract shape, although it has a highly constrained

lingual configuration. Another observation that can be made

from the HNGD plots is that the resonances of the trill

sounds are more aligned with that of the vowels [a] and [u],

as compared to that of [i]. This may be because the front-

high tongue dorsum position for [i] needs to be retracted

back considerably for the production of trill, which can be

seen in terms of a decrease in second formant from [i] to [r].

The amount of reconfiguration required by the tongue body

in the transition from a vowel to trill can be observed in

terms of the changes in the vocal tract resonances. Figure 8

shows the locations of the context-dependent trills in the

FIG. 7. (Color online) Waveform

and HNGD plots of the apical trill

[r] in the context of three different

vowels [a], [i], and [u]. (a) [araraa],

(b) [iririi], and (c) [ururuu].

FIG. 8. (Color online) Vowel triangle formed by the vowels [a], [i], and [u],

and the relative positions of the corresponding trills [ra], [ri], and [ru],

respectively. The F1 and F2 values shown here are the mean values,

obtained by averaging the F1 and F2 values estimated at every 1 ms shift

from a single utterance of the VCVs [araraa], [iririi], and [ururuu] by a trained

male phonetician.
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F1–F2 (first two formants) space, relative to the vowel trian-

gle formed by the three vowels.

It can be seen that the change in the first two formants is

minimal for a trill in the context of [u], whereas it is maxi-

mum for [i]. The largest F1 movement (around �250 Hz)

between a vowel and a trill is observed in the context of [a]

as the vocal tract changes from an open to a more closed

position. Similarly, the largest F2 movement (�500 Hz) is

observed in the context of [i] as the frontal tongue dorsum

position for [i] is retracted for the production of the trill.

Comparison of trills produced in the three different vowel

contexts (marked as circles in Fig. 8) shows that F1 has a

narrow spread of �150 Hz (from approximately 350 to

500 Hz), whereas F2 has a broader spread of �900 Hz (from

approximately 800 to 1700 Hz). The small variation in F1

shows that the length of the vocal tract does not vary much,

and is the longest (lowest F1) in the context of vowel [u].

The large variations in F2 may be attributed to the flexibility

in the tongue dorsum position for the production of trills,

with a highly retracted or back position in the context of [u]

producing the lowest value of F2. This observation based on

the acoustic data may probably be verified by an analysis of

data from other modalities, such as electropalatography, x-

ray, and/or MRI. Although apical trills tend to take on the

spectral characteristics of the adjacent vowel to a certain

extent, they also tend to move toward a common space, due

to the inherent articulatory constraints in their production.

Figures 7 and 8 show the characteristics of trills pro-

duced with a fixed vocal tract configuration (one of the three

vowels [a], [i], and [u]) on either side. Trills can also be pro-

duced with a continuously changing vocal tract when the

vowels on either side of the trill are not the same. Figure 9

shows the spectral characteristics of trills uttered as isolated

V1CV2 units, where C denotes the apical trill [r], and V1 and

V2 (V1=V2) are one of the three vowels [a], [i], and [u].

The continuous transition of the spectral peaks from one

vowel context to another can be clearly seen. In the case of

trills transiting between vowels [a] and [i] {[ararii] and

[iriraa] as in Figs. 9(a) and 9(b)}, the key feature is the exag-

gerated movement of the second formant at the boundary

between [ri] and [i], whereas the transition of formants

between [ra] and [a] is more gradual. This is mainly due to sig-

nificant reconfiguration required in the tongue body position

between [i] and [r], as seen from Figs. 7 and 8. In the case of

trills transiting between [u] and [a] {[araruu] and [ururaa] as in

Figs. 9(c) and 9(d)}, the key feature is the absence of any sig-

nificant movement in the formants, as opposed to the case

between [a] and [i], or [i] and [u]. Again trills transiting

between [i] and [u] {[iriruu] and [ururii] as in Figs. 9(e) and

9(f)} indicate a clear but gradual movement of the tongue

body, as can be construed from the gradual movement of F2.

B. Features for spotting steady trills in continuous
speech

Acoustic cues for spotting steady trills in continuous

speech are explored in this section. Unlike isolated utterances

of trills, the majority of the trills in continuous or spontaneous

speech tend to have fewer (less than three) trill cycles. They

may have either one or two trill cycles, or the trilling may be

totally absent at times, with the resulting sound being an

approximant. Analysis of trills in the previous section shows

the dynamic nature of the spectral characteristics of the trills,

which vary with the vowel context. Hence, representation of

the spectral characteristics of trills for spotting in continuous

speech is a difficult issue. For spotting steady trills in continu-

ous speech, an approach based on acoustic–phonetic knowl-

edge using the excitation source characteristics seems to be

more appropriate than a statistical approach using the spectral

features. The excitation features that are useful in spotting the

trills are the excitation strength and the instantaneous funda-

mental frequency. It can be recalled, Fig. 2 and Sec. III, that

the excitation strength and the instantaneous F0 vary in the

trill region, whereas these parameters are almost steady and

smooth for other voiced sounds. Figure 10(a) shows the wave-

form of a short utterance in Telugu, an Indian language, con-

taining an apical trill. It can be seen that there are only two

trill cycles in the utterance around the time instance 0.4 s

(from approximately 0.35 to 0.45 s). Figures 10(d) and 10(e)

show that the fluctuations in the excitation strength and the in-

stantaneous F0 can be observed for the trill sounds in continu-

ous speech, which may be useful for distinguishing these

regions from other voiced regions.

The speech waveform for a trill sound reflects two kinds

of periodicity—a longer periodicity originating from the trill

cycles and a shorter periodicity reflecting the glottal cycles.

The presence of these two periodicities can be used as an addi-

tional cue for spotting trills in continuous speech. Normalized

cross-correlation (NCC) can be used to measure the periodic-

ity in a given signal. The NCC values for a given sequence

x[n], starting at an arbitrary time instant n, are computed as

q k½ � ¼

PM�1

n¼0

x n½ �x nþ k½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM�1

n¼0

x2 n½ �
� � PM�1

n¼0

x2 nþ k½ �
� �s ; (1)

where M is the window size over which NCC is computed

and k is the shift or time-lag. The NCC values computed for

a segment of trill are plotted in Fig. 11(b). The window size

M used is 30 ms (240 samples at a sampling rate of 8 kHz). It

can be seen that the NCC plot has multiple peaks. The high-

est peak (marked as TC—trill cycle), excluding the peak at 0

time-lag, corresponds to the periodicity due to apical

vibration, and the first peak (marked as GC—glottal cycle)

corresponds to the periodicity due to glottal vibration. Note

that for a typical voiced segment, the highest peak in the

NCC plot [Fig. 11(d)] is the peak due to glottal periodicity.

The highest peak value qmax in the NCC plot is given by

qmax ¼ max
k

q k½ �f g; k ¼ N1 : N2½ �; (2)

where N1 and N2 are the lower and upper limits (in number

of samples) for finding the highest peak, and may correspond

typically to 2 and 50 ms, respectively. The time-lag Nmax (in

number of samples) of the maximum NCC value qmax, and

the corresponding frequency of periodicity Fmax in Hz are

given by
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Nmax ¼ arg max
k

q k½ �f g; k ¼ N1 : N2½ � (3)

and

Fmax ¼
Fs

Nmax

; (4)

where Fs is the sampling frequency.

Figure 10(f) shows the Fmax values computed for seg-

ments of speech starting at time instants n corresponding to

the GCIs, using Eqs. (1), (3), and (4). It can be seen that the

Fmax values are low (�30 Hz) in the region of trill, whereas

they are close to the instantaneous F0 values in Fig. 10(e)

FIG. 9. (Color online) Waveform

and HNGD plots of transitional trills

changing from one vowel context to

another. (a) [ararii], (b) [iriraa], (c)

[araruu], (d) [ururaa], (e) [iriruu], and

(f) [ururii].
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obtained using the ZFF signal. Pitch halving or doubling is a

common problem when correlation measures are used to

estimate the periodicity in speech signals, especially in

steady voiced regions. It can be seen in Fig. 10(f) that, at

around the time instance 0.1 s, the Fmax value is half that of

the instantaneous F0. Such spurious estimates can be identi-

fied using the knowledge that the contours of the excitation

strength and the instantaneous F0 are smoother in the steady

voiced regions.

Figure 10(g) shows the maximum NCC values qmax

(marked as diamonds). The peak NCC values q0 correspond-

ing to the glottal periodicity are marked as dots, and they are

obtained by locating the highest peak in q[k] in the range of

2–20 ms. Note that the upper limit of the range is less than

the period of the trill cycle. It can be noticed that q0 and

qmax values are exactly the same in most voiced regions, as

the peak of NCC values around the glottal period also hap-

pens to be the highest peak. In the region of trill, the q0 val-

ues are smaller than the qmax values, which correspond to

the periodicities due to glottal and trill cycles, respectively.

C. Voiceless trills

Trills produced with the absence of glottal excitation (or

voicing) are referred to as voiceless trills. Analogous to their

voiced counterparts, voiceless trills can be produced in dif-

ferent vowel contexts. The spectral characteristics of the

voiceless trill ½r
�

a� in the context of [a] are shown in

Fig. 12(b). It should be noted that the first formant (typically

around 600 Hz) for the vowels [a] (between 30 and 100 ms

and 370 and 450 ms) is not clearly visible. In the first [a]

(between 30 and 100 ms), the first formant is faintly visible

but appears to merge with the second formant at �1500 Hz.

In the second [a] (between 370 and 450 ms), the first formant

is completely invisible, whereas the second and third

FIG. 10. (Color online) Analysis of trills in continuous speech for spotting. (a) Speech waveform of an utterance containing a trill [r] (0.35 to 0.45 s). The

instants of glottal epochs are marked by downward arrows. (b) Wideband spectrogram, (c) ZFF signal with V/NV region marked, (d) excitation strength, (e)

instantaneous F0, (f) Fmax—periodicity (in Hz) corresponding to the maximum NCC value qmax, and (g) NCC values qmax (diamonds) and q0 (dots), corre-

sponding to the highest peak and the peak around glottal pitch period, respectively.

FIG. 11. (Color online) Normalized cross-correlation functions for a typical

trill ([r]) and a voiced segment (vowel [a]). GC denotes correlation due to

glottal cycle (maximum NCC value within the range of 2–20 ms), and TC

denotes correlation due to trill cycle (maximum NCC value within the range

of 2–50 ms).
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formants seem to be merging. This may be due to the pres-

ence of a strong turbulent noise-like excitation, which typi-

cally has less energy in the low frequency region. Similar

characteristics are observed in the case of other vowel con-

texts as well. Figure 13 shows the acoustic cues discussed in

the previous sections for spotting voiced trills in continuous

speech. The figure shows a voiceless trill ½r
�

a� followed by

two bilabial trills, which will be discussed in the next sec-

tion. It can be seen that the energy of the zero-frequency fil-

tered signal [Fig. 13(c)] is significantly high in the region of

voiceless trills, compared to the energy of the voiceless

vowel [a�] on either side. This is primarily because of the

presence of impulse-like excitations generated by the trilling

of the tongue tip. Hence, it is seen that the measured excita-

tion strengths are large [Fig. 13(d)], and are detected as

voiced region [Fig. 13(c)]. The epoch locations estimated

within the voiceless trill are random, due to the noise-like

characteristic of the excitation, and are irregularly spaced

compared to a typical voiced region (vowel [a] between 1 to

1.2 s in Fig. 13). A similar trend can be observed for the in-

stantaneous F0 in Fig. 13(e). The signal periodicity Fmax

measured using the normalized cross-correlation is low

(around 30 Hz) in the trill region as compared to other voiced

regions (around 100 Hz), as can be seen in Fig. 13(f). It is to

be noted that there is doubling of the estimated periodicity

(or halving of Fmax) at some instants toward the beginning of

the trill. This can happen due to the presence of three or

more steady trill cycles. This by itself may not be an issue

for spotting voiceless trills, but needs to be addressed if an

accurate estimate of the trill frequency is required.

D. Labial trills

Production mechanism of bilabial trills (voiced—[B]

and voiceless—[B�]) is similar to that of apical trills. They are

produced at the bilabial place of articulation. They are

reported to occur at the phonemic level in a few languages

such as Piraha and Wari, in South America (Ladefoged and

Maddieson, 1996). Figures 12(c) and 12(d) show the spectral

characteristics, respectively, of voiced and voiceless bilabial

trills. Although it is found that the bilabial trills have highly

nonstationary spectral characteristics, a more careful analy-

sis is essential to study the effect of vowel context, and to

discriminate them from apical trills. The presence of a

voice bar just before the start of trilling can be clearly

seen from Fig. 12(c). Figure 13 shows the acoustic cues

that can be used for spotting bilabial trills in continuous

speech. The utterance contains a voiceless apical trill

(discussed in the previous section), followed by a voiced

bilabial trill (0.7–1.4 s) and a voiceless bilabial trill

(1.4–1.8 s). It can be seen that the zero-frequency analysis

brings out prominently the feeble voicing present during

the closure region (�0.8 s) in the production of [B]. The

excitation strength and the instantaneous F0 values have

much larger fluctuation, compared to apical trills. It is

seen from Fig. 13(f) that bilabial trills have a trilling

FIG. 12. (Color online) Waveform and HNGD plots for VCV units containing (a) voiced apical trill ([araraa]), (b) voiceless apical trill ([a�r�
ar�

aa�]), (c) voiced la-

bial trill ([B
a
B
aa]), and (d) voiceless labial trill ([B�

a
B�
aa�]), all uttered in the context of vowel [a].

3150 J. Acoust. Soc. Am., Vol. 131, No. 4, April 2012 Dhananjaya et al.: Analysis of trill sounds

Downloaded 13 Apr 2012 to 203.199.213.66. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



frequency similar to that of apical trills (�30 Hz). The

normalized cross-correlation values have a trend similar to

that discussed for apical trills.

VI. SUMMARY AND CONCLUSIONS

Trill sounds, especially the apical trills, are produced

with a rapidly changing vocal tract geometry due to the tril-

ling of the apex of the tongue. Although the time-varying

vocal tract dynamics results in continuously changing spec-

tral characteristics, it also seems to influence the source of

excitation. In this paper the characteristics of voiced apical

trills were studied. The excitation source characteristics

were studied by examining the features of excitation derived

using the zero-frequency analysis of speech signals. The

zero-frequency analysis provides information on epoch loca-

tions, strength of impulses at epochs and the instantaneous

fundamental frequency (F0). The instantaneous F0 values

vary within a trill cycle, with lower F0 values in the closed

phase of the trill cycle compared to the open phase. This

fluctuation could be due to an increase in the pressure gradi-

ent across the glottis, when the tapping of the oral cavity by

the tongue tip is released. The increase or reduction in the

pressure gradient also affects the strengths of the impulses at

epochs.

The dynamic spectral characteristics of trills were studied

using the zero-time liftering method for analysis of speech.

Through this method the instantaneous response of the vocal

tract system could be obtained. This new method of analysis

enabled us to examine the details of the spectral features dur-

ing each trill cycle, and also the effect of vowel context on

the spectral features of the trills. The spectral characteristics

of the trills were examined using the HNGD plots derived

using zero-time liftering analysis and group-delay analysis.

Together these analysis methods provide good temporal reso-

lution without affecting the spectral features significantly.

The acoustic cues for spotting trills in continuous speech

were also explored. The fluctuations of the values of the ex-

citation strength at epochs and the instantaneous F0 help in

discriminating trills from other voiced sounds. Normalized

cross-correlation provides an additional cue for spotting

trills. These acoustic cues for spotting will be useful if there

are steady trill sounds in continuous speech with at least two

complete trill cycles. But steady trill sounds with two or

more trill cycles are less frequent in continuous speech. The

acoustic characteristics of voiceless trills and bilabial trills

FIG. 13. (Color online) Analysis of voiceless apical trill and labial trills (voiced and voiceless). The utterance shows a VCV unit ([a�r�
ar�

aa�]) with a voiceless ap-

ical trill (�0.2–0.4 s), followed by two CV units ([B
a
B

aa] and ([B�
a
B�
aa�]) containing a voiced labial trill (�0.8–0.9 s) and a voiceless labial trill (�1.4–1.55 s),

respectively. (a) Speech waveform along with the glottal epochs, (b) wideband spectrogram, (c) ZFF signal with the voicing region marked, (d) excitation

strength, (e) instantaneous F0, (f) Fmax—periodicity (in Hz) corresponding to the maximum NCC value qmax, and (g) NCC values corresponding to trill cycle

(diamonds) and glottal cycle (dots).
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were also examined briefly, mainly from the point of view of

spotting them in continuous speech.

In summary, this paper demonstrates that trilling in the

vocal tract affects the source of excitation. The reduced val-

ues of F0 and the strengths of excitation observed during the

closed phase, as compared to the open phase of a trill cycle,

are in agreement with the observations made on voiced

occlusions (stops). The influence of vowel context on the res-

onance characteristics of trill was examined using the high

temporal resolution of the spectral features provided by the

zero-time liftering analysis of speech. Although trills have

been reported to have a highly constrained lingual configura-

tion so as to meet the articulatory and aerodynamic require-

ments, it was shown in this paper that trills do have a

significant amount of flexibility in terms of tongue body posi-

tion, as seen from a large variation in the second formant.

The main contribution of this paper is in our ability to extract

the dynamic characteristics of both excitation and vocal tract

system resonances, using the new signal processing tools like

zero-frequency filtering and zero-time liftering.

In this paper only a qualitative description of acoustic

features for spotting trills in continuous speech is given. It is

important to note that as the vocal tract shape is changing

rapidly, and the system is excited mainly due to impulse-like

excitation at epochs, the dynamic spectral characteristics

sampled near the epoch locations may appear somewhat ran-

dom during each trill cycle. As the spectral characteristics

are changing continuously during the production of trills,

and also due to vowel context, it is a challenge to represent

them for pattern matching. Further study is needed to de-

velop methods for discriminating different categories of trills

such as apical and labial trills. The present study may pro-

vide some direction toward such an investigation. It would

be interesting to study the contrast between trills and creaky

voices, as both produce dynamic characteristics that need to

be resolved both in temporal and frequency domain.

Although trills are produced with a time-varying vocal tract

system excited by a reasonably steady glottal source, creaky

voice is produced by exciting a reasonably steady vocal tract

by a time-varying glottal source.
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Prosodically Guided Phonetic Engine for 

Searching Speech Databases in Indian Languages 

Hindi Language 
 

 
 

Report of IIT Kanpur 
 

 
 

1. Database collection and transcription 
 

1.1 Data collection: 
 

Data has been downloaded for three different categories from the Internet  20 hours of speech data 

has been collected in which 10 hours of data is collected for transcription and 10 hours of data is 

collected as raw data. 

 
• Read speech: Direct context data has been collected from newsonair.nic.in in mp3 format and 

converted into the MS-wave format with sampling rate of 16 KHz and bit rate of 16-bit PCM. 

 
• Lecture speech: Extempore context data has been collected from video sharing websites like 

YouTube in a multimedia format and converted into the MS-wav format with sampling rate of 16 

KHz and bit rate of 16-bit PCM. 

 
• Conversational speech: Casual context has been collected from video sharing websites like 

YouTube in multimedia format and converted into the MS-wav format with sampling rate of 16 

KHz and bit rate of 16-bit PCM. 
 

 
 

1.2 Test beds for Data Collection: 
 

Currently data is collected from the Internet using a smart Internet enabled television and desktops. 

The setup is shown in Figure 1. 
 
 

 

Figure 1: Data Collection Process 



2. Data Transcription 
 
Phonetic transcription uses phonetic symbols for the representation of speech sounds. The 

information that needs to be captured in the transcription is essentially what the speaker has spoken 

and not what the speaker intended to speak. The choice of symbol must be such that it captures all 

the phonetic variations in speech. Existing phonetic engines for Indian languages use syllable like 

units as sub words units. 
 

 
 

2.1 Transcription using ARPAbet : 
 
Transcription has been done using Standard English phones using ARPAbet symbols. This phoneme 

(or more accurately, phone) set is based on the ARPAbet symbol set developed for speech 

recognition uses. The phone set is the list of ’phones’, or speech sounds, that the engine can 

recognize. While building acoustic models and pronunciations for words, phone set can be made to 

use any set of units. The acoustic models searches for the speech sounds (phones), and the word 

pronunciations are also given in terms of the phones in the phone set. The example illustrating the 

transcription with standard phones is shown in Table I 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE I: Table illustrating transcription using ARPAbet 

 
2.2 Transcription using IPA symbols: 

 
The data is segmented into reasonably shorter duration for better verification, and efficient 

transcription. During transcription, the speech signal is listened carefully and Transcription 

performed for minimum transcription error. Transcription has been done using the International 

Phonetic Alphabet (IPA) chart as shown in Table II 
 

 

 

TABLE II: Table illustrating transcription using IPA 



Few More Examples of IPA Transcription: 
 

 

 
 

 

 
 

 
2.3 Details of Transcription: 

 
Audio data must be collected according to specific domain (parliament speech, news) that contains 

all vowels and consonants of Hindi. Data has been collected from video sharing websites like 

YouTube. The audio data is collected in uncompressed format with a sampling rate of 8 KHz. This 

data set is used in bootstrapping the audio search system to improve recognition accuracy. The 

fillers used in the transcription of data has been listed in Table2. 

 
Fillers Explanations 

<bgnoise> Background noise 

<chnoise> Channel Noise 

<ah> Clearing of throat 

<fstart> False Start 

 

Table 2: Fillers used in the transcription of data 



2.2 Commonly Occurring Monophones in the entire vocabulary 
The most commonly occurring monophones in the entire vocab are listed in Table 3. 

 

Monophones @ a e i k 

Percentage Occ. 11.16 9.59 8.65 6.92 6.29 

Monophones R m u n r 

Percentage Occ. 3.93 3.77 3.46 3.46 3.46 

 

 

Table 3: Frequently occurring monophones with their percentage occurrences 

 
2.3 Parameters used in acoustic model building 
The Parameters used for Acoustic model building are listed in Table 4. 

 
Parameters Hindi Database 

Lower frequency 200 

Upper Frequency 3400 

No of tied states 969 

No of mixtures 16 

Language Model type Trigram 

Tools to check accuracy Word Align 

 
 
 
 

3. Prosodic Labeling 

Table 4: Acoustic model parameters 

 
Prosodic features have no direct correspondence to written characters of sentence and are unique to 

spoken language. Prosody refers to the suprasegmental features of natural speech (such as rhythm 

and intonation) that are used to convey linguistic and paralinguistic information (such as emphasis, 

intention, attitude and emotion). Steps for prosodic labeling are as follows: 

 

• Syllabification: Transcribed data is segmented at syllable boundaries. 

• Pitch Marking: Perform pitch marking according to the pitch variations in the audio wave file. 

While marking, consider only isolated segments. Mark the signal with High (H), Low (L), Very 

High (VH), and Very Low (VL). Pitch contours not considered here for marking. 

• Break Index: Mark the signal with hypothetical Break (B0), physical break (B1, B2, B3). B1, 

B2, B3 can be varied according to the length of the breaks between the segments. The syllables 

which are lying in particular pitch contour are marked with the same labels as defined for that 

particular pitch contour. 



 

Figure 2: Prosodic labeling an example 
 
 

4. Development of Phonetic Transcription Tool 
 
Phonetic engine uses the acoustic phonetic information present in the speech signal and convert into 

the data in some symbolic form. The conversion from speech signal to the appropriate symbolic 

form requires efficient transcription for good speech recognition performance. The transcription is 

useful in the systematic representation of language in written form. The information that needs to be 

captured in the transcription is essentially what the speaker has spoken and not what the speaker 

intended to speak. The choice of symbol must be such that it captures all the phonetic variations in 

speech. Existing phonetic engine for Indian languages uses syllable like units as sub words units. 

Here we are using a sequence of symbols based on International Phonetic Alphabet (IPA) as the sub 

word units. The IPA is designed to represent the qualities of speech that are distinctive in oral 

language: Phonemes, intonation and the separation of words and syllables. IPA symbols are 

composed of one or more elements of two basic types, letters and diacritics. In the current 

transcription, a sequence of International Phonetic Alphabet (IPA) are used as sub word units since 

IPA provides one symbol for each distinctive sound. 
 

 
 

 



 

Figure 3: Transcription of a Sentence 
 
 

5. Development of Audio Search Tool 
 
Speech search engine is a software program that is used to search audio occurrences of spoken 

words or phrases by using a sequence of symbol produces by phonetic engine as input. Speech 

based retrieval systems deal with searching and retrieving spoken documents in response of spoken 

queries. Spoken documents are the speech files that are converted to phonetic sequence by phonetic 

engine. Phonetic searching comprises two phases-indexing and searching. The first phase indexes 

The input speech to produce a phonetic search track and is performed by once. The second phase 

performed whenever a search is needed for a word or phrase, is searching the phonetic speech 

tracks which are stored with reference to the spoken documents. Keywords spotting can also be 

used which deals with the identification of keywords in utterances. The keywords are extracted 

from spoken query using phonetic dictionary. The documents are retrieved to the user on the basis 

of keyword occurrences. In the subsequent sections we describe an audio search system developed 

at IIT Kanpur. 



 
 

Figure 4: Databases File 
 
 
 

5.1 Audio search Tool 
 
In this system, the test audio file is automatically transcribed to get word level output of keyword 

that needs to be searched in the database. The complete audio search system is illustrated in Figure 

5. 

 
 

Figure 5: Complete audio search system 



If the keyword and its phonetic transcription are already present in the database then this keyword is 

searched in the database to get the time stamp of the keyword. If keyword is an out of vocabulary 

word, then its phonetic transcription is automatically derived and the time stamp corresponding to 

each phone is also derived. In order to get the time stamp of keyword, an automatically annotated 

database is created which consists of text file containing keyword, their phonetic transcription with 

all possible combinations of at least three consecutive phones along with their time stamp. 

Subsequently every phone of keyword is matched with the recognized output sequence of phones as 

shown  in  Figure  3.  If  at  least  three  consecutive  phones  in  the  overall  string  match  then  the 

possibility of the keyword existing in that particular time frame is very high. A pictorial illustration 

of the sliding phone protocol is illustrated in Figure 6 for the particular word ’Rashtrapati’. It can be 

noted that keyword ’Rashtrapati’ is enclosed in boxes. The phonetic transcription below the actual 

boxed transcription is that of a long test sentence which consists of the keyword. It may be noted 

from Figure 6, that in a particular case the sliding phone protocol is able to detect the presence of 

the keyword in a long test utterance. 
 

 

 

 
Figure 6: Sliding phone protocol for audio search 

 
 

 

 
 

Figure 7:  shows Search of a Sentence 



6. Performance Evaluation of Audio Search System: 
 

In order to train acoustic models and test the system, a corpus suitable for training of recognition 

system that contains high quality transcription is needed. The data must be collected in such a way 

that they are rich in phones to train HMMs. Model has been tested using keywords that occur most 

frequently and recognition accuracy turns out to be 92.30 table shows performance evolution of 

Transcription & Search 
 

 
 

Transcription Performance 
 

 
 
 

 

Search Performance 
 

 
 

 
 

7. Summary & Future work 
 

In this work, a framework is presented for indexing speech databases. The pitch accents are first 

assigned at the pitch breaks and then mapped to the syllables falling in that duration. Subsequently 

models are trained for most frequently occurring syllables with phonetic tags. An automated time 

stamping system and sliding phone protocol is used for searching the keyword in the development 

of a phone based audio indexing system .This protocol helps in reasonably improving the speed of 

the phone based recognition system. Future work will focus on developing fast methods for domain 

independent audio search and indexing. 



8. Appendix 
 

8.1 Detailed Evaluation for Keywords 
 

 

Sample Wav 
 

 

Keywords Output 
Ajodhya  

*** A   J   o   dʰ  *** Y   aː ***  (AYODHYA) 
SIL  A  ːDʒ o   dʰ  Dʒ R   a  ːSIL  (AYODHYA) 
Words: 6 Correct: 3 Errors: 6 Percent correct = 50.00% Error = 100.00% 
Accuracy = 0.00% 
Insertions: 3 Deletions: 0 Substitutions: 3 

Bank  

*** *** B   *** *** k   ***  (BANK) 
SIL E   M    ə  M   k   SIL  (BANK) 
Words: 3 Correct: 2 Errors: 6 Percent correct = 66.67% Error = 200.00% 
Accuracy = -100.00% 
Insertions: 5 Deletions: 0 Substitutions: 1 

Bharat  

*** bʰ  aː r   ə  t    (BHARAT) 
SIL bʰ  aː r   ə  t    (BHARAT) 
Words: 5 Correct: 5 Errors: 1 Percent correct = 100.00% Error = 20.00% 
Accuracy = 80.00% 
Insertions: 1 Deletions: 0 Substitutions: 0 

Bhopal  

*** *** *** *** Bʰ  O   p   ***  Aː L    (BHOPAL) 
SIL SIL SIL H   D   M   p   D   Aː  (BHOPAL) 
Words: 5 Correct: 1 Errors: 9 Percent correct = 20.00% Error = 180.00% 
Accuracy = -80.00% 
Insertions: 5 Deletions: 0 Substitutions: 4 

Cbi  

*** S   iː b   *** iː aː iː ***  (CBI) 
SIL Tʃ iː b   ɖ  iː aː iː SIL  (CBI) 
Words: 6 Correct: 5 Errors: 4 Percent correct = 83.33% Error = 66.67% 
Accuracy = 33.33% 
Insertions: 3 Deletions: 0 Substitutions: 1 

Cheen  

*** tʃ iː n    (CHEEN) 
SIL tʃ iː n    (CHEEN) 
Words: 3 Correct: 3 Errors: 1 Percent correct = 100.00% Error = 33.33% 
Accuracy = 66.67% 
Insertions: 1 Deletions: 0 Substitutions: 0 

Cricket  

*** k   ɾ  i   k   e   ʈ  ***  (CRICKET) 
SIL k   ɾ  i   k   e   ʈ  SIL  (CRICKET) 
Words: 6 Correct: 6 Errors: 2 Percent correct = 100.00% Error = 33.33% 
Accuracy = 66.67% 
Insertions: 2 Deletions: 0 Substitutions: 0 

Koyla  gate ghotale  

*** k   o   j   ə  l   aː g   e   ʈ  gʰ  o   ʈ  aː l   e   ***  (KOYLA_GATE_GHOTALE) 
SIL k   o   j   ə  l   aː g   e   ʈ  gʰ  o   ʈ  aː l   e   SIL  (KOYLA_GATE_GHOTALE) 



Words: 15 Correct: 15 Errors: 2 Percent correct = 100.00% Error = 13.33% 
Accuracy = 86.67% 
Insertions: 2 Deletions: 0 Substitutions: 0 

Manmohan singh  

*** m   ə  n   m   o   h   ə ʰ   (MANMOHAN_SINGH) 
SIL m   ə  n   m   o   h   ə  n  J    (MANMOHAN_SINGH) 
Words: 11 Correct: 10 Errors: 2 Percent correct = 90.91% Error = 18.18% 
Accuracy = 81.82% 
Insertions: 1 Deletions: 0 Substitutions: 1 

Mayawati  

*** m   aː j   aː ʋ  ə  t   iː ***  (MAYAWATI) 
SIL m   aː j   aː ʋ  ə  t   i  ːSIL  (MAYAWATI) 
Words: 8 Correct: 8 Errors: 2 Percent correct = 100.00% Error = 25.00% 
Accuracy = 75.00% 
Insertions: 2 Deletions: 0 Substitutions: 0 

Rashtrapati  

*** r   aː ʃ  ʈ  ɾ  ə  P   ə  t   iː  (RASHTRAPATI) 
SIL r   aː ʃ  ʈ  ɾ  *** *** ə  t   iː  (RASHTRAPATI) 
Words: 10 Correct: 8 Errors: 3 Percent correct = 80.00% Error = 30.00% 
Accuracy = 70.00% 
Insertions: 1 Deletions: 2 Substitutions: 0 

Videshi pratyaksh nivesh  

*** ʋ  i   d   e   ʃ  iː p   ɾ  ə  t   j   ə  k   ʃ  n   i   ʋ  e   ʃ   
(VIDESHI_PRATYAKSH_NIVESH) 
SIL ʋ  i   d   e   ʃ  iː p   ɾ  ə  t   j   ə  k   ʃ  n   i   ʋ  e   ʃ   
(VIDESHI_PRATYAKSH_NIVESH) 
Words: 19 Correct: 19 Errors: 1 Percent correct = 100.00% Error = 5.26% 
Accuracy = 94.74% 
Insertions: 1 Deletions: 0 Substitutions: 0 

Vishvidyalay  

*** ʋ  i   ʃ  ʋ  ə  ʋ  i   d   j   aː l   ə  j    (VISHVAVIDYALAY) 
SIL ʋ  i   T   ʋ  ə  ʋ  i   d   j   aː l   ə  j    (VISHVAVIDYALAY) 
Words: 13 Correct: 12 Errors: 2 Percent correct = 92.31% Error = 15.38% 
Accuracy = 84.62% 
Insertions: 1 Deletions: 0 Substitutions: 1 



LIVE 

 

Keywords Output 
Allahabad  

*** *** a   l   aː h   aː b   aː d   *** *** ***  (ALLAHA) 
SIL  A   a   l   aː h   aː b   aː d   SIL SIL SIL  (ALLAHA) 
Words: 8 Correct: 8 Errors: 5 Percent correct = 100.00% Error = 62.50% 
Accuracy = 37.50% 
Insertions: 5 Deletions: 0 Substitutions: 0 

America  

*** *** *** a   m   e   r   i   k   aː ***  (AMERICA) 
SIL K   SIL a   m   e   r   i   k   a  ːSIL  (AMERICA) 
Words: 7 Correct: 7 Errors: 4 Percent correct = 100.00% Error = 57.14% 
Accuracy = 42.86% 
Insertions: 4 Deletions: 0 Substitutions: 0 

Anna Hazare  

*** A   n   n   aː H   ə   DZ  Aː R   E    (ANNA) 
SIL S   n   n   a  ː*** S   ə  Gʰ  SIL  (ANNA) 
Words: 10 Correct: 3 Errors: 8 Percent correct = 30.00% Error = 80.00% 
Accuracy = 20.00% 
Insertions: 1 Deletions: 1 Substitutions: 6 

Bharat  

*** *** bʰ  aː r   ə  *** *** T    (BHARAT) 
SIL E   bʰ  aː r   ə  Dʰ  D   SIL  (BHARAT) 
Words: 5 Correct: 4 Errors: 5 Percent correct = 80.00% Error = 100.00% 
Accuracy = 0.00% 
Insertions: 4 Deletions: 0 Substitutions: 1 

Bhopal  

*** *** *** *** *** *** bʰ  o   p   *** *** *** *** *** *** Aː L    
(BHOPAL) 
SIL S   K   ʃ  SIL P   bʰ  o   p   B   ə  ɾ  S   SIL S   I   SIL  (BHOPAL) 
Words: 5 Correct: 3 Errors: 14 Percent correct = 60.00% Error = 280.00% 
Accuracy = -180.00% 
Insertions: 12 Deletions: 0 Substitutions: 2 

CBI  

*** *** *** *** *** *** S   iː b   iː *** *** Aː Iː  (CBI) 
SIL E   O   D   ɾ  ə  Tʃ iː b   i ːN   SIL G   L    (CBI) 
Words: 6 Correct: 3 Errors: 11 Percent correct = 50.00% Error = 183.33% 
Accuracy = -83.33% 
Insertions: 8 Deletions: 0 Substitutions: 3 

Cheen  

*** *** *** *** tʃ *** *** *** Iː N    (CHEEN) 
SIL D   K   ʃ  tʃ N   Aː ʋ  SIL SIL  (CHEEN) 
Words: 3 Correct: 1 Errors: 9 Percent correct = 33.33% Error = 300.00% 
Accuracy = -200.00% 
Insertions: 7 Deletions: 0 Substitutions: 2 

Cricket  

*** *** *** *** K   ɾ  i   k   e   *** *** ʈ   (CRICKET) 
SIL S   T   N   SIL K   i   k   e   ʋ  D   SIL  (CRICKET) 
Words: 6 Correct: 3 Errors: 9 Percent correct = 50.00% Error = 150.00% 
Accuracy = -50.00% 
Insertions: 6 Deletions: 0 Substitutions: 3 
 



Green House Gases  

G   ɾ  iː N   H   aː *** U   S   g   ɛ *** *** ***  (GHG) 
SIL SIL iː G   ʋ  aː S   Th ɾ  g   ɛ (GHG) 
Words: 12 Correct: 6 Errors: 10 Percent correct = 50.00% Error = 83.33% 
Accuracy = 16.67% 
Insertions: 4 Deletions: 0 Substitutions: 6 

Vishvidyalay  

*** *** ʋ  I   ʃ  ʋ  ə  ʋ  i   D   J   aː l   *** ə  J    (VISHVAVIDYALAY) 
SIL E   ʋ  J   E   ʃ  N   G   i   *** K   aː l   E   ə  SIL  (VISHVAVIDYALAY) 
Words: 13 Correct: 5 Errors: 11 Percent correct = 38.46% Error = 84.62% 
Accuracy = 15.38% 
Insertions: 3 Deletions: 1 Substitutions: 7 

Videshi pratyaksh nivesh  

ʋ  I   D   E   ʃ  Iː p   ɾ  ə  t   J   ə  k   ʃ  n   i   ʋ  e   ʃ  *** *** *** *** ***  
(VPN) 
SIL ʋ  I  ːTʃ ə  ɾ  p   ɾ  *** t   T   ə  k   ʃ  n   i   ʋ  e   ʃ  SIL ʈ  T   Aː SIL  (VPN) 
Words: 19 Correct: 11 Errors: 13 Percent correct = 57.89% Error = 68.42% 
Accuracy = 31.58% 
Insertions: 5 Deletions: 1 Substitutions: 7 

Varsha  

*** *** *** *** *** ʋ  ə  ɾ  ʃ  aː *** *** *** *** *** *** ***  (VARSHA) 
SIL G   M   B   ə  ʋ  I   D   J   aː ʋ  T   SIL  (VARSHA) 
Words: 5 Correct: 2 Errors: 15 Percent correct = 40.00% Error = 300.00% 
Accuracy = -200.00% 
Insertions: 12 Deletions: 0 Substitutions: 3 



8.2: Detailed Evaluation for Sentences 
 
 

Sample wav 
 
 

 
 

sentence1 

sentence2 

sentence3 

 

sentence4 

sentence5 

sentence6 

sentence7 

sentence8 

sentence9 

sentence10 

sentence11 

sentence12 

sentence13 

sentence14 

sentence15 

sentence16 
 

sentence17 

Words: 118 Correct: 27 Errors: 92 Percent correct = 22.88% Error = 77.97% 

Accuracy = 22.03% 

Insertions: 1 Deletions: 35 Substitutions: 56 

Words: 91 Correct: 20 Errors: 71 Percent correct = 21.98% Error = 78.02% 

Accuracy = 21.98% 

Insertions: 0 Deletions: 22 Substitutions: 49 

Words: 94 Correct: 20 Errors: 75 Percent correct = 21.28% Error = 79.79% 

Accuracy = 20.21% 

Insertions: 1 Deletions: 28 Substitutions: 46 

Words: 151 Correct: 37 Errors: 119 Percent correct = 24.50% Error = 78.81% 

Accuracy = 21.19% 

Insertions: 5 Deletions: 37 Substitutions: 77 
 
Words: 89 Correct: 19 Errors: 71 Percent correct = 21.35% Error = 79.78% 

Accuracy = 20.22% 

Insertions: 1 Deletions: 29 Substitutions: 41 

Words: 158 Correct: 30 Errors: 128 Percent correct = 18.99% Error = 81.01% 

Accuracy = 18.99% 

Insertions: 0 Deletions: 35 Substitutions: 93 

Words: 147 Correct: 32 Errors: 116 Percent correct = 21.77% Error = 78.91% 

Accuracy = 21.09% 

Insertions: 1 Deletions: 44 Substitutions: 71 

Words: 51 Correct: 11 Errors: 42 Percent correct = 21.57% Error = 82.35% 

Accuracy = 17.65% 

Insertions: 2 Deletions: 18 Substitutions: 22 

Words: 70 Correct: 14 Errors: 56 Percent correct = 20.00% Error = 80.00% 

Accuracy = 20.00% 

Insertions: 0 Deletions: 13 Substitutions: 43 

Words: 77 Correct: 11 Errors: 66 Percent correct = 14.29% Error = 85.71% 

Accuracy = 14.29% 

Insertions: 0 Deletions: 20 Substitutions: 46 

Words: 85 Correct: 18 Errors: 68 Percent correct = 21.18% Error = 80.00% 

Accuracy = 20.00% 

Insertions: 1 Deletions: 17 Substitutions: 50 

Words: 55 Correct: 13 Errors: 42 Percent correct = 23.64% Error = 76.36% 

Accuracy = 23.64% 

Insertions: 0 Deletions: 13 Substitutions: 29 

Words: 43 Correct: 4 Errors: 39 Percent correct = 9.30% Error = 90.70% 

Accuracy = 9.30% 

Insertions: 0 Deletions: 7 Substitutions: 32 

Words: 42 Correct: 6 Errors: 36 Percent correct = 14.29% Error = 85.71% 

Accuracy = 14.29% 

Insertions: 0 Deletions: 7 Substitutions: 29 

Words: 51 Correct: 11 Errors: 41 Percent correct = 21.57% Error = 80.39% 

Accuracy = 19.61% 

Insertions: 1 Deletions: 13 Substitutions: 27 

Words: 104 Correct: 23 Errors: 83 Percent correct = 22.12% Error = 79.81% 

Accuracy = 20.19% 

Insertions: 2 Deletions: 32 Substitutions: 49 

Words: 116 Correct: 21 Errors: 95 Percent correct = 18.10% Error = 81.90% 

Accuracy = 18.10% 



 
 
 
 

sentence18 

sentence19 

sentence20 

sentence21 

sentence22 

sentence23 

sentence24 

sentence25 

sentence26 

sentence27 

sentence28 

sentence29 

sentence30 

sentence31 

sentence32 

sentence33 

sentence34 

sentence35 

Insertions: 0 Deletions: 26 Substitutions: 69 

Words: 66 Correct: 11 Errors: 55 Percent correct = 16.67% Error = 83.33% 

Accuracy = 16.67% 

Insertions: 0 Deletions: 20 Substitutions: 35 

Words: 66 Correct: 19 Errors: 49 Percent correct = 28.79% Error = 74.24% 

Accuracy = 25.76% 

Insertions: 2 Deletions: 20 Substitutions: 27 

Words: 124 Correct: 30 Errors: 95 Percent correct = 24.19% Error = 76.61% 

Accuracy = 23.39% 

Insertions: 1 Deletions: 42 Substitutions: 52 

Words: 151 Correct: 30 Errors: 121 Percent correct = 19.87% Error = 80.13% 

Accuracy = 19.87% 

Insertions: 0 Deletions: 62 Substitutions: 59 

Words: 85 Correct: 18 Errors: 67 Percent correct = 21.18% Error = 78.82% 

Accuracy = 21.18% 

Insertions: 0 Deletions: 25 Substitutions: 42 

Words: 111 Correct: 30 Errors: 88 Percent correct = 27.03% Error = 79.28% 

Accuracy = 20.72% 

Insertions: 7 Deletions: 23 Substitutions: 58 

Words: 111 Correct: 17 Errors: 94 Percent correct = 15.32% Error = 84.68% 

Accuracy = 15.32% 

Insertions: 0 Deletions: 29 Substitutions: 65 

Words: 127 Correct: 25 Errors: 102 Percent correct = 19.69% Error = 80.31% 

Accuracy = 19.69% 

Insertions: 0 Deletions: 49 Substitutions: 53 

Words: 84 Correct: 18 Errors: 67 Percent correct = 21.43% Error = 79.76% 

Accuracy = 20.24% 

Insertions: 1 Deletions: 25 Substitutions: 41 

Words: 130 Correct: 28 Errors: 102 Percent correct = 21.54% Error = 78.46% 

Accuracy = 21.54% 

Insertions: 0 Deletions: 41 Substitutions: 61 

Words: 69 Correct: 10 Errors: 60 Percent correct = 14.49% Error = 86.96% 

Accuracy = 13.04% 

Insertions: 1 Deletions: 28 Substitutions: 31 

Words: 65 Correct: 14 Errors: 55 Percent correct = 21.54% Error = 84.62% 

Accuracy = 15.38% 

Insertions: 4 Deletions: 7 Substitutions: 44 

Words: 74 Correct: 12 Errors: 63 Percent correct = 16.22% Error = 85.14% 

Accuracy = 14.86% 

Insertions: 1 Deletions: 32 Substitutions: 30 

Words: 87 Correct: 19 Errors: 68 Percent correct = 21.84% Error = 78.16% 

Accuracy = 21.84% 

Insertions: 0 Deletions: 32 Substitutions: 36 

Words: 71 Correct: 11 Errors: 60 Percent correct = 15.49% Error = 84.51% 

Accuracy = 15.49% 

Insertions: 0 Deletions: 17 Substitutions: 43 

Words: 45 Correct: 12 Errors: 33 Percent correct = 26.67% Error = 73.33% 

Accuracy = 26.67% 

Insertions: 0 Deletions: 11 Substitutions: 22 

Words: 48 Correct: 10 Errors: 39 Percent correct = 20.83% Error = 81.25% 

Accuracy = 18.75% 

Insertions: 1 Deletions: 15 Substitutions: 23 

Words: 74 Correct: 11 Errors: 65 Percent correct = 14.86% Error = 87.84% 

Accuracy = 12.16% 

Insertions: 2 Deletions: 7 Substitutions: 56 

sentence36 Words: 96 Correct: 21 Errors: 75 Percent correct = 21.88% Error = 78.12% 



 
 
