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Abstract  In this paper we discuss the significance of rep-
resentation of images for face verification. We consider three
different representations, namely, edge gradient, edge ori-
entation and potential field derived from the edge gradient.
These representations are examined in the context of face
verification using a specific type of correlation filter, called
the minimum average correlation energy (MACE) filter. The
different representations are derived using one-dimensional
(1-D) processing of image. The 1-D processing provides mul-
tiple partial evidences for a given face image, one evidence
for each direction of the 1-D processing. Separate MACE
filters are used for deriving each partial evidence. We pro-
pose a method to combine the partial evidences obtained for
each representation using an auto-associative neural network
(AANN) model, to arrive at a decision for face verification.
Results show that the performance of the system using poten-
tial field representation is better than that using the edge gra-
dient representation or the edge orientation representation.
Also, the potential field representation derived from the edge
gradient is observed to be less sensitive to variation in illumi-
nation compared to the gray level representation of images.
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1 Introduction

The objective of an automatic face verification system is to
accept or reject the claimed identity of a person using the
image of his/her face. This is in contrast to a face identifica-
tion system, where the system has to determine the probable
identity of a given face image [1]. A survey of face recogni-
tion techniques can be found in [1,2]. In all the techniques,
representation of the face image is crucial. On the basis of
representation, face recognition studies can be broadly cat-
egorized into two types: Holistic analysis and feature-based
analysis. In the holistic analysis, composite features from the
entire face image are extracted and used for face recognition.
Some of the holistic analysis methods reported in the litera-
ture are based on eigen analysis [3], template matching [4,5]
and correlation filter [6]. In the feature-based methods, fea-
tures extracted from the local regions of a face image are
used. Some of the features include edge map [7] and Gabor
wavelets [8]. Feature-based methods use graph matching [9]
technique. It has been argued that both holistic as well as
feature-based approaches might be required for face verifi-
cation [10]. In this work we use holistic analysis.

We explore different representations of a face image for
face verification task. For studying the significance of repre-
sentation, one can used any standard face matching method.
In this study the correlation-based minimum average corre-
lation energy filter (MACE) [11] is used for matching two
face images. Earlier work with MACE filters employed gray
level representation of the face image [6]. The gray level
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representation has the drawback that it is sensitive to illumi-
nation [7]. This issue was addressed by using face images
under different lighting conditions as training examples for
designing the MACE filter [12]. Illumination issue can also
be addressed by choosing illumination-invariant represen-
tation of face images. We consider three representations of
a face image: Edge gradient, edge orientation and potential
field derived from the edge gradient. The edge gradient and
orientation are more robust to changes in illumination, com-
pared to the gray scale representation [7]. But it is difficult
to correlate two images using the edge gradient or edge ori-
entation representation. This problem is addressed to some
extent by deriving a potential field from the edge gradient.
In this paper the edge-based representations are derived
using one-dimensional (1-D) image processing. The 1-D pro-
cessing provides multiple partial evidences for a given image,
one for each direction of processing [13]. Separate MACE
filter is derived for each partial evidence. The outputs of all
the MACE filters are combined using an auto-associative
neural network (AANN) model. The output of the AANN
model is used to arrive at a decision for the claimed identity
in the verification task. Performance of the proposed rep-
resentations are compared on Facial Expression Database,
collected at Advanced Multimedia Processing (AMP) Lab-
oratory at the Electrical and Computer Engineering Depart-
ment of Carnegie Mellon University [14]. The database
consists of 13 subjects, each having 75 images with vary-
ing facial expressions. The size of each face image is scaled
down to 30x30 pixels in all the experiments in this paper.
The organization of the paper is as follows: Sect. 2 pro-
vides a brief description of the MACE filter. Section 3 deals
with the representation of the face image using edge gra-
dient. Along with the edge gradient, edge orientation can
also be used to characterize the face image, as explained
in Sect. 4. The edge-based representations of image is not
suitable for matching two images. Hence Potential field is
derived from the edge gradient, as discussed in Sect. 5. Exper-
imental results of face verification using different represen-
tations are given in Sect. 6, and Sect. 7 summarizes the work.

