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Activity Modeling Using Event
Probability Sequences
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Abstract—Changes in motion properties of trajectories provide
useful cues for modeling and recognizing human activities. We as-
sociate an event with significant changes that are localized in time
and space, and represent activities as a sequence of such events.
The localized nature of events allows for detection of subtle changes
or anomalies in activities. In this paper, we present a probabilistic
approach for representing events using the hidden Markov model
(HMM) framework. Using trained HMMs for activities, an event
probability sequence is computed for every motion trajectory in the
training set. It reflects the probability of an event occurring at every
time instant. Though the parameters of the trained HMMs depend
on viewing direction, the event probability sequences are robust
to changes in viewing direction. We describe sufficient conditions
for the existence of view invariance. The usefulness of the pro-
posed event representation is illustrated using activity recognition
and anomaly detection. Experiments using the indoor University
of Central Florida human action dataset, the Carnegie Mellon Uni-
versity Credo Intelligence, Inc., Motion Capture dataset, and the
outdoor Transportation Security Administration airport tarmac
surveillance dataset show encouraging results.

Index Terms—Activity modeling, event detection, hidden
Markov model (HMM).

1. INTRODUCTION

UMAN activities can be decomposed into a sequence of
Hevents that have a natural physical interpretation. This can
be accomplished using semantic approaches [1]-[5] in which
events are prespecified; or using statistical approaches [6]-[11],
in which modeling is viewed as a problem of inferring (hidden)
events from observed data. We present a statistical approach for
modeling activities as a sequence of events.

At the outset, we briefly discuss the terms activities, actions,
primitives and events. Existing approaches distinguish between
actions and activities depending on the scale of representation
[2], [12]; i.e., individual parts of the body are said to perform
actions such as picking up and putting down objects, whereas
human interaction with the environment constitutes activities.
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We do not make this distinction and use the term activities to
denote both these cases. The distinction is not crucial since we
are interested in applications such as activity recognition and
anomaly detection. Primitives can be considered as building
blocks of activities that are spread over an interval of time
[5], [13]. We use the term events to denote instantaneous
entities that can be thought of as boundaries between primitive
segments.

Events can be defined based on dominant and persistent char-
acteristics of the data. For example, events can be associated
with key frames or exemplars [14], [15]. On the other hand, they
can be defined using significant changes in velocity, curvature of
motion trajectories and other motion properties [12], [16]-[20].
Change-based events are naturally suited to anomalous event de-
tection. Also, as discussed in Section III, change-based events
can characterize several commonly occurring activities.

We propose an event detection technique using the hidden
Markov model (HMM) framework that focusses on stable state
transitions under the hypothesis that certain state level transi-
tions denote events. Transitions at the state level are robust to
changes that are triggered by noisy measurements. Robustness
to noise is enhanced by stable state changes. By stable change,
we mean that the probability of event occurrence depends on
the value of state variable for several frames before and after
the event. Specifically, if the posterior probability of a state se-
quence {q;— —p+1 = L Gt—pt2 =%y s qt—1 = 4Gt = J, Q41 =
Js--esQeyp = j} for some dlstlnct pair of states ¢, j, attains a
persistent local maximum at time ¢ over a range of values of
p, the state change is said to be stable. During event detection,
several state sequences of the HMM are explored as follows.
Consider an observed data sequence (e.g., motion trajectory) of
length T'. In an ergodic HMM with IV states, there are N pos-
sible state sequences, each of which can generate the observed
data with some probability. The optimal state sequence which is
one among these state sequences, maximizes this likelihood; but
need not have a semantic interpretation. Given an observation
sequence and a learned HMM, an event probability sequence
., P} is computed in which a local
maximum denotes an event. Here p denotes the scale parameter.
An efficient way of exploring state sequences to compute {e!}
is presented.