 
 

 
sentence37 

sentence38 

sentence39 

sentence40 

sentence41 

sentence42 

sentence43 

sentence44 

sentence45 

sentence46 

sentence47 

sentence48 

sentence49 

sentence50 

Accuracy = 21.88% 

Insertions: 0 Deletions: 30 Substitutions: 45 

Words: 104 Correct: 19 Errors: 85 Percent correct = 18.27% Error = 81.73% 

Accuracy = 18.27% 

Insertions: 0 Deletions: 24 Substitutions: 61 

Words: 61 Correct: 11 Errors: 55 Percent correct = 18.03% Error = 90.16% 

Accuracy = 9.84% 

Insertions: 5 Deletions: 12 Substitutions: 38 

Words: 77 Correct: 12 Errors: 65 Percent correct = 15.58% Error = 84.42% 

Accuracy = 15.58% 

Insertions: 0 Deletions: 18 Substitutions: 47 

Words: 54 Correct: 11 Errors: 44 Percent correct = 20.37% Error = 81.48% 

Accuracy = 18.52% 

Insertions: 1 Deletions: 17 Substitutions: 26 

Words: 145 Correct: 29 Errors: 119 Percent correct = 20.00% Error = 82.07% 

Accuracy = 17.93% 

Insertions: 3 Deletions: 36 Substitutions: 80 

Words: 57 Correct: 7 Errors: 50 Percent correct = 12.28% Error = 87.72% 

Accuracy = 12.28% 

Insertions: 0 Deletions: 15 Substitutions: 35 

Words: 121 Correct: 24 Errors: 98 Percent correct = 19.83% Error = 80.99% 

Accuracy = 19.01% 

Insertions: 1 Deletions: 36 Substitutions: 61 

Words: 145 Correct: 31 Errors: 114 Percent correct = 21.38% Error = 78.62% 

Accuracy = 21.38% 

Insertions: 0 Deletions: 51 Substitutions: 63 

Words: 88 Correct: 15 Errors: 73 Percent correct = 17.05% Error = 82.95% 

Accuracy = 17.05% 

Insertions: 0 Deletions: 39 Substitutions: 34 

Words: 115 Correct: 28 Errors: 87 Percent correct = 24.35% Error = 75.65% 

Accuracy = 24.35% 

Insertions: 0 Deletions: 40 Substitutions: 47 

Words: 127 Correct: 20 Errors: 109 Percent correct = 15.75% Error = 85.83% 

Accuracy = 14.17% 

Insertions: 2 Deletions: 22 Substitutions: 85 

Words: 52 Correct: 9 Errors: 43 Percent correct = 17.31% Error = 82.69% 

Accuracy = 17.31% 

Insertions: 0 Deletions: 12 Substitutions: 31 

Words: 61 Correct: 11 Errors: 54 Percent correct = 18.03% Error = 88.52% 

Accuracy = 11.48% 

Insertions: 4 Deletions: 4 Substitutions: 46 

Words: 57 Correct: 14 Errors: 46 Percent correct = 24.56% Error = 80.70% 

Accuracy = 19.30% 

Insertions: 3 Deletions: 8 Substitutions: 35 

 
TOTAL Words: 4470 Correct: 894 TOTAL Percent correct = 20% 

 

 

Live 
 

 
 

 
sentence1 

Words: 94 Correct: 24 Errors: 70 Percent correct = 25.53% Error = 74.47% 
Accuracy = 25.53% 

Insertions: 0 Deletions: 14 Substitutions: 56 
 

 
sentence2 

Words: 97 Correct: 25 Errors: 83 Percent correct = 25.77% Error = 85.57% 
Accuracy = 14.43% 

Insertions: 11 Deletions: 8 Substitutions: 64 



 
 
 

sentence3 

sentence4 

sentence5 

sentence6 

sentence7 

sentence8 

sentence9 

sentence10 

sentence11 

sentence12 

sentence13 

sentence14 

sentence15 

sentence16 

sentence17 

sentence18 

sentence19 

sentence20 

sentence21 

Words: 79 Correct: 27 Errors: 60 Percent correct = 34.18% Error = 75.95% 

Accuracy = 24.05% 

Insertions: 8 Deletions: 3 Substitutions: 49 

Words: 63 Correct: 25 Errors: 44 Percent correct = 39.68% Error = 69.84% 

Accuracy = 30.16% 

Insertions: 6 Deletions: 8 Substitutions: 30 

Words: 99 Correct: 22 Errors: 89 Percent correct = 22.22% Error = 89.90% 

Accuracy = 10.10% 

Insertions: 12 Deletions: 2 Substitutions: 75 

Words: 84 Correct: 25 Errors: 80 Percent correct = 29.76% Error = 95.24% 

Accuracy = 4.76% 

Insertions: 21 Deletions: 0 Substitutions: 59 

Words: 112 Correct: 32 Errors: 96 Percent correct = 28.57% Error = 85.71% 

Accuracy = 14.29% 

Insertions: 16 Deletions: 5 Substitutions: 75 

Words: 93 Correct: 34 Errors: 59 Percent correct = 36.56% Error = 63.44% 

Accuracy = 36.56% 

9 

Words: 102 Correct: 25 Errors: 81 Percent correct = 24.51% Error = 79.41% 

Accuracy = 20.59% 

Insertions: 4 Deletions: 7 Substitutions: 70 

Words: 60 Correct: 18 Errors: 47 Percent correct = 30.00% Error = 78.33% 

Accuracy = 21.67% 

Insertions: 5 Deletions: 3 Substitutions: 39 

Words: 93 Correct: 26 Errors: 71 Percent correct = 27.96% Error = 76.34% 

Accuracy = 23.66% 

Insertions: 4 Deletions: 12 Substitutions: 55 

Words: 100 Correct: 28 Errors: 82 Percent correct = 28.00% Error = 82.00% 

Accuracy = 18.00% 

Insertions: 10 Deletions: 9 Substitutions: 63 

Words: 54 Correct: 17 Errors: 45 Percent correct = 31.48% Error = 83.33% 

Accuracy = 16.67% 

Insertions: 8 Deletions: 2 Substitutions: 35 

Words: 103 Correct: 26 Errors: 87 Percent correct = 25.24% Error = 84.47% 

Accuracy = 15.53% 

Insertions: 10 Deletions: 9 Substitutions: 68 

Words: 92 Correct: 35 Errors: 80 Percent correct = 38.04% Error = 86.96% 

Accuracy = 13.04% 

Insertions: 23 Deletions: 2 Substitutions: 55 

Words: 98 Correct: 22 Errors: 78 Percent correct = 22.45% Error = 79.59% 

Accuracy = 20.41% 

Insertions: 2 Deletions: 15 Substitutions: 61 

Words: 75 Correct: 16 Errors: 61 Percent correct = 21.33% Error = 81.33% 

Accuracy = 18.67% 

Insertions: 2 Deletions: 8 Substitutions: 51 

Words: 84 Correct: 27 Errors: 61 Percent correct = 32.14% Error = 72.62% 

Accuracy = 27.38% 

Insertions: 4 Deletions: 11 Substitutions: 46 

Words: 110 Correct: 34 Errors: 80 Percent correct = 30.91% Error = 72.73% 

Accuracy = 27.27% 

Insertions: 4 Deletions: 10 Substitutions: 66 

Words: 71 Correct: 21 Errors: 51 Percent correct = 29.58% Error = 71.83% 

Accuracy = 28.17% 

Insertions: 1 Deletions: 11 Substitutions: 39 

Words: 111 Correct: 25 Errors: 87 Percent correct = 22.52% Error = 78.38% 

Accuracy = 21.62% 



 
 
 
 

sentence22 

sentence23 

sentence24 

sentence25 

sentence26 

sentence27 

sentence28 

sentence29 

sentence30 

sentence31 

Insertions: 1 Deletions: 23 Substitutions: 63 

Words: 63 Correct: 9 Errors: 55 Percent correct = 14.29% Error = 87.30% 

Accuracy = 12.70% 

Insertions: 1 Deletions: 2 Substitutions: 52 

Words: 65 Correct: 24 Errors: 42 Percent correct = 36.92% Error = 64.62% 

Accuracy = 35.38% 

Insertions: 1 Deletions: 11 Substitutions: 30 

Words: 74 Correct: 12 Errors: 65 Percent correct = 16.22% Error = 87.84% 

Accuracy = 12.16% 

Insertions: 3 Deletions: 18 Substitutions: 44 

Words: 97 Correct: 25 Errors: 72 Percent correct = 25.77% Error = 74.23% 

Accuracy = 25.77% 

Insertions: 0 Deletions: 20 Substitutions: 52 

Words: 73 Correct: 14 Errors: 60 Percent correct = 19.18% Error = 82.19% 

Accuracy = 17.81% 

Insertions: 1 Deletions: 18 Substitutions: 41 

Words: 90 Correct: 21 Errors: 70 Percent correct = 23.33% Error = 77.78% 

Accuracy = 22.22% 

Insertions: 1 Deletions: 18 Substitutions: 51 

Words: 63 Correct: 14 Errors: 51 Percent correct = 22.22% Error = 80.95% 

Accuracy = 19.05% 

Insertions: 2 Deletions: 5 Substitutions: 44 

Words: 67 Correct: 20 Errors: 49 Percent correct = 29.85% Error = 73.13% 

Accuracy = 26.87% 

Insertions: 2 Deletions: 7 Substitutions: 40 

Words: 65 Correct: 15 Errors: 52 Percent correct = 23.08% Error = 80.00% 

Accuracy = 20.00% 

Insertions: 2 Deletions: 15 Substitutions: 35 

Words: 47 Correct: 12 Errors: 36 Percent correct = 25.53% Error = 76.60% 

Accuracy = 23.40% 

Insertions: 1 Deletions: 2 Substitutions: 33 

 
TOTAL Words: 2578 Correct: 700 Errors: 2044 

TOTAL Percent correct = 27.15% Error = 79.29% Accuracy = 20.71% 

TOTAL Insertions: 166 Deletions: 289 Substitutions: 1589 

 
Transcription of Sample audio: 

 

 
*** D   uː n   Iː J   Aː K   E   D   E   ʃ  O   M   E   Bʰ  Aː r   ə  T   k   aː Uː Tʃ Iː I ːS   Tʰ  aː N   V   ɛ   ɡ  J   aː n   I   
K   ʋ  A   P   R   ɔ  D   J   O   ɡ  iː K   Uː T   K   R   ə  ʃ  T   aː k   E   Dʒ ə  R   Iː E    s   aː M   A   Dʒ Iː K   A ːr   Tʰ  
Iː k   P   ə  R   Iː ʋ   ə  R   T   ə  N   L    aː N   E   K   Iː H   ə  M    aː R   iː Kʃ ə  M    T   aː P   ə  ɾ  N   Iː r   Bh ə  r   
K   ə  ɾ  t   Aː H   ɛ   
 
SIL ʃ  uː n   *** *** *** *** *** *** *** ə ʰ *** R   k   aː *** *** *** Kʃ ɾ  K   aː D   SIL 
SIL I   aː n   F   Iː B   ə ə  ɾ  S   ə  H   iː *** ⱱ Gʰ  ʃ  Tʃ ə  ʃ s   aː *** *** 
*** *** S   ə  r   *** *** k   *** *** *** Aː ə  I   A   ə  *** aː *** *** *** O   J   Aː aː *** iː *** Tʃ 

K   aː *** *** *** *** S   r   F   Iː r   Aː ɾ  ɾ  t   *** K   ə 
Percent correct = 22.88%  

 

M   E   R   Iː  S   ə  R   k   Aː R   k   aː S   ə  T   ə  T   P   r   ə  J   aː s   R   ə  H   E   ɡ  aː K   Iː A   N   Uː S   N   Dʰ  
aː N   ɔ  R   ʋ  iː K   Aː s   P   ə  R   Kʰ  ə  ɾ  Tʃ Dʒ Iː ɖ  iː P   Iː K   iː E   E   K   f   Iː S   E   d   Iː S   E   B   ə  ɽ  k   
ə  ɾ  D    O   F   Iː S    D   Iː H    O   Dʒ Aː E   
*** *** SIL K   Dʰ  E   k   ə  ɾ  k   aː *** *** *** R   R   R   r   Kʃ R   aː s   *** ə  Iː A   L   aː *** R   K   I   D   



Dʒ  D    J   Tʃ aː *** *** *** G   iː *** *** s   J   ə  T   R   Aː ɾ  *** *** *** *** iː *** E   ɾ  iː D   T   ⱱ f   Bʰ  
L   I   d   *** *** *** *** ə  H   k   ə  *** K   E   K   P   J   T   P   U   J    
Percent correct = 21.98%  

 

*** ɡ  j   aː R   h   ə  ʋ  Iː J   O   Dʒ n   Aː aː ʋ  Dʰ  Iː k   E   d   ɔ  R   Aː n   A   N   Uː S   N   Dʰ  Aː N   ɔ  R   ʋ  
Iː K   aː S   M   E   S   aː r   ʋ  Dʒ ə  N   Iː K   N   iː ʋ   e   ʃ  P   R   ə  T   Iː ʋ  ə  ɾ  ʃ  B   Iː S   S   e   P   ə  Tʃ Tʃ Iː 
S   F   Iː S   D    Iː K   Iː d   ə  ɾ  S   E   B   ə  ɽ  aː H   ɛ    
SIL H   j   aː ⱱ h   *** *** *** *** *** R   n   *** aː *** *** *** k   ə  d   Bʰ  ɽ  Iː n   *** Aː J   Aː I    SIL A   D   
S   D   ɾ  ʋ  *** *** aː *** *** D   H   aː r   L   Aː D   R   J   ə  D   iː e   *** *** *** *** *** K   Uː ə  *** ʃ  
*** *** R   H   e   *** Kʃ I   L   H   E   E   S   E   F   E   R   d   ə  *** *** *** A   ɾ  J   aː *** ***   
Percent correct = 21.28%  

 

*** *** S   ə  ɾ  k   aː r   N   E   Iː n   O   ʋ  E   ʃ  ə  N   Iː N   S   N    P   ə  ɾ  s   j   Uː ʈ  ɔ  R   iː N   S    p   Aː J   
ə  R   ɖ   r   Iː s   ə  R   Tʃ A   R   Tʰ  Aː T   Iː N   S    p   aː J   ə  ɾ  Iː  s   K   Iː M   s   ə  F   ə  L   T   Aː p   Uː r   ʋ  
ə  Kʃ Uː r   Uː K   Iː h   ɛ  ɔ  R   iː S   K   E   T   ɛ  H   ə  T   A   B   T   ə  k   ʋ  Iː ɡ  J   Aː n   ʋ  iː ʃ  ə  j   *** *** K   
E    P   Aː tʃ l   aː *** Kh s   E   A   Dʰ  iː K   Tʃʰ  Aː t   R   O   k   O   P   U    R   ə  S   K   aː r   D   Iː J   Aː Dʒ Aː 
Tʃ Uː K   Aː H   ɛ    
 
SIL T   K   ə  ɾ  k   aː r   *** *** ə  n   *** *** *** *** S   K   Uː R   R   J    ə  Tʃ Aː s   j   *** O   D   I   iː *** 

p   *** *** *** *** r   ʃ  s   ə  T   ʃ  R   A   ə  S   ə  D   H   p   aː *** *** Aː s   *** *** ɛ  s   *** *** 
ə  *** *** ɾ  p   Aː r   Aː ɾ *** *** *** h   *** *** *** iː *** ʋ  T   ʈ  S   B   ə  Iː E   Dh Aː Kʃ k   
*** *** ə  ɽ  ɾ Uː E   tʃ l   aː T   SIL s   K   ə  H   iː *** ***   *** t   *** *** k   *** 
Aː B   D   SIL R   aː r   *** *** SIL ʋ  Bʰ  ə  U   E   ʃ  Iː B   ə    
Percent correct = 24.50%  

 

*** ʋ  iː ɡ  j   Aː N   ɔ  R   P   r   ɔ  D   J   O   ɡ  iː K   iː Kʃ E   T   R   ə  M   e   n   ə  ʋ  aː Tʃ aː R   Iː N   O   ʋ  E   
ʃ  ə  N    K   O   S   Uː S   aː Dʰ  J   ə  k   ə  ɾ  N   E   K   E   L   iː E   K   ə  Iː N   ə  Iː S   N   S   Tʰ  A   ɡ  ə  T   P   R   
ə  j   aː S    K   iː E   ɡ  ə  J   E   H   ɛ    
 
SIL H   iː T   j   *** *** *** *** *** r   *** Kʃ I   ə  H   iː *** iː *** S   Iː K   ə  ɾ  e   n   *** *** aː B   aː O   
DZ  Aː H   ʋ  *** I   Tʃ ʃ ʈ  K   aː F   ɖ  R   k   ə ː *** *** ***  *** *** 
*** *** *** ɾ  Aː Aː J   Aː j   aː U   iː *** *** *** *** *** *** ***   
Percent correct = 21.35%  



 

Transcription of Live audio: 
 

 

*** *** *** *** Bʰ  aː ɾ  ə  t   k   E   P   ə  ʃ  tʃ I   m   Iː T   ə  ʈ  P   ə  *** R   i   S   Tʰ  i   T   m   u   m   b   ə  Iː 
Bʰ  aː ɾ  t   IːJ ə  R   aː Dʒ J   ə  m   ə  H   aː R   aː ʃ  ʈ  ɾ  ə  K   i   R   aː Dʒ Dʰ  aː *** N   Iː H   ɛ   
 
SIL S   ʈ  M   P   aː R   ə  t   k   ə  ɾ  ə  *** tʃ *** m   E   I   I   ɾ  ə  ə  P   B   i   I   ɾ  i   *** m   u   m   b   ə  O   P   
aː *** t   U    E   L   aː *** *** ə  m   *** O   aː L   aː *** T   SIL ʈ  H   i   L   aː Uː K   aː O   Dʒ E   J   SIL   
Percent correct = 39.68%  

 

Bʰ  ə  ɾ  ə  t   k   E   r   aː ʃ  ʈ  ɾ  ə  P   ə  T   Iː R   aː ʃ  P   ɾ  ə  m   U   Kʰ  ɔ  R   Bʰ  aː ɾ  ə  t   k   E   P   ɾ  ə  Tʰ  ə  
M   n   aː   R   I   K   H   S   Aː Tʰ  H   i   Bʰ  aː ɾ  t   Iː J   S   ə  ʃ  ə  ʃ  t   ɾ  ə ɾ  ə  M   
U   Kʰ  S   E   n   aː P   ə  t   iː Bh Iː H    
 
*** SIL D   Aː t   k   Dʒ r   aː ʃ  ʈ  ɾ  ə  *** T   ɖ  I   L   aː ʃ  ʈ  S   ə ː P   Aː t   k   *** 
*** ə  Dʰ  O   N   Aː n   aː Dʰ  Dʒ Iː Dh ə  ʃ   ʈ  P   Aː T   i   P   aː ə  t   ə  K   ɾ  ə  S   ə  *** t   *** ə  K   e   n   aː 
ʋ  k   *** *** ɾ  P   U   I   O   G   Dʒ n   aː ɾ  ə  t   iː *** ʋ  SIL ʈ     
Percent correct = 36.56%  

 

*** aː I   aː I   ʈ  iː k   aː n   p   U   R   m   U   Kʰ  j   ə  R   uː P   S   E   ʋ  i   ɡ  ɡ  J   aː n   *** E   ʋ  ə  m   a   Bʰ  I   
J   aː n   T   ɾ ə  Tʰ  Aː I   S   n   Aː T   ə  K   S   I   Tʃʰ  Aː P   ə  R   K   EN  d   ɾ  Iː t   
E   K   p   ɾ  ə  M   U   Kʰ  Bʰ  Aː ɾ  t   iː J   T   ə  K   N   i   K   Iː S   S   Tʰ  Aː N   B   ə  N   k   E   U   Bʰ  R   Aː H   ɛ    
 
SIL aː Iː aː Iː ʈ  iː k   aː n   p   ə ː *** Tʃ I   ɾ  i   *** Dʰ  K   aː n   ə  Tʃ M   ə  m   a   B   
ɖ  Iː aː n   *** Dʰ  i   k   Dʒ m   G   ɛ  ʈ  Bʰ  o   ɾ  M   ʈ  B   ə  ʃ  n   O   ɾ  ə  ʃ  I   K   ɾ    ə  ɾ  ə  K   E   N   d   P   E   
t   ɾ  I   p   *** *** U   Bʰ  O   P   M   ə  t   iː I   ɾ  ə  O   ʋ  i   *** ə  ɾ  H    ə *** *** *** Aː 
ɔ  ə  SIL   
Percent correct = 30.91%  

 

*** s   e   n   Aː P   ə  D   ə  K   bʰ  aː ɾ  t   I   J   ə  S   e   n   aː k   E   s   ə  Bʰ  Iː ʃ  ɾ  ə  ɳ  iː K   E   S   ə  D   ə
ə  M   m   Aː N   i   T   K   ə  R   N   E   K   E   L   I   j   E   D   I   J   aː Dʒ Aː T   Aː H   ɛ    

 
SIL s   e   n   ʈ  ɾ  ə  L   ə  *** bʰ  aː *** t   T   U   ə  K   e   n   aː k   I   s   *** *** *** Tʃ I   Tʃ E   iː B   I   I   ʈ  ɾ  
ə  *** K   ʃ  Aː U   A   U   O   m   *** ʃ  i   ʈ  ɾ  ə  *** L   Iː ʈ  Iː B   Iː j   *** *** *** ə  aː O   ʈ  Aː ʈ  J   SIL   
Percent correct = 29.58%  

 

*** r   aː ʃ  ʈ  ɾ  Iː j   ə  s   ʋ  aː S   Th ə  B   Iː m   Aː J   O   Dʒ n   Aː Bh aː R   ə  t   Iː ɡ  ə  R   iː B   K   E   L   i   
J   E   E   K   S   ə  ɾ  k   aː R   i   S   ʋ  Aː S   Th B   iː m   Aː J   o   Dʒ N   aː H   ɛ   
 
SIL r   aː ʃ  *** *** F   j   ə  s   ʋ  aː *** P   Uː F   ɖ  m   *** Iː U   Tʃ n   ə  M   aː *** ə  t   ɖ  I   ə  *** iː *** 
ʈ  Iː G   i   *** *** Tʃ ʈ  ɾ  ə  P   k   aː *** i   P   U   ə  Tʰ  ʋ  F   iː m   Iː Gʰ  o   *** ʃ  aː ʈ  SIL   
Percent correct = 36.92%  
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A.8  Date on which last progress report 
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B. Technical 

 

B.1  Work Progress (Details are given in 

Technical Report at Appendix - I) 
 Database has been collected in three 

different modes as per the following 

details: 

i) Read mode speech: 15 hours and 44 

minutes 

ii) Lecture mode speech: 5 hours and 

8minutes 

iii) Conversational mode speech: 4 hours 

and 19 minutes 

 Transcription of this database has been 

carried out using IPA chart: 

i) Read mode speech: 5 hours  and 

5minutes 

ii) Lecture mode Speech: 2 hours and 

51minutes 

iii) Conversational mode speech: 2 hours 

and 33 minutes 

 Extraction of prosody knowledge 

 Development of phonetic engine 

 

i) Proposed plan of work 

highlighting the action to be 

taken to achieve the originally 

proposed targets 

We have achieved the following objectives in 

this project : 

 Speech Database Development 

 Manual Transcription of various modes 

of speech 

 Development of Phonetic Engine 

 Improvements in the performance of 

Phonetic Engine 

 Manual as well as Automated Pitch 

Accent Marking of read speech 

 Manual as well as Automated Break 

Index Marking of read speech 

 Manual as well as Automated 

Syllabification of read speech 

 

C. Project Outcomes 

 

C.1 Papers Published  

 

We shall work on bringing out publication(s) 

from the project work. 

 



C.2  Development of Database  Read mode speech: 15 hours and 44 

minutes 

 Lecture mode speech: 5 hours and 8 

minutes 

 Conversational mode speech: 4 hours 

and 19 minutes 

 

C.3  Tools and systems developed 

 

The systems have been developed for 

implementation of Phonetic Engine and have 

been shared with IIT Guwahati. 
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 Progress Summary Report of  Thapar University Patiala 

3.1 Background 

 

Speech is a natural and very easy way of exchanging information. If used as a medium to 

interact with the computer, it can solve various problems. For this, some speech interfaces 

such as speech synthesizer and speech recognizer are required. Speech recognition and 

speech synthesis both require phonetic transcription. In speech recognition, speech is 

provided as an input to system and then corresponding phonetic transcription is generated 

by the system as output. Phonetic Engine (PE) is such a module that uses the acoustic 

phonetic information present in the speech signal for converting the speech signal into 

symbolic form. This symbolic form is nothing but the basic sound units present in the 

spoken utterances of speech signal. These basic sound units can be represented in 

symbolic form using International Phonetic Alphabet (IPA) transcription standard. 

Acoustic phonetic information means that the PE will use the sounds of phones of spoken 

utterances and these sounds are represented in the symbolic form. 

 

3.2 Database collection and transcription 

3.2.1 Database collection:In this project, data has been collected in three different modes 

of speech, namely, read mode, lecture mode and conversational mode. 

i) Read Mode Speech:For this mode of speech, data has been collected from 12 

native Punjabi speakers for a duration of about 14 hours. This data has been 

recorded in a normal room environment using amicrophone channel maintained at 

a sampling frequency of 22050 Hz. We also collected around 1 hour of data from 

a radiochannel, Sabrang Radio. The data collected from this channel has a 

sampling frequency of 48 KHz and a bit rate of16 bits per sample. 

 

Total time of collected data: 15 hours and 44 minutes. 

 

ii) Lecture Mode: The data for the lecture mode has been taken from the radio 

channel,Punjabi Radio USA and also from YouTube. This data is available in 

public domain. The recording of this data has been done with a sampling 

frequencyof 48 KHz and a bit rate of 16 bits per sample. 

 



Total time of collected data: 5 hours and 44 minutes. 

 

iii) Conversational Mode:For this mode of speech, data has been recorded with the 

help of native Punjabi speakers.The duration of the conversation between native 

Punjabi speakers is approximately 4 hours. Out of this 4 hours data, 2 hours of 

data has been recorded in a normal room environment using a microphone channel 

maintained at a sampling frequency of 48KHz. The remaining 2 hours of data has 

been recorded in an open environment using a microphone channel maintained at 

a sampling frequency of 48KHz. Besides this, approximately 30 minutesof data 

has been collected in this mode from a Punjabi news channel. The data from news 

channel has a sampling frequency of 48 KHz and a bit rate of 16 bits per sample. 

 

Total time of collected data: 4 hours and 19 minutes. 

 

3.2.2 DatabaseTranscription: 

The data that has been collected is transcribed using the International Phonetic Alphabet 

(IPA) chart. The transcription of 5 hours and 5 minutes of read speech, 2 hours and 32 

minutes of lecture speech, and 2 hours and 29 minutes of conversational speech has been 

completed. 

The database, which has been shared with IIIT-Hyderabad is divided into 3 parts, namely, 

SPC-1, SPC-2, and SPC-3. The database SPC-1 contains the .wav files of read mode 

speech, lecture mode speech, and conversational mode speech for vocabulary purpose. 

The database SPC-2 contains all data collected, of each kind of speech mode and the 

database SPC-3 contains the transcribed data of all 3 kinds of speech modes. In SPC-3, 

each wave file also has its corresponding transcription ‘.ph’ file. 

3.3 Development of phonetic engine 

 

3.3.1 Transcription 

Transcription of read speech, lecture speech, and conversational speech has been done 

using International Phonetic Alphabet (IPA) chart, which is available 

athttp://westonruter.github.io/ipa-chart/keyboard/. There are 36 IPA symbols including 

Vowels, Semi vowels,and Consonants. Apart from this, diacritics, tone and word 

accents, and suprasegmentals were also used in transcription. Consonants include Steps, 

Velar, Affricates, Nasals, Laterals, and Fricatives.  

Figure 3.1 contains the transcription of a lecture mode speech. After selecting a 

segment, its transcription is noted down in the transcription pane using IPA chart.  

 



 
Figure 3.1: Transcription of a Lecture Speech File 

 

3.3.2 Break Index Marking 

 

This work is done with an objective of semi-automating the break index marking and 

silence removal. For doing this, each wave file is divided into overlapping frames, 

then energy level of each frame is computed, if it is less than 1.2 dB then it is detected 

as silence. Detected silence is then removed from the wave file. Figure 3. 2 contains 

the snapshot of a file containing time stamping of the break indices and Figure 3. 3 

contains these markings on a wave file. 

 

 
Figure 3.2: System generated break index markings 

 

 
Figure 3.3:System generated break index markings corresponding to wave signal 

 



3.3.3 Pitch Accent Marking 

 

This work has been carried out with the objective of semi-automating the process of 

pitch marking. Firstly, in the whole speech, voiced and unvoiced regions are detected 

so that only the voiced regions are pitch marked. In a particular voiced segment of 

speech, pitch accent may have 7 different marks, namely, low to high (LH), high to 

low (HL), flat(F), i.e., no change in pitch, very low to high (VLH), very high to low 

(VHL), low to very high (LVH) and high to very low (HVL). Zero frequency filtering 

technique is used to segment the speech into voiced and unvoiced region. Then, pitch 

marking is done for each voiced region. For pitch marking, sampling rate of the signal 

should not be more than 8000 Hz. If so, it is re-sampled to 8000 Hz. Finally, line 

fitting is done using linear regression to detect pitch variation. Figures 3.4 and 3.5 

contains the results of efforts in pitch marking automation. 

 

 
Figure 3.4: System generated pitch markings 

 

 
Figure 3.5:System generated pitch markings corresponding to wave signal 

 

 

 

 



Illustration of pitch accent marking using a file of 4 seconds duration 

 

Here, a .wav file of 4 seconds duration of read mode speech has been considered 

for pitch marking. The pitch marking has been done manually as well as generated 

from implemented system. After pitch marking, results of both, manual efforts and 

automated efforts, are depicted in Figures 3.6 and 3.7.  

 

 
Figure 3.6: Manual pitch markings corresponding to wave signal 

 

 
Figure 3.7: System generated pitch markings corresponding to wave signal 



 

Results: Table 3.1 contains the results of this experimentation on the file. It has 

been noted that in the duration of 4 Sec., LH segment appeared 4 times if we do 

the marking manually. Where as in the case of automation, this segment appears 

only once, i.e., it has an error of 3 occurrences. Similarly the occurrences of other 

markings have been noted and reported in Table 3.1.    

 

          Table 3.1: Results for manual vs. system generated pitch marking 

   LH HL F VLH VHL LVH HVL 
Manual 4 3 1 0 1 0 0 

Automated 1 5 0 0 1 0 1 

Error 3 2 1 0 0 0 1 

 

Illustration of pitch accent marking using a file of 15 seconds duration 

 

Figures 3.8 and 3.9 represent the manual pitch marking and system generated 

pitch marking, respectively, for a file with 15 second duration. Table 3.2 depicts 

the error analysis of manual and system generated pitch accent marking.  

 

 
Figure 3.8: Manual Pitch markings corresponding to wave signal 

 



 
Figure 3.9: System generated Pitch Markings corresponding to wave signal 

Table 3.2: Results of manual vs. system generated pitch marking 

   LH HL F VLH VHL LVH HVL 
Manual 9 12 9 1 0 0 2 

Automated 7 8 8 2 1 1 2 

Error 2 4 1 1 1 1 0 

 

3.3.4 Phonetic Transcription Automation 

This work has been carried out with the objective of automation of transcription. 

We have used the HTK toolkit in this process. Phonetic Engine (PE) is trained and 

tested for read speech mode, lecture speech mode, and conversational speech 

mode. For each mode, available transcribed data is divided into two parts. First 

part consists of 75% of available transcribed data, which is used for training and 

rest, 25% of available transcribed data is used for testing.  

 

3.3.4.1 Phonetic Transcription Automation for different speech modes 

PE is trained for all the modes of speech: Read mode speech, Lecture mode 

speech and Conversational mode speech, as mentioned earlier. The total duration 

of each kind of data considered for PE automation is given in Table 3.3. 

 

                         Table 3.3:   Time duration of each mode of Speech 

Mode Total Duration (in Minutes) 

Read 185.93 

Lecture 20.05 

Conversational 20.22 

 

The PE is trained and tested for all three modes of speech. The results are given in 

the form of confusion matrix and the accuracy achieved. Confusion matrix for 

Read Speech mode is shown in Figure 3.10. It depicts that percentage of 

phonemes correctly recognized is 67.8%. Figure 3.11 shows the confusion matrix 



for Lecture mode speech. This depicts that percentage of phonemes recognized 

correctly is 56.2%. Confusion matrix as shown in Figure 3.12 depicts that the 

percentage of correctly recognized phonemes is 36.7% for conversational mode 

speech. 

 

Figure 3.10: Confusion matrix for read speech mode 

 

 
Figure 3.11: Confusion matrix for lecture mode speech 

 



Figure 3.12: Confusion matrix for conversational mode speech 

 

Overall accuracy of the PE is summarised in Table 3.4. 

 

Table 3.4: Testing accuracy of PE for different speech modes 

Mode of Speech No. of 

Speakers 

Training Data 

(in Minutes) 

Testing Data 

(in Minutes) 

Testing 

Accuracy 

Read  4 138.2 47.73 61.5% 

Lecture 1 15.3 4.75 47.0% 

Conversational 10 15.1 5.12 22.4% 

 

Phonetic Engine is now trained and tested for the gender, for read speech mode. 

For this purpose, engine was trained with 75% wave files of each category and 

tested for 25% wave files of the same category. The result are shown in the form 

of confusion matrices in Figures 3.13 and 3.14. 

 



Figure 3.13: Confusion matrix for read speech: Female 

 

Figure 3.14: Confusion matrix for read speech: Male 

Table 3.5 displays the testing accuracy of PE when trained and tested gender-wise for 

read speech. 

 

Table 3.5: Testing Accuracy of Read Speech mode – Gender wise 

Gender No. of 

Speakers 

Training Data 

(in Minutes) 

Testing Data 

(in Minutes) 

Testing 

Accuracy 

Female 2 18.48 6.35 52.0% 

Male 2 122.41 38.65 61.6% 

 

The PE has also been trained for individual speakers. This has been done for two 

female speakers and two male speakers. The testing accuracies of this study is 

depicted in Table 3.6 and Table 3.7. 



Table 3.6: Testing Accuracy of read speech mode: Females 

Female ID Training Data (in 

Minutes) 

Testing Data (in 

Minutes) 

Testing Accuracy 

F0001 10:35 3.45 50.0% 

F0002 7.47 2.4 57.8% 

 

Table 3.7: Testing Accuracy of Read speech mode: Males 

Male ID Training Data (in 

Minutes) 

Testing Data (in 

Minutes) 

Testing Accuracy 

M0001 92.33 29.25 61.2% 

M0002 29.5 9.98 57.9% 

 

3.3.4.2 Performance Enhancement of Phonetic Engine 

 

To increase the efficiency of the phonetic engine, training as well as testing data sets 

have been enhanced. The details of the data set that has been used for training and 

testing the PE is given in Table 3.8. 

 

Table 3.8: Total duration of each mode of speech 

Mode Duration (in minutes) 

Read speech mode 300.02 

Lecture speech mode 40.15 

Conversational speech mode 30.02 

 

For read speech, training of PE is divided into 3 steps to measure the correctness and 

accuracy at each step. In first step, 180 minutes of data has been used, which has 

further been divided as, 120 minutes data for training and 60 minutes data for testing. 

It results into 63.2% of accuracy. In second step, 240 minutes of data has been used, 

which was further divided as 180 minutes data for training, and 60 minutes of data for 

testing. It resulted into 67.3% accuracy. In third step, 300.02 minutes of data has been 

used. This data is further divided as 225.02 minutes data for training and 75 minutes 

data for testing. This approach has resulted into a 71.9% of accuracy. 

 

Table 3.9 depicts the correctness as well as accuracy of PE in incremental manner. As 

we increase the training data, the correctness and accuracy of PE increases. 

 

Table 3.9: Enhanced performance of read speech mode with increased data sets 

Data in hours Correctness (in %) Testing accuracy (in %) 

3 hrs 72.2 63.2 

4 hrs 75.0 67.3 

5 hrs 77.2 71.9 

 

 

 

 



PE is also trained for different number of ASCII symbols. The same incremental 

approach of data has been applied with different number of ASCII symbols. 

Experiments show that change in numbers of ASCII symbols affects the performance 

of PE. The results of these experimentations are depicted in Table 3.10. Results in this 

Table depict that increased number of ASCII symbols reduce the performance of PE, 

for same training data sets in comparison to lower number of ASCII symbols.  

 

                   Table 3.10: Performance of PE with different ASCII symbols 

Data in hours With 29 ASCII symbols With 49 ASCII symbols 
Correctness (in %) Accuracy (in %) Correctness (in 

%) 

Accuracy (in %) 

3 hours 72.2 63.2 49.3 40.6 

4 hours 75.1 67.2 51.2 43.6 

5 hours 77.3 71.9 53.7 45.1 

 

Phonetic Engine is also trained with read speech data with different number of MFCC 

features: 12D and 36D MFCC features. The approach of different MFCC features is 

applied in the incremental manner of data sets and ASCII symbols. The figures  on 

correctness and accuracy is mentioned in Tables 3.11 and 3.12, respectively for these 

experimentations. 

 

                     Table 3.11: Correctness of PE with enhanced MFCC features 

Data in hours 12D MFCC Features 36D MFCC Features 
29 ASCII 

symbols 

49 ASCII 

symbols 

29 ASCII 

symbols 

49 ASCII 

symbols 

3 hours 72.2 49.3 72.2 49.3 

4 hours 75.1 51.2 75.2 51.2 

5 hours 77.3 53.7 78.0 53.9 

 

                      Table 3.12: Accuracy of PE with enhanced MFCC features 

Data in hours 12D MFCC Features 36D MFCC Features 
29 ASCII 

symbols 

49 ASCII 

symbols 

29 ASCII 

symbols 

49 ASCII 

symbols 

3 hours 63.2 40.6 63.2 40.6 

4 hours 67.3 43.6 67.3 43.7 

5 hours 71.9 45.1 72.3 45.2 

 

Now, for lecture mode speech, 536 wave files have been considered. Out of these 536 

files, 402 files have been used for training purpose and 134 sliced wave files have 

been used for testing purpose. It resulted into 61.2% of correctness and 50.4% of 

accuracy, as shown in Figure 3.15. 

 



Figure 3.15: Confusion matrix for enhanced lecture mode speech 

 

For conversational mode speech, 410 sliced wave files have been used. Out of these 

410 files, 308 files have been used for training purpose whereas 102 files have been 

used for testing purpose. It resulted into 41.59% of correctness and 27.64% of 

accuracy, as shown in Figure 3.16. 

 

Figure 3.16:  Confusion matrix for enhanced conversational mode speech 

Testing accuracy of each kind of speech mode, corresponding number of speakers, duration 

of training and testing data for enhanced data set is shown in Table 3.13. 



 

                    Table 3.13: Testing accuracy of each mode 

Mode of Speech No. of 

Speakers 

Training Data 

(in Minutes) 

Testing Data 

(in Minutes) 

Testing 

Accuracy 

Read  11 225.02 75 71.9% 

Lecture 2 30.02 10.08 50.4% 

Conversational 10 22.41 7.58 27.6% 

 

3.4 Syllabification Automation 

Phonetic engine system for semi-automatic syllabification of audio files is being 

developed using HTK toolkit. Syllabification is the process of separation of words 

into syllables.  For syllabification, system is trained using 750 wave files. After this, 

various input files are given as input to toolkit along with HMMs, and a final result is 

obtained in a file in which duration of each phone of each wav file is obtained. 

Following figures contain the results of one of such wave file. Figure 3.17 depicts the 

IPA symbols and their corresponding ASCII characters that have been used in 

transcription as well as in syllabification. Figure 3.18 depicts the duration of different 

IPA symbols as a resultant of syllabification process, whereas Figure 19 displays the 

system generated syllables corresponding to the signal. 

 

 
Figure 3.17: IPA symbols and their corresponding ASCII characters 

 



 
Figure 3.18: Duration of different IPA symbols 

 

 
     Figure 3.19: System generated syllables corresponding to the signal 

 

3.5 Database Development for searching the speech database 

We have prepared the following files for the implementation of search engine for 

Punjabi Language. These files have been shared with IIT Hyderabad in the form of 

SPC-1 database. This database contains five directories, namely, convsp, doc, lectsp, 

readsp, and tools. The directory convsp contains two folders containing conversation 

speech audio data. The doc folder contains the vocabulary list, query list and word-

frequency text files and their  pdf files as shown in Table 3.14.  

 

The file vocabulary.txt contains 266 words in total, which are further categorised in 

mono-syllabic, bi-syllabic, tri-syllabic, and multi-syllabic categories. The occurrences 

of these syllables in the words is mentioned in Table 3,15. 

 

 



                       Table 3.14: Sample vocabulary, word frequency and query.txt  

 

 

 
vocabulary.

txt 

word_frequency.txt query.txt 

 

                           Table 3.15: Occurrences of syllables  

Words Occurrences 

Mono-syllabic 39 

Bi-syllabic 43 

Tri-syllabic 110 

Multi-syllabic 74 

 

3.6 Summary and future work 

In this project, we have collected read mode speech data of 15 hours and 44 minutes 

duration, lecture mode speech data of 5 hours and 24 minutes duration and 

conversational mode speech data of 4 hours and 19 minutes duration. A portion of this 

data has been transcribed for each mode. Experiments have also been carried out for 

the development of a prosodically guided phonetic engine in this project. The 

phonetic engines have been developed for different modes of speech. We have also 

developed a database for implementing the search engine for Punjabi language. 
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4.1 Database collection & transcription

A Comprehensive Report on Development of Phonetic Engine for Indian

Languages

Detailed Technical Report of IIT Guwahati

4.1 Database collection & transcription

4.1.1 Data Collection

Data has been collected from around twenty five native Assamese speakers for a duration of about

20 hours. Recording has been done in three different modes. The environment chosen during the

lecture mode data collection process while recording is the normal academic class environment. For

reading mode it is open or closed room environment. Conversation mode is collected in field environ-

ment. Two channels have been used for recording the data for lecture and reading mode. One channel

is the narrowband telephone channel and the other channel is the microphone channel. Microphone

channel is maintained at a sampling frequency of 48 KHz, whereas sampling frequency of the nar-

rowband telephone channel is 8 KHz. Both channels are maintained at 16 bit per sample. Asterisk

voiceserver is used to record the telephone data. Only mobile channel is used for conversational mode

dat collection.

4.1.2 Transcription

After the commencement of the recording process, the data obtained needs to be chunked and

transcribed. Chunking of the data into smaller parts has been done comparable to the length of a

general sentence. Once chunking gets over, the data is ready for being transcribed. While transcribing,

the signal is carefully listened and looked into so as to minimize transcription error as much as

possible. Transcription has been done using the International Phonetic Alphabet (IPA) chart. The

International Phonetic Alphabet (IPA) is an alphabetic system of phonetic notation based primarily

on the Latin alphabet. The IPA is designed to represent those qualities of speech that are distinctive

in oral language. It provides one symbol for each distinctive sound (speech segment) composed of
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one or more elements of two basic types, letters and diacritics. Letters represent basic sound units

and diacritics are small markings which are placed around the IPA letter in order to show a certain

alteration or more specific description in the letters pronunciation. Since the IPA symbols captures

all the distinctive acoustic phonetic characteristics of speech, they are used as phonetic units in the

proposed PE. The most recent version of the IPA chart consist of 107 letters, 52 diacritics and four

prosodic marks. Transcribers are free to use any one of the 107 letters from the chart, however,

diacritics set for transcription is reduced to 10 containing only the common ones like aspirated stops,

nasalised sounds, long vowel, extra short vowel, half long vowel, breathy voice etc. However, no

prosodic marking is done.

Segmented speech files are carefully listened to and observed to transcribe using the phonetic units

obtained from the IPA chart. WaveSurfer is used to listen and visually examine the speech waveform.

To remove ambiguities among the phonetic units, they are observed using different signal processing

tools like spectrogram, pitch contour, energy contour etc. Whole 20 hours of speech data is transcribed

using IPA. Around 2 hours of data is marked with prosodic markings (syllable marking, pitch contour

marking and break index marking). A total of about 70 different phonetic units are found for the

Assamese data. However, most of the phonetic units with diacritics are found to have very low number

of occurences and so they are merged to the corresponding phonetic unit without the diacritic mark.

Also, most of the phonetic units which are not commonly found in Assamese but produced by the

articulators in continuous speech have very less number of occurences. Number of occurrences of 35

major phonetic units from 3.5 hours of data are tabulated bellow:

Vowels 6 O i a E o e u

No. of 90 8646 4329 5814 3132 1502 637 3343

Occurrence

Nasals n m N

No. of 1843 296 233

Occurrence

Unaspirated stops p b t d k g

No. of 1522 2166 4225 1014 3815 469

Occurrence
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Aspirated stops ph bh th dh kh gh

No. of 197 402 539 265 49 541

Occurrence

Fricatives z s x h B X S

No. of 243 2314 1359 1478 57 44 30

Occurrence

Approximants r j l

No. of 5055 827 2356

Occurrence

Affricates ţ dz

No. of 54 502

Occurrence

4.2 Semi-automatic prosodic markings

4.2.1 Pitch Contour marking

In a particular voiced segment of speech, pitch may vary from low to high, high to low or it may

not vary at all. This work describes a method for automatically segmenting speech into certain regions

having a continuous pitch contour and marking the nature of pitch change within those regions. Zero

frequency filtering is used to segment the speech into voiced and unvoiced segments. This segment

is further divided into small segments depending on a discontinuity present in the pitch contour. A

height value of the pitch contour in the final segment is measured and accordingly marking is done.