2 Minimum average correlation energy (MACE) filter

In this section we give a brief review of the MACE filter,
which is used for matching face images in this study. The
basic correlation filter is the synthetic discriminant function
(SDF) introduced by Hester and Casasent [15]. In the basic
SDF filter, the overall approach is to build a filter 2 (x, y) such
that its cross-correlation with an authentic training image
s(x,y) has a value 1 at the origin, and a value O for the
impostor training images. Here, the origin is the center of
the correlation output. Such a filter is called an equal cor-
relation peak SDF (ECPSDF) filter. Let ® denote the two
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dimensional (2-D) cross-correlation operator, c¢(ty, ty) the
cross-correlation output, and f(x, y) the input to the filter.
Then

(T, Ty)
=h(x,y) O f(x,y)
://h*(x,y)f(x—i—tx,y—}—ry)dxdy

= //H*(u, V) F (1, v) exp[j2m (ut, + vty)ldudv,
()

where H (u, v) and F(u, v) are the 2-D Fourier transforms
of h(x,y) and f(x,y), respectively, and the operator ‘x’
denotes the complex conjugate. In the case of ECPSDF fil-
ter, the constraint on the peak at the origin of the correlation
output is as follows:

c(ty, Ty)|rx,ry:0 = h(x, y) Osix, Y)|fx,ry:0

://h*(x,y)si(x,y)dxdy
://H*(u,v)Si(u,v)dudv

= ¢y, (2)

where ¢; is 1 for authentic images, and O for impostor training
images. Here s; (x, y) represents the ith image in the train-
ing set, and S;(u, v) represents its 2-D Fourier transform.
For multiple exposures, the 2(x, y) is assumed to be a linear
combination of the N training images [15]. That is

h(x’y):alsl(xvy)+"'+aNSN(xvy)1 (3)

where the coefficients aj, az,..., ay are determined to satisfy
the condition given in (2). Using (3) we can rewrite (2) as

N
> ajRi=ci, i=12....N, 4
Jj=1
where
Rji = //sl’-‘(x,y)sj(x, y)dxdy 5)

is the inner product of the training images s;(x,y) and

sj(x, y).
The ECPSDF has the following disadvantages [16]:

(a) The filter does not take into account any noise that might
be present in the images.

(b) The filter is designed to control only one point in the
correlation output.

The problem of noise is addressed using the Minimum Vari-
ance SDF (MVSDF) [17], and the second problem is addres-
sed using the MACE filter. We focus here on the design of
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MACE filter. The constraint in the frequency domain given
in (2) is reproduced here as

//H*(u,v)Si(u,v)dudv:ci. 6)

In addition to this constraint, the MACE filter minimizes the
average correlation energy (E) of the correlation outputs due
to training N images [11], and it is given by

N
1
E = NZI// |ci (T, ‘L’y)|2d‘6xd‘[y
1=

N
= ]lVZ//|Si(u,v)|2|H(u,v)|2dudv. (7
i=1

By minimizing E with respect to {a;}, the filter design
attempts to keep the sidelobes in the correlation output as
small as possible. Let h and §; denote the column vectors of
length d formed by sampling H (u, v) and S;(u, v), respec-
tively. The vectors are arranged from left to right and top to
bottom. The quantity d is the number of pixels in the image.
Let S be a d x N matrix whose columns are S;. We can
rewrite (6) as

StTh=c, (8)

where the superscript ‘+’ represents the complex conjugate
transpose of a matrix, and ¢ = [cy, ¢, . . ., cN]T. IfY; is the
diagonal matrix containing the elements of §;, then (7) can
be written as [11]

E =h*Dh, ©)
where

1 N
D= z Y;Y;

is the diagonal matrix containing the average power spectrum
of the training images. Minimizing E subject to the condition
given (8) yields [11]

h=D"'SS*D'S)e. (10)

The filter h given by (10) is used for matching reference with
a test image.

3 Image matching using edge gradient representation

One of the problems with using gray scale values of images
directly in the correlation filter is that changes in illumination
can significantly affect the correlation matching. Changes in
illumination are dealt with either by modeling the effect of
illumination of faces, or by extracting the features that are less
sensitive to illumination. Modeling of illumination requires
3-D model of the face, which in turn requires many samples of

each face. On the other hand, extracting features that are less
sensitive to illumination requires appropriate representation
of the face image. One of the representations suggested in the
literature is the edge map [7, 18]. Edge maps are obtained by
computing the intensity gradient, and then thresholding the
gradient. Selection of the threshold value becomes a major
issue in the edge map representation. If the threshold value
is low, then spurious edges may show up in the edge map.
On the other hand, a high threshold value may remove some
important edges.