It is desirable to find methods that are invariant to viewing
conditions. The HMM, however, is view-dependent since 2-D
motion trajectories are used in training. Multiple HMMs are re-
quired if the appearance of trajectories changes significantly.
We describe the conditions on the HMMs that enable detection
of similar events irrespective of viewing direction. Event prob-
ability sequences, unlike HMMs, are shown to be quasi-view
invariant (Section VI).
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The utility of event probability sequences for activity recog-
nition and anomaly detection is demonstrated using both indoor
and outdoor scenarios. It is common to find several samples
of normal activities, but very few corresponding to anomalous
events. It is not practical to model all possible anomalous ac-
tivities, some of which can arise due to subtle, statistically in-
significant deviations from normal cases. Events in the proposed
method can be used to detect such anomalies since they are a re-
sult of local changes.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III motivates the event model and
Section IV describes the proposed event probability sequences.
Computation of event probabilities is described in Section V.
Section VI discusses view invariance of events. Section VII
demonstrates the usefulness of the proposed approach for
recognition and anomaly detection using the UCF human
action dataset, the CMU motion capture dataset and the TSA
airport surveillance dataset. Section VIII concludes the paper.

II. PRIOR WORK

We briefly summarize related work in activity modeling. A
detailed review may be found in [21].

A. Events and Actions

In the field of artificial intelligence (Al), activity modeling
has been of interest for several decades [22]. In [1], a natural
language representation with a hierarchy of verbs was presented
using positions of the hand, head and body. In [5], actors, log-
ical predicates, and temporal relations between subevents were
used to describe activities. Similar methods have been presented
in the computer vision area as well. Multiagent events were rec-
ognized using prespecified features such as distance, direction
of heading and speed [3]. In [4], formal rule-based languages
called video event representation language (VERL) and video
event markup language (VEML) were presented. VERL allows
the user to define events and choose the desired level of gran-
ularity in representation. Events were considered as long-term
temporal objects at multiple temporal scales and the chi-squared
distance between empirical distributions was used to compare
event sequences [23].

Actions were segmented using changes in velocity curves in
[20]. Sharp changes in curvature of trajectories were used in
[12], instead of velocity curves. These changes are quasi view-
invariant, but sensitive to noise, in part because of second-order
derivatives used in their computation. Also, many activities do
not contain trajectories with changes in curvature. View invari-
ants for human actions in both 2-D and 3-D were developed
[24]. In 3-D, actions were represented as curves in an invari-
ance space and the cross ratio was used to find invariants.

The shape of activities formed by interacting objects was rep-
resented using Kendall’s shape space theory in [17]. Dynamics
was modeled on the shape’s tangent space using continuous
HMMs and its effectiveness was demonstrated using anomalous
activity detection. In [25], the factorization approach was used
to compute a set of shapes that represent normal activities.
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B. State Space Models for Activity Modeling

HMMs have been applied in many vision and speech applica-
tions. We provide a representative review of HMM approaches
in activity modeling. One of the earliest applications of HMMs
in vision was for recognizing tennis strokes [6]. Since then,
HMMs have been used for recognizing sign language [9],
gait-based identification of humans [14], [26] and activities
[27]-[29]. HMMs were augmented with stochastic context free
grammar (SCFG) to overcome their limitation in expressing
semantics [2]. Trajectories were modeled in two phases: prim-
itives were represented by HMMs, and temporal sequencing
between primitives was enforced using SCFG. Presegmentation
for training and manual design of SCFG might limit scalability
of the approach. In a related work, unsurpervised clustering
based on factorization of an affinity matrix of the output of
HMMs was used in place of SCFG [29].

Incorporating temporal information using HMMs was shown
to outperform clustering trajectories using Gaussian mixture
models (GMMs) [28]. Trajectories were divided into subtrajec-
tories based on changes in curvature [30]. The subtrajectories
were resampled to ensure that all segments have an equal
number of elements. The top few principal components of the
subtrajectories were modeled using GMMs and HMMs. Unlike
[2], manual segmentation of trajectories into atomic units is not
required. However, sensitivity of the second derivative in the
curvature computation and resampling the subtrajectories may
create artifacts.

Coupled HMMs were used to model actions involving body
parts such as hands and head [7] in which states of HMMs rep-
resenting the motion in different parts of the body are forced
to make transitions simultaneously. Generally, deciding which
HMM states have to be coupled may not be obvious.