Now automatic segmentation and markings are manually corrected by deleting, inserting or shifting

the segmentation boundaries and substituting the wrong markings.

Hundred speech sentences containing around 700 pitch contour segments collected from 30 dif-

ferent speakers are used for evaluation of automatic segmentation and marking of pitch contours.

Performance is evaluated in terms of percentage of manual error correction.

• DEL: Percentage of deleted segment boundaries in the manual correction process out of total

number of actual boundaries.

• INS: Percentage of inserted segment boundaries in the manual correction process out of total
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number of actual boundaries.

• SFT: Percentage of shifed segment boundaries in the manual correction process out of total

number of actual boundaries.

• SUB: Percentage of substituted pitch contour markings in the manual correction process out of

total number of actual pitch markings.

Table 4.1: Performance evaluation

DEL (%) INS (%) SFT (%) SUB (%)
9.38 7.18 6.89 18.91

4.2.2 Semi-automatic syllable boundary marking

Semi-automatic syllable labelling means syllable labelling of the speech signal when transcription

or the text corresponding to the speech file is provided. HMM models for 15 broad classes of phone is

built. Time label of the transcription is obtained by the forced alignment procedure using the HMM

models. A parser is used to convert the word transcription to syllable transcription using certain

syllabification rules. This syllable transcription and the time label of the phones are used to get the

time label of the syllables. Now the syllable labelling output is refined using the knowledge of vowel

onset point and vowel offset point derived from the speech signal using different signal processing

techniques. This refinement gives improvement in terms of both syllable detection as well as average

deviation in the syllable onset and offset.

50 sentences from the Assamese database which are not part of the training data are taken and

manually labelled the syllables using wave-surfer. Pitch contour, spectrogram etc are used for accurate

labelling. Now the same sentences are tested with the proposed system. The performance is evaluated

using the following parameters.

Detection Rate (DR): Percentage of syllable onset and offset detected within 40 ms deviation of

actual syllable onset and offset.

Average Deviation (AD): Average of the deviations of all the detected syllable onsets and offsets.

Spurious detection (SD): Syllable Onset or Offset that is detected beyond 40 ms of an actual Onset

or Offset.
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Table 4.2: Syllable labelling performance

Method DR (%) AD (msec) SD (%)
HMM 92.81 14 7.19

HMM+VOP/VEP 93.35 12 6.65

Table 6.4 shows the performance of the system before and after refinement. It is seen that using

only HMM based method gives 92.81% detection rate which is improved to 93.35% after refining with

the knowledge of VOP and VEP. In case of average deviation, HMM gives around 14 msec of average

deviation, whereas, the refined output gives 12 msec of average deviation. Thus, after refinement,

improvement is observed in terms of detection rate and average deviation.

4.3 Development of phonetic engine

Phonetic engine (PE) is the signal to symbol transformation module which uses the acoustic pho-

netic information present in the speech signal to convert the speech signal into symbolic form. The

engine produces a sequence of symbols without using any language constraints in the form of lexical,

syntactic and higher level knowledge source. The choice of symbol should be such that it can capture

all the phonetic variations in speech. Existing PE implemented for Indian languages produces syllable

like units as the output where constraint at the syllable level are used, as syllable-like units are most

basic in the production of speech.

PE is the front end module for both speech recognition system and information retrieval system. In

automatic speech recognition of continuous speech, the speech signal is first converted to the subword

units of speech which in turn is converted to text. The first part of converting speech to subword

units is done by a PE. Existing PE implemented for Indian languages uses syllable like units as the

subword units. Here we will use sequence of International Phonetic Alphabet (IPA) as the subword

units as IPA provides one symbol for each distinctive sound (speech segment). These symbols are

composed of one or more elements of two basic types, letters and diacritics. Letters represent basic

sound units and Diacritics are small markings which are placed around the IPA letter in order to

show a certain alteration or more specific description in the letter’s pronunciation. Since IPA sym-

bol captures all distinctive acoustic phonetic characteristics of speech, they can be called as acoustic

phonetic sequence (APS). In an information retrieval system, the spoken query is converted to Acous-
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tic APS by PE. The APS derived from PE is fed as an input to the IR module, where the job of IR

module is to use APS to search and retrieve the relevant spoken documents based on the spoken query.

4.3.1 Signal Processing based approach

Here we try to detect the phonetic units in a hierarchical way from a very high level segmentation

to a low level segmentation. First, speech signal is classified into vowel like regions and non-vowel

like regions. Vowel regions includes vowels and semivowels and non vowel like regions includes nasals,

stops and fricatives. Later, vowel like regions and non vowel like region will be recognised using

separate methods. Here we use a excitation source based method for detection of vowel like regions.

The output of the signal processing based method is refined using a HMM based statistical method.

Signal processing based method for vowel like region detection uses hilbert envelope of LP residual of

speech signal and strength of excitation of speech derived from zero frequency filtered signal. VLR

detection using SP method mainly relies on the change of signal strength. Nasals are quasi-periodic in

nature with impulse like excitation source characteristics in it. So, there can be a change in strength

at the onset of a nasal. Similarly voice bars, having high energy can be detected as VLR as they

have the similar excitation source characteristics. However, vocal tract information present in the

statistical method is capable of detecting such regions. A multi-class statistical phone classifier that

classifies speech into broad vowel, consonant and silence categories is trained. The outputs of the

classifier are suitably combined to get evidence for vowel-like regions, different broad categories of

consonants and silence regions. The output from the existing signal processing method is compared

with different evidences from the statistical method. The spurious ones are eliminated by using the

evidences from the statistical method. The experimental studies conducted on TIMIT and in-house

databases demonstrate significant reduction in the spurious VLRs with a little loss in the VLRs

detection performance. A net gain of 4.21% and 7.71% in frame error rate is achieved for TIMIT and

in-house databases, respectively.

Another method for improving accuracy of Vowel Onset Point (VOP) and Vowel End Point (VEP)

detection in continuous speech is devloped. Speech signal is represented using Bessel functions with

their damped sinusoid-like basis functions. Bessel expansion is used to emphasize the vowel regions

by appropriate consideration of the range of Bessel coefficients. Bandpass filtered narrow-band signal
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Table 4.3: VLRs Detection Performance after reducing Spurious detection rate

Data Method IR(%) SR1(%) SR2(%) NG(%)

T
IM

IT

SP 80.38 12.40 0.81 -
SP − STN 77.65 8.37 0.79 1.33
SP − STS 78.34 7.38 0.49 3.35
SP − STF 80.43 12.44 0.81 0.02

SP − STS − STN 74.75 2.92 0.46 4.21
−STF

A
ss

am
es

e
SP 88.32 22.48 2.46 -

SP − STN 85.15 18.01 2.42 1.20
SP − STS 82.03 11.07 1.77 5.67
SP − STF 87.34 21.01 2.23 0.58

SP − STS − STN 77.80 5.01 1.48 7.79
−STF

is modeled as a monocomponent amplitude modulated-frequency modulated (AM-FM) signal. The

amplitude envelope (AE) function of this vowel emphasized AM-FM signal gives strong evidence for

the VOP and VEP. This evidence after adding with some of the existing evidences having source

and system information, increases the detection rate as well as the accuracy of detection. Evidences

obtained using Excitation source (ES) and source, spectral peaks and modulation spectrum (SSM)

based methods are enhanced in this work by adding the evidence obtained from the AE function of

the vowel enhanced signal. Normally, the evidence from AE function will have a strong peak at the

VOP and VEP compared to other speech region within the same vowel. Adding this evidence will

enhance the ES and SSM evidence at the VOP and VEP. Even if the peaks at VOP or VEP are not

strong enough, but almost comparable, in the combined evidence, the peaks will move towards the

VOP or VEP. After adding the evidences same procedure is followed for the respective methods for

obtaining the VOP or VEP.

Table 4.12 shows the performance of VOP/VEP detection in terms of DR and SR. Individual

performances of ES and SSM are compared with corresponding combined performances (AE+ES and

AE+SSM). Improvement is achieved in terms of both DR and SR in terms of increasing DR and

reducing SR.

4.3.2 HMM based approach

Diacritics are found to have very low number of occurences and so they are merged to the corre-

sponding phonetic unit without the diacritic mark. Most of the phonetic units which are not commonly
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Table 4.4: VOP/VEP Detection Performance

Method VOP VEP
DR (%) SR (%) DR (%) SR (%)

ES 94.06 8.17 92.14 10.09
ES+AE 95.33 6.63 92.95 8.82

SSM 93.56 9.03 87.21 14.76
SSM+AE 95.12 7.64 89.31 12.87

found in Assamese but produced by the articulators in continuous speech have very less number of

occurences. Such phonetic units are merged to the closest IPA symbol. After merging the phonetic

units a total of 34 symbols are found including the silence.
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4.4 Development of Phonetic Engine for 12 Indian Languages

The PEs for 12 Indian Languages are developed in this work using Hidden Markov Model (HMM)

and Artificial Neural Network (ANN) approach. The speech corpus for each language consists of

phonetically transcribed speech data in different speaking modes i.e. read, lecture and conversation.

The phone level transcription is done by using IPA symbols and diacritic. Since PEs are developed

by statistical methods, requires more examples to get better trained models. Hence in each language

merging of phonetic units to enhance the number of examples for each phonetic class is carried out

in this work. Diacritics are found to have very low number of occurrences and so they are merged to

the corresponding phonetic unit without the diacritic mark. Most of the phonetic units which are not

commonly found in the languages, but produced by the articulators in continuous speech have very

less number of occurrences. Such phonetic units are merged to the closest IPA symbol. The number

final merged phonemes used to develop PEs for different Indian languages is given below.

Mel Frequency Cepstral Coefficients (MFCCs) are computed for Hamming windowed speech frames

of 25ms with 10ms overlap. In this work, 22 Mel scaled filter banks are used compute 12th order

MFCCs. Hence, speech is parameterized with 12 Mel Frequency Cepstral Coefficients (MFCCs) and

0th order cepstral coefficient as well as their first and second order derivatives with zero mean static

coefficient yielding a total of 39 components. The same set of feature vectors are used to develop the

HMM and ANN based PEs.

4.4.1 HMM Based Approach

Context-independent mono-phone hidden Markov model (HMM) based phone recognizer is used to

build the prototype of the phonetic engine. Here phones are the acoustic phonetic units (APU) which

are prepared using IPA. The system will not use language information in any form. A 5 states left to

right HMM model (including 2 non emitting states) with a 32 mixture continuous-density diagonal-

covariance Gaussian mixture model (GMM) per state will be used to model each of the phonetic units.

The training process is initialized by defining prototype model, where the model topology such as type

of features used, dimension of feature vector and number of states and transition probabilities are de-

fined. In this work, a prototype model with all means initialized to zeros and all variances initialized

to unity is defined. The global means and variances are computed by scaning all the training files. A

new prototype model with all its means equal to global means and all its variances equal to global
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variances, for set of all Gaussians present in the given HMM, is created. This new prototype model

is used for creating flat-start HMMs. The flat start HMMs are then re-estimated using the training

data with the embedded re- estimation to perform Baum-Welch training. Here 6 iterations are used

to get final phone models.

The viterbi decoding is used for decoding of test speech signal into sequence of phones. Viterbi

decoding is a procedure for finding the hidden sequence of states within a phone. These states are

most likely to have produced the observed sequence of feature vectors.

The phone recognition accuracy is computed by using,

RecognitionAccuracy(in%) =
N − S −D − I

N
(4.1)

Where, N is total No. of phones, S is No. of Substitutions, D is No. of Deletions and I is No. of

Insertions.

4.4.2 ANN Based Approach

The training of ANN requires phonetically transcribed speech data with time stamps. Since ANN

is discriminative classifier, it requires phone boundary information for training. The mono phone

HMMs are used to conduct force alignment on the training data to get the time stamps. The phones

with time stamps are used to train the ANN. The input layer of ANN is equal of the feature vector,

i.e. 39 if 0 context is used. Since the phone boundary information is taken from a statistical model

(HMM) accurate phone boundaries cannot be expected. Context of order 8 is used to obtain the input

feature vector for ANN i.e. feature vectors of current frame and 4 frames on either side current frame.

The size of output layer equals to the number of phones used. The hidden layer of size 1000 is used.

Back propagation algorithm is used train the Feed Forward ANN (FANN). The structure of FANN

used to develop the phonetic engine in the current work is [351 1000 Number of Phones]. Fig. 4.1

shows the structure of Phonetic Engine developed using ANN. The phone decoding of testing sequence

is done by decoding posteriori probabilities of output layer of ANN.
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Input Layer
Hidden Layer

Output Layer

Figure 4.1: The Architecture of ANN based phonetic Engine. In present work ANN of structure ([351 1000
No. of Phones]), input layer of size 351, hidden layer of 1000 neurons and output layer of size equals to number
of phones are used

4.4.3 Phonetic Engine Results

The accuracies of phonetic engines developed for 12 languages with three different speaking modes

are shown in table 4.7. The ANN based phonetic engine shows better performance compared to HMM

based phonetic engine, because of discriminative training of ANN system. The relative increment in

performance of ANN w.r.t. HMM is also indicated in table 4.7. The experiments on different modes

of training and testing data are carried out using HMM, to study the effect of speaking mode on the

performance of phonetic engines. The results of these experiments are shown in Appendix-I.
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4.5 Computation of Confidence Level for the Decoded Phone Se-

quence

−150 −140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
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Figure 4.2: Histogram of LLR scores of phone [a]

−150 −140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
0

0.02

0.04

0.06

PDF of LLR scores

−150 −140 −130 −120 −110 −100 −90 −80 −70 −60 −50 −40 −30 −20 −10 0
0

0.5

1

LLR Scores

 CDF of LLR Scores

Figure 4.3: The Gaussian PDF (a) and CDF (b) of
scores of phone [a].

The phonetic engine decodes the given utterance into a sequence of phones. The confidence level of

decoded phone is obtained using output score of PEs. The forced alignment is conducted on the train

data and corresponding LLR scores for the forced aligned phones is obtained. The phone wise LLR

scores are grouped together and distribution of scores is computed. The histogram of LLR scores of

phone [a] of Kannada language is shown in Fig. 4.2. The distribution of decoded phone scores follows

the Gaussian Probability Distribution Function (PDF) . So, LLR scores are modeled by Gaussian

PDF Fig. 4.3. The corresponding Cumulative Distribution Function (CDF) is computed from the

PDF obtained for a particular phone. The Fig. 4.4 shows the computation method of CDF contours

for the confidence level measurement of decoded phones of phonetic engine. The table 4.8 shows the

CDF contours computed for the LLR scores. The CDF distributions are computed for closed interval

[-150,0] with bin size of 0.01.

During testing, the phonetic engine decodes the phone sequence with LLR scores. The CDF value

corresponding to the LLR score gives the confidence level of the decoded phone. The Fig. 4.5 explains

the computation of confidence level for the decoded phone sequence from the CDF contours computed.

An example of computing confidence scores for the decoded phones of utterance “akashavani” is shown

in table 4.9. The correct decoded sequence of the utterance will be [a], [k], [a], [sh], [a], [v], [a], [n], [i],

but decoded as [a], [t], [k], [a], [s], [e], [v], [a], [n], [i], [T]. The decoded phones [a] (0.60),[a] (0.67), [v]
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HMM Monophone Model using Flat Start Training

HMM based forced alignment

Compute CDF of LLR Scores for each phone and
store them�

Figure 4.4: Computation of CDF for the LLR scores of training data.

Decoded phone sequence

The CDF value corresponding to the LLR
score of the Decoded Phone  Sequence

Confidence Level of the Decoded Phone
sequence

Figure 4.5: Computation of confidence level for the test utterance from the CDF obtained from LLR scores.

(0.99), [a] (0.99) with high confidence value shows the presence of decoded phones in the utterance.
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4.6 Language Identification using Phonetic Engine

The influence of language on the phone recognition is illustrated by decoding a given utterance

in all the 12 language phonetic engines. The given utterance is decoded in phonetic engines of all

the 12 languages and corresponding LLR scores are computed. The phonetic engine which gives the

maximum score for the utterance is identified as the language of the given utterance. The pictorial

representation of language identification is shown in Fig. 4.6.

Speech Signal

Decoding in
Langauge-1 PE Decoding in

Langauge-2 PE
Decoding in

Langauge-3 PE
Decoding in

Langauge-12 PE

LLR Score-1 LLR Score-2 LLR Score-3 LLR Score-12

Maximma LLR Score

Displays the phonetic
sequence of the

Language having
maximum LLR Score

Figure 4.6: Language Identification using Phonetic Engine. The phone decoding of the given utterance is
based on the maximum LLR score obtained from all 12 language phonetic engines.

The table 4.10, 4.11 and 4.12 gives the confusion of phone decoding among 12 languages in read,

lecture and conversation modes respectively. The diagonal values of the matrix are high compared

to others, which shows that the given utterance is decoded in the corresponding language phonetic

engine compared to others. The experimental results shows that the maximum number of utterances

are decoded in the corresponding languages with maximum score compared to other languages. This

shows the influence of language on the phonetic engine performance.
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4.7 Phonetic Engine Graphical User Interface (GUI)

The utterance is loaded to decode the phone sequence. The decoding of the phonetic sequence is

based upon the user input which may be Language Independent or Language Dependent. The GUI

is developed such that the user is free chose language, mode and HMM or ANN based decoder.

If the user selects the Language Independent option, then he has to select the mode and type of

engine i.e. HMM or ANN. The utterance is decoded based upon the Language Identification method

i.e. decoded based by computing maximum likelihood score among 12 language decoders. If the user

selects the Language Dependent option, then he has to select the language, decode and mode for which

he wants the sequence to be decoded. The pictorial representation of the GUI is shown in Fig. 4.7.

Speech Signal

Language
Independent PE

Language
Dependent PE

Read

Lect

Conv

Combine

HMM

ANN

HMM

ANN

HMM

ANN

HMM

ANN

Language-1

Language-12

Read

Lect

Conv

Combine

HMM

ANN

HMM

ANN

HMM

ANN

HMM

ANN

Read

Lect

Conv

Combine

HMM

ANN

HMM

ANN

HMM

ANN

HMM

ANN

Figure 4.7: Schematic Representation of GUI. The figure explains the flow of decoding of given utterence

The display part of the GUI consists of four layers as shown in figure 4.8. The first layer displays

of waveform of the speech signal which has to be decoded into a set of phonetic units. The second

layer displays the decoded phone sequence by HMM or ANN. The third layer contains the phones
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Figure 4.8: Snapshot of GUI for Phonetic Engine. The figure shows the waveform and representation of
decoded phone sequence in four different layers in GUI

decoded with high confidence score (¿0.6) and phones with confidence score (¡0.6) are indicated by

symbol []. The fourth layer displays the contour of confidence level of decoded phones. The confidence

level contour help the user to read the decoded phone sequence in better way i.e. phones with high

confidence level given more importance compared to that of less confidence level.

4.8 Conclusion

The development of phonetic engine for 12 Indian languages is exaplained in this work. The

merging of phones to create sufficient amount of examples for the training of modeles is done for

all languages. Hence the phonetic engines developed for each language decodes the utterence into a

sequence of phonetic units with varying no. of phones i.e. 25 to 38 (depending on the language). The
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4.8 Conclusion

GUI provides the flexibility to user to decode the utterence in any language, mode or PE (HMM or

ANN) of his choice. The confidence scores of decoded phones indicates the presence or absence of

decoded phone in the given utterence. The future work may includes the incorporation of acoustic-

phonetic features to develop the phonetic engine.
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Table 4.5: List of Phonetic units found at the end of transcription of the Assamese data and the Reduced set
after merging similar units

Phonetic units Reduced Phonetic units Name in ASCII
O,6 O ao
i, I i i

a, @, A a aa
E E e
o o o
e e ee

u, U u u
n n n
m m m
N N ng
p p p
b b b
t t t
d d d
k k k
g g g
ph ph ph
bh bh bh
th th th
dh dh dh
kh kh kh
gh gh gh
z z j
s s s

x, C, W x x
h h h

w, B w w
S S sh

ô, R ô r
j j y
l l l
ţ ţ ts
dz dz dz
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Table 4.6: The number of phones used to build PE for 12 Indian Languages

Sl. No. Language No. of phones
1 Assamese 34
2 Bengali 34
3 Gujarati 37
4 Hindi 38
5 Kannada 26
6 Malayalam 25
7 Manipuri 30
8 Marathi 37
9 Odia 34
10 Punjabi 30
11 Telugu 25
12 Urdu 25

Table 4.7: The HMM and ANN based Phonetic Engine Results. Table Shows the training and testing
duration, No. of speakers in training and testing and performance HMM and ANN based phonetic Engines for
all 12 Languages with 3 different speaking modes

Language
Train Mode Test Mode

Train
Duration

(Hrs:Mins:Secs)

Test
Duration

(Hrs:Mins:Secs)

No. of
Training
Speakers

No. of
Testing

Speakers

Accuracy in %

HMM ANN

Manipuri Read Read 03:28:26 01:31:59 9 (3M+6F) 6 (2M+4F) 62.11 68.70
Manipuri Lect Lect 01:39:44 00:50:53 4 (2M+2F) 2 (1M+1F) 59.78 57.44
Manipuri Conv Conv 02:03:56 00:27:21 2 (2M) 2 (2M) 53.92 56.79
Assamese Read Read 06:16:20 02:31:20 14 (9M+5F) 6 (6F) 49.60 62.95
Assamese Lect Lect 03:34:00 00:52:23 4 (1M+3F) 2 (2F) 52.26 53.10
Assamese Conv Conv 02:01:39 00:31:17 8 (3M+5F) 4 (4M) 29.82 35.07

Odia Read Read 03:46:37 01:19:24 22 (10M+12F) 9 (4M+5F) 59.69 72.09
Odia Lect Lect 01:51:21 00:37:29 6 (3M+3F) 2 (1M+1F) 43.43 56.10
Odia Conv Conv 02:13:07 00:20:41 6 (3M+3F) 2 (1M+1F) 49.58 61.25

Bengali Read Read 03:49:55 01:10:55 38 (14M+24F) 12 (6M+6F) 43.23 55.47
Bengali Lect Lect 01:59:29 00:31:14 7 (5M+2F) 4 (2M+2F) 35.80 36.47
Bengali Conv Conv 01:59:11 00:38:31 24 (19M+5F) 6 (3M+3F) 23.99 29.61
Telugu Read Read 03:27:19 01:11:12 11 (5M+6F) 7 (3M+4F) 56.08 59.82
Telugu Lect Lect 01:29:45 00:30:59 7 (6M+1F) 2 (1M+1F) 40.20 38.49
Telugu Conv Conv 01:46:51 00:39:01 34(30M+4F) 13 (10M+3F) 45.83 48.30
Urdu Read Read 03:34:50 01:12:13 32 (29M+3F) 25 (22M+3F) 45.67 44.86
Urdu Lect Lect 01:35:39 00:36:08 3 (2M+1F) 1 (1M) 54.83 45.47
Urdu Conv Conv 01:42:49 00:31:06 16 (8M+8F) 7 (4M+3F) 48.84 47.42

Marathi Read Read 05:25:41 02:11:54 61 (42M+19F) 23 (18M+5F) 52.82 56.93
Marathi Lect Lect 02:06:51 00:42:16 7 (3M+4F) 2 (1M+1F) 35.18 39.66
Marathi Conv Conv 01:41:57 00:35:31 26 (19M+7F) 10 (4M+6F) 35.61 39.81
Gujarati Read Read 04:09:33 01:24:55 95 (54M+41F) 28 (17M+11F) 63.55 65.44
Gujarati Lect Lect 02:16:00 00:40:26 5 (4M+1F) 4 (3M+1F) 51.52 49.47
Gujarati Conv Conv 03:12:07 01:05:35 72 (37M+35F) 46 (26M+20F) 55.35 57.37
Pujabi Read Read 02:18:12 00:47:44 3 (1M+2F) 2 (2M) 61.48 74.57
Pujabi Lect Lect 00:15:18 00:04:45 1 (1M) 1 (1M) 47.17 50.96
Pujabi Conv Conv 00:15:06 00:05:07 10 (9M+1F) 5 (4M+1F) 22.39 28.81

Malayalam Read Read 03:58:50 01:13:57 22 (15M+7F) 8 (3M+5F) 33.23 39.80
Malayalam Lect Lect 01:56:11 00:35:41 13 (10M+3F) 6 (3M+3F) 31.82 34.82
Malayalam Conv Conv 01:52:59 00:37:19 41 (31M+10F) 8 (3M+5F) 31.18 32.37
Kannada Read Read 01:56:06 00.29.40 11 (5M+6F) 2 (1M+1F) 55.10 60.11
Kannada Lect Lect 01:56:11 00.39.14 4 (3M+1F) 2 (1M+1F) 48.74 53.33
Kannada Conv Conv 01:52:59 00.27.43 12 (11M+1F) 6 (6M) 45.67 50.78

Hindi Read Read 02:09:17 00:44:54 29 (7M+22F) 14 (8M+6F) 49.24 48.60
Hindi Lect Lect 00:43:28 00:17:15 9 (8M+1F) 8 (8F) 37.96 34.71
Hindi Conv Conv 02:00:09 00:32:44 18 conv 9 (5M+4F) 42.15 37.41
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Table 4.8: Example of Confidence Level Contour

LLR Scores
Phones -150 -149.99 -149.98 ... -60.99 -61 .. -0.01 0

[a] 0 0 0 ... 0.66 0.66 ... 1 1
[e] 0 0 0 ... 0.77 0.78 ... 1 1
[i] 0 0 0 ... 0.54 0.55 ... 1 1
[o] 0 0 0 ... 0.67 0.78 ... 1 1
[u] 0 0 0 ... 0.78 0.79 ... 1 1

Table 4.9: Phone level decoding of Kannada utterance “akashavani“ with confidence levels

Decoded
Phone

LLR score
Confidence

level
[a] -79.03 0.600797
[t] -78.74 0.641425
[k] -87.83 0.090313
[a] -78.12 0.675898
[s] -86.45 0.037411
[e] -84.76 0.117029
[v] -68.05 0.996893
[a] -69.4 0.954153
[n] -85.32 0.061519
[i] -80.85 0.362574
[T] -89.19 0.04078

Table 4.10: The Confusion Matrix for the Read Mode. The Table Shows The Confusion of Phone Decoding
Among 12 languages in Read Mode

Assamese Bengali Gujarati Hindi Kannada Mala Manipuri Marathi Odia Punjabi Telugu Urdu
Training
Duration

Testing
Duration

Assamese 99.27 0.12 0 0 0 0.36 0 0.24 0 0 0 0 02:00:00 00:30:00
Bengali 0 74.49 14.86 0 0.16 7.93 0 2.19 0.16 0 0.16 0 03:49:55 01:10:55
Gujarati 0 0 98.49 0 0.32 0.32 0 0.53 0.1 0 0.1 0.1 04:09:33 01:24:55

Hindi 0 0.5 0 99.24 0 0.25 0 0 0 0 0 0 02:09:17 00:44:54
Kannada 0 0 32.72 0 67.27 0 0 0 0 0 0 0 01:56:06 00.29.40

Mala 0 12.45 6.38 0.03 0.18 71.09 0.03 3.79 5.81 0 0 0.18 03:58:50 01:13:57
Manipuri 0 0 12.87 0 0 0 86.11 1.01 0 0 0 0 03:28:26 01:31:59
Marathi 0.05 0.05 38.7 0.05 15.93 3.79 0 39.34 0.05 0.05 0 1.92 05:25:41 02:11:54

Odia 0 0 57.71 0 0 0 0 0.93 41.35 0 0 0 03:46:37 01:19:24
Punjabi 0 0 14.12 0 0 0 0 0.47 0.15 85.24 0 0 02:18:12 00:47:44
Telugu 0 0 0.06 0 0 0.33 0 0 0.13 0 77.4 22.05 03:27:19 01:11:12
Urdu 0 0.12 0.6 0.18 0 0.3 0 0.66 0.24 0 13.24 84.64 03:34:50 01:12:13

Table 4.11: The Confusion Matrix for the Lecture Mode. The Table Shows The Confusion of Phone Decoding
Among 12 languages in Lecture Mode

Assamese Bengali Gujarati Hindi Kannada Mala Manipuri Marathi Odia Punjabi Telugu Urdu
Training
Duration

Testing
Duration

Assamese 99.66 0 0 0 0 0 0 0 0.33 0 0 0 02:00:00 00:30:00
Bengali 0 98.61 0.27 0 0 1.1 0 0 0 0 0 0 01:59:29 00:31:14
Gujarati 0 0.25 58.64 0.25 3 2 0.5 0.5 24.56 0 6.76 3.5 02:16:00 00:40:26

Hindi 0 4.76 0 81.74 0 0 0 7.14 0 0 6.34 0 00:43:28 00:17:15
Kannada 0 0 0.25 0 98.45 1.16 0 0 0.12 0 0 0 01:56:11 00.39.14

Mala 0.61 11.86 28.69 2.99 10.7 33.53 0.4 0 6.47 0 4.15 0.54 01:56:11 00:35:41
Manipuri 0 34.23 0 1.8 0 2.7 61.26 0 0 0 0 0 01:39:44 00:50:53
Marathi 0.27 0.27 3.85 0.27 30.02 4.95 0 60.33 0 0 0 0 02:06:51 00:42:16

Odia 0 0 3.79 0 0 1.89 0 0 91.46 0 0.94 1.89 01:51:21 00:37:29
Punjabi 0 2.59 15.58 0 0 6.49 0 0 2.59 71.42 1.29 0 00:15:18 00:04:45
Telugu 0.73 0 0 0.29 0 0 0 0.14 1.75 0 69.06 28 01:29:45 00:30:59
Urdu 0 0 0.51 0 11.73 0 0 0 0 0 18.49 69.26 01:35:39 00:36:08
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Table 4.12: The Confusion Matrix for the Conversation Mode. The Table Shows The Confusion of Phone
Decoding Among 12 languages in Conversation Mode

Assamese Bengali Gujarati Hindi Kannada Mala Manipuri Marathi Odia Punjabi Telugu Urdu
Training
Duration

Testing
Duration

Assamese 99.45 0 0 0 0 0 0 0.55 0 0 0 0 02:00:00 00:30:00
Bengali 0 50.12 13.02 19.41 7.61 3.19 0 3.19 0 0 2.94 0.49 02:13:07 00:20:41
Gujarati 0 0 89.37 0.92 1.59 4.24 0.39 0.26 2.52 0.13 0.39 0.13 03:12:07 01:05:35

Hindi 0 0 2.66 69.2 0 0 0 0 0 0 11.02 17.11 02:00:09 00:32:44
Kannada 0 0 0.51 0 94.58 4.63 0.25 0 0 0 0 0 01:52:59 00.27.43

Mala 0 0 39.86 0 13.97 44.25 0.16 0 0 0 1.65 0.08 01:52:59 00:37:19
Manipuri 2.7 0 10.81 0 0 8.1 78.37 0 0 0 0 0 02:03:56 00:27:21
Marathi 0.4 2.44 7.95 1.02 5.51 5.91 0 75.91 0 0 0.61 0.2 01:41:57 00:35:31

Odia 0 0 0 0 0 0 0 0 100 0 0 0 02:13:07 00:20:41
Punjabi 0 0 0 0 26.58 68.35 0 0 0 5.06 0 0 00:15:06 00:05:07
Telugu 0 0 0.1 2.62 0.1 0.8 0 0 1.81 0 94.14 0.4 01:46:51 00:39:01
Urdu 0 0 0.29 19.76 0 0 0 0.29 1.48 0 14.41 63.74 01:42:49 00:31:06
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Table 1 : Phonetic Engine Results for 12 languages. The table gives the Information about the Language,
Number of Speakers used in Training and Testing, Duration of Training and Testing Data and Phone Recognition
Accuracy. The performance of Phonetic Engine for Different Speaking Modes is also given in The Table.

Institute Language Train Mode Test Mode
Training
Duration

Testing
Duration

Train Speakers Test Speakers Accuracy

NEHU Manipuri Read Read 03:28:26 01:31:59 9 (3M+6F) 6 (2M+4F) 62.11%
NEHU Manipuri Read Lect 03:28:26 00:50:53 9 (3M+6F) 2 (1M+1F) 52.27%
NEHU Manipuri Read Conv 03:28:26 00:27:21 9 (3M+6F) 2 (2M) 43.50%
NEHU Manipuri Lect Lect 01:39:44 00:50:53 4 (2M+2F) 2 (1M+1F) 59.78%
NEHU Manipuri Lect Read 01:39:44 00:33:34 4 (2M+2F) 4 (4F) 55.52%
NEHU Manipuri Lect Conv 01:39:44 00:27:21 4 (2M+2F) 2 (2M) 48.39%
NEHU Manipuri Conv Conv 02:03:56 00:27:21 2 (2M) 2 (2M) 53.92%
NEHU Manipuri Conv Read 02:03:56 00:33:34 2 (2M) 4 (4F) 48.41%
NEHU Manipuri Conv Lect 02:03:56 00:50:53 2 (2M) 2 (1M+1F) 47.64%
NEHU Manipuri Combine Read 07:12:06 01:31:59 15 (7M+8F) 6 (2M+4F) 60.53%
NEHU Manipuri Combine Lect 07:12:06 00:50:53 15 (7M+8F) 2 (1M+1F) 61.29%
NEHU Manipuri Combine Conv 07:12:06 00:27:21 15 (7M+8F) 2 (2M) 52.90%
NEHU Manipuri Combine Combine 07:12:06 02:50:13 15 (7M+8F) 10(5M+5F) 59.03%

IITG Assamese Read Read 06:16:20 02:31:20 14 (9M+5F) 6 (6F) 49.60%
IITG Assamese Read Lect 06:35:58 00:52:23 14 (3M+11F) 2 (2F) 43.27%
IITG Assamese Read Conv 06:16:20 00:31:17 14 (3M+11F) 4 (4M) 29.25%
IITG Assamese Lect Lect 03:34:00 00:52:23 4 (1M+3F) 2 (2F) 52.26%
IITG Assamese Lect Read 03:34:00 01:10:58 4 (1M+3F) 3 (3F) 49.96%
IITG Assamese Lect Conv 03:34:00 00:31:17 4 (1M+3F) 4 (4M) 25.66%
IITG Assamese Conv Conv 02:01:39 00:31:17 8 (3M+5F) 4 (4M) 29.82%
IITG Assamese Conv Read 02:01:39 01:20:30 8 (3M+5F) 3 (3F) 47.54%
IITG Assamese Conv Lect 02:01:39 00:52:23 8 (3M+5F) 2 (2F) 42.06%
IITG Assamese Combine Read 09:51:59 02:31:20 26 (13M+13F) 6 (6F) 54.26%
IITG Assamese Combine Lect 09:51:59 00:52:23 26 (13M+13F) 2 (2F) 50.02%
IITG Assamese Combine Conv 09:51:59 00:31:17 26 (13M+13F) 4 (4M) 26.69%
IITG Assamese Combine Combine 09:51:59 03:34:00 26 (13M+13F) 12 (6M+6F) 29.82%

IITKGP Odia Read Read 03:46:37 01:19:24 22 (10M+12F) 9 (4M+5F) 59.69%
IITKGP Odia Read Lect 03:46:37 00:37:29 22 (10M+12F) 2 (1M+1F) 41.85%
IITKGP Odia Read Conv 03:46:37 00:20:41 22 (10M+12F) 2 (1M+1F) 35.03%
IITKGP Odia Lect Lect 01:51:21 00:37:29 6 (3M+3F) 2 (1M+1F) 43.43%
IITKGP Odia Lect Read 01:51:21 01:19:24 6 (3M+3F) 9 (4M+5F) 39.29%
IITKGP Odia Lect Conv 01:51:21 00:20:41 6 (3M+3F) 2 (1M+1F) 33.89%
IITKGP Odia Conv Conv 02:13:07 00:20:41 6 (3M+3F) 2 (1M+1F) 49.58%
IITKGP Odia Conv Read 02:13:07 01:19:24 6 (3M+3F) 9 (4M+5F) 49.98%
IITKGP Odia Conv Lect 02:13:07 00:37:29 6 (3M+3F) 2 (1M+1F) 42.52%
IITKGP Odia Combine Read 07:51:05 01:19:24 34(16M+18F) 9 (4M+5F) 67.67%
IITKGP Odia Combine Lect 07:51:05 00:37:29 34(16M+18F) 2 (1M+1F) 53.59%
IITKGP Odia Combine Conv 07:51:05 00:20:41 34(16M+18F) 2 (1M+1F) 55.26%
IITKGP Odia Combine Combine 07:51:05 02:17:34 34(16M+18F) 13 (6M+7F) 61.71%

IITKGP Bengali Read Lect 03:49:55 00:31:14 38 (14M+24F) 4 (2M+2F) 27.78%
IITKGP Bengali Read Conv 03:49:55 00:38:31 38 (14M+24F) 6 (3M+3F) 16.50%
IITKGP Bengali Lect Lect 01:59:29 00:31:14 7 (5M+2F) 4 (2M+2F) 35.80%
IITKGP Bengali Lect Read 01:59:29 01:10:55 7 (5M+2F) 12 (6M+6F) 36.20%
IITKGP Bengali Lect Conv 01:59:29 00:38:31 7 (5M+2F) 6 (3M+3F) 20.75%
IITKGP Bengali Conv Conv 01:59:11 00:38:31 24 (19M+5F) 6 (3M+3F) 23.99%
IITKGP Bengali Conv Read 01:59:11 01:10:55 24 (19M+5F) 12 (6M+6F) 27.23%
IITKGP Bengali Conv Lect 01:59:11 00:31:14 24 (19M+5F) 4 (2M+2F) 20.89%
IITKGP Bengali Combine Read 06:48:35 01:10:55 69 (38M+31F) 12 (6M+6F) 51.72%
IITKGP Bengali Combine Lect 06:48:35 00:31:14 69 (38M+31F) 4 (2M+2F) 43.24%
IITKGP Bengali Combine Conv 06:48:35 00:38:31 69 (38M+31F) 6 (3M+3F) 30.03%
IITKGP Bengali Combine Combine 06:48:35 02:20:40 69 (38M+31F) 22(11M+11F) 41.87%
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Table 1 Continued

Institute Language Train Mode Test Mode
Training
Duration

Testing
Duration

Train Speakers Test Speakers Accuracy

IITH Telugu Read Read 03:27:19 01:11:12 11 (5M+6F) 7 (3M+4F) 56.08%
IITH Telugu Read Lect 03:27:19 00:30:59 11 (5M+6F) 2 (1M+1F) 32.32%
IITH Telugu Read Conv 03:27:19 00:39:01 11 (5M+6F) 13 (10M+3F) 36.52%
IITH Telugu Lect Lect 01:29:45 00:30:59 7 (6M+1F) 2 (1M+1F) 40.20%
IITH Telugu Lect Read 01:29:45 01:11:12 7 (6M+1F) 7 (3M+4F) 43.73%
IITH Telugu Lect Conv 01:29:45 00:39:01 7 (6M+1F) 13 (10M+3F) 37.57%
IITH Telugu Conv Conv 01:46:51 00:39:01 34(30M+4F) 13 (10M+3F) 45.83%
IITH Telugu Conv Read 01:46:51 01:11:12 34(30M+4F) 7 (3M+4F) 49.07%
IITH Telugu Conv Lect 01:46:51 00:30:59 34(30M+4F) 2 (1M+1F) 32.13%
IITH Telugu Combine Read 06:43:55 01:11:12 52(41M+11F) 7 (3M+4F) 55.38%
IITH Telugu Combine Lect 06:43:55 00:30:59 52(41M+11F) 2 (1M+1F) 37.66%
IITH Telugu Combine Conv 06:43:55 00:39:01 52(41M+11F) 13 (10M+3F) 42.27%
IITH Telugu Combine Combine 06:43:55 02:21:12 52(41M+11F) 22(14M+8F) 48.35%

IITH Urdu Read Read 03:34:50 01:12:13 32 (29M+3F) 25 (22M+3F) 45.67%
IITH Urdu Read Lect 03:34:50 00:36:08 32 (29M+3F) 1 (1M) 50.28%
IITH Urdu Read Conv 03:34:50 00:31:06 32 (29M+3F) 7 (4M+3F) 46.16%
IITH Urdu Lect Lect 01:35:39 00:36:08 3 (2M+1F) 1 (1M) 54.83%
IITH Urdu Lect Read 01:35:39 01:12:13 3 (2M+1F) 25 (22M+3F) 39.16%
IITH Urdu Lect Conv 01:35:39 00:31:06 3 (2M+1F) 7 (4M+3F) 34.49%
IITH Urdu Conv Conv 01:42:49 00:31:06 16 (8M+8F) 7 (4M+3F) 48.84%
IITH Urdu Conv Read 01:42:49 01:12:13 16 (8M+8F) 25 (22M+3F) 41.17%
IITH Urdu Conv Lect 01:42:49 00:36:08 16 (8M+8F) 1 (1M) 49.69%
IITH Urdu Combine Read 06:51:18 01:12:13 54 (39M+12F) 25 (22M+3F) 46.02%
IITH Urdu Combine Lect 06:51:18 00:36:08 54 (39M+12F) 1 (1M) 54.74%
IITH Urdu Combine Conv 06:51:18 00:31:06 54 (39M+12F) 7 (4M+3F) 48.32%
IITH Urdu Combine Combine 06:51:18 02:19:27 54 (39M+12F) 33 (27M+7F) 48.55%

TEZU Assamese Read Read 01:24:56 00:10:18 11 (3F+8M) 2 (2F) 51.12%
TEZU Assamese Read Lect 01:24:56 00:11:48 11 (3F+8M) 2 (2F) 44.12%
TEZU Assamese Read Conv 01:24:56 00:06:34 11 (3F+8M) 2 (2M) 36.43%
TEZU Assamese Lect Lect 01:46:48 00:11:48 12 (3F+9M) 2 (2F) 43.87%
TEZU Assamese Lect Read 01:46:48 00:10:18 12 (3F+9M) 2 (2F) 47.98%
TEZU Assamese Lect Conv 01:46:48 00:06:34 12 (3F+9M) 2 (2M) 39.65%
TEZU Assamese Conv Conv 00:16:33 00:06:34 6 (6M) 2 (2M) 35.01%
TEZU Assamese Conv Read 00:16:33 00:10:18 6 (6M) 2 (2F) 33.48%
TEZU Assamese Conv Lect 00:16:33 00:11:48 6 (6M) 2 (2F) 35.01%
TEZU Assamese Combine Read 03:28:17 00:10:18 29 (23M+06F) 2 (2F) 50.23%
TEZU Assamese Combine Lect 03:28:17 00:11:48 29 (23M+06F) 2 (2F) 44.83%
TEZU Assamese Combine Conv 03:28:17 00:06:24 29 (23M+06F) 2 (2M) 38.66%
TEZU Assamese Combine Combine 03:28:17 00:28:00 29 (23M+06F) 6 (2M+4F) 50.04%

DAIICT Marathi Read Read 05:25:41 02:11:54 61 (42M+19F) 23 (18M+5F) 52.82%
DAIICT Marathi Read Lect 05:25:41 00:42:16 61 (42M+19F) 2 (1M+1F) 33.49%
DAIICT Marathi Read Conv 05:25:41 00:35:31 61 (42M+19F) 10 (4M+6F) 36.87%
DAIICT Marathi Lect Lect 02:06:51 00:42:16 7 (3M+4F) 2 (1M+1F) 35.18%
DAIICT Marathi Lect Read 02:06:51 02:11:54 7 (3M+4F) 23 (18M+5F) 32.97%
DAIICT Marathi Lect Conv 02:06:51 00:35:31 7 (3M+4F) 10 (4M+6F) 27.48%
DAIICT Marathi Conv Conv 01:41:57 00:35:31 26 (19M+7F) 10 (4M+6F) 35.61%
DAIICT Marathi Conv Read 01:41:57 02:11:54 26 (19M+7F) 23 (18M+5F) 45.95%
DAIICT Marathi Conv Lect 01:41:57 00:42:16 26 (19M+7F) 2 (1M+1F) 38.03%
DAIICT Marathi Combine Read 09:14:29 02:11:54 94(64M+30F) 23 (18M+5F) 52.67%
DAIICT Marathi Combine Lect 09:14:29 00:42:16 94(64M+30F) 2 (1M+1F) 36.25%
DAIICT Marathi Combine Conv 09:14:29 00:35:31 94(64M+30F) 10 (4M+6F) 35.95%
DAIICT Marathi Combine Combine 09:14:29 03:29:41 94(64M+30F) 35(23M+12F) 38.84%

202



4.9 Papers Published Related to the Project Work

Table 1 Continued

Institute Language Train Mode Test Mode
Train Duration Test Duration

Train Speakers Test Speakers Accuracy
(Hrs:Mins:Secs) (Hrs:Mins:Secs)

DAIICT Gujarati Read Read 04:09:33 01:24:55 95 (54M+41F) 28 (17M+11F) 63.55%
DAIICT Gujarati Read Lect 04:09:33 00:40:26 95 (54M+41F) 4 (3M+1F) 50.40%
DAIICT Gujarati Read Conv 04:09:33 01:05:35 95 (54M+41F) 46 (26M+20F) 54.58%
DAIICT Gujarati Lect Lect 02:16:00 00:40:26 5 (4M+1F) 4 (3M+1F) 51.52%
DAIICT Gujarati Lect Read 02:16:00 01:24:55 5 (4M+1F) 28 (17M+11F) 51.91%
DAIICT Gujarati Lect Conv 02:16:00 01:05:35 5 (4M+1F) 46 (26M+20F) 45.39%
DAIICT Gujarati Conv Conv 03:12:07 01:05:35 72 (37M+35F) 46 (26M+20F) 55.35%
DAIICT Gujarati Conv Read 03:12:07 01:24:55 72 (37M+35F) 28 (17M+11F) 60.00%
DAIICT Gujarati Conv Lect 03:12:07 00:40:26 72 (37M+35F) 4 (3M+1F) 52.27%
DAIICT Gujarati Combine Read 09:37:40 01:24:55 172(95M+77F) 28 (17M+11F) 62.24%
DAIICT Gujarati Combine Lect 09:37:40 00:40:26 172(95M+77F 4 (3M+1F) 54.69%
DAIICT Gujarati Combine Conv 09:37:40 01:05:35 172(95M+77F 46 (26M+20F) 43.67%
DAIICT Gujarati Combine Combine 09:37:40 03:10:56 172(95M+77F 78(46M+32F) 58.29%