We propose a continuous edge gradient representation of
a face image. This representation has the advantage that it
does notrequire thresholding. The edge gradient computation
requires two operations: A smoothing operator to reduce the
effect of noise, and a spatial differential operator to compute
the gradient [19]. We use a Gaussian function for smoothing,
and the derivative of the Gaussian function as differential
operator. A problem encountered when smoothing the image
before computing the gradient is that the genuine edges may
also get smoothed out. The smearing of genuine edges can
be reduced by using one-dimensional (1-D) processing of the
image [13].

3.1 Extraction of partial edge information

In 1-D processing of a given image, the smoothing opera-
tor is applied along one direction, and the derivative oper-
ator is applied along the orthogonal direction. By repeating
this procedure of smoothing followed by derivative opera-
tion along the orthogonal direction also, two edge gradients
are obtained, which together represent the intensity gradient
of the image along the chosen direction. As the smoothing
is done along a direction orthogonal to the direction of the
edge extraction, smearing of the edges is reduced.

The 1-D Gaussian function along a line, which makes an
angle @ with x-axis, and has a perpendicular distance of p
from the origin, is given by

fa) 1 . —x2sec?o (1
x) = X ,
’ V2mo P 2012

where o7 is the standard deviation of the Gaussian function.
The derivative operator is given by

@) —xsec’ o —x2sec?o (12)
g(x) = ——exp{ —— ),
¢ V2no3 P 203

where o7 is the standard deviation of the Gaussian function
whose derivative is computed. For smoothing, 1-D convo-
lution is performed along a straight line making an angle
0+490° with the x-axis in the image plane. The smoothed
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image i, (x, y) is given by

o (P xS +90)
P\ cos(6 +90)
=1 (x,

0 + x sin(6 + 90)
cos(0 + 90)
where ‘®’ denotes the 1-D convolution operator, and x is
the independent variable. Convolution is performed for each
value of p to obtain the smoothed image. This smoothed
image is used to compute the edge gradient ieg , by applying
the derivative operator along the orthogonal direction, i.e.,
along the straight lines making an angle 6 with x-axis in the
image plane. The edge gradient (i g (x, y)) is obtained using

in 0 in 6
i8 x,w =i x,m ®go(x) (14)
cosf cosf

) ® fo+90(x), (13)

for different values of p. By performing these two opera-
tions along the orthogonal direction we get i9g oge» Which
along with igg represents the intensity gradient of the image
along the direction 6. Figure 1 shows an example of the gra-
dient maps obtained along different directions for the same
face image.

Computation of the edge gradient by the above method
is sensitive to background illumination. This can be seen in
Fig. 2. The effect of background illumination can be reduced
by dividing the edge gradients with the weighted average

Fig. 1 a Gray level image. Edge gradient (ieg ) of the face image
obtained using 07 = 0.9,00 = 1 forb0 =0°,¢6 =45°,d 6 = 90°,
and e 6 = 135°
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Fig. 2 a Gray level image with left shadow. Edge gradient (ig ) of the
face image a, obtained using 01 = 0.9,00 = 1 forb 6 = 0°, and ¢
6 =90°

Fig. 3 aGray level image with left shadow. Normalized edge gradient
(igy) of the face image, obtained using o1 = 0.9,02 = 1 forb 6 = 0°,
and ¢ 6 = 90°

value of the smoothed face image. The weigthed average
value of the smoothed image is computed using

. ( P +xsin(9))
g\ X, ————
cos(f)

o + x sin(0)

Lo ) ® fo(x) (15)

= i{6+90) (x’
for different values of p. The normalized edge gradient image
is given by

in=2 (16)

The normalized edge gradient images of a face image are
shown in Fig. 3. It can be seen that the information in the
left half regions is also visible in the normalized edge gradi-
ent images (Fig. 3b and c), as compared to the edge gradient
image without normalization (Fig. 2b and c). The normalized
edge gradient image (iy) is referred to as the edge gradient
in the rest of the paper.

3.2 Face verification using edge gradient and MACE filter

Face verification is performed by cross-correlating the edge
gradient (i) of a test image with the corresponding MACE
filter (hg) derived using similar representation in training.
The block diagram of the matching process, performed using
discrete Fourier Transform (DFT), is shown in Fig. 4. The
filter output should have a high peak value at the origin in
the correlation plane, when the test face image belongs to the
true class. On the other hand, if the test face image belongs
to the false class, then the filter output should give a low peak
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Test face
image

Fig. 4 Face recognition by
correlation filter using edge
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Fig. 5 Normalized correlation
output when iy, obtained for
01 =09,00=1,0 =0°1is
used as input to the MACE filter
for a true class, and b false class
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&
~