Unlike the first-order HMM that models state transitions
using one time-step, ie., a;; = Plg = jlg—1 = i),
higher order HMMs model dependencies over several time
steps in the past. The state transition matrix A = [a;;]
is replaced by tensors of the form A = [a;;,], where
aijk = P(¢t = klge—1 = j,q—2 = 1) in second-order
HMMs [31]. Variable length HMMs [32] allow for dependen-
cies with varying number of time steps. Increasing the order is
tantamount to augmenting the state space [31], which, in turn,
increases computational complexity [33] and the amount of
training data required for reliable parameter estimation. Tree
pruning was suggested as a solution to this problem in [32].
Like [34], minimum entropy was used as a criterion during
state estimation [32].

Our method uses the first-order HMM to compute the proba-
bility of an event occuring at every time instant by considering
state sequences associated with several frames before and
after each time instant. The state sequence remains first-order
Markov, whereas the event probability sequence is not Mar-
kovian. An efficient way to compute event probabilities is
developed using the forward and backward variables in the
Baum-Welch algorithm. Tractability in parameter estimation
and event detection is retained. Unlike higher order HMMs, we
do not need quantities of the form a;;;. However, if activities
are modeled using higher order HMMs instead of the standard
HMM, event probability sequences can still be computed.
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In layered HMMs, activities are modeled at multiple levels
of temporal granularity using several HMMs in parallel [35].
Generally, the states of an HMM need not represent physically
meaningful entities when the model is constructed using the
maximum likelihood criterion. Instead, entropy minimization
was used to estimate the HMM parameters [34]. The resulting
states were structured and interpretable.

Instead of using HMMs or its variants, domain knowledge
can be explicitly modeled using dynamic Bayesian networks
(DBN) [11], [36]. DBNs generalize HMMs; the graph structure
reflects domain knowledge by design. If the structure changes,
it has to be re-estimated. In [10], sampling was used to learn
parameters of the DBN. Propagation-nets were proposed in [11]
by incorporation duration modeling in HMMs. The states were
manually chosen to reflect domain ontology.

C. Unsupervised Methods for Activity Modeling

Unsupervised classification of activities is well-suited for ac-
tivity modeling where there are several repeated instances of
normally occurring activities [16], [18], [19], [37]. Video clips
were quantized into prototypes and unusual activities were de-
tected using the graph cuts algorithm [16]. In [19], trajectories
were smoothed and segmented based on changes in accelera-
tion. A set of generic features such as velocity, acceleration and
arclength were extracted from the segments, and matched for
recognition. Motion trajectories collected over a long period of
time were quantized into a set of prototypes representing the lo-
cation, velocity and size of the objects in [38]. Assuming that the
sequence of prototypes in each trajectory consists of a single ac-
tivity, a co-occurrence matrix representing the probability that
a pair of prototypes both occur in the same sequence was es-
timated and used for classification. Pixel change history was
used to identify salient motion blobs modeled using Gaussian
mixtures (GMM) [18], [37]. The learned GMM was used to
initialize output distributions of a DBN. The DBN parameters
were reestimated using an extended forward-backward algo-
rithm [37]. The number of states of the DBN is assumed to be
the number of events.

III. MOTIVATION

We motivate an event based representation using commonly
observed activities: opening and closing doors, picking up and
putting down objects. Fig. 1 shows sample images depicting
such activities, along with automatically extracted motion tra-
jectories of the hand. Fig. 1(a) depicts trajectory of the hand
when the door is opened; Fig. 1(b)—(d) show trajectories of the
hand when an object is picked up from the shelf or the desk [the
trajectories are isolated from the scene in Fig. 1(c)—(d)]. Though
the three trajectories [Fig. 1(b)—(d)] represent the same activity,
the variation in appearance is significant. The high degree of in-
traclass variability poses a challenge to existing approaches like
the HMM. Moreover, for the activity pick up an object to occur,
the time instant of picking up the object is more important than
the rest of the trajectory. This suggests a representation that can
highlight important time instants when events such as start, pick
up and stop occur. At a finer resolution, we may say that the se-
quence of events extend hand—make contact with object—pick
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Fig. 1. Sample images and trajectories from UCF dataset. (a) Open cabinet
door; (b) pickup object. (c) Smoothed trajectory of the hand for picking up an
object from the desk and (d) picking up an object in the cabinet.

up—withdraw hand forms the activity. Each of these events rep-
resent a significant change in the motion trajectory that has a
semantic interpretation. These changes are highlighted as peaks
in the event probability sequence in the proposed model. Simi-
larly, a typical activity in a parking lot may be represented as
a sequence of events: exit building—enter parking lot—enter
car—exit parking lot.