Thapar Pujabi Read Lect 02:18:12 00:04:45 3 (1M+2F) 1 (1M) 26.25%
Thapar Pujabi Read Conv 02:18:12 00:05:07 3 (1M+2F) 5 (4M+1F) 19.46%
Thapar Pujabi Lect Lect 00:15:18 00:04:45 1 (1M) 1 (1M) 47.17%
Thapar Pujabi Lect Read 00:15:18 00:47:44 1(1M) 2 (2M) 20.75%
Thapar Pujabi Lect Conv 00:15:18 00:05:07 1 (1M) 5 (4M+1F) 20.33%
Thapar Pujabi Conv Conv 00:15:06 00:05:07 10 (9M+1F) 5 (4M+1F) 22.39%
Thapar Pujabi Conv Read 00:15:06 00:47:44 10 (9M+1F) 2 (2M) 20.33%
Thapar Pujabi Conv Lect 00:15:06 00:04:45 10 (9M+1F) 1 (1M) 18.53%
Thapar Pujabi Combine Read 02:48:36 00:47:44 14 (11M+4F) 2 (2M) 61.59%
Thapar Pujabi Combine Lect 02:48:36 00:04:45 14 (11M+4F) 1 (1M) 45.06%
Thapar Pujabi Combine Conv 02:48:36 00:05:07 14 (11M+4F) 5 (4M+1F) 22.24%
Thapar Pujabi Combine Combine 02:48:36 00:57:36 14 (11M+4F) 8 (7M+1F) 55.23%

RITK Malayalam Read Read 03:58:50 01:13:57 22 (15M+7F) 8 (3M+5F) 33.23%
RITK Malayalam Read Lect 03:58:50 00:35:41 22 (15M+7F) 6 (3M+3F) 31.70%
RITK Malayalam Read Conv 03:58:50 00:37:19 22 (15M+7F) 8 (3M+5F) 28.77%
RITK Malayalam Lect Lect 01:56:11 00:35:41 13 (10M+3F) 6 (3M+3F) 31.82%
RITK Malayalam Lect Read 01:56:11 01:13:57 13 (10M+3F) 8 (3M+5F) 27.33%
RITK Malayalam Lect Conv 01:56:11 00:37:19 13 (10M+3F) 8 (3M+5F) 32.27%
RITK Malayalam Conv Conv 01:52:59 00:37:19 41 (31M+10F) 8 (3M+5F) 31.18%
RITK Malayalam Conv Read 01:52:59 01:13:57 41 (31M+10F) 8 (3M+5F) 26.31%
RITK Malayalam Conv Lect 01:52:59 00:35:41 41 (31M+10F) 6 (3M+3F) 31.55%
RITK Malayalam Combine Read 03:58:50 01:13:57 76 (56M+20F) 8 (3M+5F) 32.28%
RITK Malayalam Combine Lect 01:56:11 00:35:41 76 (56M+20F) 6 (3M+3F) 33.20%
RITK Malayalam Combine Conv 01:52:59 00:37:19 76 (56M+20F) 8 (3M+5F) 31.98%
RITK Malayalam Combine Combine 07:46:00 02:25:57 76 (56M+20F) 22(9M+13F) 32.47%

SITT Kannada Read Read 01:56:06 00.29.40 11 (5M+6F) 2 (1M+1F) 55.10%
SITT Kannada Read Lect 01:56:06 00.39.14 11 (5M+6F) 2 (1M+1F) 34.77%
SITT Kannada Read Conv 01:56:06 00.27.43 11 (5M+6F) 6 (6M) 40.00%
SITT Kannada Lect Lect 01:56:11 00.39.14 4 (3M+1F) 2 (1M+1F) 48.74%
SITT Kannada Lect Read 01:56:11 00.29.40 4 (3M+1F) 2 (1M+1F) 46.28%
SITT Kannada Lect Conv 01:56:11 00.27.43 4 (3M+1F) 6 (6M) 37.87%
SITT Kannada Conv Conv 01:52:59 00.27.43 12 (11M+1F) 6 (6M) 45.67%
SITT Kannada Conv Read 01:52:59 00.29.40 12 (11M+1F) 2 (1M+1F) 42.99%
SITT Kannada Conv Lect 01:52:59 00.39.14 12 (11M+1F) 2 (1M+1F) 42.29%
SITT Kannada Combine Read 05:44:16 00.29.40 11 (5M+6F) 2 (1M+1F) 53.26%
SITT Kannada Combine Lect 05:44:16 00.39.14 4 (3M+1F) 2 (1M+1F) 46.60%
SITT Kannada Combine Conv 05:44:16 00.27.43 12 (11M+1F) 6 (6M) 44.15%
SITT Kannada Combine Combine 05:44:16 01:36:37 27(19M+8F) 10(8M+2F) 44.15%
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4. IIT Guwahati

Table 1 Continued

Institute Language Train Mode Test Mode
Train Duration Test Duration

Train Speakers Test Speakers Accuracy
(Hrs:Mins:Secs) (Hrs:Mins:Secs)

IITK Hindi Read Read 02:09:17 00:44:54 29 (7M+22F) 14 (8M+6F) 49.24%
IITK Hindi Read Lect 02:09:17 00:17:15 29 (7M+22F) 8 (8F) 28.98%
IITK Hindi Read Conv 02:09:17 00:32:44 29 (7M+22F) 9 (5M+4F) 34.06%
IITK Hindi Lect Lect 00:43:28 00:17:15 9 (8M+1F) 8 (8F) 37.96%
IITK Hindi Lect Read 00:43:28 00:44:54 9 (8M+1F) 14 (8M+6F) 33.27%
IITK Hindi Lect Conv 00:43:28 00:32:44 9 (8M+1F) 9 (5M+4F) 39.86%
IITK Hindi Conv Conv 02:00:09 00:32:44 18 (9M+9F) 9 (5M+4F) 42.15%
IITK Hindi Conv Read 02:00:09 00:44:54 18 (9M+9F) 14 (8M+6F) 30.00%
IITK Hindi Conv Lect 02:00:09 00:17:15 18 (9M+9F) 8 (8F) 33.78%
IITK Hindi Combine Read 04:52:54 00:44:54 56 (24M+32) 14 (8M+6F) 46.54%
IITK Hindi Combine Lect 04:52:54 00:17:15 56 (24M+32) 8 (8F) 36.44%
IITK Hindi Combine Conv 04:52:54 00:32:44 56 (24M+32) 9 (5M+4F) 41.06%
IITK Hindi Combine Combine 04:52:54 01:34:53 56 (24M+32) 31 (13M+18M) 43.01%
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PROGRESS SUMMARY REPORT OF TEZPUR
UNIVERSITY

A. General

A.1 Name of the Project : Development of Prosodically Guided
Phonetic Engine for Searching Speech
Databases in Indian Languages (As-
samese)

Our Reference Letter No : 11(6)/2011-HCC(TDIL) dated 23-12-2011
A.2 Executing Agency : Tezpur University
A.3 Chief Investigator with : Dr. Utpal Sharma

Designation : Professor
Co-Chief Investigators with : Dr. Smriti Kumar Sinha
Designation : Professor

A.4 Project staffs with Qualification : Mr. Navanath Saharia (MSc (CS) and pursuing
PhD), Bhaskarjyoti Das (B Tech (CSE)), Nir-
man Singh (MTech (IT)), Himangshu Sarma(M
Tech (IT)), Mancha Jyoti Malakar(MCA), Ms
Sanghamitra Nath (M Tech(ECE), Asstt. Prof)

A.5 Total Cost of the Project as :
approved by DIT

i) Original : 30.015 Lakhs
ii) Revised, if any :

A.6 Date of starting (Indicate : 23-12-2011
date of first sanction)

A.7 Date of Completion :
i) Original : 22-12-2013
ii) Revised, if any : 31-03-2015

A.8 Date on which last progress : 07-03-2014
report was Submitted
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B. Technical

B.1 Works
Progress.(given
details in techni-
cal report )

: • Database collection in three different modes:

i. Read speech : 13 hours 27 minutes
* AIR News : 11 hours 27 minutes
* Recorded : 2 hours

ii. Lecture mode : 3 hours 10 minutes
iii. Conversational speech : 5 hour

• Transcription using IPA chart : 12 hours

• Development of prosody knowledge : We have stud-
ied the prosody events in Assamese speech and car-
ryied out pitch marking and break marking using the
framework discussed and finalized at IIIT-H.

• Development of phonetic engine : Developed a prelim-
inary phonetic engine based on Hidden Markov Model.

• Development of speech search application: We could
develop a simple speech search application that per-
forms speech search after phonetic transcription.
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C. Financial

Statement of expenditure (in lakhs)
(Utilization certificate enclosed)

Sl. Sanctioned Funds Expenditure incurred Balance
No Heads Received (23.12.11 to 30.09.12)

A B A−B
1. Capital Equipment 5.00 4.95 0.05
2. Data Collection 5.50 5.42 0.08
3. Consumable stores 2.60 2.60 0.00
4. Manpower 6.00 6.00 0.00
5. Travel 2.00 1.98 0.02
6. Workshop & Training 2.00 2.00 0.00
7. Contingency 3.00 3.23 -0.23
8. Coordination & Management 0.00 0.00 0.00
9. System Integration 0.00 0.00 0.00
10. Sub Total 26.10 26.18 -0.08
11. Over Head (15%) 3.915 3.915 0.00
12. Total Budget 30.015 30.09 -0.08
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D. Project Outcomes

Development of Database

• Transcribed Database: 12 hours.

i. Read speech : 6 hours
* AIR News : 4 hours 15 minutes
* Recorded : 1 hours 39 minutes

ii. Lecture mode : 3 hours 40 minutes
iii. Conversational speech : 2 hour 30 minutes

Tools & Systems Developed

• International Phonetics Alphabet Typing Tool : An offline Uni-
code compatible International Phonetics Alphabet (IPA) typing tool
useful for phonetic transcription.

• Phonetic engine using Hidden Markov Model : Using HTK
toolkit.

• Speech Search Engine : Search query words in speech database in
phonetically transcribed form.

• Automatic syllabifier: Identify syllables in phonetic transcribed
data using simple rules.

• Automatic Breakmarking: Identify silence portions longer than a
threshold period.

Papers Published:

[1] Sarma Himangshu, Saharia Navanath, Sharma Utpal. “Development of
Assamese Speech Corpus and Automatic Transcription Using HTK”
“International Symposium on Signal Processing and Intelligent Recog-
nition Systems, Thiruvananthapuram, India, 2014. Available in Ad-
vances in Intelligent Systems and Computing, Springer Link, Volume
264, 2014, pp 119-132, March 2014.

[2] Nath Sanghamitra, Sarma Himangshu, Sharma Utpal. “Assamese Di-
alect Translation System- A preliminary proposal”, International Con-
ference on Computer Science, Engineering and Applications (ICONACC)-
2014, Manipur University, Imphal, March 10 - 12, 2014.
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[3] Nath Sanghamitra, Sarma Himangshu, Sharma Utpal. “A study of
VOT patterns in Assamese and its Nalbaria variety”, “Conference on
Intelligent Text Processing and Computational Linguistics (CICLing-
2014)”, Nepal, 2014. Available in Lecture Notes in Computer Science
(LNCS)8404.

[4] Sarma Himangshu, Saharia Navanath, Sharma Utpal, Sinha Smriti
Kumar, Malakar Mancha Jyoti. Development and Transcription of
Assamese Speech Corpus, National seminar cum Conference on Recent
threads and Techniques in Computer Sciences. Bodoland University,
India, 2013
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Detailed Technical Report of Tezpur University

0.1 Database collection & transcription
Data Collection We recorded over 13 hours read speech by about 25

different speakers. Of this, about 11 hours data was collected from AIR News
with 10 different speakers, and around 2 hours read speech was recorded
from about 15 native speakers (20-40 age group) using Sony ICD-UX533F
recording device.

We also recorded over 3 hour data in lecture mode including about 2
hours of extempore speech, from 5 different speakers with average 15 minutes
duration. All are native speakers of Assamese in the age group 20-40.

Further, we recorded over five hours of speech data in conversation mode.
Around 1 hours 30 minutes of this is an interview with 2 persons. Another
1 hour interview speech involving four different speakers were collected from
two news channels.

All recordings were done in closed room environment and saved with
44.1 KHz sampling rate.

Transcription Phonetic transcription using the International Phonetic
Alphabet (IPA) symbols has been done manually for about 12 hours speech
data. This includes of 6 hours of read speech data, 3 hours and 40 minutes
of extempore speech and 2 hours and 10 minutes of conversation data. The
transcription was done by the project staff as well as some students of MA
(Linguitistics) programme. The transcription has been cross verified within
the group.

The list of IPA symbols used in transcription is shown in Table 1.
During transcription we faced different problems and some interesting

observation related to consonants and vowels. The pronunciation rules are
different from different regions of Assam. The following are some interesting
observations and problems we faced.

• Consonants

(i) w is used for ৱ if ৱ is used in the middle or the beginning of a
word, but b� is used for ৱ if ৱ is the last letter of the word. e.g.

Ƶছাৱালী = ʃowali ঘƭৱা = gʰɒɹuwa ৱািহদ = wahid ৱাল = wal Ƶদৱ =
debɒ Ƶকশৱ = kexɒbɒ

(ii) ʧ is not used in proper Assamese pronunciation, but it is used
in English, Bengali and Hindi languages. Now a days many As-
samese people speak English, Bengali and Hindi. When such
people speak Assamese they use ʧ. e.g.
আÈা = aʧa বাÈা = baʧa
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Letter IPA Letter IPA Letter IPA
ক k ণ n ৱ w / bɒ
খ kʰ ত t শ x
গ ɡ থ tʰ ষ x

C ঘ ɡʰ দ d স s / x
O ঙ ŋ ধ dʰ হ h
N চ s / ʃ / ʧ ন n ¦ kʰj
S ছ s / ʃ / ʧ প p য় j
O জ ʤ ফ pʰ ড় ɹ
N ঝ ʤʰ ব b ঢ় ɹh
A ঞ ɲ ভ bʰ ৎ t ̪
N ট t ম m ◌ং ŋ
T ঠ tʰ য ʤ ◌ঃ ˑ
S ড d ৰ ɹ ◌ঁ ̰

ঢ dʰ ল l
V
O অ ɔ / ɒ উ u ঐ oi
W আ a ঊ u ও ʊ / o
E ই i ঋ ɹi ঔ oʊ
L ঈ i এ e / ɛ
S

Table 1: IPA symbols for Assamese letters.

(iii) During transcription we saw that a ɒ occurs after every conso-
nant, but some consonants viz. ঙ, ৎ, ◌ং, ◌ঃ do not have it. t e.g.

অংক = ɒŋkɒ আঙুৰ = ɒŋuɹ উৎসৱ = utx̪ɒb িনঃিকন = nikin
(iv) Another interesting observation is for the letter স. When we use

স as a single letter the corresponing IPA symbol is x, but when
we use স in a cluster the IPA symbol is s. e.g.
সাধাৰণ = xadʰaɹɒn সাবিত = xabɒti ব�ৱƔাত = bjbɒstʰat

(v) The presence of ɒ after a consonant is irregular. In some words ɒ
occurs after a consonant and in others it does not. E.g. জ
ৰাইজক = ɹaiʤɒk জগতৰ = ʤɒgɒtɒɹ ৰাজপথ = ɹaʤpɒtʰ ৰাজগড় = ɹaʤɡɒɹ

• Vowels
The vowel sounds ʊ and u are sometimes used for same word when
they are spoken by people from different regions. E.g.
Ƶবােলও = bʊleo বেুলও = buleo Ƶতামাৰ = tʊmaɹ তুমাৰ = tumaɹ

• Clustering
In general, if consonant cluster occurs at the final position of a word
the vowel ɒ is required at the last position of the word. e.g.
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মĠব� = mɒntɒbjɒ অিƐĀ = ɒstitbɒ ৰ� = ɹɒktɒ

But, in some cases if a consonant cluster occurs at final position of a
word ɒ is not required. e.g.
কাĩ = kandʰ বাĩ = bandʰ

Tools developed

• IPA Tool: For phonetic transcription we developed a standalone
International Phonetics Alphabet Typing Tool in C++. It removes
several drawbacks of other existing methods. Particularly the exist-
ing online IPA typing tools do not support the new IPA symbols.
For the consortium members the tool is available for download from
http://www.tezu.ernet.in/∼nlp/ipa.htm.

• Phonetic Engine We implemented a simple phonetic engine based on
Hidden Markov Model, using idea developed in IIT Guwahati. It uses
the HTK toolkit. For faster interactive response the input is provided
as speech segments of less than 10 seconds. We use 38 basic phones
represented by ASCII symbols. The list of ASCII symbols used in
phonetic engine is shown in Table 2.
We obtained transcription accuracy of around 60%.

• Speech Search Engine We could develop a simple speech search
engine that takes a word as a query and locates segments from the
speech database that contain that word. It performs the search after
phonetic transcription of the query word as well as texts in the search
database.

• Automatic Syllabifer We developed a simple syllabifier for Assamese
speech, that identifies syllables in phonetic transcribed data using sim-
ple rules.

• Automatic Breakmarking We developed an automatic break mark-
ing application, that identifies in the speech silence portions longer
than a threshold period.

0.2 Acquiring prosody knowledge
While carrying out phonetic transcription of Assamese speech we found

that same word is spoken differently by speakers in different contexts. Some
of these differences need to be transcribed using different IPA symbols, and
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others require other distinct prosody labels, to distinctly represent the pro-
nunciation. One such prosody feature we have studied is the Voice Onset
Time (VOT).

We have also analyzed different dialects of the Assamese language which
gives a unique idea of prosody of the language.

0.3 Development of phonetic engine
In this project we could develop some very essential resources for speech

processing research, particularly for working with Assamese speech. For
such work a good speech corpus as well as a manually tagged corpus is
highly desirable. We have developed an Assamese speech database of about
21 hours with three broad types of speech- read speech, lecture and conver-
sation. We have manually transcribed about 12 hours of the data using IPA
symbols. For closer analysis of speech, the prosody is important. We have
done prosody labelling of part of the corpus. Particularly, we have done
pitch-marking, break-marking and syllabification. In terms of application
development, we implemented an HMM based phonetic engine in collabora-
tion with IIT Guwahati, and a speech search engine that essentially works
over transcribed speech data. We also developed an IPA typing tool that is
useful in phonetic transcription.

With the experience gained in this project, we realise that prosody in-
formation can be used to improve speech analysis. An interesting work can
be regarding dialectal differences in the spoken form of a language.

0.4 Development of speech search engine
We have developed a speech search engine using our phonetic engine.

Firstly we convert the spoken search key to IPA transcribed form using our
phonetic engine. Then we compare the string matching with our database
where speech files and their respective transcribed files are stored. After
comparison, matching .wav files are presented as results. We observe that
exact matching is not very effective, and we intend to experiment with ap-
proximate matching.

0.5 Summary & Future work
From the recorded and AIR speech data, we have transcribed with

prosody marking these using a tool that we have developed and also we
have done break-marking, some amount of pitch-marking and syllabification
of these data. We have developed a phonetic engine using Hidden Markov
Model. The developed phonetic engine give an accuracy of more than 60%.
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Letter Symbol Letter Symbol Letter Symbol
ক k ণ n ৱ w
খ kh ত t শ x

C গ ɡ থ th ষ x
O ঘ ɡh দ d স x
N ঙ ng ধ dh হ h
S চ s ন n ¦ khy
O ছ s প p য় y
N জ j ফ ph ড় r
A ঝ j ব b ঢ় rh
N ঞ yo ভ bh ৎ ta
T ট t ম m ◌ং ng
S ঠ th য j

ড d ৰ r
ঢ dh ল l

V
O অ oa উ u ঐ oi
W আ a ঊ u ও o
E ই i ঋ ri ঔ ou
L ঈ i এ e
S

Table 2: Representation of Assamese sound in ASCII; where L−Letters of
Assamese alphabet

We have also tried to develop a speech search engine which give a combi-
nation of speech files and IPA transcription as the output. We also try to
make some rule for automatic syllabification of Assamese speech which give
an accuracy of more than 90% accuracy.

0.6 References
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PROGRESS SUMMARY REPORT OF NEHU Shillong

A. General

A.1 Name of the Project : Prosodically Guided Phonetic Engine for

Searching Speech Databases in Indian

Languages (Manipuri)

Our Reference Letter No : 11(6)/2011-HCC(TDIL) dated 23-12-2011

A.2 Executing Agency : NEHU Shillong

A.3 Chief Investigator with : Dr. L. Joyprakash Singh

Designation Associate Professor

Co-Chief Investigators with : Mr. Sushanta Kabir Dutta

Designation Associate Professor

A.4 Project staffs with : Mr. Salam Nandakishor, B.E.(EC)

Qualification

A.5 Total Cost of the Project as :

approved by DIT

i) Original : Rs. 30.015 Lakhs

ii) Revised, if any :

A.6 Date of starting (Indicate : 23/12/2011

date of first sanction)

A.7 Date of Completion :

i) Original : 22/12/2013

ii) Revised, if any :

A.8 Date on which last progress : 28/02/2014

report was Submitted



B. Technical

B.1 Works

Progress.(given

details in techni-

cal report )

: • Database collection in three different modes:

i. Read speech : 10 Hrs

ii. Lecture mode : 5 Hrs

iii. Conversational speech : 5 Hrs

• Transcription using IPA chart : 10 hrs of data has

been transcribed.

• Development of prosody knowledge : Completed

• Development of phonetic engine : Has been developed

B.2 Proposed plan-of-

work highlighting

the action to be

taken to achieve

the originally pro-

posed targets

: • Report finalization

• Database finalization

• Code delivery

• Finance settlement



C. Financial

Sl. Sanctioned Funds Expenditure incurred Balance

No Heads Received (23.12.2011 to 22.12.2014) (in lakhs)

(in lakhs) (in lakhs)

A B A−B

1. Capital Equipment 5.0 5.11722 -0.11722

2. Data Collection 5.5 5.02645 0.47355

3. Consumable stores 2.6 2.63317 -0.03317

4. Manpower 6.0 5.59129 0.40871

5. Travel 2.0 1.56581 0.43419

6. Workshop & Training 2.0 1.90236 0.09764

7. Contingency 3.0 4.26393 -1.26393

8. Coordination & Management 0.0 - -

9. System Integration 0.0 - -

10. Sub Total 25.1 26.10023 -0.00023

11. Over Head (15%) 3.915 3.91500 NIL

12. Total Budget 30.015 30.01523 -0.00023
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6. North Eastern Hill University (NEHU) Shillong

D. Project Outcomes

Papers Published(Symposium/Conference):

• Salam Nandakishor, Laishram Rahul, S.K Dutta and L. Joyprakash Singh, “Development of

Manipuri Phonetic Engine”, Zonal Seminar, The Institute of Electronics and Telecommunication

Engineers [IETE], May 3-4, 2013.

• Laishram Rahul, Salam Nandakishor, L. Joyprakash Singh and S.K.Dutta, “Design of Manipuri

Keywords Spotting System using HMM”, NCVPRIPG 2013, December 18-21, 2013 at IIT Jodh-

pur, IEEE Proceedings, 2013.

Development of Database

• Manipuri speech database has been created. It consists of 3 sections : SPC-1, SPC-2, SPC-3.

One hour of speech transcription with prosody marking has been included as a part of SPC-3.

SPC-1, SPC-2 and SPC-3 contain 3, 20 and 10 hours of speech database in Read, Lecture and

Conversation mode respectively. Meta data for each wave file has also been created. Two groups

of words of about 30 and 376 words have selected as query and vocabulary words respectively

have been made available in two separate files namely query.txt and vocabulary.txt.

Tools & Systems Developed

• Phonetic engine for Manipuri language is developed using HTK v3.4.

• Manipuri Keywords Spotting System has been developed.

• An HMM based Semi-Automatic syllable labeling system for Manipuri language has been devel-

oped.

• GUI has been designed for Prosodically guided Manipuri Phonetic Engine.
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6. North Eastern Hill University (NEHU) Shillong

Detailed Technical Report of NEHU Shillong

6.1 Database collection & transcription

1. Data Collection: A good quality data of about 10 hours in read speech has been collected

from the recording studio as well as from the AIR imphal. This data consists of speech read by male

and female speakers. During collection of data, care has been taken to maintain wherever possible

an equal amount of data from both male and female speakers. The H4n recording devices have been

used during recording in the studio. The device is maintained at a sampling frequency of 48 kHz and

44.1 kHZ, 16 bit per sample size and WAV format. We have also collected about 5 hrs of data in

conversational mode of speech and another group of data of about 5 hrs in lecture mode. These data

have been collected from fields and the studio.

2. Transcription: The broadcast data acquired has been chunked into smaller parts proportionate

to the length of a sentence. Each chunked data are listened and analyzed carefully to obtain higher

accuracy in transcription. Transcription of 5, 2.5 and 2.5 hours of data has been done on Read, Con-

versation, Lecture mode data respectively. The Read mode data has been collected from 4 males and

10 females native speakers of Manipuri language. Each of these male speakers used about 37 phones

while among female speakers, three used 37 phones each while others used 36 phones respectively. In-

ternational Phonetic Alphabet (IPA) chart (2005 revision) is being used during transcription process.

A total of 38 phones have been used by speakers altogether. In Conversation mode, data are recorded

from 7 male speakers and 37 phones have been used. The Lecture mode data are collected from 2

female speakers and speakers used 37 phones.
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6.2 Acquiring prosody knowledge

6.2 Acquiring prosody knowledge

Pitch marking, prosodic Break marking and Syllabification have been done on speech data of

Read, Conversation and Lecture mode respectively. To show prosody information on speech data, a

Graphical User Interface (GUI) has been designed for Prosodically Guided Manipuri Phonetic Engine.

The snapshot of the main interface of the GUI is shown in Figure-6.1 while prosody outputs are shown

in Figure-6.2 - Figure-6.4.

Figure 6.1: Main interface of the GUI.
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6. North Eastern Hill University (NEHU) Shillong

Figure 6.2: Phonetic Transcription GUI output

Figure 6.3: Pitch Marking GUI output
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6.2 Acquiring prosody knowledge

Figure 6.4: Break Marking GUI output

6.2.1 Pitch Marking

The steps for Semi-Automatic Pitch Marking are mentioned below:

• Detection of Voiced Speech Regions

• Segmentation of Voiced Speech into small segments.

• Pitch Contour Marking.

• Manual Error Correction.

1. Detection of Voiced Speech Regions:

Zero Frequency filtering (ZFF) of the speech is one of the best methods to estimate the voiced epochs.

ZFF output contains energy around the zero frequency which is mainly impulse due to excitation.

The Procedure of detection of voiced speech region is as follows:

• Extraction of epoch location of clean speech using ZFF [1].

• Add 20dB of white noise to the speech signal.

• Extract the epoch location of noisy speech using ZFF.

• If epoch different between the location obtained in the two cases are less than 2ms, then retain

it, otherwise discard the epoch.
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6. North Eastern Hill University (NEHU) Shillong

• Calculate the instantaneous pitch period using the epoch locations and eliminate the epoch if

its pitch period is more than 15 ms.

• Calculate the instantaneous jitter and eliminate the epoch, if jitter is more than 1 ms.

2. Segmentation of Voiced Speech into Small Segments:

Autocorrelation method is used to compute average pitch using a 20 ms frame size with 5 ms frame

shift. The discontinuity is calculated by taking difference of the pitch contour.

3. Pitch Contour Marking: Once the segments are obtained, they are marked with one of the

following marking: HL (high to low), VHL (very high to low), HVL (high to very low), LH (low to

high), VLH (very low to high), LVH (low to very high), and FR (F means flat and R is the average

value of the pitch in that segment). One simple way to decide whether a contour is rising or falling can

be to see the difference between average value of first and last few samples. But sometimes, spurious

detection of pitch values especially at the edges, may lead to incorrect decision. That is why the pitch

values are fitted with a line. Fitting is done using linear regression which estimates the coefficients

(b1, b2) of a polynomial of degree one that fits the values best in a least-squares sense. The estimated

line is given in below Equation 6.1.

ŷ = b1x+ b2 (6.1)

where, x is a vector = (1, 2, ..... N) and N is the length of the segment.

Now the marking is obtained based on the measure of the height value. The height ŷ is calculated by

taking the difference between the first and the last sample in the fitted line.

ŷ = y1 − yN (6.2)

Now if the height value is more than 20, then it is decided that the pitch contour is rising and if it

is less than -20, then it is a falling pitch contour. If height is more than 100 or less than -100, then the

pitch contour can have a very high or very low pitch value at the edge. Which edge will have the high

or low value that is determined by finding the closeness of the pitch values at the edges to the average

pitch value (APV) of the speech utterance. If height is in between -20 and 20, the contour is decided

to be flat. For a flat pitch contour the average pitch value is calculated and written along with the
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6.2 Acquiring prosody knowledge

flat marking. Based on these conditions, the pitch contours are marked as one of the following: HL,

VHL, HVL, LH, VLH, LVH, and FR.

4. Manual Error Correction:

Automatically segmented and marked speech segments are then manually corrected by looking at the

output of the automatic marking in the wavesurfer. An error can be in the segmentation boundary or

in the pitch contour marking. An error in the segmentation boundary can be of the following types:

• There should not be any segment boundary, but one is detected. In this case an error correction

will be to delete the segment boundary.

• There should be a segment boundary, but no segment boundary is detected. In this case an

error correction will be to insert a segment boundary.

• The segment boundary is not detected at appropriate position. In this case an error correction

will be to shift the position of the segment boundary.

6.2.2 Break Marking:

In order to find the typical length of the word breaks in the speech data, the sentences are first

manually analyzed in wavesurfer. Then, the limits of the four types of break indexes B0, B1, B2 and

B3 are set. We consider the break index as B0 when the break length (silence portion) between the

words is less than 0.080s, B1 when the break length is greater than 0.080s and less than and equal

to 0.280s, if the break length is greater than and less than and equal to 0.400s, marked as B2. If the

length (duration) of the break is greater than 0.400s, we marked as B3. Then, the automatic break

marking is done by detecting the break length (silence portion) of the speech data. The last step is

to check the consistency of break marking and do the manual correction with the help of Wavesurfer

(version 8.5.2.8).

6.2.3 Semi-Automatic Syllable Labeling

Syllable labeling is the process of partitioning a word into syllables along with time durations.

A syllable is a sub-division of a word, typically consisting of a vowel, called the nucleus and the

consonant preceding and following the vowel, called the onset and the coda respectively [2]. Most
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linguists consider the syllable as an important unit of prosody because many phonological rules and

constraints apply within syllables or at syllable boundaries [3]. Apart from the linguistic significance,

syllables play an important role in speech synthesis and recognition [3]. One of the major reasons

for considering syllable as a basic unit for Automatic Speech Recognition (ASR) system is its better

representation and duration stability compared to the phoneme [4]. The syllable was proposed as a

unit for ASR as early as in 1975 [5].

The first step of this section is the Phonetic segmentation and alignment of the speech data which

is to be syllabified. Phonetic segmentation and alignment determines the time position of the phones

of speech corpus based on manual phonetic transcription. It can be done by using the HTK tool

HVite with trained phones and manual transcription. The phonetic segmentation and alignment of a

sentence is shown in Table 6.1.

Table 6.1: Automatic Phonetic Segmentation and Alignment

Phone Onset(in secs) Phone Offset(in secs) IPA(Phone unit)

0.0000000 0.0500000 sil (silence)
0.0500000 0.1200000 m
0.1200000 0.1700000 @
0.1700000 0.2100000 n
0.2100000 0.2500000 i
0.2500000 0.3200000 p
0.3200000 0.3800000 u
0.3800000 0.4200000 ô
0.4200000 0.4700000 b
0.4700000 0.5400000 i

0.5400000 0.5800000 dh

0.5800000 0.6400000 a
0.6400000 0.7000000 n
0.7000000 0.8000000 s
0.8000000 0.8600000 @
0.8600000 0.9200000 b
0.9200000 0.9900000 a

Table 6.2: Automatic Syllabification with time alignment

Syllable Onset(in secs) Syllable Offset(in secs) (Syllable)

0.0000000 0.0500000 sil (silence)
0.0500000 0.1700000 m@
0.1700000 0.2500000 ni
0.2500000 0.4200000 puô
0.4200000 0.4700000 bi

0.5400000 0.7000000 dhan
0.7000000 0.8600000 s@
0.8600000 0.9900000 ba
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6.2 Acquiring prosody knowledge

Figure 6.5: Manual and Automatic Syllabification of a sentence displayed using WaveSurfer

The second step is to do the automatic syllabification of the manual phonetic transcription by

applying the syllabification rules of Manipuri language. The rules are as follows:

1. A separate nucleus will be produced by each Vowel or diphthong. For example: th@-b@k

2. If there are two consonants within the two vowels, then the first consonant will be considered as a

coda of previous syllabus and the second one as an onset of the next syllable. For example: taN-k@k.

3. If a single consonant is present in the left side of the nucleus, it will be an onset of the right side

syllable. For example: wa-ph@m.

4. If there are three or more consonants between two consecutive vowels, the first consonant will be

the coda of the previous syllable while the remaining consonants will be onset of the next syllable.

For example : thok-khôe.

5. When a consonant is with phone ô or y, then that consonant with ô or y will be the coda of the

syllable. For example : pha-khôe.

The third step is the syllable labeling, as shown in Table 6.2. In this step, we extract the time

alignment for each syllable using the time alignment of their corresponding Phonetic Segmentation

which are done in the first step.

Result Analysis:

In this section, we analyzed the Detection Rate by considering various Time Deviation (W ) of the

syllable, as shown in the TABLE 6.3. The W of each syllable is calculated by using formula below [6].
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Table 6.3: Result Analysis of Semi-Automatic Syllable Labeling System

W per syllable ≤ 20 ms ≤ 30 ms ≤ 40 ms > 40 ms

Number of syllables Detected 1205 1656 1999 431

Detection Rate 49.5 % 68.1 % 82.26 % 17.7%

W =
∣∣∣∣(T2− T1

)
−
(
t2− t1

)∣∣∣∣× 100 ms (6.3)

Where T2 and T1 are the syllable offset and onset of automatic syllabification, t2 and t1 denote

the syllable offset and onset of manual syllabification as shown in Fig. 6.5.

50 Manipuri sentences are used for “Result Analysis” which is done by comparing the syllable onset

and offset of the manual and automatic syllabification. The total sentences of testing data consists of

2430 syllables. The average Deviation is calculated by using the Equation 6.4:

Wavg =
2430∑
i=1

Wi

2430
= 25 ms (6.4)

The Detection Rate is determined by the number of phones detected within the value of a con-

sidered W (for example 20ms, 30ms or 40 ms) per total number of phones. The Detection Rate of

various Time Deviation “W” is shown in TABLE 6.3.

6.3 Development of Manipuri Phonetic Engine

The Phonetic Engine (PE) is introduced in the literature as a system that captures the phonetic

information of the speech signal and transforms it to symbolic form [7,8]. This system produces

a sequence of symbols without using any formal knowledge of the language like lexicon, syntactic

and semantic. This system obeys the principle of HMM [9,10]. The PE can be used in various

applications like keyword detection [11,12], language recognition [13], speaker identification [14], music

identification and translation [15,16]. The speech recognition based on phones is very attractive since

it is inherently free from vocabulary limitations. Large Vocabulary Automatic Speech Recognition
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(LVASR) system’s performance depends on the quality of the phone recognizer [17]. The searching

speed of database increases, if the phones are used as sub-word units [18].

The processing steps involved in the development of of Manipuri Phonetic Engine are as follows:

(A) Task Definition (B) Acoustic analysis (C) Training phase and (D) Training phase.

6.3.1 Task Definition

In the development of the Manipuri Phonetic Engine, the IPA (revision 2005) symbols are used as

the sub-word units. The symbols of the IPA have been used for representing the distinct sounds of

speech signal [19]. These symbols represent what is spoken rather than what is intended to be spoken.

Since IPA symbol captures all distinctive acoustic phonetic characteristics of the speech signal, they

can be termed as Acoustic Phonetic Segment (APS) [20]. We merged some of the phonetic units of

transcribed data which produce similar sounds, for example, o and O,
>
dz and z, etc. After merging the

phonetic units of similar sounds, a total of 30 phonetic units including a silence unit are adopted for

the development of Manipuri Phonetic Engine. These 29 phonetic units are then assigned 29 ASCII

codes, while the silence symbol is denoted by “sil” [21]. Now, by using these 29 ASCII codes along

with “sil”, we created the basic architecture of our recognizer, which consists of the language model

(the task grammar) and the pronunciation model (task dictionary). The HTK recogniser requires the

task grammar in Standard Lattice Format (SLF) [22]. Therefore, Task grammar is converted to Task

Network which is in SLF.

6.3.2 Acoustic Analysis

The system cannot directly process the speech waveforms [23]. The original waveform has to be

converted into a series of acoustic vectors. MFCC feature extraction technique has been used for this

purpose. The signal is sampled with a sampling frequency of 16 kHz and segmented into successive

overlapping frames of 25 ms each with a frame shift of 10 ms. Each frame is multiplied by a window

function (Hamming window). A vector of acoustic coefficients that gives a compact representation of

the spectral properties of the frame is extracted from each windowed frame. A 39 coefficient feature

vector is then extracted from each frame. Here, each feature vector consists of a log energy, 12

MFCCs,13 delta coefficients and 13 acceleration coefficients respectively. These 39 coefficients are

then used to extract vocal tract information of the speaker.
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Table 6.4: List of Phonetic units used in Manipuri Phonetic Engine and the Reduced set after merging similar
units

Sl No. Phonetic units Reduced Phonetic units Name in ASCII
1 i, 1 i i
2 a a aa
3 @ ae ae
4 o, O o o
5 e e ee
6 u, 0 u u
7 n n n
8 m m m
9 N N ng
10 p p p
11 b b b
12 t t t
13 d d d
14 k k k
15 g g g
16 ph, f ph ph
17 bh, v bh bh
18 th th th
19 dh dh dh
20 kh kh kh
21 gh gh gh
22 z,

>
dz z j

23 s, S s s
24 h h h
25 w, V w w
26 ô, R ô r
27 y y y
28 l l l
29 >

ts
>
ts ts

6.3.3 Training Phase

For each of the phonemes including silence, a HMM is designed. Each model consists of 5 states.

The first and the last states are non-emitting states and the remaining 3 states are active state. The

pre-defined prototype along with acoustic vectors and transcription of training data are used by HTK

tool HCompV for initialization. This tool is to calculate the global speech mean and variance of HMMs

per state.

In the next phase of the development process, the flat start monophones calculated are re-estimated,

that is the optimal values for the HMM parameters (transition probability, mean and variance vectors

for each observation function) are re-estimated. In our system implementation, re-estimation iteration
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are repeated for six times.

6.4 Testing Phase:

The data to be tested are first transformed into a series of acoustic vectors (MFCCs) in the same

way as being done during acoustic analysis in the training phase. The acoustic vectors with HMMs

definition, task network, dictionary and HMM lists are processed in order to produce the transcription

of the test data.

6.5 Experimental Result

Experiments of the phonetic engine were performed on the speech data collected from female and

male speakers for Read, Conevrsational and Lecture mode of speech data. During this experiment,

three types of speech databases have been created containing for female speakers, male speakers and

both male and female speakers for Read and Lecture mode of speech while one type of database for

Conversational mode of speech contains data from male speakers only. In read mode of speech, an

accuracy of 70.49 % is achieved when the system is trained and tested using database of both male

and female speakers together. Further, the system gives accuracies of 74.21% and 72.04% on the

separate databases of female and male speakers respectively. For lecture mode of speech, we got an

accuracy of 68.62% when the engine is trained and tested with database of both male and female

speakers together. An accuracies of 69.71% and 72.5% are achieved with databases of female and

male speakers separately. In the Conversation mode, an accuracy of 64.71 % is achieved when the

system is trained and tested with the database of speech collected from male speakers. The details

are shown in TABLE 6.5.
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Table 6.5: Result Analysis of Manipuri Phonetic Engines

Sl. No. Mode Types of Speakers Accuracy in %

1 Conversation Male only 64.71

2 Lecture Female only 69.71

3 Lecture Male only 72.50

4 Lecture Both male and female 68.62

5 Read Female only 74.21

6 Read Male only 72.07

7 Read Both male and female 70.49
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6.6 Summary & Future work

6.6 Summary & Future work

We have successfully developed the three systems namely; Phonetic Engine for Manipuri language is

using HTK v3.4., Manipuri Keywords Spotting System using HMM, An HMM based Semi-Automatic

syllable labeling System for Manipuri language and also designed GUI for Prosodically guided Manipuri

Phonetic Engine. As a future work, we may further analyze by collecting more data of speech from

native and non-native speakers of manipuri language from peoples of various communities living in

rural and urban areas of Manipur.
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A. General
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A.4 Project staffs with : Jubin James Thennattil - M.Tech

Qualification Anil P. Antony - B.Tech

A.5 Total Cost of the Project as : 50.6 Lakhs (Total)

approved by DIT

i) Original : 27.6 Lakhs (for the first year)

: 23.0 Lakhs (for the second year)

ii) Revised, if any :

A.6 Date of starting (Indicate : 23/12/2011

date of first sanction)

A.7 Date of Completion

i) Original : 23/12/2013

ii) Revised, if any : 31/03/2015

A.8 Date on which last progress : 28/02/2015

report was Submitted



B. Technical

B.1 Works

Progress.(given

details in techni-

cal report )

: • Database collection in three different modes:

i. Read speech : 15 hrs (Malayalam),

10 hrs (Kannada)

ii. Lecture mode : 07:30 hrs (Malayalam),

10 hrs (Kannada)

iii. Conversational speech : 07:30 hrs (Malayalam),

10 hrs (Kannada)

• Transcription using IPA chart: 10 hrs (Malayalam),

10 hrs (Kannada)

• Acquisition of prosody

• Development of Phonetic Engine

• Method for audio search using phonetic and prosodic

labels



C. Financial

Consolidated statement of expenditure (in Rupees)

Sl. Sanctioned Funds Expenditure incurred Balance

No Heads Received

A B A−B

1. Capital Equipment 6,00,000.00 5,76,091.00 23,909.00

2. Data Collection 10,00,000.00 10,57,805.00 -57,805.00

3. Consumable stores 3,00,000.00 2,10,284.50 89,715.50

4. Manpower 16,00,000.00 18,74,952.00 -2,74,952.00

5. Travel 2,00,000.00 2,13,491.00 -13,491.00

6. Workshop & Training 2,00,000.00 1,65,266.00 34,734.00

7. Contingency 3,00,000.00 3,44,875.50 -44,875.50

8. Coordination & Management 2,00,000.00 1,23,808.00 76,192.00

9. System Integration 0.00 0.00 0.00

10. Sub Total 44,00,000.00 45,66,573.00 -1,66,573.00

11. Over Head (15%) 6,60,000.00 4,93,427.00 1,66,573.00

12. Total Budget 50,60,000.00 50,60,000.00 0
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D. Project Outcomes
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• Anish Augustine, Riyas K. S, Leena Mary, ”Phonetic transcription and labelling of prosody for

automatic speech recognition”, Proc. National Technological Congress (NATCON13), Feb 2013.

• Sreejith A, Leena Mary, Riyas K.S. , Aju Joseph, Anish Augustine, ”Automatic prosodic labeling

and broad class Phonetic Engine for Malayalam”, Proc. IEEE International Conference on

Control Communication and Computing (ICCC), Dec 2013.

• Gayathri M. R, Anil P. Antony, and Leena Mary, ”Automatic syllabification of speech signals”,

Proc. 15th National Conference on Technological Trends (NCTT), Thiruvananthapuram, Aug.

2014.

• Deekshitha G, and Leena Mary,”Broad phoneme classification using signal based features” in

Proc. International Journal on Soft Computing (IJSC), Vol. 5, No. 3, November 2014.

• Deekshitha G, Jubin James Thennattil and Leena Mary,”Implementation of Automatic Segmen-

tation of Speech Signal for Phonetic Engine in Malayalam” in Proc. International Journal of

Engineering and Technical Research (IJERT), Vol. 2, Issue.11, November 2014.

• Shridhara, M.V., Banahatti, B.K., Narthan, L, Karjigi, V., Kumaraswamy. R, Development of

Kannada speech corpus for prosodically guided phonetic search engine, Proc. IEEE Conference

Oriental COCOSDA held jointly with 2013 Conference on Asian Spoken Language Research and

Evaluation (O-COCOSDA/CASLRE), pp 1-6, Nov. 25-27,2013, Gurgaon, India.

• Deekshitha G, Jubin James Thennattil, and Leena Mary, ”Segmentation of continuous speech

for broad phonetic engine”, in 2015 IEEE International Conference on Electrical, Computer and
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• Deekshitha G., and Leena Mary, ”Prosodically Guided Phonetic Engine” , in IEEE Interna-

tional Conference on Signal Processing, Informatics, Communication and Energy Systems (IEEE

SPICES), February 2015, NIT Calicut.