Correlation value

value at the origin. The relative heights of these peaks deter-
mine whether the input face is from the true or the false class.
Figure 5a shows the normalized correlation output for a true
class face image, and Fig. 5b shows the normalized corre-
lation output for a false class face image, both for 6 = 0°.
The correlation output of a true class image (Fig. 5a) has a
high peak value near the origin, whereas for the false class
image (Fig. 5b) the correlation output is generally low. The
sharpness of the peak in the correlation output is quantified
using peak-to-sidelobe ratio (PSR) [6]. The PSR is defined
as

a7

where p is the value of the maximum peak in the correla-
tion output, u is the mean of the correlation output within
a window (of size 19x 19 pixels) around the peak, and o is
the standard deviation of the values in this window. In actual
practice, we leave out a region of size 7 x 7 pixels in the cen-
ter of the window while computing n and o. The choice of
size of these window was arrived at empirically, and other
choices can also be made to highlight the peak to sidelobe
characteristics.

The spatial spread (o2 ) of the first derivative of the Gauss-
ian function controls the amount of smearing of the edges
in the 1-D processing of the image. For low values of o2,
even a slight deviation in the edge contour reduces the cor-

Filter coeffficients in

frequency domain
Filter Partial evidence /D
for

. :

o

Training face
images
(b)

Correlation value

relation significantly. This leads to high intra-class variance.
On the other hand, for high values of o», the edges are smea-
red, reducing inter-class discrimination. Experimentally, we
found that a value of 0, ~1 is reasonable for computing the
edge gradient.

Another way of controlling the degree of spread of the
edge information in the image plane is through the choice
of the number of DFT coefficients of the image. Removing
some of the high frequency DFT coefficients leads to blurring
of the image [20]. The effect of removing the high frequency
DFT coefficients is similar to that of increasing o>. We have
found that removing the last 10 high frequency DFT coeffi-
cients along both the frequency axes improves the relative
PSR for true and false classes. The size of the 2-D DFT is
(2N —1) x 2N — 1), where N = 30 for an image of 30 x 30
pixels.

3.3 Combining partial evidences

More information of a face image can be obtained by using
the edge gradient (i;; ) along different directions (6), instead of
using only one direction. Separate MACE filters are derived
for each direction. The PSR value is obtained separately from
each filter. A k-dimensional feature vector is formed for a
given test face image, where each component corresponds
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Fig. 6 Scatter plot for a subject using edge gradient representation
of face images obtained using o1 = 0.9, 02 = 1, 61 = 0°, 6, = 45°,
63 = 90°. The last 10 high frequency DFT coefficients along both
the frequency axes of the 2-D DFT of the edge gradient are eliminated.
Three training images are used to derive the MACE filter for each direc-
tion. Note that only three values of 6 are used to show the scatter plot
in 3-D

to the PSR value obtained from the filter designed for one
direction, i.e., for one value of 0.

In this study partial evidence is obtained along four differ-
ent directions (6 = 0°, 45°, 90°, 135°). For each subject in
the database, we have a bank of four filters, one for each value
of 6. These filters are used to compute the 4-dimensional fea-
ture vector (consists of 4 PSR values) for a given test face
image. Figure 6 shows the scatter plots showing the feature
(PSR) vectors of the true and false class images for a sub-
ject. For visualization, the plot shows points using only three
(6 = 0°,45°,90°) of the four component of the vector. For
this example, three training images of the subject are used to
derive a MACE filter for each direction. The remaining 72
face images of the subject form examples of true class. The
PSR vectors are denoted by the diamond (¢) symbol in the
scatter plot. For the false class, 12x75 (i.e., 900) face images
are available, and the corresponding PSR vectors are shown
by the dot (-) symbol in the scatter plot. The scatter plot shows

Fig. 7 Distribution capturing (a)
ability of AANN model.

a Artificial 2 dimensional data.
b Confidence surface realized
by the network structure 2L 10N
10N 1IN 10N 10N 2L
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the distribution of the evidence for the true and false classes.
For the templates of a given subject, when a test image of
the false class subject (impostor) is applied to bank of filters,
the value of the evidence will be low. This is because any
image belonging to false class cannot match well with the
image of the true class. Note that the points due to an image
of the true class generally have higher evidence value. But
due to variability in the test image of the true class, the points
belonging to the true class will have high variability as can
be seen from Fig. 6.