IV. EVENT PROBABILITY SEQUENCE

We propose event probability sequences to quantify the no-
tion of important characteristics of activities. Every motion tra-
jectory is associated with an event probability sequence that is
computed in two phases: an HMM is learned using the given
motion trajectories, and event probability sequences are com-
puted using the learned HMM and given motion trajectories.
The HMM enables easy generalization, i.e., the structure of the
model need not be manually specified for different activities.
Using the HMM, we explore a subset of state sequences to detect
events. The hypothesis is that significant changes in the video
sequence are reflected as events, and a sequence of events forms
an activity.

Let O = {01,092, ...,07} represent the trajectory (observed
sequence) of an object for T frames, where o, is a 2-D vector
of its location at frame ¢. The observed sequence O is assumed
to be generated by an HMM whose hidden state sequence is de-
noted by @ = {q1,¢2,...,qr}. Here, ¢: € {1,..., N}, where
N is the number of states. For every ¢t = 1,...,T, ¢ can take
any of N discrete values. So, there are N T possible state se-
quences that can generate the observed motion trajectory O.
Among these N7 state sequences, the optimal state sequence
maximizes the probability that the given motion trajectory is ob-
served. Instead of the optimal state sequence alone, we explore
other state sequences to detect events.

The key idea is that stable transitions at the state level re-
flect significant changes in motion properties that are denoted as
events. State-level transitions provide a robust representation of
change compared to those defined at the data-level. Moreover,
the number of distinct changes at the state level at any given
time is finite (and equal to N2 — IN), and its probability of oc-
currence can be computed efficiently. The simplest change at
the state level is passing from state ¢ at time £ to state j at time
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t + 1 (denoted by ¢+ — j). In the example of picking up an ob-
ject [Fig. 1(b)—(d)], there is a significant change associated with
the pick up event when the hand, after having made contact with
the object reverses direction and withdraws. The pick up event
can be said to be a semantic change in state from state ¢ before
picking up the object to state j after picking up the object. The
goal of activity modeling is to detect these changes in motion
trajectories extracted from video sequences without an explicit
semantic model.

The probability of state change ¢« — 7, conditioned on the
observation, can be expressed as

&(i 7)

for states ¢,j € {1,2,...,N}. &(4,7) is used in the Baum-
Welch algorithm to efﬁ01ently compute the HMM parameters
[39].

The change in (1) is based on one time-step before and after
an event’s occurrence. For stable transitions at the state level,
instead of transitions of the form 7 — 7, (1) is modified so that
the probability of change associated with the following state
transitions ¢ — ¢ — j — j is used, where the inner ¢ — j
transition occurs at time ¢ [40]. Given the observed trajectory,
the probability of its generation by the following state sequence
is computed: persistence in state i for two consecutive frames,
then a transition to a state j and persistence in state j for two
consecutive frames. This uses the following sequence of states
to detect an event at time ¢

= P(q =1, q141 = j|O, N) (H

7 7 7 q . 2
1= = )= (2)
2 frames

2 frames

The event variable 7,

7

(2 )( j) is defined as follows:

'i»j) = P((It—l =4,qt =% Qb1 = J, Q2 = j|07/\) 3

so that nt( (1, J) = ft( J)- More generally, the region of sup-
port of an event can be extended to p frames by considering the
following state sequence instead of (2):

'Z' N 'Z —_ e

—J- “)

p frames p frames

(») (i,

Event variable 7, j) is defined as follows:

nt(p)<LJ) P(Qt p—L(It p+1—L----7Qt:i
Q41 = Jy @42 = Jy - s Qegpt1 = J|O, A) - (5)
where p = 2,3, ..., P. The maximum value P is fixed empiri-

cally, depending on the average length of trajectories. At every
time instant, there are N2 transitions between states (i, j). Of
these, there are N (N — 1) transitions between distinct (¢, 7). A
transition from state ¢ to j, where j # 7 represents change. The
most likely change among the N(N — 1) transitions may be in-
terpreted as an event. The event probability, parameterized by
scale parameter p, is defined as follows:

e (1) = e (i, ) ©)

Motion Trajectories

Pre-processing:
Detect & Track

[ Training Set (Gallery) \ \ Testing Set (Probe) \

HMM

Event Probability

Candidate Event
Probability Sequel

Similarity Score

Fig. 2. Outline of the proposed algorithm for activity recognition.

where (k,1) = arg MAaXiz nt(p)( J)- As p increases, the region
of support for the event increases. The before and after states k
and [ are said to characterize the type of the event.