• Jubin James Thennattil, and Leena Mary, ”Real time phonetic engine for large vocabulary

continuous speech in Malayalam”, in IETE Journal of Research (under review).
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Development of Database

• Read speech: 15 hrs (Malayalam), 10 hrs (Kannada)

• Lecture mode: 07:30 hrs (Malayalam), 10 hrs (Kannada)

• Conversation: 07:30 hrs (Malayalam), 10 hrs (Kannada)

Transcription of Database

• Read speech: 5 hrs (Malayalam), 5 hrs (Kannada)

• Lecture mode: 2:30 hrs (Malayalam), 2:30 hrs (Kannada)

• Conversation: 2:30 hrs (Malayalam), 2:30 hrs (Kannada)

Tools & Systems Developed

• Phonetic engine for Malayalam language

• Phonetic engine for Kannada language

• Acquisition of Prosody - Automatic Syllabification of Speech Signal

• Acquisition of Prosody - Automatic Breakmarking of Speech Signal

• A coarse audio search method using phonetic and prosody labels
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Appendix 7.1

Detailed Technical Report of RIT Kottayam
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7.1 Database collection & transcription

Detailed Technical Report of RIT Kottayam

Development and availability of spoken language corpora in regional languages is of utmost im-

portance for a multicultural and multilingual country like India. The issues of regional bias, accent,

unique style and diversity associated with each geographical region and language will have a significant

effect on the performance of speech recognition/synthesis systems. Collection of speech data in Malay-

alam and Kannada language for prosodically guided phonetic search engine and the issues involved

in transcription are explained in this report. The speech corpus consists of data in three different

contexts namely, read mode, conversation mode and extempore mode. A four layered transcription

namely, phonetic transcription using IPA symbols, syllabification, pitch marking and break marking

is done. A baseline recognition system for Malayalam and Kannada language is built using HTK for

the data collected in different modes and the results are presented.

The tasks addressed at Rajiv Gandhi Institute of Technology in connection with the project are

the following:

9.1 Database collection & transcription

9.2 Identification and marking of prosodic events

9.3 Automatic prosody marking

9.4 Broad phonetic labelling using signal level features

9.5 Development of phonetic engine

9.6 Coarse method for audio search

9.7 Details of training programme conducted

9.8 Summary and future work

Progresses of each task are described below:

7.1 Database collection & transcription

7.1.1 Data Collection in Malayalam and Kannada

Data has been collected in three different modes namely read speech, extempore speech (lecture

mode) and conversational speech. Details of data collected in Malayalam by RIT Kottayam and in
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Kannada by SIT Tumkur are tabulated.The conversational data were recorded in the field, from four

different regions of Kerala for Malayalam. Recording has been done using Zoom H4N voice recorder

with a sampling frequency of 48kHz and represented using 16 bits per sample. The details of overall

data collection in each mode from different regions is tabulated below.

Table 7.1: Details of data collected in Malayalam

Mode Total No. of No. of No. of
Duration Spkrs. Male Spkrs. Female Spkrs.

Read Speech 15 hrs 33 18 15
Lecture mode 07:30 hrs 20 14 06
Conversation 07:30 hrs 49 33 16

No. of regions data has been collected Regions

5 Trivandrum, Kottayam, Alappuzha, Thrissur, Kannur

Table 7.2: Details of data collected in Kannada

Mode Total No. of No. of No. of
Duration Spkrs. Male Spkrs. Female Spkrs.

Read Speech 10 hrs 26 15 11
Lecture mode 10 hrs 10 08 02
Conversation 10 hrs 26 18 08

No. of regions data has been collected Regions

5 Bangalore, Mangalore, Mysore, Dharwad, Belgaum

7.1.2 Transcription to IPA symbols

The data obtained is divided into smaller chunks of duration 2-5 minutes in each mode for further

processing, such as transcription, syllabification, pitch marking and break marking. Once chunking

gets over, the data is ready for being transcribed. While transcribing, the signal is carefully listened

and looked into so as to minimize transcription error as much as possible. Transcription has been

done using the International Phonetic Alphabet (IPA) chart. Details of IPA transcription is provided

in the table.
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Table 7.3: Details of IPA transcription in Malayalam

Mode of Speech Duration transcribed using IPA symbols
Read speech 5 hrs

Extempore (lecture mode) 2 hrs 30 mins
Conversational speech 2 hrs 30 mins

Table 7.4: Details of IPA transcription in Kannada

Mode of Speech Duration transcribed using IPA symbols
Read speech 5 hrs

Extempore (lecture mode) 2 hrs 30 mins
Conversational speech 2 hrs 30 mins

7.2 Manual prosody marking

Prosody is of interest to automatic speech recognition (ASR), as it is important for human speech

recognition. The role of prosody is particularly important in spontaneous speech. Conversational

speech contains large amount of prosodic variation, which seems to co-occur with greater acoustic

variability. Researchers have long hypothesized that prosody could be useful in improving computer

recognition of speech. However, prosody has been used to only a small extent, though successful

applications in ASR are growing.

All spoken utterances can be considered as sequence of syllables which constitute a continual rhyth-

mic alternation between opening and closing of mouth while speaking. Syllable of CV type provides an

articulatory pattern beginning with a tight restriction and ending with an open vocal tract, resulting

some rhythm that is especially suited both to the production and the perception mechanisms. It is

demonstrated that the tonal events are aligned to the segmental events such as onset and/or offset of

a syllable. Therefore, syllable appears to be a natural choice for the basic unit for representing prosody.

In this work, we have assumed that prosody is manifested at syllabic level in terms of tonal

variations and breaks. In order to acquire prosodic knowledge, the following three automatic prosodic

transcription tasks are attempted:

(i) Automatic detection of syllable boundaries
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(ii) Automatic labelling of pitch accents

(iii) Automatic detection and labelling of break indices

In order to evaluate the three above mentioned automatic prosody transcription, it is necessary to

have manually labelled prosodic data. Manual prosodic transcription for all 12 languages is done as

per the following steps:

(i) 300 sentences (approximately 1 hour), i.e., 100 sentences in each in read, lecture and conversation

mode, is separated for this transcription.

(ii) Time stamps are marked corresponding to syllable boundaries

(iii) Pitch accents corresponding to local variations are marked with VL, L, H and VH.

(iv) Break Indices B1 (inter word), B2 (phrase break) and B3 (sentence break) are marked.

7.2.1 Syllabification

Syllable is a larger unit than a phoneme. A syllable is composed of a central peak of sonority

(usually a vowel), and the consonants that cluster around this central peak. Syllable has a nucleus,

normally a vowel sound. A word can be divided into syllables with a nucleus and it should follow the

phonotactics of the language. In syllabification procedure, syllable boundaries are manually marked

and labelled using wave surfer.

7.2.2 Break marking

Syllable boundaries are marked with any of the four labels namely B0, B1, B2, B3 where B0

corresponds to syllable boundary marking which do not have a physical break in the waveform. B3

corresponds to long pauses such as sentence break. Break marking indicate the duration of pause

between words. B0 is the smallest break where adjacent syllables are joined together and no physical

break is present.

7.2.3 Pitch marking

Pitch is a perceptual attribute of sound which can be described as a sensation of the relative altitude

of sound. The physical correlate of pitch is the fundamental frequency (F0) determined by the rate of
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vibration of the vocal chords. The ensemble of pitch variations in the course of an utterance is defined

as intonation. The direction of F0 change, either rising or falling, is determined by the phonological

patterns of the constituent words. Four labels namely Very High (VH), High (H), Low (L) and Very

Low (VL) are used for marking pitch variations. Flat segment pitch is marked with its absolute F0

value.

7.3 Automatic prosody marking

Automatic prosody marking consists of automating the process of break marking, pitch marking

and syllabification

7.3.1 Automatic Break marking

To find the break marking such as B0, B1, B2 and B3, speech/non speech regions are identified

first. Each frame of 10 ms is classified as speech or non speech based on average short time energy

(SE), spectral flatness measure (SFM) and most dominant frequency (MDF) calculated for that frame.

For non speech, average short time energy will be less compared to speech. Spectral flatness measure

is the measure of white noise in a spectrum. Most dominant frequency gives highest frequency within

the frame, it will be invariably less for non speech frame. Above three features are used to classify

each frame as speech or non speech giving three independent decisions. Final speech or non speech

decision is taken based on majority voting. Breaks are marked as B0, B1, B2 and B3 depending on

the duration of non speech region around the syllable boundary.

7.3.2 Automatic Pitch Marking

Pitch values at start, end and maximum value positions are compared with the reference average

(RefAvg) and labelled as L, H, VH, VL or Favg based on the following strategies:

1. Low (L), if pitch value F0 is such that (0.5*RefAvg < F0 < RefAvg)

2. High (H), if (RefAvg < F0 < 1.5 * RefAvg)

3. Very Low (VL) if F0 <0.5 RefAvg

4. Very High (VH) if F0 > 1.5 *RefAvg
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5. If start pitch value, end pitch value and the Fmax are equal or nearly equal within a tolerance

range, then it can be labeled as Favg which stands for the average value of pitch for that syllable

Figure 7.1: Pitch contour categories considered for pitch marking

Figure 7.2: Illustration of automatic pitch marking algorithm

We have considered mainly four types of pitch contour ‘rising’ as in Fig. 9.1(b), ‘falling’ as in

Fig. 9.1(c), ‘rising and falling’ as in Fig. 9.1(d) and ‘falling and rising’ as in Fig. 9.1(e). We are

classifying pitch contours into above four categories. As a first step, pitch values are median filtered

for smoothing the contour. Pitch marking is done for each syllable using the boundary information

derived via manual syllabification procedure. A reference average of pitch (Frefavg) is computed for

every 5 second moving window and pitch levels are marked as VL, L, H and VH based on this average

pitch. Maximum (Fmax) and minimum (Fmin) value of pitch and its position are computed for each

syllable region. If position of Fmin coincides with starting point of pitch contour and position of Fmax

with ending point of pitch contour then pitch contour is considered as ‘rising’ contour. If position of

Fmax coincides with starting point of pitch contour and position of Fmin with ending point of pitch

contour, then it is considered as ‘falling’ contour. If (Fmax) happens to be somewhere in the middle,

it is ‘rising and falling’ contour. If start pitch value, end pitch value and the Fmax are equal or nearly

equal within a tolerance range, then it can be labelled as Favg which stands for the average value
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Figure 7.3: Automatic labeling of pitch marking and break marking (shown above pitch contour and speech
waveform)

of pitch for that syllable. The pitch values at the end position is obtained by taking the difference

between Fstart and Fend points. For falling contour

(i) If 0.2*Frefavg >(Fstart - Fend) ≥ 0.1*Frefavg, then end point is one level below the starting point.

(ii) If 0.3*Frefavg >(Fstart - Fend) ≥ 0.2*Frefavg, then end point is two level below the starting point.

(iii) If (Fstart - Fend) ≥ 0.3*Frefavg, then end point is two level above the starting point.

Algorithm can be explained with the help of Fig. 9.2. The point A is the starting point of pitch

contour and B is the end point for syllable 1. Syllable 1 belongs to rising category since FA coincides

with Fmin and FB coincides with Fmax. FA is labeled as L as FA falls between Frefavg and 0.5*Frefavg.

The end point FB is labelled based on on the difference between FA and FB. In this figure the

difference is assumed to be greater than 0.1*Frefavg then FB is labeled as one level above L which is

H. The label ends with a positive sign (+) to indicate the rising category. For syllable 2, the start

pitch FC, end pitch FD and Fmax are nearly equal therefore it is labelled as F Favg. For syllable 3,

FE is labeled based on difference between FE and FD. End point F is labelled based on the difference

between FE and FF. In the case of syllable 4, Fmax lies nearly in the middle of starting and end point

so it is classified as rising and falling. We sub segment the syllable boundary up to Fmax and classify

from starting point to position of Fmax as rising contour and label it similar to rising contour. The

remaining part of syllable 4 is classified as falling contour and labelled similar to falling contour.
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7.3.3 Automatic syllabification

Automatic syllabification is the segmentation of a sentence/word into syllables by detecting the

boundaries automatically. Some of the features useful for automatic syllabification are amplitude of a

speech signal, short time energy, breaks in F0 contour and locations of vowel onset points. Utilizing

some of these features, a methodology is proposed for automatic syllabification, which utilizes short

time energy and vowel onset points. The block diagram shown in Figure 7.4 illustrates the proposed

methodology for automatic syllabification.

Figure 7.4: Block schematic illustrating the proposed methodology for automatic syllabification

7.3.3.1 Methodology

The proposed automatic syllabification procedure has the following steps:

(i) Preprocessing

Speech signal is normalized to take care of amplitude variations in recording, by which maximum

and minimum amplitudes are limited to ± 1. Sampling rate is changed to 1kHz.

(ii) Feature extraction

Some of the features useful for automatic syllabification are amplitude of a speech signal, short
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time energy, pitch breaks. The short time energy (STE) is computed with 20ms frame size and

10 ms frame shift using Hamming window. Most dominant frequency in the spectrum (MDF)

is computed by taking the absolute value of maximum of FFT of signal framed to 20ms with

10ms.The pitch extracted gives the voicing information.

(iii) Speech/Non speech segmentation and marking of long silence/pause regions

Speech/nonspeech detection is performed using STE , MDF and voicing information. For each

frame, speech/nonspeech decision is taken based on whether the feature has value greater than

a threshold and whether the frame is voiced/unvoiced. This results in three different decisions

for each frame based on STE, MDF and voicing information. Majority decision among the three

is chosen as the final speech/nonspeech decision . Sufficiently long nonspeech regions (approx.

above 100 msec) are marked as silence. Nonspeech regions of shorter durations are not marked.

(iv) VOP Detection

VOP detection is performed using the change of strength of excitation represented in Hilbert

envelope of linear prediction residual. First the speech signal is processed in blocks of 20 ms with

a shift of 10 ms. For each 20 ms block, 10th order LP analysis is performed to estimate the linear

prediction coefficients (LPCs) . The time-varying inverse filter is constructed using these LPCs.

The speech signal is passed through the inverse filter to extract the LP residual signal. The

time varying nature of excitation source characteristic is further enhanced by computing Hilbert

envelope of the LP residual [4]. For every 5 ms block with one sample shift, the maximum value

of the Hilbert envelope of LP residual is noted to construct smoothed excitation contour.

The change in the excitation characteristics at the VOP is detected by convolving the smoothed

excitation contour with a first order Gaussian differentiator of length 100 ms and standard

deviation as one sixth of the window length. This convolved output is termed as VOP evidence

plot. In the VOP evidence plot relative maxima occur at the instants where the amplitude in

the Hilbert envelope of the LP residual starts rising sharply.The peaks in the VOP evidence

plot represent the locations of the VOPs and are automatically located by finding the maximum

value between two successive positive to negative zero crossing with some threshold to eliminate
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the spurious ones [5]. The VOP evidences are shown in Figure 7.5 (c).

Figure 7.5: Automatic syllable boundary detection for a Malayalam sentence in read mode (a) Speech
waveform with manually marked syllable boundaries (b) Speech/non speech segmentation (c) Locations
of VOP (d) Boundaries detected using VOP (e) Short time energy (horizontal line shows valley thresh-
old, vertical lines showing valleys detected & dashed vertical lines denote additional syllable boundaries
detected using energy valleys) (f) Final set of syllable boundaries after spurious removal.

(v) Detection of syllable boundaries using VOP

If there are more than one VOP between two consecutive speech region, then it an indication of

syllable boundaries within this region. Then search is performed for minimum STE position in

energy contour between middle point of two consecutive VOPs to the second VOP. This mini-

mum STE positions are marked as syllable boundaries as shown in Figure 7.5 (d).

(vi) Additional syllable boundary detection using energy valleys

For identifying the additional syllable boundaries, a higher threshold is set for STE. For each

region of STE below this threshold, valley point (minimum STE position) is identified as syllable

boundaries as shown in Figure 7.5 (e) in dashed lines [6]. If there is more than one point with

minimum STE in a valley region, then one in the middle position is selected.

(vii) Removal of spurious boundaries
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Spurious boundaries within 60ms range are removed first. For this we take speech non speech

segments as reference and boundaries detected with valleys as input.Then removing boundaries

with distance less than 60ms but keeping the boundary with lowest energy. Then combing

the resultant boundaries obtained from the first spurious removal with the syllable boundaries

detected using VOP. After this a second level spurious removal is carried out to remove very

close spurious boundaries within 40 ms range.

7.3.3.2 Performance Evaluation

Performance of the proposed automatic syllabification method is evaluated by comparing the

automatically detected syllable boundaries with the manually marked ones. Sentences from each

mode in five languages are used for evaluating the above algorithm. The time stamps of syllable

boundaries are manually marked for these sentences. The metrics used for performance evaluation are

as follows :

(i) Percentage of detection accuracy : It gives the number of syllable boundaries detected with

deviations within ±40 ms and ±50 ms, with respect to manual boundaries.

(ii) Percentage of missed syllable boundaries : It refers to the boundaries present in manual syllab-

ification, but not present in automatic syllabification within ±40ms and ±50ms.

(iii) Percentage of spurious boundaries : It refers to the boundaries present in automatic syllabifica-

tion, but not present in manual syllabification within ±40ms and ±50 ms.

Table 7.5: Performance evaluation of automatic syllabification for Read mode

Language Detection Accuracy (in %) Missed Syllables (in %) Spurious Syllables (in %)

±40 ms ±50 ms ±40 ms ±50 ms ±40 ms ±50 ms

Bengali 74.93 82.05 25.07 17.95 14.09 10.28

Gugarati 75.17 82.22 24.83 17.78 23.56 16.28

Malayalam 80.81 84.86 19.19 15.14 18.68 14.55

Marati 71.51 76.29 28.49 23.71 30.58 25.71

Odiya 70.04 76.22 29. 96 23.78 25.69 19.02

Table 7.5, 7.6 and 7.7 summarises the results of performance evaluation for read, extempore and

conversation mode respectively. Performance in terms of detection accuracy in % (within ±40 ms &

±50 ms), missed syllables in % and spurious syllables in % for five languages in read mode is given
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Table 7.6: Performance evaluation of automatic syllabification for Extempore mode

Language Detection Accuracy (in %) Missed Syllables (in %) Spurious Syllables (in %)

±40 ms ±50 ms ±40 ms ±50 ms ±40 ms ±50 ms

Bengali 78.49 86.35 21.50 13.65 18.25 10.14

Gugarati 65.38 75.58 34.92 24.42 37.42 27.36

Malayalam 76.69 80.73 23.31 19.27 14.90 10.28

Marati 42.86 52.20 57.14 47.80 63.08 54.97

Odiya 72.67 75.34 27.33 24.66 26.99 19.87

Table 7.7: Performance evaluation of automatic syllabification for Conversation mode

Language Detection Accuracy (in %) Missed Syllables (in %) Spurious Syllables (in %)

±40 ms ±50 ms ±40 ms ±50 ms ±40 ms ±50 ms

Bengali 69.37 77.46 30.62 22.53 27.35 18.80

Gugarati 67.02 74.99 32.98 25.01 40.02 32.95

Malayalam 71.67 74.86 28.33 25.14 14.72 10.63

Marati 53.92 65.08 46.08 34.92 55.76 46.81

Odiya 65.34 70.08 34.66 29.99 21.67 16.50

in Table 7.5. Performance in terms of detection accuracy in % (within ±40 ms & ±50 ms), missed

syllables in % and spurious syllables in % for five languages in extempore mode is given in Table 7.6.

Performance in terms of detection accuracy in % (within ±40 ms & ±50 ms), missed syllables in %

and spurious syllables in % for five languages in conversation mode is given in Table 7.7.

7.4 Broad phonetic labelling using signal level features

In this work, broad phoneme identification is attempted using signal level feature. For broad

phoneme identification, the features such as voicing, nasality, laterality, frication, trilling, vowel for-

mants etc. are studied. From this study, we have come up with a set of feature vectors capable

of performing broad phoneme classification. We have broadly divided into six classes and they are

Vowels(V) , Nasals(N), Stops(S), Fricatives(F), Approximants(A) and Silence(S).

The useful features identified are Voiced/Unvoiced decision, Zero Crossing Rate (ZCR), Most Dom-

inant Frequency (MDF), Spectral Flatness Measure (SFM), Short time energy, First three formants

and Magnitude at the dominant frequency. Signal is windowed for a 20ms duration with 10ms over-

lap. For each frame, features are computed. These features are normalized and is applied to a neural

network classifier as input and broad phoneme class label as output.
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Table 7.8: Broad phoneme classes

Sl. No Type Symbol IPA Symbols

1 Vowels V a i u e o a: i: u: e: o:

2 Nasals N m n” n ï ñN

3 Stops P b d” ã dZ g bh d”h ãh dZh gh p t” ú tS k ph t”h úh tSh kh t

4 Fricatives F f s ù S h

5 Approximants A V õ j l í R r

6 Silence S

7.5 Development of phonetic engine

The continuous phoneme recognition system (phonetic engine) is developed using HTK (Hidden

markov model Tool Kit). The Hidden Markov Models (HMMs) are developed for read, lecture and

conversation modes for Malayalam and Kannada.

First step was data preparation. This phase consists of labelling of speech signal. The labelled

file saved in .lab format is a simple text file with time stamps of speech data. The speech .wav files

were chopped data files into smaller chunks of about 1 to 8 second and also to obtain their respective

transcription. The speech wave files and their transcription with time stamps are considered. To build

HMM using HTK the IPA symbols present in transcription has to be converted into ASCII symbols.

For example: a:ka:S9Va:ni in IPA notation is converted into akashavani in ASCII notation.

The speech recognition tools cannot process the speech waveforms directly, hence it has to be repre-

sented in more compact and efficient way. Hence speech waveform is converted into a series of vectors.

MFCCs are used for feature extraction. Configuration file (.conf) is a text file which specifies various

configuration parameters such as format of speech file, sampling frequency, frame size, frame shift,

number of Mel Frequency Cepstral Co-efficients (MFCCs) etc. The speech signal is pre-emphasized

by pre-emphesis factor of 0.97. The speech signal is hamming windowed with a frame size of 25 ms

duration and 10 ms overlap. For each frame MFCCs are computed. Here 13 MFCCs +13 ∆ +13∆ ∆

are considered. Hence each feature vector with dimensionality 39 is considered.

Each phone is modelled using 5 state HMM model. The HMM is trained with 5 states, 32 Gaussian

mixtures. The HMM means are initialized to zero, variance to 1 and trained with many iterations.
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Almost 75% of data is used for training of HMM phoneme models and rest 25% is used for testing

purpose.

7.5.1 Development of phonetic engine for Malayalam language

Analysis of transcribed data has been done by tabulating the various IPA symbols used. It was

found that a large number of symbols are much less frequent. The number of occurrences of them is

very small such that there is lack of examples for model training. So such symbols are further mapped

to more frequently occurring similar symbols based on perceptual similarity. Considering frequency of

occurrence, we have finalized 40 classes of phonemes including silence. The silence regions in speech

signals were transcribed using a special character ’-’. Here, the normalized frequency is obtained by

dividing the count of phoneme by total count of phonemes. Aspirated consonants, which are very less

frequent are mapped to their unaspirated counterparts. Long vowels, and some of the fricatives are

not merged since they have much distinct perceptual properties.

Initially, out of four hours of transcribed read mode data available, training was done for 75% of

transcribed data and remaining part is used for testing. Training and testing data was selected to

balance the gender characteristics. The phonetic engine was made using HTK. The performance of

the phonetic engine was evaluated. It was observed that overall phone recognition correctness was

44.24% and overall phone recognition accuracy was reduced to 26.34%. The first phoneme, /a/ has

confusion with its long version as well as with other more frequent vowels. Second row show that long

vowel /a:/ has most confusion with /a/. Observing rows till tenth, we can infer that long vowels like

/ee/, /oo/, /E/ shows much confusion with their short vowel counterparts, due to lack of sufficient

data. Phonemes which are stops and fricatives like /b/, /f/, /t/ have less accuracy due to the lack

of sufficient data for training. Vowels and silence have comparatively good accuracy. Considering

rows 13, 16, 19, 22, 23 and 27, we can see that nasals like /nj/, /ng/ etc. has confusion with other

nasals. Similarly, in rows 32, 33 and 34, we can observe that fricatives like /s/, /S/, /sh/ shows similar

confusion, due to limited training data.
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Table 7.9: Details of mapping of IPA symbols

No Phonetic Symbols in IPA Mapped IPA symbol ASCII symbol Normalised frequency

1 a 2 5 æ A a a 0.1346

2 a: 2: 5: æ: A: a: aa 0.0392

3 i y I Y 1 i i 0.0858

4 i: y: I: Y: 1: i: ee 0.0042

5 u U W u u 0.0445

6 u: U: W: u: oo 0.0041

7 e ø 9 @ E 3 e e 0.0825

8 e: ø: 9: @: E: 3: e: E 0.0106

9 o 0 7 8 o o 0.0084

10 o 0: 7: 8: o: O 0.0068

11 k kh k k 0.0430

12 g å gh P g g 0.0125

13 N ð N ng 0.0093

14 Ù c Ùh Ù ch 0.0096

15 Ð Ðh é dZ dZh dZ j 0.0055

16 ñ ñ nj 0.0050

17 ú úh ú T 0.0122

18 ã ãh ã D 0.0196

19 ï ï N 0.0135

20 t” t”h t” th 0.0418

21 d” d”h d” d 0.0210

22 n n n 0.0289

23 n” n” n− 0.0365

24 p ph p p 0.0283

25 f F B f f 0.0015

26 b bh b b 0.0095

27 m m m 0.0466

28 j L j y 0.0374

29 R R r 0.0250

30 l Ï l l 0.0288

31 v V V v 0.0225

32 S C ç S S 0.0080

33 ù Z ü ì ù sh 0.0060

34 s z z s 0.0235

35 h H è X h h 0.0043

36 í î í L 0.0154

37 r R r rr 0.0324

38 õ ô õ zh 0.0023

39 t t t 0.0092

40 - - - 0.0203
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Table 7.10: Performance of phoneme models

No Phoneme in ASCII Normalised frequency % of corectness confusable phonemes (% of

misclassification in bracket)

1 a 0.1346 55.5 aa(7.28), e(12.43), i(3.02)

2 aa 0.0392 68.4 a(13.17)

3 i 0.0858 62.3 e(8.26), y(4.24)

4 ee 0.0042 13.1 i(5,16), r(3.34), e(2.9)

5 u 0.0445 53 e(10.16), a(6.48)

6 oo 0.0041 10.9 u(30.23)

7 e 0.0825 52.9 a(10.23)

8 E 0.0106 27.6 e(18.58), i(12.69)

9 o 0.0084 23 u(15.8), a(14.78)

10 O 0.0068 30.6 a(14,65), o(8.18)

11 k 0.0430 57.2 y(4.2), th(4.01)

12 g 0.0125 22.4 k(9.67)

13 ng 0.0093 21.3 n(13.7), e(9.5)

14 ch 0.0096 45.3 y(9.3), s(5.627), S(5.19)

15 j 0.0055 42.3 y(12.2), r(10.30

16 nj 0.0050 16 n(12.23), y(9.57)

17 T 0.0122 40 th(9.26), k(9.05)

18 D 0.0196 55.9 r(5.37)

19 N 0.0135 30.9 m(7.54), n(9.12)

20 th 0.0418 37.7 k(9.52), p(6.76)

21 d 0.0210 30.9 D(7.02), rr(5.46)

22 n 0.0289 41.2 m(6.3), y(5.5)

23 n− 0.0365 33.3 n(9.07), m(8.5)

24 p 0.0283 47.6 k(8.17), th(7.77)

25 f 0.0015 5.8 s(15.9), a,p(8.69)

26 b 0.0095 34.1 k(7.225), d(6.07)

27 m 0.0466 55.4 n−(5.89), n(4.41)

28 y 0.0374 64.5 i(5.16), r(3.34)

29 r 0.0250 51.7 rr(5.2), y(5.9)

30 l 0.0288 62.8 L(4.86), e(5.34)

31 v 0.0225 34.3 n−(5.28), D(4.05)

32 S 0.0080 41.8 sh(11.10, s(18.13), ch(7.58)

33 sh 0.0060 41.1 S(15.52), s(12.33)

34 s 0.0235 77.3 th(6.1), S(1.9)

35 h 0.0043 37.3 k(8.86), y(8.23)

36 L 0.0154 37.3 l(8.94)

37 rr 0.0324 42.8 e(6.76), r(5.5)

38 zh 0.0023 20.7 y(16), i,r(9.78)

39 t 0.0092 24.7 k(6.63), th(5.57)

40 - 0.0203 94.3
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Table 7.11: Phonetic engine output

Actual transcription (in ASCII) Transcription given by

for input word the phonetic engine (40 models)

SiSirem sishirem

pathanjali pathenchali

kaalavastha kaaalavasta

vismayam visthmayam

Table 7.11 compare the output of phonetic engine for cetain words with their manual transcrip-

tion.Inorder to introduce more accuracy and to reduce the likelihood of mismatching the language as

Malayalam in a global phonetic engine, we created a new phonetic engine. Here, we chose 26 phoneme

classes including silence. Referring to the above 40 classes phonetic engine, grouping was done based

on confusable classes.

Most of the nasals are mapped to /n/. Less frequent symbols like /rr/,/f/, /zh/, etc.. are also

mapped as per the Table 7.12. We had also increased the data used for PE. Phonetic engine in all the

three mode of data were made. The overall accuracy has been increased to 34.14%

The phonetic engine with 26 models were tested for the previous 4 hours of read mode data. It was

observed that overall phone recognition correctness was 44.81% and overall phone recognition accuracy

was improved to 40.93%. There was 14.59% improvement in phone accuracy due to much reduction

in substitution errors.Then phonetic engine with 26 models were tested for all of the transcribed data.

It contained 5 hours of read data, and 2.5 hours of conversation and lecture data. 75% of data was

divided to training and rest of them to testing, considering gender balance. For read mode, the overall

phone recognition correctness is 39.85% and overall phone recognition accuracy is 34.56%. For lecture

mode, the overall phone recognition correctness is 39.69% and overall phone recognition accuracy is

32.40%. For conversation mode, the overall phone recognition correctness is 37.13% and overall phone

recognition accuracy is 32.45%. It is observed that read mode performs the best among others in

recognition accuracy.

We further created a broad phonetic engine with 6 broad classes namely vowel, fricative, approxi-

mant, plosive, nasal and silence as per 7.8. Overall accuracy of about 60% was found in read mode.
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Table 7.12: Further mapping of 40 phoneme models to 26 phoneme models

Sl. No 26 Phoneme Models Symbols in 40 phoneme models

1 a a, aa

2 i i, ee

3 e e, E

4 u u, oo

5 o o, O

6 k k

7 g g

8 ch ch

9 j j

10 T T

11 D D

12 t t,th

13 d d

14 n n, ng, nj, N, n−
15 p p

16 b b

17 m m

18 L L, zh

19 l l

20 r r, rr

21 y y

22 v v

23 sh S, sh

24 h h

25 s s, f

26 - -

This phonetic engine can be used for audio search applications as explained in next sections.
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A Java based GUI was developed for the real time recording of speech followed by its recogni-

tion using phonetic engine. Provisions for selection/browsing from already recorded data, playing

the recorded data and displaying phoneme outputs in English alphabet using ASCII symbols were

incorporated. Screenshot of GUI developed is shown in figure below.

Figure 7.6: GUI developed at RIT for phonetic engine
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7.5.2 Development of phonetic engine for Kannada language

The phonetic engine for Kannada was also developed using HTK. HMM models were developed

for each mode. HMM developed for each mode (Eg.Readmode) is evaluated for the same as well as

the other (Eg.read, lectureandconversation) modes. The data preparation, preprocessing of data and

building of HMMs for Kannada speech corpus is explained in this section.

To build HMM, the data preparation is very important step. This phase consists of labeling of

speech signal. The labeled file saved in .lab format is a simple text file with time stamps of speech data

whose duration varies from 1 to 8 second. The two and half hour data from each mode is considered,

from which 80% of data is used for training i.e. 2 : 00 hours and 20% is used for testing i.e. 30

minutes. Ch-wav command in HTK is used to chop the data files into smaller chunks of about 1 to 8

second and also to obtain their respective transcription. The speech wave files and their transcription

with time stamps are considered. IPA symbols were mapped to ASCII equivalents.

Table 7.13: Data and speaker information

Mode Training duration Testing duration No.of speakers No.of speakers
(Hrs:Mins:secs) (Hrs:Mins:secs) in training in testing

Read 01:56:06 00:29:40 11 2
(5 Male + 6 Female ) (1 Male + 1 Female )

Lecture 02:00:31 00:39:14 4 2
(3 Male + 1 Female ) (1 Male + 1 Female )

Conversational 02:04:22 00:27:43 12 6
(11 Male + 1 Female ) (6 Male )

The perceptually similar and least occuring phones are merged together. The merging information

is given in Table 7.14. In Kannada the 47 phones are merged together to form 26 phones.
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Table 7.14: Phone merging information for Kannada phonetic engine

S.I. No.
Phonetic Unit

(in IPA)
Merged Phonetic Unit

(in IPA)
Corresponding name

(in ASCII)
1 9 a a
2 ae a a
3 a; a a
4 a: a a
5 e e e
6 e: e e
7 i i i
8 i: i i
9 o o o
10 o: o o
11 u u u
12 u: u u
13 k k k
14 g ě g
15 á g g
16 Z j j
17 Ã j j
18 ú ú T
19 ã ã D
20 t t t
21 D D d
22 n n n
23 p p p
24 b b b
25 M M m
26 j j y
27 R r r
28 r r r
29 l l l
30 V v v
31 S S sh
32 ù S sh
33 s s s
34 h h h
35 í í L
36 kh k k
37 ě ě g
38 gh g g
39 tSh tS ch
40 dZh dZ j
41 h ú T
42 h ã D
43 th t t
44 dh d d
45 ph p p
46 bh p p
47 − − sil
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Initially the HMM is trained and tested for the same mode of data. The performance of HMMs

built for read, lecture and conversation modes of Kannada speech are given Table 7.15.

Table 7.15: Training and testing with same modes of data

Training Mode Testing Mode Phone Recognition in % Recognition Accuracy in %
Read Read 59.36 55.10

Lecture Lecture 55.80 48.74
Conversation Conversation 52.34 45.67

From Table 7.15, it can be noticed that the accuracy of read mode data is high compared to other

two modes because of proper articulation and it is much closer to the written language. In conversation

mode phone recognition accuracy is less compared to other modes because speech consists of filled

pauses and non-standard pronunciations.Table 7.16 shows the phone wise classification results for

training and testing with same modes of data. From Table 7.16, it is noticed that silence recognized

properly in lecture and conversation mode due its frequency of appearance in the training data. The

phone L is having least recognition rate. From HMM results in Kannada, L−l, L−r and sh−s are

identified as more confusing pairs.
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Table 7.16: Phone occurrence rate in training data along with phone wise classification for training and testing
with same modes of data

Phone in
ASCII

Read Mode Lecture Mode Conversation Mode
%PO %PPR %PO %PRR %PO %PPR

a 23.72 81.2 22.32 77.1 19.0 19.0
e 5.54 71.5 5.98 76.8 7.06 76.6
i 8.20 77.5 7.22 74.7 7.68 79.8
o 1.15 71.7 2.33 71.4 2.84 73.5
u 6.40 76.6 5.49 73.5 5.42 58.5
k 3.59 76.2 3.56 78.0 3.24 76.7
g 3.10 62.7 3.2 55.3 3.1 60.8
ch 0.70 88.0 0.42 48.6 0.49 52.9
j 0.46 51.5 0.42 68.8 0.57 73.5
T 0.71 47.8 0.87 54.8 2.08 66.1
D 1.16 74.8 1.96 73.8 2.29 70.2
t 4.42 75.7 4.3 71.7 3.75 67.5
d 5.00 67.7 4.85 64.8 4.74 73.1
n 6.46 76.3 8.4 78.2 7.96 70.1
p 1.56 81.0 0.8 60.1 1.37 63.7
b 1.62 68.6 1.92 73.1 1.96 75.1
m 2.68 80.5 2.72 82.7 2.96 79.3
y 2.59 80.2 2.02 67.7 1.76 55.9
r 5.61 86.4 4.49 81.0 5.26 72.4
l 2.91 68.4 2.61 58.3 4.47 67.7
v 3.34 67.4 2.97 60.1 2.26 55.9
sh 1.11 67.7 0.69 83.1 0.62 53.8
s 2.78 85.1 1.82 86.0 2.86 87.6
h 1.24 49.0 1.54 38.1 0.97 49.5
L 1.63 5.2 1.57 17.5 1.1 10.3
sil 2.22 26.4 5.4 74.3 3.84 61.9

∗% PO−Phone occurrence in training data

∗% PRR−Phone Recognition Rate

Table 7.17 shows the HMM results for training and testing with all modes of data. From Table 7.17 it

can be noticed that the same mode of training and testing gives comparatively high performance than

training and testing with different modes. For example read v/s read gives 55.10% phone recognition

accuracy, but read v/s lecture and read v/s conversation gives 34.77% and 40.00% respectively, which

are less than lecture v/s lecture and conversation v/s conversation.

From the results of Table 7.17, the experiments are further extended to train HMM by merging

different modes of data and test the resulting HMM with all three modes. i.e training HMM by
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Table 7.17: Training and Testing with all modes of data

Training Mode Testing Mode PR in % PR Accuracy in %
Read Read 59.36 55.10
Read Lecture 42.04 34.77
Read Conversation 47.43 40.00

Lecture Read 52.35 46.28
Lecture Lecture 55.80 48.74
Lecture Conversation 46.72 37.87

Conversation Read 48.35 42.99
Conversation Lecture 47.87 42.29
Conversation Conversation 52.34 45.67
Conversation Read 48.35 42.99
Conversation Lecture 47.87 42.29
Conversation Conversation 52.34 45.67

read+lecture mode data and testing it with all modes. From Table 7.18, it can be noticed that the mode

Table 7.18: Training by combining different modes of data and testing with three modes

Training Mode Testing Mode PR in % PR Accuracy in %
Read+Lecture Read 55.93 50.03
Read+Lecture Lecture 52.35 45.90
Read+Lecture Conversation 49.11 42.25

Lecture+Conversation Read 50.65 44.15
Lecture+Conversation Lecture 53.72 47.93
Lecture+Conversation Conversation 51.85 44.94
Conversation+Read Read 57.60 53.69
Conversation+Read Lecture 45.46 39.61
Conversation+Read Conversation 50.29 44.24

Read+Lecture+Conversation Read 57.44 53.41
Read+Lecture+Conversation Lecture 52.34 46.60
Read+Lecture+Conversation Conversation 50.65 44.15

which is not present in training set will give less accuracy compared to base line results. For example

: Read+Conversation HMM gives 39.61% accuracy for lecture mode data whereas lecture v/s lecture

gives 48.74%. The HMM trained by all three modes i.e. HMM for Read+Lecture+Conversation modes

give the results which is compatible with the base line results. The Read+Lecture+Conversation

mode HMM gives 53.41%, 46.60% and 44.15% accuracies for Read, Lecture and Conversation modes

respectively. These results almost compatible with base line results as shown in Table 7.15 i.e. read

v/s read , lecture v/s lecture and conversation v/s conversation modes.
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7.6 A coarse audio search method using phonetic and prosody labels

It was noticed that the output of the prosody unit will be similar for same keywords occurring

at different positions. Audio search helps to locate each and every occurrence of the keyword in the

audio database. Here we are suggesting a unique approach for audio search using temporal prosodic

pattern. Conventional audio search faces time and computational complexity.

Figure 7.7: (a), (b), (c), and (d), Waveform and pitch contour corresponding to the word common wealth
games as appeared in AIR news bulletins transmitted by different radio stations

While analyzing the pitch contour of same words by different speakers in different contexts, a

similarity is noticed as illustrated in Figure 7.7 and Figure 7.8. There are only smaller variations in

pitch trends as we consider same keyword utterance of different speakers. For the words occurring

in similar positions, the pith-trends seems to be similar and speaker independent as shown in Figure

7.7 (b), (c), (d) and Figure 7.8(a), (b), (c) . But due to co-articulation, depending on the place of

occurrence of the word, the pitch-trend can slightly vary as in Figure 7.7 (a) and Figure 7.8 (d).

This property of pitch trends along with broad phonetic labels may be useful for audio search

applications. The methodology proposed is illustrated using block schematic in Figure 7.9. The major

blocks in this methodology such as broad phonetic engine, pitch trend labeling, temporal pattern and

local alignment are explained below. The broad phonetic engine as explained in earlier section is used

here. Methods used for pitch-trend labelling, formation of temporal pattern and local alignment are
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Figure 7.8: (a), (b), (c), and (d), Waveform and pitch contour corresponding to the word unnathathalayogam
as appeared in AIR news bulletins transmitted by different radio stations

discussed below.

7.6.1 Pitch-Trend Labeling

Trend labeling consists of two parts: (i) Pitch contour modification (smoothing followed by trend

removal) and (ii) Transcribing using three labels namely Flat (@), Rise (+), and Fall (∼).

7.6.2 Temporal Pattern

Broad phoneme class label and pitch-trend labels are given as input to this unit. In the temporal

pattern block, these two labels are combined and rearranged according to the time stamps. So here

the combination of broad phoneme transcription and pitch trend labels is used to obtain a temporal

prosodic pattern.

Table 7.19 and 7.20 shows the temporal prosodic pattern for the keyword unnathathalayogam and

cheriya perunnal respectively. In the test speech, this keyword is occuring many times. The temporal

pattern for several occurrence of the keyword in the database is shown.

To use in audio search applications, the keyword as well as the search database is converted to

the temporal prosodic patterns as illustrated in Table 7.21. The temporal prosodic pattern is similar

at all the position where the keyword is occurring in the database. So have to measure the similarity

measure of the pattern in terms of distance. We can use methods like simple linear distance measure
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Figure 7.9: Block schematic illustrating the proposed methodology for audio search.

Figure 7.10: Pitch Trend Labeling.

or advanced Dynamic Time Warping (DTW) etc. The position where there is maximum similarity

will have the minimum distance measure can be declared as the position of occurrence of the keyword.

The Table 7.21 illustrates an example.

7.6.3 Local Alignment

To use in audio search applications here the keyword as well as search database is converted to

the temporal prosodic patterns as illustrated in Table 7.19 , 7.20. The temporal prosodic pattern is

similar at all the position where the keyword is occurring in the database. It will vary slightly because

of the phenomenon termed coarticulation. So we have to calculate the similarity/alignment measure

of the patterns in order to locate them.

Sequence alignment is a way of arranging two or more sequences of characters to identify regions
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Table 7.19: Prosody model output while testing the word unnathathalayogamin different speech signals in the
database.

Query word unnathathalayogam
Broad class label VNNVPVPVAVAVPVN
Pitch-trend label @+ ∼ + ∼∼
Occurrence in the test Output of prosody model
database
Occurrence 1 @V NN + V ∼ P@V ∼ P@V ANV ∼ V P@V +N
Occurrence 2 @V N +NV ∼ +PV ∼ P + PV ∼ A@AV PV +N
Occurrence 3 @V NN + V ∼ @P ∼ P@V N ∼ @A ∼ V NV@P +N

Table 7.20: Prosody model output while testing the word cheriyaperunnal in different speech signals in the
database.

Query word cheriyaperunnal
Broad class label PVAVAV PVAVNAA
Pitch-trend label @ ∼ + ∼∼
Occurrence in test database Output of prosody model
Occurrence 1 @P@AV ∼ AV +APV ∼ V NA+ V A ∼
Occurrence 2 @P@V ∼ AA+ PV NV ∼ V NV ∼
Occurrence 3 @P@V ∼ A+ V PV ∼ NNV AV A ∼

of similarity. Aligned sequences are typically represented as rows within a matrix. Gaps are inserted

between the residues so that identical or similar characters are aligned in successive columns. Se-

quence alignments are widely used in bioinformatics for arranging the sequences of DNA, RNA, or

protein, but are also used for nonbiological sequences, such as those present in natural language or

in nancial data. Computational approaches to sequence alignment generally fall into two categories:

global alignments and local alignments. Calculating a global alignments a form of global optimiza-

tion that forces the alignment to span the entire length of all query sequences. By contrast, local

alignments identify regions of similarity within long sequences that are often widely divergent overall.

Local alignments are often preferable, but can be more difcult to calculate because of the additional

challenge of identifying the regions of similarity.

Here we used local alignment method to locate the positions of the keywords with maximum

alignment score. This type of search can be considered as the rst stage of audio search, because it

locates the positions with maximum alignment. Then we can further rene the search in these selected

portions using some other techniques instead of searching in the whole search database. The Table
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Table 7.21: An example for illustrating audio search for the keyword pradhana manthri

Keyword pradhana manthri
Broad Class Labels PAVFVNVNANPAV

Pitch-Trend DRDRRD
Temporal prosodic PADVFVNRVNADNRPARVD
pattern of keyword
Temporal prosodic NAVDNPVDPVARVNV· · ·

pattern of audio database PVAFVPAPVNRVNDRVPDARV· · ·
PAPNDVPRVPVNASPANVNVPRRV· · ·

Duration of audio db 64.680 seconds
No. of broad symbols 1088

present in the search file
Actual time-stamps of the 0.28, 28.64, 34.09,
positions of keyword in db 37.23, 41.82

Time stamps obtained using 0.32(4), 28.84(37), 33.71(1),
alignment (their rank of best alignment) 36.70(21), 41.00(22)

Total no. of best alignment 429

7.21 illustrates examples of audio search.

7.7 Details of training programme conducted

(i) A training programme on ”Automatic Speech recognition using Hidden Markov Model”, Nov

30-Dec 4 2012 for project staff and M Tech students of RIT and SIT, Tumkur.

(ii) Distinguished lecture on ”Advances in speech systems” by prof. Sadaoki Furui,Tokyo Institute

of Technology, Japan on Dec 10, 2013.

7.8 Summary & future work

Speech data in three different modes namely, read, lecture mode and conversational speech were

collected. Conversational data were collected from different regions of Kerala and Karnataka states.