One can generate a large number of points belonging to
the false class for a given subject by using the face images
of a large number of other subjects. The distribution of clus-
ter of these closely spaced points can be used to represent
the false class. If a point due to new test image falls outside
the cluster, then the claim of the corresponding test image is
accepted. Otherwise the claim is rejected.

The distribution of the scatter points due to false class for
each subject can be captured by using any distribution cap-
turing method like Gaussian mixture method (GMM) [21]
or auto-associative neural network (AANN) [22] model. The
distribution capturing capability of AANN is illustrated in
Fig. 7b for the 2-D data shown in Fig. 7a. The structure of
the AANN model is 2L 10N 10N 1IN 10N 10N 2L, where
L denotes a linear unit, and N denotes a nonlinear unit. The
number of unitin the input and output layers correspond to the
dimension of the data feature vector. The network is trained
using the coordinates values of the data as input and output.
Figure 7b is obtained using the confidence value derived from
the error between the input and output (of the trained net-
work) for each test point in the 2-D plane in the range (—1
to+1, —1 to +1). The confidence value is computed from the
squared error (E;) for the ith point as

Ci =exp(—Ei/a), (18)

where « is a constant. In this example o = 0.025. It can be
seen that the confidence value is high when the density of
points is high in the input data.

The derived AANN model can be used for accepting or
rejecting a claim. When the feature vector derived from the

(b)
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test image belonging to the true class is given to the AANN
model, at least some of the partial evidences (component of
the feature or PSR vector) could be large. Thus the result-
ing evidence is not likely to fall into the cluster of points
belonging to the false class. Using a suitable threshold for
the output of each AANN model, a decision can be made
whether to accept the claim of the test input or not. The struc-
ture of the AANN model used to capture the distribution of
the false class with respect to each subjectis 4L 8N 2N 8N 4L.
Note that the structure depend on the nature of the cluster. In
this case since the feature vector has four component (PSR
values), the number of units in each of the input and output
layers is 4. The number of unit in the intermediate hidden
layers depend on the number of clusters and the nature of
the clusters. If the clusters are dense and small then the num-
ber of the units in the hidden layers also will be small. The
number of units in the hidden layers are chosen after exper-
imenting with large amount of data with different structure.
The AANN is trained for each subject using backpropagation
algorithm for about 10,000 epochs.

We give a brief summary of the complete process dis-
cussed above. During training, for each subject, a few images
are chosen as training images. The edge gradients along the
four directions (0°,45°,90°, 135°) are computed for the train-
ing face images. The edge gradients of all the training images
are then used to derive a correlation filter for each direc-
tion separately. Several images of false class are presented to
bank of correlation filter to obtain a set of 4-D feature (PSR)
vectors. These vectors are used to train an AANN model to
capture the distribution of the feature vectors belonging to
the false class. During testing, the edge gradient along the
four directions are computed from the test face image. These
edge gradient information is presented to bank of correlation
filters to obtain the 4-D feature (PSR) vector. The 4-D fea-
ture vector is given as input to the AANN model. The error
is computed between output and input of the AANN model.
If the error is above the threshold for that model, then the
claim is accepted.

Performance of the proposed approach is evaluated using
two metrics: false acceptance ratio (FAR) and false rejec-
tion ratio (FRR). The trade off between FAR and FRR is a
function of the decision threshold. Equal error rate (EER) is
the value for which the error rates FAR and FRR are equal.
Here, we explain the computation of EER for a single person
using three training face images. The correlation filters for
four directions (0°, 45°, 90°, and 135°) are derived using the
three training face images. The remaining 72 = (75 —3) face
images form the examples of true class for testing. For the
false class, 75 x 12 (i.e., 900) face images are available. Out
of these, 700 face images are used to train the AANN model.
The remaining 200 = (900 — 700) face images are used for
testing. By varying the threshold value of AANN, the receiver
operating characteristic (ROC) is obtained as shown in Fig. 8.

100
---FRR

80 1

60

40t

Error rate (in %)

20

____________

0 0.1 0.2 0.3 0.4 0.5
Threshold value

Fig. 8 Variation of false acceptance and false rejection ratio as
functions of threshold

The ROC shows that the FAR curve is steep indicating that
the corresponding PSR values are clustered around low val-
ues. On the other hand, the FRR curve is slowly varying,
indicating that the corresponding PSR values are more scat-
tered. The intersection point of FAR and FRR curves gives
the EER for the person. Similarly we have computed EER for
all subjects, and for cases with different number of training
face images. These results are discussed in Sect. 6 (Table 2).