Collected speech data were transcribed using IPA symbols. Transcribed data were analyzed to find out

the frequency of occurrence of different symbols. Marking prosody was done in terms of syllabification,

break marking and pitch marking using wave surfer. Algorithm for automatic pitch marking and break

marking were developed. Automatic syllabification was attempted using prosodic information in terms

of pitch and energy contour. Broad phonetic labelling was attempted using signal derived features.
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Phonetic engine in Malayalam was developed using 40 HMM phoneme models as well as 26 phoneme

models and it’s performance was analyzed. HMM based broad phonetic engine was developed which

can be used for audio search applications. Phonetic engine in Kannada was developed using 26 HMM

phoneme models and it’s performance was analyzed. A coarse method for audio search using phonetic

and prosodic labels was also attempted. Different methods for integrating prosodic knowledge into

the present phonetic engine need to be explored in the future.
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Detailed Technical Report of DA-IICT

8.1 Database collection and transcription

DA-IICT team has collected speech data and other relevant meta data in two Indian languages, viz.,

Gujarati and Marathi. These two languages are spoken mostly in two states of India, i.e., Gujarat and

Maharashtra, respectively. The data is recorded in three different modes, viz., read, spontaneous and

lecture modes. The data has been collected using portable handy recorder (Zoom H4n) as most of the

data was recorded from remote villages and real field environment (i.e., real-life settings). Recording

was performed at 44.1 kHz sampling frequency with 16 bits/sample resolution. For the collection

of Gujarati speech data, we have visited several places of Gujarat state to collect voice samples.

The places selected includes Gandhinagar (Vavol,Paliyad),Navsari (Moti kakrad, Navsari), Surat,

Anand (Umreth),Jamnagar (Vijarkhi, Mota thavariya), Rajkot, Bhavnagar (Chamardi, Bhavnagar)

and Kutch (Kera, Anjar). These places covers three dilectal region of Gujarat state, viz.,Saurashtra,

South Gujarat and North East Gujarat. From Kutch, staff members could manage to collect about

2 Hours of speech data. For the collection of Marathi speech data, we have visited several places of

Maharashtra state. The places are mainly includes Ahmedanagar (Kakti), Nanded (Basmath), Latur,

Solapur,Sangli (Vibhutvadi), Kolhapur (Ichalkaranji), Pune and Lonavala. These places covers three

dilectal region of Maharashtra state. The places are shown by a circle around the surrounding region

as in Fig. 8.1 and Fig. 8.2.

Team members would like to thank Prof. B. Yegnanarayana and Prof. Peri Bhaskararao of IIIT-

Hyderabad, who shares their immense knowledge on speech technology and phonetic transcription,

respectively. Entire DA-IICT Prosody project team attended two workshops on phonetic transcription

to learn phonetic transcription using IPA-based symbols. In addition, there were project-related work-

shops and meetings; which were quite useful. The places for data collection, experiences, observation

and various statistics related to phonetic transcription are discussed [3], [4].
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Figure 8.1: Places of Gujarat State. The circles indicate the regions where data has been collected [1].

Figure 8.2: A place of Maharashtra State. The circle indicates the region where data has been collected [2].
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8.2 Observations

8.2.1 Observation during data collection

Different dialectal zones of Gujarat and Maharashtra are considered during data collection phase.

As subjects may not have sufficient knowledge of reading in different kinds of sentences. For example,

due to lack of knowledge, subject may speak interrogative type of sentence as a simple declarative.

Also, a good reader (i.e., who can read Gujarati and Marathi language fluently) can pronounce each

kinds of sentences clearly. As it was observed that reader, who haven’t contributed in such data

collection may feel shy and nervous while reading. Hence, read mode speech has got less prosodic

information. This is the problem with speech data collection in read mode. Hence, in order to capture

the prosody information, we need to collect the data in spontaneous mode as well.

8.2.2 Observation while transcribing the speech

The speech transcription activities typically involves, tagging speech events using IPA-based pho-

netic labels at different levels, syllabification task, marking prosodic breaks and variation via break

and pitch marking, respectively. Full time and part time consultants are given the task of phonetic

transcription and syllabification. Since consultants are graduate at various discipline, they are given

prior training for phonetic transcription. The followings are the observations found while transcribing

the speech signal.

• Many times listener finds overlap across two phonetic symbols.

• Due to ambiguity between aspirated plosive and fricative sounds, transcriber often confuses [3].

• Human perception of phonetic symbols at different-level is different. It means that a person may

not recognize the same phonetic symbol at word or syllable-level than at sentence-level.

• Any two transcribers may not identify the exact the same phone and word boundaries.

• Diacritic marks are very error prone in terms of agreement between two transcribers.

• In a lecture mode, speech subject tries to prolong the vowels in order to create interest among

listeners. (Here, children of primary school are the listeners mostly.)
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• Transcribers also confuse between fricatives and affricates. This might be due to the improper

analysis window selection before listening. It was found earlier from the experiments that frica-

tion noise duration is the important cue which distinguish fricatives from affricates [5]. For

example, in a syllable (in /CV/ form) containing fricatives in /C/ consonant position is con-

sidered partly along with following vowel, a listener may perceive it as affricates with the same

vowel.

• In both the languages, diphthongs and associated vowels may be perceived as two distinct vowels.

Hence, transcriber may mark as two different syllables instead of vowel.

• Furthermore, transcribers face few software handling difficulties such as saving and editing the

labels in wavesurfer. However, transcribers overcome such difficulties as time progresses.

• Different observations are also found while pitch marking. Pitch variation for the same sentence

for different speakers may be same or different.

• In a declarative sentence, it is often found that pitch marking is high initially and low at the

end.

• Pitch variation in the sentence need not be gradual. Sometimes it changes in between two

prosodic breaks.

• Prosodic breaks (i.e., break marking) are not physical pause in between the speech signal. Flu-

ency, hesitation while speaking, also play an important role in break marking.

From a phonetic transcription, a syllable cluster is formed. A syllable is a linguistic abstraction

of speech, which accommodates one syllable peak as a vowel. Based on the formation, syllables can

be considered to have 7 different types, i.e., V, CV, VC, CVC, C*V, VC*, C*VC*, where V, C and

C* stand for any vowel, consonant and more than one consonant units, respectively. If C is attached

before V, C is called onset part of a syllable and if C is attached after V, C is called code of a syllable.

In general, a syllable can have one or many onsets and/or coda. If it contains multiple onsets or coda,

syllable is said to be a complex syllable. Table 8.1 and Table 8.2 show the statistics of different kinds

of syllable structures observed in both the languages in the three different recording modes.

From Table 8.1 and Table 8.2, it can be inferred that most of the syllables are of CV types, which

is almost more than 50 % of entire syllable coverage. It is indeed correct since writing script in
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Table 8.1: Statistics of different types of syllables obtained in manual syllabification (numbers indicate %
coverage) for Gujarati language.

Gujarati V CV VC CVC C*V VC* C*VC*
R 6.41 59.52 2.02 29.01 2.77 0.22 0.05
L 10.06 58.23 3.06 25.58 3 0.07 0.01
C 9.08 61.98 2.08 24.55 2.14 0.15 0.03

Table 8.2: Statistics of different types of syllables obtained in manual syllabification (numbers indicate %
coverage) for Marathi language.

Marathi V CV VC CVC C*V VC* C*VC*
R 6.79 56.75 2.02 30.53 3.84 0.05 0.02
L 5.15 62.27 1.31 26.65 4.49 0.02 0.01
C 8.41 62.85 1.62 23.36 3.7 0.04 0.01

Indian language allows decomposing the basic graphemes into consonants followed by vowel, forming

/CV / type of syllable units. Hence, /CV / type syllables are general form of syllable units in Indian

languages and hence they are expected to be more frequent. In addition, it can also be observed

that the number of syllables formed by consonants in code position is very less, this might be due to

difficulty in terms of pronunciation. Same for complex syllable, it is very less dominant in syllable

coverage.

8.3 Development of Phonetic Engine (PE)

Phonetic Engine (PE) is the tool to convert speech information into some appropriate symbolic

representation. Here, as a part of project objectives, project members follow IPA-based symbols as

a phonetic symbols. For this purpose, segmentation and labelling-based approach can be applied.

The segmentation is to be performed onto the continuous speech data, so that speech is decomposed

into small speech sound units like phoneme and at appropriate label assignment (to a phoneme) is

done. While testing phase, phoneme units of segmented speech is classified and relevant phone label

is assigned. Here, exploiting the knowledge of speech production mechanism and finding the specific

events in the continuous speech would definitely be useful. The events could be voicing detection, place

of articulation, manner of articulation and so on. Based on the detection of such events appropriate

phoneme label is assigned. So far DAIICT team has been involved in the segmentation and isolated

phone recognition task. The segmentation at phone-level and syllable-level could be performed using
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Spectral Transition Measure (STM) [6]. It was observed that STM can indeed be useful representation

for phonetic segmentation application [7]. Since phonetic transcription is very closely related to the

speech signal, one has to extract the information from speech signal itself. The approach used here is

based on segmentation and decoding.

The speech segmentation is very crucial component in the phonetic engine design. There are few

issues in segmentation task. One of the issues is as to which level segmentation needs to be performed

(phone vs. syllable). The second is number of a segment which is due to unsupervised nature of the

segmentation. The segmentation is performed using Spectral Transition Measure(STM). To compute

STM contour cepstral information is computed from the speech signal. Then STM at time ith, instance

STMi is defined as

STMi =
1
K

K∑
i=1

a2
i , (8.1)

where ai =
PI

k=−I kc(i+k)PI
k=−I k2

, and c(i) is the ith order cepstral coefficients [6]. More details of phone

segmentation using STM is discussed in Section 8.4.1.

A Gaussian Mixture Model (GMM) of 4 Gaussian components is trained for an individual isolated

phone. The speech data is converted into its Mel Frequency Cepstral Coefficients (MFCC) representa-

tion having window duration 16 ms and shift of 4 ms. GMM decoding is performed at frame-level and

which is fluctuating if a hard decision made upon a frame-level, so GMM decoding result is averaged

out over a segment (which contains multiple frames) to estimate the phonetic sound unit. For training

task, speech signal is segmented manually at phone-level. The output of a phonetic engine is displayed

in Fig. 8.3 and Fig. 8.4. There are few observations are found from above design.

Figure 8.3: A time-domain waveform, spectrogram, output of Gujarati phonetic engine and expected outcome,
i.e., manual symbols.
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Figure 8.4: A time-domain waveform, spectrogram, output of Marathi phonetic engine and expected outcome,
i.e., manual symbols.

• Segmentation plays very important role. Many times, it is found that vowels are broken in

multiple segments.

• This might not affect the system much. However, if vowels and consonants are not separated

during segmentation the performance might be biased based on the averaged log- likelihood

scores.

• Here, segmentation is unsupervised and decoding is supervised. Manual labels have to be correct

which are used in training.

• Scoring in GMM framework is at frame-level, so the closure duration before the unvoiced plosive

are treated as silence for frame. Hence, again segmentation has to be improved.

8.3.1 HMM-based PE:

The actual phonetic engine is based on statistical model (HMM). Two different sets of feature

vectors, viz., MFCC and PLP are used in the development of PE. Features are extracted over window

duration of 25 ms and shift of 10 ms. For speech samples of 16 kHz sampling frequency, each frame

consists of 400 samples. Each feature vector consists of 13 static coefficients (C0 to C12). ∆ and

acceleration (i.e., ∆ −∆) coefficients are calculated. This makes the feature vector of dimension 39

(13 static + 13 delta (∆)+ 13 acceleration (∆−∆) coefficients). For feature extraction, 28 Mel spaced

subband filters are used in MFCC and the order of LPCs is taken as 12 in PLP feature extraction.
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PE system is designed based on train-test philosophy of phonetic sound units. Phonetic units that are

manually transcribed by the transcribers are used to train HMMs for each phonetic unit using HTK

(HMM Toolkit) [8]. Since the speech signal is not aligned with respect to every phonetic symbol, flat

start based approach is employed. Five state HMMs which include two nonemitting and three emitting

states with single Gaussian model per state are initialized. HMM embedded re-estimation is performed

several times. Finally, the test data is decoded into single phonetic string. No phone language model

(LM) is used here, since it is expected that consecutive phone sequence might not capture effective

information which is derived from manual phonetic transcription. Similar design procedure is used

to develop PEs for both the languages, viz., Gujarati and Marathi and for all recording modes. PE

is designed using the two kinds of features, viz., MFCC and PLP and their performance in the three

modes of speech is shown in Table 8.3. Performance is measured in terms of percentage number of

correctly recognized phonetic symbols. It is given by

% Correctly detected units =
H

N
× 100, (8.2)

where H is the number of correctly recognized phonetic units and N is the total number of phonetic

units in the transcription.

8.3.1.1 Result:

From Table 8.3, the performance for read speech is observed to be better (in both Gujarati and

Marathi databases) as compared to spontaneous speech and lecture speech. This may be due to the

fact that read speech has least prosodic variations whereas lecture speech has higher variations in

intonation (and thus speech prosody in general). In read speech, the speakers are constrained by

the given fixed text material and hence, there are less prosodic variations which is not the case in

spontaneous and lecture speech. On comparing the performance of the two features (such as MFCC

and PLP), it is observed that PLP features have better performance over MFCC features for most of

the cases. This is due to the fact that PLP features are derived from perceptual properties and are

speaker-invariant.

The following observations are made from the confusion matrix for read speech of Gujarati database

using MFCC. Major classification mistakes happen with aspirated and non-aspirated forms of con-

sonants. Most of the aspirated consonants are observed to be misclassified to their non- aspirated
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Table 8.3: Classification (in %) correct detection of MFCC and PLP in classification of phonetic units for
Gujarati and Marathi.

Features G-R G-C G-L M-R M-C M-L
MFCC 67.11 62.37 59.84 59.19 49.81 39.64
PLP 66.89 62.75 60.18 60.36 48.82 41.76

versions. For example, most confusing aspirated consonants are [b] - [bH], [c] - [cH], [d] - [dH], [g] -

[gH], [k] - [kH], [p] - [pH] and [t] - [tH]. The basic difference between the aspirated and non-aspirated

consonants is that in aspirated ones, an aspiration occurs simultaneously with the voicing. The reason

for non-aspirated consonants being detected as aspirated ones might be the presence of some noise

followed by the consonant that is being detected as aspiration. On the other hand, the aspiration part

of aspirated consonants may be missed leading to misclassification as non-aspirated. In addition, as

most of the Indian languages have phones followed by schwa (i.e., [a]), this results in confusion for

transcribers as to whether to put [a] or not and human errors take place. It is observed from confusion

matrix that schwa is confused with almost all of the phonemes and there have been a large number of

insertions and deletions. This type of misclassification can be reduced to a certain extent by improving

and making precise transcriptions. For very small occurrences, silence is detected as plosives such as

[T], [t], [k], [p], etc. Presence of bursts might be detected due to the presence of unavoidable noise in

the real field environment. It is found that most of the times, vowel gets confused with vowels, such as,

[A] gets confused with [a], [e] and [o]; [e] gets confused with [i] and vice-versa; [o] gets confused with

[a] and [u]. In addition, plosive consonants get confused with plosive consonants. For example, [t] gets

confused with [T], [d], [k] and [p]; [d] gets confused with [D], [b] and [g]; [b] gets confused with [d] and

[g]. This is because of the short durations of plosives which are not easily captured even though delta

and acceleration (i.e., delta-delta) coefficients are used to capture dynamics of vocal tract. Fricatives

get confused with other fricatives, such as [z] gets confused with [j] and [s] gets confused with [z]

and nasals get confused with other nasals, such as [m] gets confused with [n]. Another observation is

misclassification of fricative [s] as aspirated consonants like [cH] and [pH]. Similar analysis is observed

across different phonetic representation.
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8.3.2 Syllabification

A speech syllable contains vowel within it. A vowel is found to have relatively higher short-

term energy (STE) than consonant units. STE-based information can be an important candidate

for syllable-based clustering. The speech segmentation at syllable-level is performed using minimum-

phase group delay approach. The detailed description of the algorithm is given in [9]. For boundary

detection, we use lowpass version of speech signal having cut-off frequency of 500 Hz. Window Scale

Factor (WSF) is chosen 10 and γ is taken as 0.01 as suggested in [9]. The lowpass version of signal is

taken because of the fact that vowels and syllable energy is more concentrated at low frequency zone

(Typical speech vocal source vibrating frequency, i.e., F0 is typically less than 500 Hz). Here, data

points are tagged by < L > − < R m >, where < L > can be Gujarati and Marathi, represented by

G and M respectively; and < R m > can be read, lecture and conversation, represented by R, L, and

C respectively.

8.3.2.1 Performance Evaluation

Performance is evaluated for different agreement windows, which change w.r.t. adjacent syllable

duration. The evaluation metrics are % detection rate (% DR) within syllable agreement duration

and % over segmentation within agreement (% OSWA) and % over segmentation outside agreement

window (% OSOA). % DR should be high and over segmentation should be low. x % agreement

interval for ith segment, is defined as:

ζi − x

100
(ζi − ζi−1) ≤ εi ≤ ζi +

x

100
(ζi+1 − ζi) , (8.3)

where ζi’s are the manually marked syllable boundaries. Formally, evaluation metrics are defined

based on the position of hypothetical boundary (HyB) and agreement interval (AgInt) as follows:

%DR =
#Times HyB fall within AgInt

#Total referece boundaries
× 100 %, (8.4)

%OSOA =
#Times HyB fall outside AgInt

#Total HyB
× 100 %, (8.5)

%OSWA =
#Times HyB fall inside AgInt

#Total HyB
× 100 %, (8.6)
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8.3.2.2 Database

The corpus is prepared for two languages, viz., Gujarati and Marathi and three different recording

modes, viz., read, conversation, and lecture. The sentences are selected such that they contain at least

10 syllables. The statistics of number of sentences used and duration is shown in Table 8.4.

Table 8.4: Statistics of data used in syllabification task [10].

Gujarati Read Conversation Lecture
Sentences 2331 1619 1371

Duration (minutes) 295 200 150
Marathi Read Conversation Lecture
Sentences 3128 899 848

Duration (minutes) 373 90 122

8.3.2.3 Experimental Results

The results obtained from the segmentation task is shown in Fig. 8.5, Fig. 8.6 and Fig. 8.7 for

Marathi and Gujarati. The value of %AgInt varies from 5 to 50 % in the steps of 5 %. It can be

observed that as % AgInt increases, % detection rate increase and at the same time, over segmentation

increases. It means that there is a trade-off between detection rate and over segmentation. In addition,

it can be observed that the performance of read mode is better than conversation mode and lecture

mode. The % OSWA increases exponentially w.r.t. % AgInt, as it might be generalized Poisson

distribution as it counts number of events within interval. % OSOA decreases linearly w.r.t. % AgInt.

% DR also increases w.r.t. % AgInt.

Figure 8.5: Performance of % Detection rate in automatic syllabification task [10].
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Figure 8.6: Performance of Over segmentation Outside Agreement automatic syllabification [10].

Figure 8.7: Performance of Over Segmentation Within Agreement automatic syllabification [10].

8.3.3 Pitch Marking

Pitch marks are one of the important prosodic events for the implementation of phonetically guided

search engine. Pitch is a perceptual attribute of sound which may be physically related with the rate

of vibration of the vocal folds. Manual marking of pitch levels is a cumbersome task and varies with

individual. Hence, automation of pitch level marking is important. For our implementation, we have

assigned four levels of pitch, viz., very low (V L), low (L), high (H) and very high (V H). These levels

are determined by the relative increase or decrease of the F0 contour points [11].

F0 contour is calculated using the zero frequency filter algorithm. The first step is to median filter

the F0 contour so as to smoothen the contour. Pitch marking is done mostly at the syllable boundaries

as the pitch variations are mostly observed around syllable boundaries. Hence, segmentation of the
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speech is done at syllable-level. Average of the pitch contour is taken over a period of 5sec as a

reference pitch (Fref) with respect to which pitch levels are marked as V L, L, H and V H. Following

algorithm is adopted for automatic marking of pitch-levels:

(i) F0 contour is found for each utterance using 0-Hz resonator [12].

(ii) F0 is interpolated using spline interpolation to find pitch frequencies at each sample point to

facilitate the comparison with ground truth.

(iii) Mean F0 is computed for each utterance known as reference pitch (Fref).

(iv) Each sample point is assigned a pitch-level (VL / L / H / VH) according to the following

conditions:

a. If F < 0.5Fref , pitch-level = VL

b. If 0.5Fref ≤ F < Fref , pitch-level = L

c. If Fref ≤ F < 1.5Fref , pitch-level = H

d. If F ≥ 1.5Fref , pitch-level =VH.

(v) To find the accuracy, pitch-level at ground truth is compared with pitch-level automatically

determined.

The performance of syllabification system is evaluated using % Accuracy, which is formally defined

as,

%Accuracy =
# Correctly determined pitch levels

# Total pitch levels
× 100%. (8.7)

Further details of the algorithm of automatic pitch marking are discussed in [11]. The performance

Table 8.5: Statistics of data used in pitch marking and performance of pitch mark detection system.

Gujarati Read Lecture Spontaneous
Duration 48 28 19

Total pitch marks 6354 5149 4472
Accuracy 63.33% 54.08% 46.82%
Marathi Read Lecture Spontaneous
Duration 56 20 20

Total pitch marks 16619 6059 6830
Accuracy 58.89% 41.98% 43.32%

of pitch marking along with statistics is shown in Table 8.5. It can be observed that the performance
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of read mode is better than lecture and spontaneous mode. The reason could be that the arithmetic

used in step 4, is not generalized for spontaneous and lecture mode speech as these modes of speech

contain more variation in F0 pattern than read speech. In addition to this, prosodic breaks can be

detected using discontinuity in F0 pattern and STE profile.

8.3.4 Break Marking

Break marking problem is posed as speech detection problem, i.e., to identify the marking such

as B0, B1 and B2, speech and non-speech regions are identified. One approach could be use of

classification of frames as speech or non-speech based on average short-time energy (STE). However,

it might be affected from noisy. Here, we invoke speech signal processing knowledge in order to

detect breaks in continuous speech signal. There is an role of formant frequency in the production of

most of the speech sound units and hence, it can be better candidate for speech activity and break

detection. Conventional Short-Time Fourier Transform (STFT)-based formant peaks are not having

large dynamic variations as well as formant peaks are blunted for few cases as suggested in [13]. Here,

in this work, formant-like information extracted from modified group delay-based approach is used.

The details of algorithm is as follows.

(i) Compute the most dominant peaks from modified group-delay extracted for every frames (Frame

duration is 20 ms and frame shift is 10 ms).

(ii) Smooth out the contour obtained from earlier step using 200 ms ∼ 20 points Hamming window.

(iii) Apply hard thresholding over every speech utterance. The threshold value is set as θ = µ− σ.

(iv) Smooth out the contour obtained which takes binary values from earlier step using 150 ms ∼
15 points Hamming window. This is used since human perceives no break between 150 ms.

(v) All the segments where contour estimated from earlier step falls from or to 1 are considered to

be hypothetical breaks.

The performance of break marking is evaluated in terms of correct detection and false detection.

Formally speaking,

% Correct Detection =
# times refercence break marks fall within detected segment

# reference break marks
(8.8)
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% False Detection =
# segments does not associated with refercence break marks

# segments
(8.9)

The performance is listed in Table 8.6.

Table 8.6: Performance of break marking task.

Gujarati % Correct Detection % False Detection
Read 79.07 59

Conversation 63.18 51.02
Lecture 91.05 35.94
Marathi % Correct Detection % False Detection

Read 43.97 30.3
Conversation 67.43 46.29

Lecture 77.49 27.07

Table 8.6, shows that lecture mode speech is effectively marked at break levels using described

algorithm. This might be clear pauses left by subject, who are mainly primary school teachers.

Performance of read and conversation less which might be the presence of filler and hesitation while

speaking at promptly. This refers to use other information in order to detect the breaks.

8.3.5 Search Engine

The search engine task is to search audio segment within audio data. While matching two different

speech-patterns, in practice, few part of one pattern is stretched while remaining is not. This issue can

be solved by Dynamic Time Warping (DTW) algorithm. Few constraints may employ to match two

patterns dynamically. However, linguistic content of query and data is different. In general, duration

of audio query is quite smaller than the audio data. Hypothetical segments are prepared onto test

utterance of the size slightly higher or smaller than query length. The segment window is shifted

such that the shifted segment has some overlap with the previous segment. The segmental DTW is

the variant of DTW algorithm where the (last) ending points is not known [14]. Fig. 8.8 shows an

illustration of application of segmental DTW for audio search task.

In addition, test pattern is not speaker-invariant, so speaker-invariant speech representation is

important in the audio search task. Few techniques such as posteriorgram representation and Vocal

Tract Length Normalization (VTLN) could be exploited.
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Figure 8.8: (a) DTW- distance for various segments (b) audio data, Gujarati sentence, ’mane gujaraati bolataa
aavaDe che’.

8.4 Research activities in the context of project outcomes

DA-IICT Prosody team has been involved in following project related technical and research

activities.

(i) Phonetic segmentation of speech signal.

(ii) Broad phonetic classification.

(iii) Keyword search in spoken database.

(iv) Classification of unvoiced fricatives.

(v) Vowel landmark detection in speech.

(vi) Vocal Tract Length Normalization (VTLN) for ASR task.

These are described in brief in next sub-Section.

8.4.1 Phonetic Segmentation

The phone is a smallest acoustic unit of pronunciation. It is the link between the speech signal

which is continuous and the phoneme which is just discrete. Acoustic-phonetic segmentation is a task
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of detecting the boundaries of phones in a speech signal and labelling those speech segments with

phones [15]. Speech segmentation is a process of identifying the boundaries between sound units such

as words, syllables or phones in a spoken utterance. Identification of boundaries at phone level is

a difficult problem due to the phenomenon of co-articulation of speech sounds, whereas one sound

may be modified in various ways by the adjacent sounds due to which the sounds may split or even

disappear or perceived as a different sound unit. This phenomenon may happen between adjacent

words just as easily as within a single word [16].

A signal processing-based approaches can be used for phonetic boundary detection. These ap-

proaches generally use the combination of signal processing techniques and peak-picking methods to

perform the task of acoustic-phonetic boundary detection. Mostly, this approach falls in unsupervised

and unconstrained category as they do not require any manually labelled speech data. Primarily

spectral-based information is used in this approach. One of the approaches is based on Spectral Tran-

sition Measure (STM). Dusan and Rabiner, uses a spectral transition measure (STM) to capture the

spectral rate of change in time [7]. To capture spectral behaviour, 10 -dimensional Mel Frequency

Cepstral Coefficients (MFCC) is used over 10 ms frame duration. It expected that spectral rate of

change usually displays peaks at the transition between phones; such a measure is used to detect the

phone boundaries. Once STM is obtained at every frame, we obtain STM-based contours. Next step is

to detect the boundaries using peak picking method and remove spurious peaks using post processing

methods [7]- [6]. An experiment was performed on Gujarati, Marathi and an utterance taken from

TIMIT database. The results obtained are shown in Table 8.7 and Figs. 8.9- 8.11. Some of the

observations from the results obtained are as follows.

• The STM contour is high at the start of frication.

• We obtained better results for plosive and fricative sounds.

• For diphthongs, STM peaks are found approximately at center which is ambiguous.

We used MFCC and CFCC features to capture the spectral changes. We proposed a fusion strategy

which is F1 and F2 , which uses evidences from MFCC and CFCC features. The results for proposed

feature are shown in Table 8.8.

One of the team member of DA-IICT prosody team, viz., Bhavik Vachhani has completed his

M.Tech thesis in the area of phonetic segmentation.
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(a)

(b)

Figure 8.9: (a) manual and (b) automatic segmented phonetic boundary of Gujarati sentence, “kheDuutanaa
ruupamaaM sharu”.

(a)

(b)

Figure 8.10: (a) manual and (b) automatic segmented phonetic boundary of Marathi sentence, “manushhya
naashava.nta aahe”.

Table 8.7: # of phonetic boundaries obtained on Gujarati, Marathi and English (TIMIT) database using
MFCC STM

Boundaries Obtained Manually Automatic After post processing
Gujarati 16 19 17
Marathi 19 21 18
English (TIMIT) 15 18 12
TIMIT Train data 219311 310173 221659
TIMIT Test data 85019 121776 87002
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(a)

(b)

Figure 8.11: (a) manual and (b) automatic segmented phonetic boundary of TIMIT sentence, “she had your
dark”.

Table 8.8: Performance obtained on entire TIMIT database (in %)

Feature set 10 ms
Agreement

15 ms
Agreement

20 ms
Agreement

25 ms
Agreement

MFCC STM [17] 50 68 82 91
CFCC STM [18] 45 63 76 84
F1 49 68 81 89
F2 52 73 90 100
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8.4.2 Automatic broad phonetic classification

First task of this sponsored project is to get manual phonetic transcription of the speech data (with

dialect variation) in Gujarati and Marathi languages collected from various dialectal regions of Gujarat

and Maharashtra. Our team has collected speech data and started doing phonetic transcription

manually as well.

Automatic Phonetic Transcription: Research is going on automatic phonetic transcription of speech

signal. Researchers have used various methods to transcribe speech signal automatically; such as some

used acoustic-based features, while some used pattern recognition techniques. Some researchers also

preferred semi-automatic phonetic transcription, in which they automatically segment speech data at

phoneme-level and then manually transcribe it. Generally, the steps followed in this method are as

follows: first segment the data at phoneme-level; then find the manner of articulation of the segment;

then find the place of articulation of the segment, i.e., a phoneme is identified; and finally, to reduce

the errors in automatic transcription, apply HMM or ANN techniques [19]. One of the team member

of DA-IICT prosody team, viz., Bhavik Vachhani has completed his M.Tech thesis in the area of

phonetic segmentation.

Automatic Recognition of Manner of Articulation: Generally researchers prefer temporal features

(i.e., noise/frication duration, rise time, rate of rise time, silence duration, etc.) to find the manner of

articulation [5]. There has been similar work done in Marathi Language by Vaisali Patil and Preeti

Rao from IIT Bombay [20]. It has been found by researchers that there is positive relation between

noise/frication duration, rise time and silence duration whereas rate of rise time is negatively related

to the former three features [21], [5]. All researchers mainly tried to distinguish the obstruent on the

basis of only one of the feature and at most two features. It has also been observed that results varied

widely based on the database used as well as the design of database and also position of the obstruent

in the word. Comparatively, less work has been done for aspirated and voiced phonemes. One of the

team member of DA-IICT prosody team, Kewal D. Malde has completed his M.Tech thesis in the area

of obstruent detection in speech.

Modulation spectrogram and STM features: Modulation spectrogram-based feature along with sim-

ple pattern classifier gives good classification accuracy of obstruents both at broad (i.e., manner or

place of articulation) as well as narrow (i.e., phoneme-level). In addition, since for a phoneme, mod-

ulation spectrogram looks alike, we can infer that it is speaker-independent representation. Again,
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STM-based feature are also explored for the detection of obstruents. Since obstruents are highly dy-

namic and abrupt in nature, STM contour shoots up while speech transits from obstruent-to-sonorant

and sonorant-to-obstruent. This motivates us to use STM information for obstruent detection.

8.4.3 Keyword search in spoken database

Keyword searching in spoken database is an important research problem for audio-based informa-

tion retrieval [22]. National Institute of Standard and Technology (NIST) has started evaluation for

such technology, which is called as Spoken Term Detection STD in 2006 [22]. This can be solved by

indexing and searching formulation. During indexing phase, speech database is converted into indices,

so as to search the query within indexed version of speech signal. During searching, query is searched

within indices and corresponding matching score returns. Some technologies have also built upon the

spoken form of query. Audio data and audio query are converted into phonetic units. The matching

can be handled by celebrated ”Dynamic Time Warping” algorithm [23]. Sliding window-like DTW is

used to search the location of audio query. Such techniques are heavily relied onto feature extraction.

Hence, feature vectors have to be an excellent representation of linguistic information. One of such

representation is posteriorgram wherein each feature vector is converted onto posteriorgram probabil-

ity vector [24]. Each entry of a vector is the posterior probability of that frame at particular instance

for particular phonetic class. The evaluation of such system can be represented in terms of precision.

We may select top few candidates based on the detection score obtained. Now, based on the selected

candidate, we must get higher precision. It means that selected candidates must corresponds to the

actual query.

8.4.4 Classification of Fricative Sounds

Recognition of continuous speech involves finding the phonetic identity of a short-section of speech

signal and thereby estimating the phoneme sequence. Classification of short section of speech signal

into different phoneme classes (e.g., fricatives vs. plosives ) based on its acoustic characteristics

is an interesting and challenging research problem. In this work, we attempt for classification of

one particular class of phonemes, viz., unvoiced fricatives. Fricative sounds are very unique class

of phonemes in the sense that for fricatives, the sound source occurs at the point of constriction in

the vocal tract rather than at the glottis. Two types of fricatives, viz., voiced and unvoiced have
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different speech production mechanisms. In case of voiced fricatives, noisy characteristics caused by

the constriction in the vocal tract are accompanied by vibrations of vocal folds, thereby imparting

some periodicity into the produced sound. However, vocal folds are relaxed and not vibrating during

the production of unvoiced fricatives. This result in lack of periodicity thereby making them difficult

to classify based on spectral characteristics alone. Voiceless fricatives being noisy, dynamic, relatively

short and weak (i.e., low energy) make classification even much more difficult especially in the noisy

environments. Since production of unvoiced fricatives is governed by source (e.g., frication noise

originating from constriction in vocal tract) - filter (oral cavity) model theory [25], they may be

separated depending on location of constriction in oral cavity. This constriction at different locations

accounts for distinct acoustical characteristics [26].

8.4.5 Vowel Landmark detection in speech

Landmarks define regions in an utterance around which information about the underlying distinc-

tive features may be extracted. A distinctive feature is the most basic unit of phonological structure.

These features are different for every phone. The distinctive features at a landmark are identified based

on acoustic measurements made in the vicinity of the landmark [27]. The landmarks and associated

features are related to the underlying segments (means bundle of distinctive features corresponding

to a particular speech sound unit) and a sequence of segments is hypothesized. This sequence is

matched to a lexicon whose words are directly defined in terms of features, and word hypotheses are

made. A problem arises with segmentation. However, when parts of the waveform do not have sharp

boundaries, like those corresponding to diphthongs (also known as gliding vowel) and semivowels (e.g.,

/j/ ,/w/ ). Landmarks are the foci, not the boundaries. This problem of delimiting semivowels and

diphthongs is avoided altogether by landmark detection. Landmark detection is typically more hier-

archical and involves more than one acoustic measure. In addition, landmarks are associated with

bundles of distinctive features whereas segmentation is associated with phones. Lower frequency band

information captures glottis excitation information. So the transition obtained from lower frequency

zone is helpful for glottis landmark detection. A vowel landmark, for instance, is located at the max-

imum of low frequency energy in the vowel and is used to locate the vowel in a speech. One of the

team member, viz., Ankur Undhad of DA-IICT prosody team has been involved in the area of vowel

landmark detection.
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Figure 8.12: Vowel landmark detection algorithm [28].

Fig. 8.12 shows a flow diagram of the algorithm for vowel detection. An input speech signal passes

through a 0 -Hz resonator [12], [29]. Then, Teager energy is found of the filtered speech signal. After

that Hilbert envelope and smoothing operation are performed on TEO of zero frequency filtered speech

signal. Finally, peak picking algorithm is used to detect the nucleus of vowels from that energy profile.

Fig. 8.13 shows the syllable nuclie estimated from the algorithm. In addition to the above algorithm,

Figure 8.13: An illustration of possible V-landmakrs in speech utterance ’now there’s nothing left of me’ [28].

two important features are added to quantify vowel landmarks more accurately. Those features are

as follows: 1. zero-crossings rate (ZCR) 2. minimum vowel duration. For vowel sounds, ZCR is less

compared to other sounds. Threshold has to be defined for ZCR and based on that decision will be

taken. For a vowel-like sound, minimum duration is around 30 ms. Output of peak picking algorithm,

i.e., peaks corresponds to vowel nucleus are filtered out by these two features. Fig. 8.14 shows that

false detection improves.
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Figure 8.14: An illustration of modified VLD algorithm [28].

8.4.6 Vocal Tract Length Normalization (VTLN):

Even though the variations in acoustic properties in different speakers occur on account of var-

ious reasons, it is widely accepted that the major contribution in the variations is by differences in

the lengths of vocal tract among speakers. Normalization of vocal tract length (VTL) is a classic

problem in the field of speech recognition. A number of methods have been devised for VTLN by

various researchers in the past. Andreou et al. proposed a maximum-likelihood warp-based method

to compensate for the vocal tract length variation and to obtain a set of acoustic vectors that are

invariant of the vocal tract length [30]. In this method, the frequency-axis is linearly warped and the

implementation is done by resampling of the speech waveform in the time-domain.

Vocal tract length contributes majorly for the variations in acoustic properties in different speakers.

The state-of-the-art method for addressing the problem is by modeling the vocal tract as a uniform tube

whose formant frequencies vary inversely with the vocal tract length with the following relation [31]:

Fn =
(2n− 1)c

4L
, n ∈ Z+, (8.10)
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where c = velocity of sound, L = length of the tube (i.e., vocal tract). For two speakers, speaker

A and speaker B, with different vocal tract lengths LA and LB, their respective spectra are scaled

versions of each other, i.e., FA(ω) = FB(αABω) , where the scaling factor ωAB is the ratio of the vocal

tract lengths, i.e., αAB = LB/LA . Most of the methods make an attempt to estimate appropriate

values of α (speaker-specific factor) for all the speakers by maximizing the likelihood [32] or based

on the formant frequency [33]. It has been experimentally shown that uniform scaling is not correct

and hence, log-warping may not be the appropriate warping function to use to separate the speaker-

specific characteristics. It has also been observed that for a given pair of speakers, the scale-factor

is different for different vowels and even different for different formants of a vowel. This approach,

however, may not be directly useful in speaker-normalization as we have no a priori information about

the spoken vowel, formant number and whether the speaker is an adult or a child. Hence, in [31], a

corresponding universal frequency-warping function was aimed to be determined, applicable to all the

speakers, that helps to separate the speaker-dependencies from the characterization of speech sound.

S. Umesh et al. proposed the use of scale-cepstral coefficients as features in speech recognition as

they provide better separation between the vowels than MFCC [31]. We discussed some methods to

normalize vocal tract length by various researchers by finding speaker-specific warping factors. The

scale-transform provides a useful tool to achieve speaker normalization without explicitly computing

the speaker-specific scaling constant. One of the team member, viz., Shubham Sharma of DA-IICT

prosody team was involved in the area of VTLN.

8.5 Lab Setup Developed

The various capital equipments, softwares and LDC corpora are purchased as to execute this

project work and carry out related research work. The Table 8.9 indicates the equipments, their

purpose and quantities.

8.6 Manpower Training

All the consortium meetings were held at IIIT-Hyderabad. Most of the team members of DA-IICT

team including principal investigator have attended all the meetings. The Prosody project staff details
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Table 8.9: List of equipments purchased, their description, purposes and quantity

Equipment Description Purpose Qty.
Desktop Ma-
chines

Dell Optiplex 390 Desktop Computer, Intel Core
i5−2400 CPU Processor, 3.10 GHz 3101 MHz FSB 6
MB smart cache 4c, 4 GB (1*4GB)PC3−10600 1333
MHz DDR3 RAM, 1 TB 7200 RPM 3.5” SATA HDD

Computation of
algorithm and
storage

3

Portable Handy
Recorder

Zoom H4n Field recording 5

Rechargeable
cells

Rechargeable cells, Ni-MH AA size, which is used in
Zoom H4n

Field recording 20

Dual Earphone
with Mic

HP EL283PA Transcription 9

Matlab with
Signal Process-
ing Toolbox

R2012a Algorithm
development

3

LDC Speech
Corpora

2002 NIST Speaker Recognition Evaluation
(LDC2004S04), TIDIGITS (LDC93S10), SUSAS
(LDC99S78), 2008 NIST Speaker Recognition
Evaluation Training Set Part 1 (LDC2011S05),
2008 NIST Speaker Recognition Evaluation Test
Set (LDC2011S08), NIST Spoken Term Detection
(STD) Development Set (LDC 2011S02), NIST
Spoken Term Detection (STD) Evaluation Set (LDC
2011S03), 2004 NIST Speaker Recognition Cor-
pus (LDC2006S44), TIMIT (LDC 93S1),NTIMIT
(LDC93S2), 2008 NIST Speaker Recognition Eval-
uation Training Set Part 2 (LDC2011S07), 2008
NIST Speaker Recognition Evaluation Supplemental
Set (LDC2011S11)

Computation of
algorithm and
storage

1

1 TB HDD External Hard Drive Storage and
data transfer

2

Pen-drive Transcend 8 GB Data transfer 11
UPS APC BR 600CI-IN line Interactive UPS Power backup 14
Headphone Bose headphone speech labelling

and listening ex-
periments

2

is as following.

DA-IICT Prosody Staff:

• Maulik Madhavi (Ph.D. Student - Ex Staff member)

• Shubham Sharma (M.Tech Student - Ex Staff member)

• Ankur Undhad (M.Tech - Ex Staff member)

• Bhavik Vacchani (M.Tech - Ex Staff member)

• Kewal Malde (M.Tech - Ex Staff member)
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• Tarunima Prabhakar (B.Tech - Ex Staff member)

• Mansi Gokhale (B.Tech - Ex Staff member)

• Vibha Prajapati (B.A. (Eng.), Data Entry Operator)

• Rinni Pandya (Consultants for Transcription)

• Krupa Barot (Consultants for Transcription)

• Bhaveshri Parmar (Consultants for Transcription)

• Maulik Patel (Consultants for Transcription)

• Roma Zala (Consultants for Transcription)

• Gayatri Prajapati (Consultants for Transcription)

Details of Project meeting held are shown in Table 8.10.

8.7 Summary and Future work

So far DA-IICT team has been involved in the data collection and phonetic transcription of the

speech. Based on different recording environment, we observed different behaviour and moods of

subjects. It affects the production of speech and hence, its phonetic transcription. In addition, it

was observed that while transcribing read speech signal, if speaker speaks appropriately then many

times text material information is reflected in phonetic transcription. Our future work may be ded-

icated towards completion of the data collection from remaining dialectal regions and its phonetic

transcription part. Then to find significant events in the speech signal, which may lead to some broad

phonetic transcription. The other goal is to design appropriate algorithm for acoustic-phonetic unit

segmentation. Finally, raw speech information is converted into phonetic transcript format then one

can retrieve the audio-based information from that transcription. This idea may lead to spoken term

detection. Through this DeitY sponsored project, one doctoral student and four M.Tech

students are trained and supported for their respective research works and thesis.
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Table 8.10: Manpower Training and Topics Discussed in the Meetings

Sr.
No

Date of meeting Participants Agenda

1 WISP 2011 and
Project meeting
(Dec, 2011)

Project PI (Prof. Hemant A.
Patil)

Project information (IIIT-H)

2 Feb,2012 Prof. Hemant A. Patil, Maulik
C. Madhavi, Kewal D. Malde

Use of phonetic transcription in pho-
netic engine, Concept of phonetic en-
gine. (IIIT-H)

3 May,2012 Prof. Hemant A. Patil, Maulik
C. Madhavi, Kewal D. Malde,
Bhavik B. Vachhani

Phonetic transcription in detail. (IIIT-
H)

4 Oct. 25-28, 2012 Prof. Hemant A. Patil, Maulik
C. Madhavi, Kewal D. Malde

Signal level information extraction.
Syllabification, pitch marking and
break marking. (IIT-H)

5 Dec. 17-18, 2012 Prof. Hemant A. Patil WISP-2012, Discussion on search en-
gine, Demo of phonetic engine. (IIIT-
H)

6 Feb. 5, 2013 Prof. Hemant A. Patil, PRSG Meeting at DeitY, New Delhi.
7 Mar. 9-10, 2013 Prof. Hemant A. Patil, Maulik

C. Madhavi, Kewal D. Malde,
Bhavik B. Vachhani, Tarunima
Prabhakar, Mansi Gokhale

Speech segmentation, common phone-
set and benchmarking data prepara-
tion, different techniques for search en-
gine. (Thapar University, Patiala)

8 Oct.12-13, 2013 Prof. Hemant A. Patil, Maulik
C. Madhavi, Ankur Undhad,
Shubham Sharma

Audio search, demos of phonetic engine,
discussion on prosodic marks (pitch and
break mark). (DA-IICT, Gandhinagar)

9 Oct.14, 2013 Prof. Hemant A. Patil, Maulik
C. Madhavi, Ankur Undhad,
Shubham Sharma

One day CEP Workshop on Speech Sig-
nal Processing. (DA-IICT, Gandhina-
gar)

10 Nov. 25-27,2013 Prof. Hemant A. Patil, Maulik
C. Madhavi

Oriental COCOSDA 2013 conference.
(KIIT Gurgaon)

11 Dec. 10-14, 2013 Prof. Hemant A. Patil PReMI-2013 conference. (Kolkata)
12 Dec. 13-14, 2013 Prof. Hemant A. Patil WISP-2013 workshop. (IIT-G)
13 Jan. 17-20, 2014 Prof. Hemant A. Patil, Maulik

C. Madhavi, Ankur Undhad,
Shubham Sharma

WiSSAP 2014. Deep learning for multi-
lingual speech processing. (IIIT-H)

14 March 7-9, 2014 Prof. Hemant A. Patil, Maulik
C. Madhavi

Project review meeting. (IIT-KGP)

15 Sep. 5-6, 2014 Prof. Hemant A. Patil DeitY project review meeting related to
audio search task. (IIT-H).

16 Dec. 12, 2014 Prof. Hemant A. Patil DeitY project review meeting (IIIT-H)
17 Dec. 13, 2014 Prof. Hemant A. Patil WISP-2014 workshop. (IIIT-H)
18 Jan. 4-7, 2015 Prof. Hemant A. Patil, Maulik

C. Madhavi
WiSSAP 2015. Production-Perception
Based New Models of Speech Analysis.
(DA-IICT, Gandhinagar)

8.8 Appendix
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Speaker Information

Name (ન�મ):  __________________________________________________________________

Age (ઉમર):  ______ Gender (જત	): ________ Date of Birth (જનમ 	�ર
ખ): _________________

Place of Birth (જનમ સ�ળ): ________________________________________________________

Your upbringing (	મ�ર�� રહ�ઠ�ણ સ�ળ):________________________________________________

Parents Place of Birth (વ�લ�ન�� જનમ સ�ળ): ____________________________________________

Parent’s upbringing (મ�	�-ત�	�ન�� રહ�ઠ�ણ સ�ળ): ________________________________________

Native Place (વ	ન): ______________________ Mother Tongue (મ�ત �ભ�ષ�):________________

Languages known (જણ�	� ભ�ષ�ઓ):_____________________________________________________

Education (અભ%�સ): _________________ Profession (વ%વસ�%):  _________________________

Stay during last one year (છ)લલ� ૧ વષ,�� ક�� રહ. છ.?): ___________________________________

Whether suffered from any of the following diseases (ન�ચ)ન�મ���� ક.ઈ �ણ બ�મ�ર
 હ	�/છ))?

□ Surgery of face (મ.ઢ�ન� સરર
)
□  Facial palsy (મ.ઢ�ન. લકવ.)
□  Face injury (મ.ઢ�ન� ક.ઈ ઈજ)
□  Surgery of the throat (ગળ�મ�� સરર
)

□  Operation of nasal septum (ન�કન� 
સરર
)

□ Laryngitis (ક�ઠન�ળન. સ.જ. )
□ other throat problems (અન% ગળ�ન� 

	કલ�ફ. )  
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Address (સરન�મ��): _______________________________________________________________

______________________________________________________________________________

Telephone (ફ.ન ન�બર):  ________________________________________________________________

E-mail Id: _____________________________________________________________________

Marital Status (�રણણ	/ અ�રણણ	): ______________________________________________________

If Married, No. of children (If any) (ક�ટલ� બ�ળક.? જ. હ.% 	.): ___________________________

I am fully aware of the fact that the information given in this form and my speech data are used 
for the research and academic purpose (Speech Signal Processing). The speech data is collected 
by project  staff  members  of Dhirubhai  Ambani  Institute  of Information  and Communication 
Technology (DA-IICT), Gandhinagar. This data collection work is a part of sponsored project, 
viz., ‘Development of Prosodically Guided Phonetic Engine for Searching Speech Databases in  
Indian Languages’. It is supported by Department of Information and Technology (DIT), New 
Delhi, Government of India. Hence, I don’t have any objection regarding this.

હ� � સ �પ ?ણ,�ણ) મ�હહ	ગ�ર છ� ક�,  ફ.મ,મ�� આ�)લ આ જણક�ર
 અન) મ�ર. અવ�જ  સ�શ.ધન અન) શFકણણક હ�ત � 
(Speech Signal Processing)  મ�ટ� ઉ�%.ગમ�� લ)વ�મ�� આવશ).  આ અવ�જ,  Dhirubhai Ambani Institute 

of Information and Communication Technology (DA-IICT), ગ��ધ�નગરન� કમ,ચ�ર
ઓ  દ�ર� એકત 
કરવ�મ�� આવ)લ છ). આ એકત�કરણ ક�%, ‘Development of Prosodically Guided Phonetic Engine for  

Searching Speech Databases in Indian Languages’ ન�મન� sponsored project ન� ભ�ગર�) કર�%)લ 
છ). ભ�ર	 સરક�રન� Department of Information and Technology (DIT),  નવ� હNલલ� હ�ઢળ હ�� ધરવ�મ�� 
આવ)લ છ). આ��, મન) આ સ�બ�તધ	 ક.ઇ સમસ%� ન��.

Place (સ�ળ): - Regards (શ�ભ)ચછક)

Date (	�ર
ખ):- (Subject’s Signature) (સહ
)
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આ આકડાઓન શબ્દોમા વાચોં ે ં ં  .  

૦ શન્ય ૂ  
૧ એક  
૨ બ ે  
૩ તર્ણ  
૪ ચાર  
૫ પાચ ં  
૬ છ  
૭ સાત  
૮ આઠ  
૯ નવ  
૧૦ દસ  

૧૯- ૩૮-૮૪  
૬૬-૮૯-૭૯ 
૫૫-૬૫-૯૯ 
૨૮-૬૧-૨૦ 
૭૨-૪૯-૯૩ 

 

તારીખો     

૨૮-૧૨-૨૦૧૨  
૧૭-૦૫-૧૯૮૫ 
૯- ૮-૧૯૬૮  
૨૦-૨-૧૯૩૯  
૧-૦૬-૧૯૯૧ 
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1. к�� к�к�� �� ���	
� ��� 

કરકસર એ આપણો બીજો ભાઈ છે. એ�ુ ંહમેંશા ગાધંી� કહ�તા હતા.ં �ને આજના મ યમ 

અને ઉ$ચ મ યમ વગ' (બૂ જ સહજતાથી અપના+,ુ ં છે. આ-િુનક ,ગુમા ંગાડાના બ0ે 

પ1ડા એટલે ક� પિત-પ5ની બ0ેએ કમાઈને 6ુ7ંુબ િનવા8હ કરવાનો હોય છે. ઘણી વખત એ�ુ ં

પણ બને છે ક� પિતપ5ની બ0ે આપસની સમ;ૂતીથી અ<કુ ચો=સ સમય >ધુી 

આવકમાથંી કરકસર કર?ને બચત કરતા ં રહ� છે. તેમના @ારા ન=? કરાયેલો સમયગાળો 

Bણૂ8 થતા, પછ? બ0ે વ$ચે બચત અને કરકસર િવશે વાદ-િવવાદ સD8ય છે. વષFથી 

બચતની આદત પડ? જતા પિત હ� પણ મોજશોખ ઉપર કાપ <કૂ?ને બચતની જ સલાહ 

આપે છે. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 
 
 
 
 
http://www.gujaratsamachar.com/20120703/purti/sahiyar/sahi9.html 
Last Update : 03-July-2012, Tuesday 
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Gandhinagar

 
Spontaneous Speech Queries 

 
 

 
1. તમાર નામ શ છ ું ં ેુ ? 
2. તમારા ગામન નામ શ છુ ું ં ે? 
3. તમાર ગામ ક્યા જીƣલામા આવ ું ં ં ે ? 
4. તમન કઈ ભાષાઓ બોલોે . 

5. તમારા િદનચયા  િવશ કહોર્ ે .  

6. તમારા જીવનની યાદગાર પળ િવષ જણાવોે .  

7. તમારો ƨવભાવ અન જીવન શૈલી િવષ જણાવોે ે . 

8. તમારા કામધધા િવષ જણાવોં ે . 

9. તમારા શોખ િવષ કહોે .  
 
10. તમારા ગામના લોકો િવષ કહોે .  

11. ગામના લોકો ક્યા તહવારો મનાવ છ ં ે ે ે ? 
12. ગામમા પાણીં , વીજળીની સિવધા િવષ કહોુ ે .  

13. બાળકો માટ રમત ના મદાન અન શાળાઓ ે ે ે  
14. ગામના લોકો ખતી િસવાય બીજા ક્યા કામધધામા સકળાયલા છે ં ં ં ં ે ે ?  

15. તમારા ગામમા વાહનની સગવડ ખરાં  ?  
16. તમારા ગામમા ક્યાબજાર છ ં ં ે ?  
 
17. તમારા ખતરમા ક્યા પાકો થાય છ ે ં ં ે ? 
18. તમ કય ખાતર વાપરો છો ે ંુ ? 
19. ખતરમા કઈ સગવડો અન અગવડો છ ે ં ે ે ? 
 
20. તમારા ઘરમા લોકો નો ખોરાક શ છ ં ં ેુ ? 
21. તમારા ઘરમા કય તલ વપરાય છ ં ં ે ેુ ? 
22. તમન ઘર કામની ચીજ વƨતઓ ગામમાથી મળ છ ક નિહ ે ં ે ે ેુ ?  
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8.8 Appendix

‘Development of Prosodically Guided Phonetic Engine for Searching Speech Databases in Indian Languages’, 
sponsored by Department of Information and Technology (DIT), New Delhi, Government of India. – Set 1 

Read Speech – Marathi Language 

Set 1 

 
 

मराठ� माणसाला काय येत ? 

 

मराठ� माणसाला भारतीय रा�य घटना �ल�हता येते. 

मराठ� माणसाला प�हला इं�डअन आईदोल बनता येते. 

मराठ� माणसाला प�हला करोडपती बनता येत. 

मराठ� माणसाला प�हल" नच ब�लये $वनर बनता येते. 

मराठ� माणसाला &वरा�य उभं करता येतं. 

मराठ� माणसाला भारतीय (च)पटस+ृट"ची महूुत.मेढ रोवता येते. 

मराठ� माणसाला 01केटचा शहेनशहा होता येतं. 

मराठ� माणसाला महासंगणक बन$वता येतो. 

मराठ� माणसाला पा4व.गायनात स5ा6ी बनता येतं. 

मराठ� माणसाला संपणू. भारतात प�हल" मलु"ंची शाळा काढता येते. 

मराठ� माणसाला प�हल" म�हला �श89का बनता येतं. 

मराठ� माणसाला प�हल" म�हला डॉ;टर बनता येतं. 

मराठ� माणसाला प�हल" म�हला रा+<पती बनता येतं. 

** लाभले अ>हांस भा?य बोलतो मराठ� **. 
 

Reference: - http://www.marathimati.com/balmitra/stories/isapniti-katha-1.asp 

हे खाल" �दलेले शXद वाचा 

 

 

सYताह 

झंझावात 

अंबरठा 

चपळ 

जग 

श) ू

ग\ड 

शतक 

परवा 

&)ी 

>हैस 

चंडोल 

सांजवेळ 

शाळेतील 

6ाने4वर 

हवामान 

कालखंड 

म^यरा) 

�म_नट 

फुYफुस 

म�हना 

मांजर 

पांढरा 

पaि?वन 

सं^याकाळ 

�हमविृ+ट 

वसंतऋत ू

पंधरवडा 

रानमाजंर 

सतुारप9ी 
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‘Development of Prosodically Guided Phonetic Engine for Searching Speech Databases in Indian Languages’, 
sponsored by Department of Information and Technology (DIT), New Delhi, Government of India. – Set 1 

 

 

अंकवाचन 

० – १ – २ – ३ – ४ – ५ – ६ – ७ – ८ – ९ – १० – १०० – १२५ – १५० – १७५ 

 

 

तार�ख / �दनांक 

१९ - १२ - १९६० 

०७ - ०१ - १९६१ 

०३ - ०७ - १९८९ 

२६ - ०७ - १९९१ 

१५ - ११ - २०१३ 

३१ - १२ - १९४७ 

अपूणा�क 

पाव 

एकचतुथा�श 

अधा# 

एक$%वतीयांश 

पाऊण 

तीनचतुथा�श 

स*ंया 

३६ - ६३ - ७८ 

५९ - २१ - ८४ 

१८ - ४२ - ९० 

८५ - ३४ - ४६ 

६४ - ८७ - ९९ 

५६ - ६०० - ७०० 

+मवाचक सं*या 

प�हला 

दसुरा 

/तसरा 

चौथा 

पाचवा 

%वसावा 

** खाल� �दलेले वा3य वाचा ** 

� एवढा अपमान कोण सहन क6 शकेल का ? 

� कोणीह� इतका अपमान सहन क6 शकणार नाह�. 

� :यांना पाट<त मजा वाटल� नाह� का ? 

� :यांना पाट<त मजा वाटल�. 

� >कती सुंदर ?@य होतA तA ! 

� तA ?@य फार सुंदर होतA. 

� मी मंDी असतE तर ! 

� मी मंDी असायला हवा होतE. 

� कृपा क6न दरवाजा उघडा. 

� कृपा क6न दरवाजा उघडाल का ं? 

� गप बस. 

� गप बसशील का ं? 

� अLमताभ संजय इतकाच उंच आहे. 

� संजय अLमताभ पेOा ंअPधक उंच नाह�. 

� वगा#त केवल इतका चांगला मलुगा दसुरा नाह�. 

� केवल वगा�तला सवा�त चागंला मलुगा आहे. 

� कंचन धीरज इतकQ हुशार नाह�.  

� धीरज कंचनपेOा ंअPधक हुशार आहे. 

� धवल आपRया रोजSया कामाकड ेकधीहं� दलु#O करत नाह�. 

� धवल आपRया रोजSया कामाकासे नेहमी ंलO देत.े 

322



8.8 Appendix

‘Development of Prosodically Guided Phonetic Engine for Searching Speech Databases in Indian Languages’, 
sponsored by Department of Information and Technology (DIT), New Delhi, Government of India. – Set 1 

कहा�या 

चतुराई – गोपाळ भांड 

              

 

[१]       [२] 

 

 

[३]       [४] 
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Reference: http://www.chandamama.com/lang/story/MAR/12/6/0/201/stories.htm 
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8.8 Appendix

‘Development of Prosodically Guided Phonetic Engine for Searching Speech Databases in Indian Languages’, 

sponsored by Department of Information and Technology (DIT), New Delhi, Government of India. QA 

 

Semi-Spontaneous Speech – Marathi Language 

 

** प्रश्नौत्तर ** 

 आपले सभुनाव काय आहे? 
 आपल्या आजोबाांच े/ वडिलाांच ेनाव काय आहे? 
 आपल्या आईच ेनाव काय आहे? 
 आपले वय ककती आहे? 
 आपली जन्म तारीख काय आहे? 
 आपले जन्म स्थळ कोणत?े 
 आपले गाव कोणत?े 
 आपली मातभृाषा कोणती ? 
 आपल्याला कोण – कोणती भाषा येते ? 
 आपले शिक्षण ककती झाले ? 
 आपले वाव्साय की आहे ? 
 गेल्या एक वषाापासनू आपण कुठे राहत े? 
 आपल्या घरी कोण – कोण आहे ? 
 हे सगळे काय करतात ? 
 आपण दिवसात काय काय कामे करतात ? 
 आपल्याला काय आविते ? 
 आपली मनपसांि खाद्यपिाथा / खेळ / कलाकार ? आणण काां ? 
 आपले मागाििी कोण आहे ? आणण काां ? 
 आपले जीवनात आठवण रादहला प्रसांग कोणत े? आणण काां ? 
 आपल्या गावां / िहराां ववषय मादहती द्या . 
 आपल्या गावाांत / िहराांत पाणी / ववजळी / बँक / ए.ती .एम / अस्पताल / 

िवाखाना / िाळा / कॉल्लेगे / महाववध्यालेय / मेिान / इांटरनेट / वाहन / 
बाजार  सवुवधा किी आहे? 

 आपल्या गावाांच े/ िहराांच ेलोकाांच ेवाव्साय काय आहेत ? 
 आपल्या ितेात कोण कोणती पाक आहे ? 
 ितेात कोणत ेरसायन पयोग होता ? 
 ितेात कोण – कोणती सवुवधा आहे ? 
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• Transcribed 10 hours of Telugu data

• Transcribed 10 hours of Urdu data

• Prosodic transcription is done manually
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• Developed speech search engine for Telugu and

Urdu
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the originally
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• Evaluating audio search engine on all 12 lan-
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• Improving audio search engine using cross-

lingual knowledge.



C
.F

in
an

ci
al

6



D. Project Outcomes

Publications

1. Pappagari Raghavendra Reddy, and Kallola Rout and K Sri Rama Murty, “Query Word

Retrieval From Continuous Speech Using GMM Posteriorgrams", in Proceedings of

2014 International Conference on Signal Processing and Communications (SPCOM),

July 2014, Bangalore, India.

2. Pappagari Raghavendra Reddy, and Shekhar Nayak and K Sri Rama Murty, “Un-

supervised Spoken Word Retrieval using Gaussian-Bernoulli Restricted Boltzmann

Machines", in Proceedings of Fifteenth Annual Conference of the International Speech

Communication Association (INTERSPEECH), September 2014, Singapore

3. Kallola Rout, and Pappagari Raghavendra Reddy and K Sri Rama Murty, “Experimen-

tal Studies on Effect of Speaking Mode on Spoken Term Detection", in Proceedings of

2015 National Conference on Communications (NCC), 2015, Mumbai, India.

4. Karthika Vijayan, Vinay Kumar and K. Sri Rama Murty, “Feature extraction from an-

alytic phase of speech signals for speaker verification", in Proceedings of Fifteenth

Annual Conference of the International Speech Communication Association (INTER-

SPEECH), September 2014, Singapore

5. Karthika Vijayan and K Sri Rama Murty, “Epoch extraction from allpass residual of

speech signals", in Proceedings of 2014 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), May, 2014, Florence, Italy, pp:1507-1511.

6. Karthika Vijayan and K Sri Rama Murty, “Epoch extraction from allpass residual esti-

mated using orthogonal matching pursuit", in Proceedings of 2014 International Con-

ference on Signal Processing and Communications (SPCOM), July 2014, Bangalore,

India.

7



Databases Developed

• 6 hours of transcribed broadcast news data in Telugu and Urdu

• 2 hours of transcribed conversational data in Telugu and Urdu

• 2 hours of transcribed extempore data in Telugu and Urdu.

Tools & Systems Developed

• Hybrid HMM-ANN based phoneme recognizer was developed for Telugu and urdu

• Spoken-term detection system using phonetic posteriors

• Spoken-term detection system using unsupervised methods, which does not require

labelled data.
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0.1 Database collection

Detailed Technical Report of IIT Hyderabad

0.1 Database collection

IIT Hyderabad is involved in collection and transcription of speech data in Telugu and

Urdu languages. Data has been collected from free-to-air broadcast television channels in

three different modes: read-speech mode, conversational mode, and extempore mode. The

speech data from broadcast news was recorded for read-speech mode. For conversational

mode, we recorded data from debates on current affairs involving more than four speakers.

Regular lessons taught by primary/high school teachers, in a live class room, are recorded

for extempore mode. All the speech data has been recorded at 16kHz sampling frequency

from the D2H service installed at Speech Processing lab, IIT Hyderabad.

0.2 Phonetic Transcription

The team at IIT Hyderabad has gained good knowledge on transcription from the work-

shop conducted at IIIT Hyderabad by Prof. Peri Bhaskara Rao and by Prof. Yegnanarayana.

Transcription has been done using the International Phonetic Alphabet (IPA) chart. The data

to be transcribed is divided among a group of people. The team listened to the data very

carefully and transcribed it. The transcribed data is exchanged among the group for cross

validation. This way care has been taken to minimize the errors and to improve the quality

of data transcription. A total of 10.5 hours of data is transcribed. Table 5.1 gives the details

of the number of hours of data collected, transcribed and verified in each category for both

Telugu and Urdu languages. This speech data, along with the manual trascriptions, was

used to develop a spoken-term detection system. Rest of this report gives a brief overview

of the spoken-term detection system(s) developed at IIT Hyderabad.
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0.3 Development of Spoken-Term Detection System

Table 2: Amount of data collected and transcribed at IIT Hyderabad

Telugu Urdu
Mocd Collected Transcribed Verified Collected Transcribed Verified
Read 10 h 6 h 6 h 10 h 6 h 6 h

Conversational 5 h 2 h 2 h 5 h 2 h 2 h
Extempore 5 h 2 h 2 h 5 h 2 h 2 h

0.3 Development of Spoken-Term Detection System

It is difficult to manage and monitor increasing volumes of data on the internet. Resources

can be efficiently managed, if only the required information can be retrieved from this data. In

the case of speech data, we need to search and locate spoken query words in large volumes

of continuous speech. This task is termed as Query by Example Spoken Term Detection

(STD). Some of the applications of STD include speech data indexing [1], data mining [2],

voice dialling and telephone monitoring.

Audio search can be broadly categorized into keyword spotting (KWS) and spoken-term

detection (STD), depending on the domain (text or audio) of the query supplied. In KWS

system, the query word is supplied as text [3] [4]. Since the query word (text) and reference

data (audio) are in two different domains, one of them needs to be transformed into the other

domain to perform the search. Hence, the knowledge of the language and pronunciation

dictionary is required to implement KWS system. In the case of STD task, the query word is

also supplied in the audio format [5], [6]. . While the STD task does not require pronunciation

dictionary, it suffers from channel mismatch and speaker variability. One of the main issues

in STD is to device a robust and speaker-invariant feature representation for the speech

signal, so that the query and reference utterances can be matched in the new representative

domain. In this study, we explore methods to obtain robust representation for the STD task.

The STD can be accomplished in two stages: representation and matching. Representa-

tion of the speech plays an important role in the STD task, as it is required to differentiate

underlying classes. Representation can be obtained through different kinds of data mod-

elling techniques like HMM (Hidden Markov Model), ASM (Acoustic Segment Model),

GMM (Gaussian Mixture Model), GBRBM (Gaussian-Bernoulli Restricted Boltzmann Ma-

chines), Deep Neural Networks (DNN) etc. In matching stage, test utterance and user query
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0.4 Literature Survey

Table 3: Categorization of STD techniques

Discrete Continuous
Supervised LVCSR [7] HMM [8], MLP [9],

Sub-Word modelling [10] HMM-ANN [5], AKWS [8]
Unsupervised VQ GMM posteriors [11],

ASM [12], GBRBM [13]

are matched by using different methods depending on the representation of speech. For

discrete representation, like in Large Vocabulary Continuous Speech Recognition (LVCSR),

lattice matching methods are followed. For continuous representation, template matching

methods are employed. An ideal STD system should be able to search for query words

quickly without any restriction on the vocabulary and language of query words.

Rest of the reprot is organized as follows: Next section presents a survey of represen-

tation and matching approaches used in the state-of-the art STD systems. Advantages and

limitations of supervised and unsupervised feature representations is discussed in Section

0.5, . STD systems built using supervised and unsupervised approaches are discussed in

Section 0.6 and Section 0.7, respectively. Finally, important contributions of this study are

summarized in Section 0.8

0.4 Literature Survey

Most of the methods followed for STD can broadly be categorized into four groups based

on the representation. Representation can be in discrete symbols or continuous (template)

which in turn obtained by using supervised or unsupervised approaches. Table 3 shows the

grouping of the techniques used for speech representation in the context of STD.

0.4.1 Representation of Speech

0.4.1.1 Discrete Representation using Supervised approaches

Large Vocabulary Continuous Speech Recognition (LVCSR) method [14], [7], [15] uses a

well trained LVCSR engine to translate the speech into text. Generally, it uses Viterbi search

algorithm on word lattice to find the most probable sequence of words based on likelihoods
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0.4 Literature Survey

of acoustic model and language model. It is shown that N-best hypothesis Viterbi search

performs better than 1-best hypothesis [7]. Particularly, when Word Error Rate (WER)

of the LVCSR system is very high, N-best hypothesis outperforms 1-best hypothesis [16].

Variants of word lattices: Word Confusion Network (WCN) [17], [18], Position Specific

Posterior Lattice (PSPL) [19] have been proposed which are more compact and yield better

performance for IN-Vocabulary (INV) words. For searching keywords, text based searching

methods are employed on translated text. For faster searching speeds, indexing is done

on transcribed text [20]. This method is suitable mainly for high resource languages, as it

requires large training data specific to language. Since these are word based recognizers,

despite the high recognition accuracies for INV, this method suffers from Out-of-Vocabulary

(OOV) problem. That is, it can not handle words which are not in the predefined vocabulary.

In real-time scenario, encountering OOV word is very common, as many new words are

being added everyday to dictionary. So LVCSR based method can not be a practical solution

even for high resource languages.

To solve this problem, subword LVCSR based recognizers [10], [21], [14] are proposed,

where recognition is done based on subwords instead of words. Since any word can be

represented with basic subword set, where subwords can be phonemes, it is possible to

recognize any word using subword recognizers. But the performance of subword based

recognizers is deteriorated compared to LVCSR based recognizers. To improve the perfor-

mance, both phonetic and word lattices [16], [22] are considered. Different ways of fusion

are considered to combine both lattices. Generally, Sub-word based techniques, words are

represented using phonetic lattices. In the matching stage, query search is done by matching

lattices.

0.4.1.2 Discrete Representation using Unsupervised approaches

Representing speech using unsupervised approaches in discrete form can be done by

using Vector Quantization (VQ). In this method clustering is performed on frames of speech

data and a set of mean vectors, called codebook, are stored for representing speech. Feature

vectors, derived from speech signal, can be represented as a sequence of codebook indices

depending on their proximity to the cluster centers. In the matching stage, the sequence

of codebook indices obtained from thre reference and query data can be matched using
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0.4 Literature Survey

approximate substring matching techniques. It’s advantages include less complexity, and

thereby speed of search engine.

0.4.1.3 Continuous Representation using Supervised Approaches

Acoustic Keyword Spotting (AKWS) method uses two separate models for keywords

and non-keywords, namely, keyword model and filler model, respectively. It is based on

the principle that likelihood score of keywords calculated from keyword model is higher

than the same from filler model, and vice-versa for non-keywords. Then the decision will

be made based on their ratio. Ratio of likelihood scores of keyword model and general

speech model (background model) can also be considered for the decision. Filler models

are generally phoneme loops and keyword models are concatenation of phoneme models.

Filler and background models are generally based on Hidden Markov Models (HMM) [8]

and neural network [14], [23], [24] techniques which require labelled data. In [25], authors

propose ergodic HMM which does not require labelled data. Advantages of a acoustic KWS

include simplicity and faster recognition, and hence its feasibility in real-time scenario. Also

it does not require any language model. However, the limitation that keywords should be

known apriori, limits this method to fixed vocabulary applications, like command controlled

devices and telephone routing [23] etc.

In [26], it is shown that posteriorgrams are suitable for STD. Posteriorgram is a template

representation of speech segment, unlike text representation. Mathematically, posterior

vector P for a speech frame F is defined a

P = (P(C1/F),P(C2/F),P(C3/F), ....P(CM/F)) (1)

where P(Ci/F) is probability of frame F belonging to class Ci, and M denotes number of

classes. Depending on approach used to extract posteriors, classes can represent phonemes

(in HMM), mixtures (in GMM).

In [27], [9], phonetic posteriorgrams are extracted by using well trained phone recog-

nizers. Phonetic posterior vector of a frame is a vector of probabilities belonging to each

class. Here each predefined set of phonemes are considered as classes. In [28], phonetic

posteriorgrams are extracted using Deep Boltzmann Machines (DBM). It was also shown
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0.4 Literature Survey

that this method is very useful, if limited amount of annotated data is available. In the next

stage DTW is applied to search the query template in large speech data archives.

Representing under resourced languages using well built multi-language phone recog-

nizers is also explored by many researchers, and they are briefly summarized in [5], [6].

Features are extracted in two ways: using only the speech data or adapting the supervised

phone recognizers built with high resource languages. Phone recognizers are trained with

large amount of (labelled) multi-lingual training data so that the trained model can capture

underlying phonetic content of speech irrespective of language. Generally these phone rec-

ognizers are based on HMM or neural network techniques. A query from any of the low

resource languages can also be represented well using trained model, thus overcoming the

problem of low resource and identity of language. However, all these approaches require

labelled data in at least one language which may not be feasible always.

0.4.1.4 Continuous Representation using Unsupervised Approaches

It is shown in [11], [12] that unsupervised approaches can be potential replacement

for phoneme recognizers. In [11], posterior features are obtained from GMM. Modified

segmental DTW is applied on query and test utterance posterior features. More informative

models, like Acoustic Segment Models (ASM), can be trained by taking account the temporal

structure of speech. In this method each phoneme class is represented by HMM, where

class labels are obtained from GMM training. An iterative HMM training procedure is

followed with the transcriptions obtained in the previous iteration of decoding of HMM. It

is shown that ASM outperforms well trained phoneme recognizer in language mismatched

environment, and also GMM modelling. In the matching stage, segmental DTW is performed

on ASM posteriorgrams. The STD performance has been improved significantly by applying

speaker normalization techniques: Constrained Maximum Likelihood Linear Regression

(CMLLR), Vocal Tract Length Normalization (VTLN).

0.4.2 Template Matching of Feature Represenations

Statistical behaviour of vocal tract system makes it impossible to generate two exactly

similar speech segments in natural speech. So, no two speech utterances have equal dura-
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0.4 Literature Survey

tions of phonemes, and they are distributed non-linearly. In all the two stage approaches,

matching stage plays crucial role in bringing out the excerpts of queries from continuous

speech. Searching time and memory requirement are two main constraints in matching. Dif-

ferent matching methods are followed based on the representation of the speech. In discrete

representation, query words are represented as sequence of symbols or lattices. In [29], three

methods for matching lattices are presented: Direct index matching, edit distance alignment

and full forward probability. In the case of continuous representation, speech is represented

as sequence of frames called as template. Matching templates is attempted in [30] by using

DTW. Degree of similarity of two given utterances can be approximated through cost of

optimal path of DTW. Limitation of DTW is that durations of two utterances used for match-

ing should be comparable otherwise the computed similarity score denotes the closeness of

long utterance with small utterance, like spoken word which are not comparable. Segmental

DTW [31], subsequence DTW [32], unbounded DTW [33] and information retrieval DTW [34]

are a few of the variants of DTW, which are tuned to search queries in continuous speech.

Improvements to IR-DTW by using hierarchical K-means clustering is proposed in [35].

In [31], segmental DTW was proposed for unsupervised pattern discovery. In this tech-

nique, starting point in one utterance is fixed, and DTW is applied with a constraint on

degree of warping path. Starting point is slid through chosen utterance. In the next step,

obtained paths at each point are refined by using length-constrained minimum average

(LCMA) algorithm [36] to get minimum distortion segments. In [11], modified segmental

DTW, where LCMA is not applied on the paths, is used to accomplish STD goal. As this

method requires DTW at periodic intervals of time in either of the two utterances, it requires

high computation and memory resources, making it practically impossible on large archives.

In [32], subsequence DTW is proposed for STD task. In this method, calculation of

accumulated matrix is different from conventional DTW. In the conventional DTW, dissim-

ilarity values along the reference utterance are accumulated forcing the backtracked path

to reach first frame. Using the fact that query can start from any point in reference utter-

ance, accumulation of values along first row of reference utterance is not done, which makes

the back-traced path to end at any point in reference utterance. Path is backtracked from

minimum accumulated distortion.

In [34], IR-DTW is proposed for the STD task, in which memory requirement was reduced
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0.4 Literature Survey

by avoiding calculation of full distance matrix. Starting indices in both query and reference

utterances are chosen, based on exhaustive similarity computation. By using non-linear

subsequence matching algorithm, ending indices are found, and the best matching segments

are filtered. This algorithm can be scaled up for large amounts of data with reduced memory

requirements. When query term contains multiple words, or if query term is not present

exactly in the reference utterance, but parts of query term are jumbled in reference utterance

(like in QUEEST task in MeidaEval 2015), then this method is useful. This method is

further improved by using K-means clustering algorithm instead of exhaustive similarity

computation [35]. By imposing constraints on similarity score on matching paths, searching

can be made faster as in [37], [38], [39].

Distance measure plays an important role in template matching. Distance between

two frames indicates the similarity between them. Small value of distance specifies more

similarity. We have experimented with 3 distance measures, namely Euclidean distance,

negative logarithm of dot product and Kullback-Leibler divergence. Let T and Q are pth test

frame and qth query frame. Then (p, q)th element in distance matrix can be defined using one

of the three distance metrics given below:

• Euclidean Distance: It measures the distance between two vectors in Euclidean space.

DED(p, q) =

√√
M∑

k=1

(T(k) −Q(k))2

where M denotes the dimension of the feature vector.

• Negative Logarithm of Dot Product: Geometrically, the dot product of two vectors can

be defined as the angle between them, i.e.,

DDP(p, q) =

M∑
k=1

T(k)Q(k).

Dot product is a similarity measure. To use it as a distance measure, negative logarithm

of it is taken. So, (p, q)th element can be calculated as

DLDP(p, q) = −log(DDP(p, q)).
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0.5 Representation of Speech for STD

0.4.2.1 Kullback-Leibler Divergence:

Kullback-Leibler Divergence (KL Divergence) is a measure of distance between two

probability distributions. In mathematical terms, the KL Divergence from Q to T is

defined to be

DKL(T||Q) =

M∑
k=1

ln
(

T(k)
Q(k)

)
T(k)

This is not a symmetric distance measure. To make it symmetric we took sum of KL

divergence between T, Q and Q, T as our distance measure. So, the modified KL

divergence is

DKL(p, q) =

M∑
k=1

ln
(

T(k)
Q(k)

)
T(k) +

M∑
k=1

ln
(

Q(k)
T(k)

)
Q(k)

Each vector in posteriorgram can be interpreted as a probability distribution. If any

element in posterior vector P is zero then KL divergence with any other vector is

infinity, which is not desired. To avoid this, smoothing method is suggested in [9]. So,

the new posterior vector Pnew is

Pnew = (1 − λ)P + λU

whereU is uniform distribution, and λ is smoothing constant.

0.5 Representation of Speech for STD

Mel-frequency cepstral coefficients (MFCCs) are the most widely used features in speech

recognition systems [40]. Although they are well suited for the statistical pattern matching,

like in HMMs for speech recognition, they may not be the best representation for template

matching, like in DTW for STD. This behaviour could be attributed to the speaker-specific

nature of MFCC features, i.e., they do contain speaker-specific information. Notice that the

MFCC features are used for speaker recognition also [41]. Environmental mismatches add to

further variations in MFCCs. In the case of statistical pattern matching, the speaker-specific

nature of MFCC features is normalized by pooling data from several different speakers. For

STD also, we need to derive a stable feature, from the speaker-independent component of
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Figure 1: Spectrograms of word “s@măikhj@” spoken by two different speakers

MFCCs, for template matching.

Spectrograms for two instances of word “s@măikhj@” spoken by two different speakers in

different contexts are shown in Fig. 1. Formant structure for phoneme /a/ is clearly visible

in Fig. 1b, but it is not evident in Fig. 1a. The similarity matrices for same and different

speakers across reference utterance and query word by using MFCC are presented in Fig.

3a. The higher the value of an element in the distance matrix, the less similarity between

corresponding frames. Elements close to zero are represented with black color. In Fig. 3a at

marked area, black path shows more degree of matching in the case of same speaker which

is not noticed in the case of a different speaker. For improving performance of STD, there

is a need for extracting speaker-independent representation from MFCC features. This can

be achieved using statistical models, which capture the underlying speaker-independent

distribution of the data.

In this work, we have used posterior representation of speech for developing the STD

system. Posterior features are extracted in both supervised and unsupervised approaches.

In supervised approach, HMM-ANN hybrid modelling is employed to extract phonetic

posteriorgrams using labelled data. In the absence of labelled data, the posterior features

are obtained using two unsupervised methods, namely, GMM and GBRBM. Experiments

have been conducted on each of these techniques to choose optimal set of parameters.

Subsequence DTW is applied on the posterior features to perform query search. Average

Precision (P@N) is used as an evaluation metric, which indicates the number of correctly

spotted instances P of the word, out of total occurrences N of the word.
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0.6 Phonetic Posteriors

0.6 Phonetic Posteriors

Combination of generative and discriminative modelling is proven to be beneficial for

classification. Generative models estimate joint density of the input data, while discrimina-

tive models capture the boundaries between the classes. Examples for generative models

are GMM, HMM, Restricted Boltzmann Machines (RBM) and Gaussian- Bernoulli RBM

(GBRBM). Examples for discriminative models include Support Vector Machines (SVM),

and Multi Layer Perceptron (MLP). We have used a combination of HMM and MLP for

extracting phonetic posteriors.

0.6.1 Speech Segmentation using HMM

HMMs are doubly stochastic models and can be used to model non-stationary signals

like speech. Assuming that a state represents a specific articulatory characteristic of speech,

the speech signal (observation sequence) can be represented by a sequence of states. Here,

state sequence is not known (hidden) to us. Through HMM training, parameters of each

state are obtained to capture the statistical properties of speech signal. Generally, each

phoneme is modelled using a three-state left-right HMM, assuming that the phoneme is

produced in 3 phases. For example, the production of a stop-consonant consist of three main

phases, namely, closure phase, burst phase and transition phase into succeeding phoneme.

More number of states can also be used for better modelling, but it requires large amount

of data for training. In this work, we have used a three-state HMM for each phoneme,

where each state is modelled as a 4-mixture GMM. Labelled speech data is used to estimated

the parameters of the HMM, i.e., the initial probabilities, emission probabilities and state-

transition matrices, using Baum-Welch algorithm [42]. The trained HMM models are used

to align the manual transcriptions with the speech data, to obtain the phoneme boundaries.

The phoneme boundaries obtained from forced alignment are used for training a Multi Layer

Perceptron (MLP).
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0.6 Phonetic Posteriors

0.6.2 Extraction of Phonetic Posteriors using MLP

A multilayer perceptron (MLP) is a feedforward artificial neural network model that

maps sets of inputs onto a set of appropriate outputs. An MLP consists of multiple layers of

nodes in a directed graph, as in Fig. 2, with each layer fully connected to the next one. Each

node, in the hidden and output layers, is a neuron (or processing element) with a nonlinear

activation function. Sigmoid and hyperbolic tangent activation functions are typically used

in the hidden layers, while sofmax activation function is used in the output layer. The output

of the softmax function can be interpreted as posterior probability of the class given the input

frame. The weights of the network can be learnt, using back-propagation algorithm, by

maximizing the cross entropy between the estimated posteriors and actual phoneme labels.

Figure 2: MLP Network, where W1 is the weight matrix at the input layer and W2 is the weight
matrix at the output layer. X and Y are the input and output vectors respectively. M, Z and N denote
the number nodes at the input, hidden and output layer respectively. f1 and f2 denotes the activation
functions at hidden and output layer respectively.

Unlike GMM, an MLP can be trained with higher dimensional correlated data. Hence,

context information can be learnt using MLP by presenting concatenated speech frames as

input. In this work, a context of 13-frames was used with 39-dimensional MFCC features

to form a 507 (39 ∗ 13) dimensional input feature vector. Phoneme labels obtained from

the HMM forced alignment are used as output classes. An MLP with single hidden layer,

having 1000 sigmoid units, is trained to map the input feature vectors to the phoneme
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0.6 Phonetic Posteriors

Table 4: Recognition accuracy for using different number of phoneme grouping(C)

C HMM ANN
6 77.88 81.87
15 70.6 76.02
25 69.51 74.24
45 62.68 69.11

label. The performance of HMM-ANN hybrid approach is evaluated on 5 hours of Telugu

broadcast news data, in which 3 hours of data was used for training and the remaining 2

hours was used for testing the system. The performance of HMM-ANN hybrid approach,

for different configurations of phonme groupings listed in Table 5, is shown in Table 4. The

performance of HMM system alone is also given for comparison. The HMM-ANN hybrid

system is consistently better than the HMM alone. As the number of classes increase, there

is a gradual drop in the recognition accuracy.

0.6.3 STD using Phonetic Posteriors

The MFCC features extracted from every 25 ms frame of speech signal is converted

into phonetic posterior representation using the trained MLP. Since phonetic posteriors are

obtained from the MLP, trained with large amount of speech data collected from several

speakers, they are more robust to speaker variability. Hence they are better suited for the

STD, than the raw MFCC features. Speaker invariant nature of phonetic posteriors is illus-

trated, in Fig. 3a, using the task of searching for a query word "samaikhya" in the reference

utterance "rastram samaikhyamgane unchalantu seemandhranetalu." We have considered

two cases: the query word is from same speaker as the reference utterance and the query

word is from a different speaker. The distance matrix computed from MFCC features, using

Euclidean distance, of reference and query utterances is shown in Fig. 3a(a). Similar matrix

computed from posterior features, using KL divergence, are shown in Fig. 3a(b). In the

case of matched speakers, there is an unambiguous diagonal path, indicating the presence

of query word in the reference utterance, in distance matrices computed from both MFCC

and posterior features. When the speakers do not match, the diagonal path is not visible

in the distance matrix computed from MFCC features. However, the distance matrix com-
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0.6 Phonetic Posteriors

puted from posterior features clearly shows an unambiguous diagonal path. This case study

depicts the speaker-invariant nature of posterior features, and thereby their effectiveness in

STD.

Subsequence DTW is employed to match the posterior features extracted from the ref-

erence and query utterances, and detect the possible matching locations of query in the

reference utterance. Performance of STD system is evaluated in terms of average precision

(P@N), where N is number of occurrences of the query in the reference utterance. The eval-

uation metric P@N is calculated as proportion of query words located correctly P in top N

hits from reference utterance. Detected location is chosen as hit if it overlaps more than 50%

with reference location.

The proposed method is evaluated on 2 hours of Telugu broadcast news data with 30

query words spliced from continuous speech data. The performance of the STD system

obtained with different phoneme classes is given in Table 6. Even though the phoneme

recognition accuracy increased with reducing the number of phoneme classes, it did not

result in improved STD. There a is significant decrease in P@N from 15 to 6 classes. Since

several phonemes are grouped together into a single class, the number of false matches

increases and results in poor performance. Best performance was achieved with 25 phoneme

classes, in which the aspirated and unaspirated stop constants produced at the same place

of articulation are grouped together. We have used 25 phoneme classes for all the further

studies in this work.
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0.7 Unsupervised Posterior Feature Extraction

Table 6: Average performance of STD obtained with different phoneme classes

Metric 6 classes 15 classes 25 classes 45 classes raw MFCCs
P@N 44.05 77.65 80.13 72.36 45.68

P@2N 55.68 86.50 89.13 80.57 54.91
P@3N 59.17 88.10 90.75 82.39 60.81
P@4N 61.19 88.71 91.28 83.10 63.23
P@5N 62.13 88.99 91.61 83.41 64.29

0.6.4 Effect of Speaking Mode

The experiments, reported in the previous section, were conducted on 30 queries spliced

from from continuous read speech. In this section, the performance of the STD system is

evaluated on the query words recorded from 20 native Telugu speakers in an isolated manner.

It is observed that the duration of the query words recorded in isolated manner is almost

the double the duration of those spliced from continuous speech. Since the query words

are recorded in a different environment, there is a channel mismatch between the reference

and query words. Both these factors (duration and channel mismatch) lead to a significant

drop in the STD performance. In order to mitigate with the duration mismatch, we have

experimented with the warping path constraints, shown in Fig.4. The weights (a, b, c, d, e)

can be used to modify the shape of the warping path. A vertical path can be favoured

by decreasing d and e, where as a horizontal path can be favoured by decreasing a and b.

A diagonal path can be favoured by decreasing c. In the case of isolated queries, whose

duration is much longer, a vertical path should be favoured. Best performance with isolated

queries was obtained with the weights (2, 3, 2, 1, 1) In order to normalize the channel

effects, cepstral mean and variance normalization was performed for every utterance. The

average performance of STD, for both spliced and isolated queries, is given in Table 7. The

performance of the STD system with isolated queries is almost 25% less than that of with the

spliced queries.

0.7 Unsupervised Posterior Feature Extraction

Even though the performance of supervised methods is satisfactory, they require labelled

data to train the models, which may not be available always, particularly for low resource
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0.7 Unsupervised Posterior Feature Extraction

Figure 4: Subsequence DTW path with local weights a b c d e

Table 7: Comparison of STD performance, with queries spliced from continuous speech and queries
recorded in isolation

Metric P@N P@2N P@3N P@4N P@5N
Spliced from read data 80.49 88.61 90.10 90.67 90.84
Isolated recordings 56.02 66.70 69.66 70.82 71.25

languages. In this scenario, unsupervised approaches can be a promising solution. In this

study, two approaches have been presented for posterior feature extraction in the absence of

labelled data. Generative models, namely GMM and GBRBM, are employed for unsuper-

vised posterior feature extraction.

0.7.1 Gaussian Mixture Models

Mixture models capture the underlying statistical properties of data. In particular, GMM

models the probability distribution of the data as a linear weighted combination of Gaussian

densities. That is, given a data set X = {x1, x2, ..., xn}, the probability of data X drawn from

GMM is

p(X) =

N∑
i=1

wiN (
X/µi,Σi

)
(2)

where N(.) is Gaussian distribution, N is number of mixtures, wi is the weight of the ith

Gaussian component, µi is its mean vector and Σi is its covariance matrix. The parameters of

the GMM θi = {wi, µi,Σi} for i = 1, 2..,N, can be estimated using Expectation Maximization

(EM) algorithm [43]. Given a data point x, the posterior probability that it is generated by
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Figure 5: Illustration of effectiveness of GMM posteriorgrams over MFCC. Distance matrix computed
from (a) MFCC features for matched speakers, (b) MFCC features for mismatched speakers, (c) GMM
Posteriorgrams for matched spakers and (d) GMM posteriorgrams for mismatched speakers

the ith Gaussian component Ci can be computed by using the Bayes’ rule as follows:

P(Ci/x) =
wiN (

x/µi,Σi
)

p(x)
(3)

The vector of posterior probabilities for i = 1, 2, . . . ,N is called Gaussian posteriorgram.

In this work, we have built a GMM by pooling MFCC feature vectors extracted from 5

hours of speech data. Using this model, the reference and query utterances are represented

as a sequence of GMM posteiror features. The distance matrices computed from GMM

posteriors, for matched and mismatched speaker conditions, are shown in Fig. 5d(c) and

Fig. 5b(d) respectively. The distance matrices computed from MFCC features are also shown

in Fig. 5d(a) and Fig. 5b(b). It can be observed from Fig. 5b(b) and Fig. 5b(d) that the GMM

posteriorgrams are better at handling the speaker variability.