4 Tmage matching using edge orientation representation

Edge orientation can also be used to represent the face images.
Similar to the approach adopted for the edge gradient rep-
resentation, the edge extraction is carried out along the four
directions (0°, 45°, 90°, 135°) to obtain the normalized edge
gradients ij, i)s, ig, and i{s, respectively. The edge orien-
tation map ig is given by
l'ﬂ
il = - (19)

NGRS

Figure 9 shows the edge orientation map obtained for differ-
ent directions. The matching process is same as that followed
for the case of edge gradient representation. The best result
was obtained when o = 1 and when the last 10 high fre-
quency DFT coefficients along both the axes of the 2-D DFT
of the edge orientation were eliminated. The results are dis-
cussed in Sect. 6 (Table 3).

5 Image matching using potential field representation

One of the problems with edge gradient and edge orienta-
tion representations is that they are very sparse, i.e., most of
the values are very small, close to 0. Because of this, even a
small deviation in the edge contour for the same face image
can significantly reduce the value of the correlation peak.
Therefore, the variance of the feature (PSR) vectors obtained
by matching intra-class images will be high. This problem
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Table 1 Results for gray level

representation: EER (in %) for Subject 1 2 3 4 5 6 7 8 9 10 11 12 13
dlffefent number (N) of training EER (N=5) 0 13 0 0 0 0 0 0 0 0 0 0 0
face images
EER (N=3) 0 0.9 0 0 1 0 0 0 0 0 0 0 0
EER (N=1) 0 18.3 5.2 0 35 0 0 4.1 0 0 0 0 0
Table 2 Results for the edge .
gradient representation: EER (in Subject ! 2 3 4 3 6 7 8 ) 10 1 12 13
%) for different number (V) of * gprp v —55 9 26 0 0 0 0 0 0O 0O 0O 0 0 0
training face images for each
person and using AANN for EER (N = 3) 0 12.5 0 0 0 0 0 0 0 0 0 0 0
combining partial evidences EER (N = 1) 0 23.6 6.6 0 0 0 0 0 0 0 0 0 0
from four directions (6 = 0°,
45°,90°, 135°)
Table 3 Results for the edge .
orientation representation: EER Subject ! 2 3 4 3 6 7 8 o 10 1 12 13
(in %) for different (V) of EER(N=5 0 62 0 0 0 O 0 0 0 0 0 0 0
training face images and using
AANN for combining partial EER(N=3) 0 123 0 152 92 0 0 42 0 O 0 0 0
evidences from four directions EER(N=1) 0 236 112 185 108 O O 62 0 O 0 102 0

(0 =0°,45°,90°, 135°)

Fig. 9 aGray level face image. Edge orientation (ig ) of the face image
obtained using 01 = 0.9,02 = 1 forb0 = 0°,¢6 =90°,d 6 = 90°,
e = 135°

is reduced by spreading the edge information in the edge
gradient or edge orientation representations. The edge infor-
mation can be spread out by either using high values of o>,
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or by removing some of the high frequency DFT coefficients
of the representations. However, spreading the information
in this manner leads to smearing of the edges.

Alternatively, the edge information can be spread out using
potential field representation. The potential field ug derived
from the edge gradient iy, is obtained by minimizing the
energy Eg given by [23]

Eg = / / [ ((ua,)* + (ug,)?)

HI? + (40007 lug — iff|* 1dxdy, (20)

where ug, and ug, are the partial derivatives of up along the
x and y axes, respectively. The parameter p is the scaling
factor used to control the amount of smoothing. This var-
iational formulation follows the standard principle that the
result must be smooth when there is no data. In particular,
we see that when the gradients ij; and iy o, are small, the
energy is dominated by the partial derivatives of the field,
yielding a smooth field. This smoothing term (the first term
in the integrand of (20)) is the same term used by Horn and
Schunk in their classical formulation of optical flow [24].
On the other hand, when the gradient is large, the second
term dominates in the integrand of (20), and it is minimum
when ug = iy. This term is responsible for introducing the
gradient information in the potential field. Our approach is
similar to the one used in [23] for developing a deformation
force of snakes. To minimize the energy Ey given by (20), the
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Table 4 Results for the B

potential field representation: Subject ! 2 3 4 > 6 7 8 ? 10 1 12 13
EER (in %) for different (V) of - ppp (v =5y 0 o o 0 0 0 0 0 0 0 0 0 0
training face images and using