Subsequence DTW is used to match the GMM posteriorgrams of reference and query ut-

terances, to perform the STD task. The performance of the STD system, with varying number

of Gaussian components, is shown in Fig. 6 with KL divergence as distance measure. The
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Figure 6: Effect of number of Gaussian mixtures on the performance of STD system

Table 8: Effect of distance measure on the performance of STD system. Performance is evaluated
using 64-mixture GMM posteriorgrams

Metric
MFCC GMM-64

Euclidean Distance Euclidean Distance Dot Product KL Divergence

P@N 45.68% 42.89% 51.89% 53.10%

P@2N 54.91% 50.68% 63.08% 63.69%

P@3N 60.81% 55.67% 67.77% 67.47%

P@4N 63.23% 58.54% 71.55% 70.34%

P@5N 64.29% 60.96% 73.67% 73.67%

performance of the system improved with the number of mixtures. The lower performance

of 128-mixture GMM may be attributed to association of each phoneme class with more than

one mixture. We adopted 64-mixtures GMM for all the further studies.

The performance of the STD system depends critically on the local distance measure used

to compute the distance matrix. In this work, we have experimented with three distance

measures, namely, Euclidean distance, negative log cosine distance and KL divergence. The

performance of the STD system, with GMM posteriorgrams, for the three distance measures

is given in Table 8. While the Euclidean distance is better suited for MFCC features, its

performance is not good on GMM posteriors, since the GMM posteriors resemble binary

values. The performance of GMM posteriors has improved significantly with negative log

cosine distance and KL divergence. In this work, we use KL divergence for the rest of the

studies.
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Figure 7: Network architecture of a Restricted Boltzmann Machine

0.7.2 Gaussian-Bernoulli Restricted Boltzmann machine

A Restricted Boltzmann machine (RBM) is an undirected bipartite graphical model with

visible and hidden layers. Intra-layer connections do not exit in RBM, as opposed to Boltz-

mann machine. In an RBM, the output of a visible unit is conditionally Bernoulli given the

state of hidden units. Hence the RBM can model only binary valued data. On the other

hand in a GBRBM, the output of a visible unit is conditionally Gaussian given the state of

hidden units, and hence it can model real valued data. Both in RBM and GBRBM, the output

of a hidden unit is conditionally Bernoulli given the state of visible units, and hence can

assume only binary hidden states. Since the same binary hidden state is used to sample all

the dimensions of the visible layer, GBRBM are capable of modelling correlated data.

A GRBM can be completely characterized by its parameters, i.e., weights, hidden biases,

visual biases and variances of the visible units. The GBRBM associates an energy for every

configuration of visible and hidden states. The parameters of the GBRBM are estimated such

that the overall energy of GBRBM, over the ensemble of training data, reaches a minima

on the energy landscape. The energy function for GBRBM, for a particular configuration of

real-valued visible state vector v and binary hidden state vector h, is defined as

E(v,h) =

V∑
i=1

(vi − bv
i )2

2σ2
i

−
H∑

j=1

bh
j h j −

V∑
i=1

H∑
j=1

vi

σi
h jwi j, (4)

where V and H are total number of visible and hidden units, vi is the state of ith visible unit, h j

is the state of jth hidden unit, wi j is the weight connecting the ith visible unit to the jth hidden

unit, bv
i is the bias of ith visible unit, bh

j is the bias of jth hidden unit, σi is the variance of the
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ith visible unit [44].

The parameters of the GBRBM can be estimated by equating the gradient of the en-

ergy function to zero. However, it is not possible to arrive at the closed form solution for

the parameters. Contrastive Divergence (CD) algorithm [45] is proposed to estimate the

parameters iteratively. In the CD approach, the gradients are estimated as follows

∆wi j ∝
(〈

vih j

σi

〉
data
−

〈
vih j

σi

〉
recall

)
(5)

∆bv
i ∝

〈 vi

σ2
i

〉
data

−
〈

vi

σ2
i

〉
recall

 (6)

∆bh
j ∝

(〈
h j

〉
data
−

〈
h j

〉
recall

)
(7)

∆σi ∝
(〈
γ
〉

data −
〈
γ
〉

recall

)
(8)

where

γ =
(vi−bv

i )2

σ3
i
− H∑

j=1

h jwi jvi

σ2
i

and 〈.〉data denotes expectation over the input data and 〈.〉recall denotes expectation over recalled

data.

During each cycle of CD, the energy associated with the joint configuration of visible and

hidden states is supposed to decrease, although there is no theoretical guarantee. After a

large number of iterations, the expectation of the energy does not change anymore, indicating

the thermal equilibrium of the network. At thermal equilibrium, the GBRBM models the

joint density of the training data. The trained GRBM model is capable of generating the data

points which resemble the training data.

The distribution capturing capability of GBRBM is illustrated, in Fig. 8, with two-

dimensional input data. Consider two-dimensional data, marked with blue ’o’, in Fig. 8(a).

A GBRBM with 6-hidden units is trained, to capture the joint density of this data, for 1000

cycles using CD. The mean of the unbiased samples generated by the trained GBRBM, shown

as red’+’ in Fig. 8(a), closely follows the original data. The marginal density functions of the
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Figure 8: Illustration of distribution capturing capability of GBRBM. (a) Original training data (blue),
and mean of the unbiased samples generated by trained GRBM, (b) Original training data (blue), and
unbiased samples generated by GRBM, Marginal densities of original (blue) and sampled data (red)
along (c) v1 axis, (d) v2 axis

original (blue) and estimated (red) data points, along v1 and v2 dimensions, are shown in

Fig. 8(c) and Fig. 8(d), respectively.

A GBRBM, with 50 hidden units is trained, on 39-dimensional MFCC features to capture

the acoustic space spanned by speech data. The marginal densities of the original (blue)

and estimated (red) MFCC features is shown in Fig. 9. The marginal densities of the first

12 MFCC features is shown to illustrate the effectiveness of GBRBM in capturing the joint

density of the data. In this work, we use the state of the hidden units, at thermal equilibrium,

as a feature for STD task. The probability that the jth hidden neuron assumes a state of ’1’,

given the state of the visible units (MFCC features) is computed as

P(h j = 1 | v) = sigmoid

 V∑
i=1

vi

σi
wi j + bh

j

 (9)

The posterior probability vector, representing the state of all the hidden units, is used to
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Figure 9: Comparison of original (red) and estimated (blue) marginal densities of first 12 dimensions
of MFCC features

match the reference and query utterances.

The distance matrices computed from GBRBM posteriors, with log cosine distance, for

matched and mismatched speaker conditions is shown in Fig. 10. In the case of mismatched

speakers, the distance matrix computed from GBRBM posteriors clearly shows a diagonal

path, in Fig. 10(d), which is absent in distance matrix computed from MFCC features,

shown in Fig. 10(b). Hence the GBRBM posteriors is a better representation than MFCC

features for STD task. The performance of STD system built with GRBM posteriors

is given in Table 9. The performance of the GRBM posteriors is slightly better than the

GMM posteriors. Since GMM and GBRBM are two different unsupervised data modeling

techniques, the evidences from both these systems are combined linearly. The performance of

the combined system is better than the performance of either of the systems alone. However,

the performance of the combined system is much lower than the performance of the phonetic

posteriors obtained from HMM-ANN hybrid model. This is because the phonetic posteriors

are obtained using a supervised approach, while the GMM and GBRBM posteriors are
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Figure 10: Illustration of effectiveness of GBRBM posteriors over MFCC. Distance matrix com-
puted from (a) MFCC features for matched speakers, (b) MFCC features for mismatched speakers,
(c) GBRBM posteriors for matched spakers and (d) GBRBM posteriors for mismatched speakers

Table 9: Performance comparison of STD systems built using different posterior representations

Metric MFCC GMM GBRBM GBRBM+GMM HMM-ANN

P@N 45.68% 53.10% 57.64% 59.91% 80.49%

unsupervised approaches. The performance of the STD system, built using different posterior

features, on 30 query words from Telugu language is presented in Table 10. Assuming that

the probability of misclassification is same for all the syllables, miss rate of longer query

words is less compared to smaller query words. On an average, this can be observed in the

Table 10 for all representations. For longer query words, the performance is almost similar,

with all the three representations, but for smaller query words HMM-ANN posterior features

perform better than GMM and GBRBM posteriors.
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0.8 Summary & Conclusions

0.8 Summary & Conclusions

In this study, we have presented the development of a spoken term detection system for

Indian Languages. Subsequence DTW is employed to search for a query word in the reference

utterance. The representation of reference and query utterances plays a crucial role during the

search. In this work, we have investigated three different representation techniques, namely

phonetic posteriors, GMM posteriors and GBRBM posteriors. The phonetic posteriors,

obtained from HMM-ANN phoneme recognizer, requires large amount of manually labelled

data. On the other hand, the GMM posteriors and the GBRBM posteriors can be obtained

from unlabelled speech data. It was observed that the performance phonetic posteriors

is much better than the performance of the GMM and GBRBM posteriors. However, its

applications are limited since it requires labelled data. Our future efforts will be focussed on

improving the unsupervised feature representation techniques, using sequence and context

information.

34



Bibliography

[1] J. Foote, “An overview of audio information retrieval,” Multimedia Systems, vol. 7, no. 1,

pp. 2–10, 1999.

[2] A. J. Thambiratnam, “Acoustic keyword spotting in speech with applications to data

mining,” 2005.

[3] J. G. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion, “Results of the 2006 spoken term

detection evaluation,” in Proc. SIGIR, vol. 7, 2007, pp. 51–57.

[4] J. Tejedor, D. T. Toledano, X. Anguera, A. Varona, L. F. Hurtado, A. Miguel, and J. ColÃąs,
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10.1 Data Collection

Development of Prosodically Guided Phonetic Engine for Searching

Speech Databases in Indian Languages

Indian Institute of Technology, Kharagpur

10.1 Data Collection

In this work, speech data is collected in three modes: (i) Read speech, (ii) Extempore speech and

(iii) Conversational speech in Bengali and Odia languages. Read speech is collected from TV and

Radio news bulletins and recordings from a speaker while reading story books and news papers in a

closed room with controlled acoustics. Extempore speech is collected from teachers and individuals

while speaking on a specific topic. Conversational speech is collected from the casual conversations

over mobile phones, live shows in TVs and casual conversations over a table on a particular topic.

Zoom H4n portable hand-held voice recorder is used for recording the speech. The speech corpus was

recorded using 16 KHz sampling frequency and 16 bits per sample. About 50% of the speech corpus is

manually labelled using International Phonetic Alphabet (IPA) symbols. The details of speech corpus

are given in Table 10.1.

Table 10.1: Speech corpus details of Bengali and Odia languages.

Speech mode
Bengali Odia

Male (#) Female (#) Dur (hrs) Male (#) Female (#) Dur (hrs)
Read 13 28 10 30 30 10
Extempore 7 7 5 9 7 5
Conversation 10 13 5 10 12 5

10.2 Manual Transcription

The speech corpus was Phonetically transcribed manually using IPA symbols. In this work about

64 and 52 IPA symbols are used for transcribing Bengali and Odia speech corpus, respectively. With

the help of IPA transcription, one can able to represent basic message as well as prosodic information

such as intonation tones, durations and co-articulation effects. In addition to IPA transcription, we
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have also carried out syllable boundary markings with manual effort. Transcription of pitch contours

and break indices provided by automatic methods is verified manually.

10.3 Automatic Phonetic Transcription

Automatic phonetic transcription was carried out at phone level and syllable level. Phone level

phonetic transcription provides the sequence of phones present in the speech utterance. Syllable level

transcription provides the sequences of Consonant-Vowel (CV) units present in the speech utterance.

10.3.1 Automatic Phone Level Transcription

Separate Phone Recognition Systems (PRSs) were developed in all three modes of speech for

Bengali and Odia languages. The number of phones considered in Bengali for read, extempore and

conversation modes of speech are 35, 31 and 31, respectively, while the number of phones considered

in Odia are 32, 29 and 28, respectively for read, extempore and conversation modes of speech. Most

frequently occurring phones in the IPA transcription are considered for building PRSs. PRSs are

developed using Hidden Markov Models (HMMs) and FeedForward Neural Networks (FFNNs). Mel-

frequency Cepstral Coefficients (MFCCs) are used as features for building the models. Separate models

are developed for Speaker Dependent (SD) and Speaker Independent (SI) cases.

10.3.1.1 Development of Phone Recognition Systems using HMMs

HMM-based systems are developed using a set of context-independent HMMs. A 4-state left-to-

right HMM model with a 64 mixture continuous-density diagonal-covariance Gaussian mixture model

per state is used to model each sound unit. HMMs are trained using maximum likelihood approach.

The global means and variances are computed from the training data to create flat-start HMMs. The

embedded reestimation is carried out on the flat-start HMMs using Baum-Welch algorithm. Viterbi

decoding is used for finding the hidden sequence of states within a phone and thereby decoding a speech

signal into sequence of phones. The open source HTK toolkit is used for building HMM models.

10.3.1.2 Development of Phone Recognition Systems using FFNNs

We have used three layered FFNNs with linear functionality at the input layer and nonlinear

functionality at hidden (second) and output (third) layers. Initially, the frame-level phone labels are
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assigned for each speech utterance in the training set. For capturing the hidden relations between

MFCC features and the phone labels of the sound unit, the MFCC feature vectors are given as input

and information about phone label is given as output during training of the neural network. During

training, multiple passes are made through the entire set of training data. Each pass is called an

epoch. Initially, we start with a learning rate of 0.008. After each epoch, the performance of the

FFNNs is measured with a small set of training data, called the cross validation set, which is held

out from main training. The training process will be stopped after the epoch at which the increment

in performance improvement is less than 0.5% with cross validation dataset. The advantage of cross-

validation based adaptive training scheme is that it provides some protection against over-training.

The result of training a FFNN is a set of weights. The softmax nonlinearity activation function is used

at output layer to constrain posterior probabilities to lie between zero and one and sum to one. The

weights associated to the edges between the nodes can then be used as an acoustic model to convert

the features of an unseen test utterance into posterior probabilities of each class. The open source

quicknet software is used for training FFNNs. We have used a temporal context of 3 frames with a

duration of 45 ms. The number of nodes at input and hidden layer are 117 and 585, respectively.

10.3.1.3 Performance Evaluation of Phone Recognition Systems

The performance of PRSs is determined by comparing the decoded phone labels with the reference

transcription of phone labels by performing an optimal string matching using dynamic programming.

The number of substitution errors (S), deletion errors (D) and insertion errors (I) are determined for

an optimal alignment. Deletion error indicates that, a label is present in the reference transcription

but not found in decoded transcription. The substitution error represents that, a label in the reference

transcription is substituted with some other label in the decoded transcription. The insertion error

indicates that, a label is present in the is decoded transcription but not found in reference transcription.

The recognition accuracy in percentage is calculated using Equation 10.1.

Percentage Accuracy =
N-D-S-I

N
× 100 % (10.1)

where N is the total number of labels in the reference transcriptions.

The recognition accuracy of Bengali and Odia PRSs using HMMs and FFNNs are shown in Table

10.2. From the results, it is observed that the Speaker Dependent (SD) systems have better recognition
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accuracy compared to Speaker Independent (SI) systems for both the languages. FFNN-based PRSs

have higher recognition accuracy compared to HMM-based PRSs. With respect to languages, the

phone recognition accuracy of Odia is better than Bengali. For both the languages, the recognition

accuracy of read speech is higher than other two modes. Among extempore and conversation modes,

the recognition accuracy of extempore speech is better than that of conversation speech.

Table 10.2: Phone recognition accuracy of Bengali and Odia datasets.

Language Case
Recognition Accuracy (%)

HMM FFNN
Read Extemp Conver Read Extemp Conver

Bengali Speaker Dependent 52.14 49.43 33.18 58.85 54.82 39.40
Speaker Independent 45.48 39.58 37.20 51.20 44.05 32.69

Odia Speaker Dependent 59.46 55.57 53.30 67.28 62.80 59.88
Speaker Independent 53.47 47.48 45.80 59.24 56.45 45.81

10.3.2 Automatic Syllable Level Transcription

Automatic transcription at syllable level is carried out using Support Vector Machine (SVM)

models. Separate consonant vowel recognition systems (CVRSs) for Bengali and Odia are developed

using read speech. MFCC features are extracted using Vowel Onset Point (VOP) as an anchor point.

The recognition accuracy of the CVRSs for Bengali and Odia is given in Table 10.3. The performance

evaluation is carried out in SD and SI modes. The performance of Odia CVRS is better compared to

Bengali CVRS. The recognition accuracy of speaker dependent CV recognition systems have higher

recognition accuracy compared to speaker independent systems. The difference between SD and SI

modes is about 9% and 28% respectively, for Bengali and Odia. The recognition accuracy for both

Bengali and Odia systems is almost same in case of SI mode, whereas for SD mode, the recognition

accuracy is very high in case of Odia compared to Bengali.

Table 10.3: CV recognition accuracy of Bengali and Odia datasets.

Case Bengali Odia
Speaker Dependent 49.48 69.66
Speaker Independent 40.26 41.59
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10.4 Articulatory Features for Phone Recognition

We have explored articulatory features (AFs) for improving the performance of the PRSs developed

using read, extempore and conversation modes of speech in Bengali dataset. The AFs are derived from

the spectral features using FeedForward Neural Networks (FFNNs). Mel-frequency cepstral coefficients

(MFCCs) are used for representing the spectral features. We have considered five AF groups, namely:

manner, place, roundness, frontness and height. Five different AF-based tandem PRSs are developed

using the combination of MFCCs and AFs derived from FFNNs. Hybrid PRSs are developed by

combining the evidences from AF-based tandem PRSs using weighted combination approach.

10.4.1 Extraction of Articulatory Features

The AFs provide crisp representation of each sound unit, in terms of the positioning and movement

of various articulators involved in the production of a specific sound unit. AFs varies from one sound

unit to another sound unit. Spectral features such as MFCCs capture only the gross shape of the vocal

tract, but not the minute variations in the shape of vocal tract. The co-articulation effect between

adjacent sound units is captured by AFs. The AFs provide additional clues for discriminating among

various sound units. The discrete information about the positioning and movement of articulators with

respect to five AF groups is captured. The following subsections describe the details of prediction of

AFs using FFNNs.

10.4.1.1 Prediction of Articulatory Features

Table 10.4 shows the articulatory feature specification for read, extempore and conversation modes

of speech in Bengali. AF specification represents the possible AF values for each AF group. First

column indicates the AF group and the cardinality. The cardinality indicates the number of features in

an AF group. Second column lists the possible feature values for each AF group. The AF specification

of read speech differs by that of extempore and conversation modes of speech. This is because, the

cardinality of place AF group of read speech is 9, where as the cardinality of place AF group of

extempore and conversation speech is 8. Higher cardinality of place AF group in read speech is due to

the presence of labiodental feature value. The labiodental stands for sounds like /v/, but the Bengali

speakers have a tendency to use /bh/ in place of /v/. Hence, the labiodental feature value is not

found in place AF group of extempore and conversation modes of speech. However, we found very few
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instances of labiodental sound units in read speech, which is mainly because of the pronunciations of

nouns involving /v/.

Table 10.4: Articulatory Feature Specification for Read, Extempore and Conversation modes of Bengali.

Bengali (Read Speech)
AF Group (Cardinality) Features

Place (9) bilabial, labiodental, alveolar, retroflex, palatal, velar, glottal,
vowel, silence

Manner (6) plosive, fricative, approximant, nasal, vowel, silence
Roundness (4) rounded, unrounded, nil, silence
Frontness (5) front, mid, back, nil, silence
Height (6) high, low, mid-high, mid-low, nil, silence

Bengali (Extempore and Conversation modes of Speech)
AF Group (Cardinality) Features

Place (8) bilabial, alveolar, retroflex, palatal, velar, glottal, vowel, si-
lence

Manner (6) plosive, fricative, approximant, nasal, vowel, silence
Roundness (4) rounded, unrounded, nil, silence
Frontness (5) front, mid, back, nil, silence
Height (6) high, low, mid-high, mid-low, nil, silence

The frame-level AFs for each AF group are predicted from the spectral features using AF-predictors.

Separate AF-predictors are developed for each AF group. We have explored both HMMs and FFNNs

for developing AF-predictors. Figure 10.1 shows the block diagram of prediction of manner AFs. HMM

and FFNN-based AF-predictors are developed for manner AF group using MFCCs. The predicted

feature values represent the manner AFs.

Figure 10.1: Block diagram of Prediction of Manner Articulatory Features.

Similar kinds of AF-predictors are developed for all five AF groups, as shown in Figure 10.2. AFs

for a particular AF group are predicted using the AF-predictor of that specific group.
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Figure 10.2: Block diagram of the Prediction of Articulatory Features.

For training HMMs and FFNNs, to develop AF-predictors, we require the speech data which

is transcribed at AF-level. The AF-level transcription indicates the transcription derived using AF

labels. Since the transcription is available at phone level, we derive the AF-level transcription by

mapping the phone-labels in the phone-level transcription to AF-labels. An AF label of an AF group

represents a possible AF value for that specific AF group. The possible AF labels for each AF group are

shown in Table 10.4. The AF-predictors are developed using HMMs and FFNNs using the procedure

mentioned in Section 10.3.1.1 and 10.3.1.2, respectively. The size of output layer in developing FFNN-

based AF-predictor for a AF group is equal to the cardinality of that AF group as shown in Table

10.4.

Tables 10.5 and 10.6 show the mapping of each phone label into a set of AF labels of various

AF groups for read, extempore and conversation modes of Bengali. First column lists unique IPA

symbols used in Bengali transcription. Second to sixth columns show the corresponding place, manner,

roundness, frontness and height AF values, respectively, for each phone.

10.4.1.2 Performance Evaluation of AF-Predictors

The accuracy of AF-predictors is determined as per the procedure explained in Section 10.3.1.3.

Table 10.7 shows the accuracy of prediction of AFs for different AF groups of read, extempore and

conversation modes of speech. First column indicates the AF group. Second and third columns

show AFs prediction accuracies for read speech, while the fourth and fifth columns tabulates the

AFs prediction accuracies for extempore speech. Last two columns show the prediction accuracies for
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Table 10.5: Mapping of Phone Labels to AF Groups in for Read Speech in Bengali.

Phones
Articulatory Feature Groups

Place Manner Roundness Frontness Height
a vowel vowel unrounded front low
o vowel vowel rounded back mid-high

5 3 vowel vowel unrounded mid mid-low
i I vowel vowel unrounded front high
A vowel vowel unrounded back low
@ vowel vowel unrounded mid mid-high
6 vowel vowel rounded back low

u U vowel vowel rounded back high
e vowel vowel unrounded front mid-high
O vowel vowel rounded back mid-low

æ E vowel vowel unrounded front mid-low
k kh g gh velar plosive nil nil nil
ÙÙh ÃÃh palatal plosive nil nil nil
ú úh ã ãh retroflex plosive nil nil nil
t th d dh alveolar plosive nil nil nil
p ph b bh bilabial plosive nil nil nil

m bilabial nasal nil nil nil
ï retroflex nasal nil nil nil
N velar nasal nil nil nil
n alveolar nasal nil nil nil

s S Z alveolar fricative nil nil nil
f v labiodental fricative nil nil nil
h glottal fricative nil nil nil
j palatal approximant nil nil nil

R ô r l alveolar approximant nil nil nil
í retroflex approximant nil nil nil
V labiodental approximant nil nil nil
sil silence silence silence silence silence
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Table 10.6: Mapping of Phone labels to AF Groups for Extempore and Conversation modes of Speech in
Bengali.

Phones
Articulatory Feature Groups

Place Manner Roundness Frontness Height
a vowel vowel unrounded front low

5 3 vowel vowel unrounded mid mid-low
6 vowel vowel rounded back low
A vowel vowel unrounded back low

æ E vowel vowel unrounded front mid-low
@ 9 vowel vowel unrounded mid mid-high
e vowel vowel unrounded front mid-high
œ vowel vowel rounded front mid-low
Æ vowel vowel rounded mid mid-low
i I vowel vowel unrounded front high
Y vowel vowel rounded front high
O vowel vowel rounded back mid-low
o vowel vowel rounded back mid-high

u U vowel vowel rounded back high
k kh g gh velar plosive nil nil nil
ÙÙh ÃÃh palatal plosive nil nil nil
ú úh ã ãh retroflex plosive nil nil nil
t th d dh alveolar plosive nil nil nil
p ph b bh bilabial plosive nil nil nil

m bilabial nasal nil nil nil
ï retroflex nasal nil nil nil
N velar nasal nil nil nil
ñ palatal nasal nil nil nil
n alveolar nasal nil nil nil

s S Z 8 ì alveolar fricative nil nil nil
f v bilabial fricative nil nil nil
h glottal fricative nil nil nil
x velar fricative nil nil nil
ù retroflex fricative nil nil nil
j palatal approximant nil nil nil

R ô r l alveolar approximant nil nil nil
í retroflex approximant nil nil nil
V bilabial approximant nil nil nil
sil silence silence silence silence silence
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conversation speech. The results are shown separately for HMM-based and FFNN-based systems. It

is observed that the prediction accuracy of all the AF groups is higher in FFNNs compared to HMMs

for read and conversation modes of speech, while the prediction accuracy of most of the AF groups

is higher in FFNNs compared HMMs for extempore speech. Since, FFNNs have higher recognition

accuracies for all AF groups of read, conversation modes of speech and for majority of AF groups in

extempore speech, we have used the FFNNs for predicting the AFs of various AF groups.

Table 10.7: Prediction Accuracy (%) of AF-Predictors of different AF groups across Read, Extempore and
Converstaion modes of Speech.

AF Group
Prediction Accuracy (%) of AF-Predictors
Read Extempore Conversation

HMMs FFNNs HMMs FFNNs HMMs FFNNs
Place 55.04 70.35 51.26 62.39 48.72 61.97

Manner 67.51 74.40 63.57 68.19 56.25 65.65
Roundness 68.16 78.58 68.35 65.19 61.58 66.50
Frontness 67.64 74.01 64.37 60.99 58.66 66.48

Height 62.57 67.75 58.30 61.61 55.06 63.17

10.4.2 Prediction of Phone Posteriors

Phone Posteriors (PPs) are predicted from the spectral features using FFNNs. FFNNs perform

the phone classification at frame-level. Although HMMs can be used for estimating phone posteriors,

FFNNs are employed for this purpose. This is because, FFNNs being discriminative classifiers provide

a discriminative way of estimating phone posteriors, while the sequential knowledge capturing ability

of HMMs is exploited in later stage of development of PRSs using HMMs. The PPs of phone classes

of each frame p(qt = i|xt), where qt is a phone at time t, i = 1, 2 ... N , and xt is the acoustic feature

vector at time t such that

N∑
i=1

P (i) = 1,

where N = Total number of phone classes.

i = indicates specific phone class.

(10.2)

FFNN is trained, for predicting the PPs, using the procedure mentioned in Section 10.3.1.2. The

weights associated to the edges between the nodes are used as the acoustic model to convert the
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features of an unseen test utterance into phone posteriors of each class. Figure 10.3 illustrates the

prediction of PPs for ten frames using posteriogram representation. For better visualization of poste-

Figure 10.3: Illustration of Prediction of Phone Posteriors for Ten frames using Posteriogram representation.

riogram distribution across all the phones, posteriogram is plotted using non-consecutive frames. The

darker spots in the posteriogram indicate higher posterior probability, while the pale spots indicate

lower posterior probability. The labels in the X-axis of posteriogram indicate the phones used for

training the FFNNs. MFCCs extracted from each frame are fed to manner AF-predictor to derive the

posteriogram distribution for that specific frame. The sum of all the posterior probabilities obtained

for a frame will be equal to 1. The posteriogram distribution represents the PPs. The PPs contain

the discriminative knowledge associated to various phonetic units. The dimension of generated PPs

will be equal to the number of phones considered for training FFNNs. The number of nodes at input

and hidden layer are 117 and 585 units, respectively. The size of output layer is equal to the number

of phones considered for training FFNNs.

10.4.3 Development of Tandem Phone Recognition Systems using Articulatory

Features

In tandem approach, FFNNs are first trained to perform the classification at frame level, and then

the frame-level posterior probability estimates of the FFNNs are used as the acoustic observations in

HMMs. The predicted AFs of a particular AF group are augmented with MFCCs to develop AF-based

tandem PRS for a specific AF group. Five AF-based tandem PRSs are developed separately, for read,

extempore and conversation modes of speech. Table 10.8 shows the phone recognition accuracies of

baseline and AF-based tandem PRSs of read, extempore and conversation modes of speech. Figure
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10.4 shows the block diagram of manner AF-based tandem PRS. Manner AFs are predicted using

manner AF-predictor as shown in Figure 10.1. The predicted manner AFs are combined with MFCCs

to develop HMM-based tandem PRS. Similarly, five different tandem PRSs are developed using the

predicted AFs from each AF group.

Figure 10.4: Block diagram of the Manner AF-based tandem PRS.

Table 10.8 shows the phone recognition accuracies of baseline and AF-based tandem PRSs of

read, extempore and conversation modes of speech. First column shows the different types of features

used in development of PRSs. Second, third and fourth columns indicate the recognition accuracies

obtained using read, extempore and conversation modes of speech, respectively. It is observed that

all AF-based tandem PRSs have higher recognition accuracy compared to baseline PRSs in all three

modes of speech. Among vowel AF groups, the height AF-based tandem PRSs have shown higher

recognition accuracy in all the three modes of speech. Among consonant AF groups, the place AF-

based tandem PRSs have shown higher recognition accuracy in all the three modes of speech. Place

AF-based tandem PRSs of read and conversation modes of speech have highest recognition accuracy,

whereas the height AF-based tandem PRS has highest recognition accuracy in extempore mode of

speech.

10.4.4 Hybrid Phone Recognition Systems using Articulatory Features

The hybrid PRSs are developed by combining AF-based tandem PRSs using weighted combination

approach. Hybrid systems are developed by using the following combinations of AF-based tandem

PRSs : i) place and manner ii) roundness, frontness and height iii) place, manner, roundness, frontness

and height (i.e. all AF-based tandem PRSs). As the place and manner AFs mainly capture the

characteristics of consonants, the hybrid PRSs developed using place and manner AF-based tandem
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Table 10.8: Phone recognition accuracy (%) of AF-based Tandem PRSs across Read, Extempore and Conver-
sation modes of Speech.

Features
Recognition Accuracy (%)

Read Extempore Conversation
MFCCs (Baseline) 45.48 39.58 37.20

MFCCs + Place AFs 48.89 42.15 40.66
MFCCs + Manner AFs 47.74 41.11 40.18

MFCCs + Roundness AFs 47.28 40.46 38.45
MFCCs + Frontness AFs 46.59 40.75 38.85

MFCCs + Height AFs 48.60 42.93 39.40

PRSs are called Consonant-AF-based hybrid PRSs. Since the roundness, frontness and height AFs

mainly capture the characteristics of vowels, the hybrid PRSs developed using roundness, frontness and

height AF-based tandem PRSs are called Vowel-AF-based hybrid PRSs. The hybrid PRSs developed

using combination of all the five AF-based tandem PRSs are called All-AF-based hybrid PRSs. PP-

based tandem PRSs are developed to compare the performance of AF-based hybrid PRSs with PP-

based tandem PRSs. The PPs are predicted as per the procedure mentioned in Section 10.4.2. The

combination of MFCCs and PPs is used for developing PP-based tandem PRSs using HMMs.

Figure 10.5 shows the block diagram of development of hybrid PRSs. MFCCs are combined with

the predicted AFs of each AF group to develop tandem PRSs for each AF group. The scores from all

the five tandem PRSs are combined using weighted combination approach.

Place AFs

Manner AFs

Roundness AFs

Frontness AFs

Height AFs

AF = Articulatory Feature
TPRS = Tandem Phone Recognition System

Roundness TPRS

Frontness TPRS

Height TPRS

Place TPRS

Manner TPRS

WC 

All-AF-based 
HPRS

Consonant-AF-
based HPRS

HPRS = Hybrid Phone Recognition System WC  =  Weighted Combination

Vowel-AF-based 
HPRS

WC

WC
MFCCs

MFCCs

MFCCs

MFCCs

MFCCs

Figure 10.5: Block diagram of Hybrid Phone Recognition Systems.
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Table 10.9 shows the optimal weighting factors used for developing hybrid PRSs of read, extempore

and conversation modes of speech. The hyphen (-) symbol in Table 10.9 indicates that the particular

weighting factor is not applicable for the corresponding hybrid PRS. The weighting factors w1, w2, w3,

w4 and w5 corresponds to place, manner, roundness, frontness and height AF-based tandem PRSs,

respectively.

Table 10.9: Weighting factors used for developing Hybrid PRSs using Weighted Combination Approach.

Hybrid PRS
Weighting Factors

w1 w2 w3 w4 w5
Read

Consonant-AF-based 0.5 0.5 - - -
Vowel-AF-based - - 0.3 0.3 0.4

All-AF-based 0.3 0.2 0.2 0.1 0.2
Extempore

Consonant-AF-based 0.6 0.4 - - -
Vowel-AF-based - - 0.1 0.4 0.5

All-AF-based 0.3 0.2 0.1 0.1 0.3
Conversation

Consonant-AF-based 0.5 0.5 - - -
Vowel-AF-based - - 0.4 0.2 0.4

All-AF-based 0.4 0.1 0.1 0.1 0.3

Table 10.10 shows the phone recognition accuracies of hybrid PRSs. First column lists different

types of hybrid PRSs. Second, third and fourth columns show the recognition accuracies of read, ex-

tempore and conversation hybrid PRSs, respectively. It is found that the performance of hybrid PRSs

Table 10.10: Phone recognition accuracy (%) of Hybrid PRSs across Read, Extempore and Conversation
modes of Speech.

PRSs using different Features
Recognition Accuracy (%)

Read Extempore Conversation
MFCCs (Baseline) 45.48 39.58 37.20

PP-based Tandem PRS 48.97 40.60 42.14
Consonant-AF-based Hybrid PRS 49.95 43.97 42.05

Vowel-AF-based Hybrid PRS 51.28 44.89 41.52
All-AF-based Hybrid PRS 52.24 45.70 42.97

PP-and-All-AF-based Hybrid PRS 52.61 46.24 44.15

is higher than any of the AF-based tandem PRSs in all the three modes of speech. The improvement

in the recognition accuracies of hybrid PRSs is consistent in all three modes of speech. All-AF-based

hybrid PRSs have higher recognition accuracy compared to PP-based tandem PRSs. The PP-and-All-
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AF-based hybrid PRSs have shown highest recognition accuracy. The highest improvement obtained

in the recognition accuracy of read, extempore and conversation modes of speech is 7.13%, 6.66% and

6.95%, respectively. Read speech has higher improvement in recognition accuracy compared to other

two modes. The improvement in the performance of conversation speech is nearly same as that of

extempore speech.

10.5 Automatic Prosodic Transcription

The automatic prosodic transcription consists of (i) Spotting the syllables in continuous speech,

(ii) Transcribing the pitch contour and (iii) Spotting and marking the break indices. Spotting the

syllables from continuous speech can be carried out using vowel onset point detection methods. The

accuracy of spotting syllables in 3 modes of speech is given in Table 10.11. We have transcribed pitch

contour automatically using four labels: very low (VL), low (L), high (H), and very high (VH). We

have explored 3 different approaches to transcribe pitch contours: (i) Based on pitch dynamics of

each phrase, (ii) Based on pitch dynamics of phrases corresponds to every speaker and (iii) Based

on pitch dynamics of all phrases present in speech corpus. Evaluation of proposed automatic pitch

transcription has been carried out using 100 sentences of Bengali and Odia in read, extempore and

conversation speech modes. Root mean square error between original and automated pitch contours

for three modes of speech data are shown in Table 10.12. The break indices are automatically derived

using short term energy of the speech signal. Depending on the duration of the detected break, break is

transcribed as B1, B2 or B3. It is observed that, accuracy of B2 and B3 detection is better, compared

to B1. In this work, B1 refers to intra and inter word breaks, B2 refers to phrase level breaks and B3

refers to sentence level breaks. The details of accuracy of break index transcription is given in Table

10.13.

Table 10.11: Syllable-level segmentation accuracy

Recognition Accuracy (%)
Bengali Odia

Read Extempore Conver Read Extempore Conver
Match 82.92 85.31 62.88 72.78 66.03 40.21
Missing 17.07 14.68 37.11 27.2 33.96 59.78
Spurious 10.49 1.07 17.22 12.68 3.63 4.26
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Table 10.12: Root mean square error between original and automated pitch contours.

Level
Root mean square error (Hz)

Bengali Odia
Read Extempore Conver Read Extempore Conver

Phrase 6.01 5.47 17.54 2.91 8.41 8.29
Speaker 6.66 8.60 11.98 4.64 8.53 8.09

Gender
Female 6.22 8.60 15.50 8.79 8.50 8.83
Male 8.39 5.65 7.66 4.24 3.36 5.48

Table 10.13: Accuracy of Break Indices (B1, B2 and B3)

Recognition Accuracy (%)
Break Bengali Odia
Indices Read Extempore Conver Read Extempore Conver

Match 78.12 70.38 58.56 83.76 75.89 62.79
B1 Missing 21.88 29.62 41.44 16.24 24.11 37.21

Spurious 61.27 58.43 72.16 52.78 60.13 68.32
Match 85.92 81.31 74.53 88.78 84.03 79.39

B2 Missing 14.08 18.69 25.47 11.22 15.97 20.61
Spurious 22.49 26.65 32.58 19.68 25.79 26.57
Match 93.17 88.36 84.67 95.53 90.35 91.48

B3 Missing 6.83 11.64 15.33 4.47 9.65 8.52
Spurious 4.28 7.29 8.37 5.78 7.82 6.48

10.6 Search Engine

For automatic retrieval of desired segment of speech, we have explored code book based search

engine. Code books of size 32 were derived from vector quantization (VQ). The speech corpus is

represented using sequence of code book indices. The sequence of codebook indices are derived from

the speech query. The query indices were matched with the sequence of codebook indices of each speech

utterance present in the corpus. The matching between the sequences is carried out using VOPs as

anchor point. The proposed document search engine performance is analyzed on 455 sentences (1.3

hrs) of Odia read speech corpus. Based on similarity measure, speech utterances are ranked for the

given query. The retrieval accuracy is found to be around 30% by considering top 20 documents.

386



10.7 Publications

10.7 Publications

Journal

(i) Manjunath K E and K. Sreenivasa Rao, “Source and System Features for Phone Recognition”,

International Journal of Speech Technology, (Springer), pp. 1–14, 2014.

(ii) Manjunath K E and K. Sreenivasa Rao, “Improvement of Phone Recognition Accuracy using

Articulatory Features”, Applied Soft Computing, (Elsevier), (Under Review).

Conference

(i) S B Sunil Kumar, K. Sreenivasa Rao and Debadatta Pati, “Phonetic and prosodically rich

transcribed speech corpus in Indian languages: Bengali and Odia”, in 16th IEEE International

Oriental COCOSDA (OCOCOSDA-2013), (Gurgaon, India), Nov. 2013.

(ii) Manjunath K E, K. Sreenivasa Rao, and Debadatta Pati, “Development of Phonetic Engine

for Indian languages : Bengali and Oriya”, in 16th IEEE International Oriental COCOSDA

(OCOCOSDA-2013), (Gurgaon, India), Nov. 2013.

(iii) R Ravi Kiran, Sunil Kumar. S.B, Manjunath K E, Biswajit Satapathy, Apoorv Chaturvedi,

Debadatta Pati, and K Sreenivasa Rao, “Automatic Phonetic and Prosodic Transcription for

Indian Languages : Bengali and Odia”, in 10th International Conference on Natural Language

Processing (ICON-2013), (New Delhi, India), Dec. 2013.

(iv) Manjunath K E and K. Sreenivasa Rao, “Automatic Phonetic Transcription for Read, Extempore

and Conversation Speech for an Indian Language: Bengali”, in 20th IEEE National Conference

on Communications (NCC-2014), (Kanpur, India), Feb. 2014.

(v) Manjunath K E, K. Sreenivasa Rao, and Gurunath Reddy M, “Two-Stage Phone Recognition

System using Articulatory and Spectral Features”, in IEEE International Conference on Signal

Processing and Communication Engineering Systems (SPACES-2015), (Guntur, India), Jan.

2015.

(vi) Manjunath K E, K. Sreenivasa Rao, and Gurunath Reddy M, “Improvement of Phone Recogni-

tion Accuracy using Source and System Features”, in IEEE International Conference on Signal

387



10. IIT Kharagpur

Processing and Communication Engineering Systems (SPACES-2015), (Guntur, India), Jan.

2015.

(vii) Manjunath K E, Sunil Kumar. S. B, Debadatta Pati, Biswajit Satapathy, and K. Sreenivasa Rao,

“Development of consonant-vowel recognition systems for Indian languages : Bengali and Odia”,

in 10th IEEE India Conference on Emerging Trends and Innovation in Technology (INDICON-

2013), (Bombay, India), Dec. 2013.

388


	Title
	Title
	Title
	Title
	Title
	Title
	1 IIIT Hyderabad
	1.1 Responsibilities
	1.2 Database collection and transcription
	1.3 Prosody Knowledge
	1.4 Development of Phonetic Engine
	1.5 Development of Speech-based Search Engine
	1.6 Summary of the Work

	2 IIT Kanpur
	3 Thapar University Patiala
	4 IIT Guwahati
	4.1 Database collection & transcription
	4.1.1 Data Collection
	4.1.2 Transcription

	4.2 Semi-automatic prosodic markings
	4.2.1 Pitch Contour marking
	4.2.2 Semi-automatic syllable boundary marking

	4.3 Development of phonetic engine
	4.3.1 Signal Processing based approach
	4.3.2 HMM based approach

	4.4 Development of Phonetic Engine for 12 Indian Languages
	4.4.1 HMM Based Approach
	4.4.2 ANN Based Approach
	4.4.3 Phonetic Engine Results

	4.5 Computation of Confidence Level for the Decoded Phone Sequence
	4.6 Language Identification using Phonetic Engine
	4.7 Phonetic Engine Graphical User Interface (GUI)
	4.8 Conclusion
	4.9 Papers Published Related to the Project Work

	5 Tezpur University
	6 North Eastern Hill University (NEHU) Shillong
	6.1 Database collection & transcription
	6.2 Acquiring prosody knowledge
	6.2.1 Pitch Marking
	6.2.2 Break Marking:
	6.2.3 Semi-Automatic Syllable Labeling

	6.3 Development of Manipuri Phonetic Engine
	6.3.1 Task Definition
	6.3.2 Acoustic Analysis
	6.3.3 Training Phase

	6.4 Testing Phase:
	6.5 Experimental Result
	6.6 Summary & Future work
	6.7 References

	7 Rajiv Gandhi Institute of Technology (RIT) Kottayam
	7.1 Database collection & transcription
	7.1.1 Data Collection in Malayalam and Kannada
	7.1.2 Transcription to IPA symbols

	7.2 Manual prosody marking
	7.2.1 Syllabification
	7.2.2 Break marking
	7.2.3 Pitch marking

	7.3 Automatic prosody marking
	7.3.1 Automatic Break marking
	7.3.2 Automatic Pitch Marking
	7.3.3 Automatic syllabification
	7.3.3.1 Methodology
	7.3.3.2 Performance Evaluation


	7.4 Broad phonetic labelling using signal level features
	7.5 Development of phonetic engine
	7.5.1 Development of phonetic engine for Malayalam language
	7.5.2 Development of phonetic engine for Kannada language

	7.6 A coarse audio search method using phonetic and prosody labels
	7.6.1 Pitch-Trend Labeling
	7.6.2 Temporal Pattern
	7.6.3 Local Alignment

	7.7 Details of training programme conducted
	7.8 Summary & future work

	8 Dhirubhai Ambani Institute of Information and Communication Technology (DA-IICT) Gandhinagar
	8.1 Database collection and transcription
	8.2 Observations
	8.2.1 Observation during data collection
	8.2.2 Observation while transcribing the speech

	8.3 Development of Phonetic Engine (PE)
	8.3.1 HMM-based PE:
	8.3.1.1 Result:

	8.3.2 Syllabification 
	8.3.2.1 Performance Evaluation
	8.3.2.2 Database
	8.3.2.3 Experimental Results

	8.3.3 Pitch Marking
	8.3.4 Break Marking
	8.3.5 Search Engine

	8.4 Research activities in the context of project outcomes
	8.4.1 Phonetic Segmentation
	8.4.2 Automatic broad phonetic classification
	8.4.3 Keyword search in spoken database
	8.4.4 Classification of Fricative Sounds
	8.4.5 Vowel Landmark detection in speech
	8.4.6 Vocal Tract Length Normalization (VTLN):

	8.5 Lab Setup Developed
	8.6 Manpower Training
	8.7 Summary and Future work
	8.8 Appendix

	9 IIT Hyderbad
	10 IIT Kharagpur
	10.1 Data Collection
	10.2 Manual Transcription
	10.3 Automatic Phonetic Transcription
	10.3.1 Automatic Phone Level Transcription
	10.3.1.1 Development of Phone Recognition Systems using HMMs
	10.3.1.2 Development of Phone Recognition Systems using FFNNs
	10.3.1.3 Performance Evaluation of Phone Recognition Systems

	10.3.2 Automatic Syllable Level Transcription

	10.4 Articulatory Features for Phone Recognition
	10.4.1 Extraction of Articulatory Features
	10.4.1.1 Prediction of Articulatory Features
	10.4.1.2 Performance Evaluation of AF-Predictors

	10.4.2 Prediction of Phone Posteriors
	10.4.3 Development of Tandem Phone Recognition Systems using Articulatory Features
	10.4.4 Hybrid Phone Recognition Systems using Articulatory Features

	10.5 Automatic Prosodic Transcription
	10.6 Search Engine
	10.7 Publications