AANN for combining partial EER (N = 3) 0 0 0 0 0 0 0 0 0 0 0 0 0
evidences from four directions EER (N =1) 0 10.2 0 0 0 0 0 0 0 0 0 0 0

(6 = 0°,45°,90°, 135°)

following Euler equation is a necessary condition [25]

12 ug — (g — iR + (il Lo0)*1* = 0, (1)

where 77 is the Laplacian operator. We can see that wherever
the gradient is zero, (21) will reduce to Laplacian operator. It
can be solved by considering uy as a function of the variable
t, and the solution is given by [23]

u@t(x’yvt) ZI’LV2 u@(xﬂyvt) _[ue(xvy7t)
—if (e, WG G )2+ (g 00 (s )21,
(22)

where ug, is the partial derivative of u(x, y, t) with res-
pect to ¢. The above equation is known as generalized diffu-
sion equation, commonly encountered in heat conduction and
reactor physics [26]. Let Ax and Ay be the inter pixel dis-
tance along x and y axes, and At be the change in ¢. Then,
using the standard approximations for the partial derivatives,
(22) can be written as

nA

t
m+1 m m
Ar Ay y(ue ij+1 T Ugitrj

_ 2 m
gt = (- B aoug, ; +
m m m 2 /:n
tugi_y jtug i1 —4ug; )+ Ej (g, A1),

(23)

where E; j = \/(ig i,j)2 + (15100 i’j)z andug; ; is the poten-
tial field at the location (i, j) after mth iteration. Equa-
tion (23) is stable, provided E; ; and ig ;,j are bounded, and
the Courant—Friedrich—Lewis restriction A"xAAt < % is main-
tained [25]. The potential fields obtained by (23) for different
edge gradients are shown in Fig. 10. The matching process
using the potential field is same as that used for the case of
the edge gradient representation. The results are discussed in
Sect. 6 (Table 4).

6 Experimental results

Of the three representations of the face images for correla-
tion-based face verification, we expect the potential field of
the edge gradient to give the smoothest correlation output.
By smooth we mean the reduction of small peaks around
the actual correlation peak. The edge orientation, due to the
absence of the magnitude of the edge gradient, is somewhat
rough textured. Hence, the correlation filter output obtained

Fig. 10 a Gray level image. Potential field (#¢) developed from the
edge gradient of the face image using o1 = 0.9, 0o = 0.6, u = 0.005
forb6 =0°,¢6 =45°,d 6 =90°, and e 6 = 135°

for the case of edge orientation is the roughest among the
three representations. This is illustrated in Fig. 11, which
shows the correlation outputs for the three representations
for the case of & = 90°. Figure 12 shows the scatter plots
of the PSR vectors for the three representations using three
training images of the subject to derive the MACE filter. For
visualization, only 3 of the 4 dimensions (6 = 0°, 45°, 90°)
are used in plots. The separation between the two clusters
(true and false classes) is better for the case of potential field
representation.

The performance (given in terms of EER) for different rep-
resentations for all the 13 subjects, using different sizes of
training set are shown in Tables 2, 3, and 4. Table 1 shows
the EER obtained when the MACE filter is derived using
gray level representation of the face images [6]. By compar-
ing the results in the tables we observe that the best results are
obtained when potential field representation is used. In gen-
eral, as the number of samples of the training set decreases,
the performance also degrades. One can also observe from

@ Springer
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Fig. 11 Correlation outputs using a edge gradient representation,
b edge orientation representation, and ¢ potential field representation

the tables that the EER is high for subject 2 using all rep-
resentations. The reason for this is that subject 2 has more
variation in expression than other subjects, and hence it is
more difficult to match the test images of the subject with the
training images.
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Fig. 12 Scatter plots for a subject using a edge gradient representation,
b edge orientation representation and ¢ potential field representation,
obtained using 61 = 0°,6, = 45°,63 = 90°. Three training face images
are used to derive the MACE filter for each direction
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Fig. 13 Sample images of a
person from illumination subset
of PIE database

Fig. 14 Scatter plots for a (a)
subject using potential field

representation, obtained from 100
01 = 0°, 6, =45°,63 =90°,

and using training face image

with a left shadow, b frontal

view, ¢ right shadow, and d left o
shadow, frontal view, and right

shadow together

100

Performance of the potential field representation is also
evaluated on a subset of the PIE database (PIE NL data-
set) [27], containing 65 subjects, each having 21 face images.
Figures 13 show 21 images of a subject. In our experiment,
we have derived the MACE filters (along four directions)
for each subject using potential field representation for three
case of extreme lighting variations, Image 3 (left shadow),
Image 7 (frontal lighting), and Image 16 (right shadow). The
remaining 18 face images form examples of the true class.
There are 21 x64 (i.e., 1244) face images are available to be
used as samples of false class. Out of these, 900 face images
are used to train the AANN model to capture the distribu-
tion for each subject. The EER is computed as explained
in Sect. 3.3, and an average EER of 1.85% is obtained. On

(b)

100

% ¢ True Class
- False Class

o True Class =" 50

- False Class

(@)

100

¢ True Class =° 50

- False Class ¢ True Class

- False Class

the other hand, an EER of 0% was reported in [28] when the
MACE filters are trained with the same set of training images
using gray level representation.

One way to improve the performance of the proposed
approach is to use the training face images separately for
matching, and then combine the evidence from each for ver-
ification. The reason for using training face images separately
can be explained from the scatter plots shown in Fig. 14. The
figure shows the scatter plots of feature (PSR) vectors using
potential field representation for a given subject, using only
one face image to design the filter: (Fig. 14a for the left sha-
dow image, Fig. 14b for the frontal view image, and Fig. 14c
for the right shadow image). The PSR vectors of the remain-
ing 20 face images of the true class are shown by diamond (¢)
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Fig. 15 Scatter plot obtained (a)
after combining Fig. 14a—c
using (24) forar = 1,and b 100
r=2

- 50

symbol in the scatter plots. If we use all the three training face
images (left shadow, frontal view, and right shadow) to design
the MACE filter, the resultant scatter plot for the subject is
as shown in Fig. 14d. In this case the number of examples
of the true class is 18. For the false class, the 1344 feature
(PSR) vectors are shown by dot (-) symbol in Figs. 14a—d.
The separation between the true and false classes is better in
Fig. 14d as compared to Figs. 14a—c. This is due to matching
with some kind of interpolated image by the MACE filter in
the Fig. 14d.

One can observe from the scatter plots (Figs. 14a—c) that
for a single training face image the points due to false class
are clustered, whereas the points due to true class are scat-
tered. It is likely that for each true class image, there may be
some large evidence value at least from one of the training
face images. One way to exploit this behavior is combine the
PSR values obtained from each training image.

Let Pé’l is the similarity score (PSR) obtained when the
potential field representation along 6 direction of the test face
image 1" is correlated with the corresponding representation
of the training face image I'.

K r
Pg! =(Z<P9“>r) : (24)

k=1

where the parameter r decides the weights associated with
-1 pkl 1 1 K ki
the scores. For r < 1, rr}(m[Pg ] < P < ?Zk:l(Pe ),

and for r > 1, %Zle(Pé‘l) < Pgl < mI?x[Pekl]. A low
value of r is suitable for the false class, and a high value
of r for the true class. One has to choose a suitable value
of r such that the separation between true and false classes
is enhanced. We have found empirically that r = 2 is a good
choice. Figure 15 shows the scatter plot obtained using the
combined similarity scores for » = 1 and r = 2. The sepa-
ration between the true and false class is better in Fig. 15b
as compared to Fig. 14d. This is also evident from the EER
values obtained using a procedure explained above. An aver-
age EER of 0.4 % is obtained using Pgl for r = 2. In fact an
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EER of 0% could be obtained by properly selecting the set
of training images.

7 Summary

In this paper, we discussed the significance of representa-
tion of face image using correlation-based face verification.
Three representations, namely, the edge gradient, the edge
orientation and the potential field derived from the edge gra-
dient are considered. The edge gradient and edge orientation
representations are expected to be more robust to variation
in illumination, compared to the gray scale representation.
But these two representations are not well suited for corre-
lation matching due to locality problem. This problem was
addressed by using the potential field of the edge gradient.

The three representations are derived using one-dimen-
sional (1-D) processing of the image, which has the advan-
tage of providing multiple evidence for a given image. The
evidences are combined using an AANN model to arrive at a
decision for face verification. The proposed method of com-
bining the evidences using AANN model has the advantage
that it does not require large number of training images of
the true class. Experimental results indicate that the potential
field representation is superior to the edge gradient and edge
orientation representing. Performance of the proposed rep-
resentation for face verification task was evaluated on the
face databases which have expression and illumination vari-
ations. The other variation which needs to be addressed is
pose variation.

In this paper we have used the cropped face images. But,
in practice, it is not easy to obtain cropped face image. This
is a major issue that limits the performance of all correlation-
based methods for matching face images.
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