Thus, an event is specified b (y the followmg quantities:

* probability of the event e;

* scale parameter p;

* event type (k,l) denoting the states before and after the

event.

There are several reasons for choosing events based on transi-
tions. It is a simple and robust way of representing change. The
event probability sequence can be computed efficiently (Sec-
tion V). Events are modeled using simple transitions between
distinct states of the form given in (5). In practice, it is pos-
sible for events to involve more complex transitions. For in-
stance, events may be caused by state transitions of the form
t — ---j--- — k. Depending on the application and avail-
ability of data, such complex event probability sequences can
be computed. The proposed event probability sequences con-
sisting of simple, stable state transitions captures perceptually
salient events, as outlined in Section III and demonstrated in
Section VIIL.

Stable transitions at the state level yield events whose rep-
resentation is tied to the underlying HMM. Since the HMMs
are trained using 2-D motion trajectories, their parameters are
view-dependent. This, however, is not a significant limitation
provided viewing conditions do not change drastically. A drastic
change, for example, is one in which straight-line trajectory in
one view collapses to a point in a different view. Under certain
assumptions, the event probability sequence is quasi invariant to
changes in viewing conditions (Section VI).

Events (i.e., local maxima in event probability sequences)
need not occur at the same time instant across multiple samples.
So we use dynamic time warping (DTW), which is a dynamic
programming technique, to handle changes in the location of
events detected (Section V).

V. APPROACH

Fig. 2 shows an overview of the proposed method. During
training, motion trajectories are extracted and used to train an
HMM. Using the trained HMM, an event probability sequence

elP )(k 1) is computed for every trajectory of the activity. The
computatlon of e, (k 1) is described next.

Let A = (A, B,II) represent an HMM [39]. In our notation,
we have tried to maintain consistency with the commonly used
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Fig. 3. Events detected at different scales for trajectory of picking up an object.
The scale parameter p varies from (a) p = 3 to (f) p = 8.

©)

HMM notation [39], [41]. A = [a;;] is the probability transi-
tion matrix of size N x N, where a;; = P(q: = j|lgt—1 = 7).
The probability of observing a given data vector conditioned on
the current state is described by B. In our experiments, the (sta-
tionary) output distribution b;(0;) = P(o|q: = j) is assumed
to be Gaussian. Initial probability of states is given by II. Pa-
rameters of the HMM are computed using the Baum—Welch al-
gorithm [39]. Using the HMM, an event probability sequence is
computed for every motion trajectory as follows.
Rewriting (3), we have

P(qi—1 =1,qt = i, qt41 = J, G2 = J, O|A)
P(O[N)

o

(i,5) =

1 . . .
= WP (qt—l = Z;Oi 17qt =% qt+1 =]
Qiy2 = j,07 |A) . )

It can be shown that (7) simplifies as follows: (proof in Ap-
pendix I)

a—1(7)aiibi(or)aijbj(0s41)a;;bj(0r12)Brra(d)
P(O|N) ®)

where (%) and (;(j) are forward and backward variables [39]

(i, 5) =

€))
(10)

Similarly, for p > 2 (proof in Appendix I), see (11), shown at
the bottom of the page.

Given a new trajectory (not used for training), candidate event
probability sequences are computed using each of the learned
HMMs so that there are as many candidate event probability
sequences as the number of trained HMMSs. Every candidate
event probability sequence is compared with those computed
during training phase using DTW (Section V-B) to handle slight
changes in time alignment [42].

The number of events detected in the event probability se-
quence depends on the scale p that is used in modeling. For
example, if p = 3, picking up an object has more number of
events [Fig. 3(a)]; for p = 8, it has one event when the ob-
ject is picked [Fig. 3(f)]. (Events are represented by dots). Sim-
ilarly, for opening the cabinet door [e.g., Fig. 1(a)], the number
of events is related to the choice of scale. Fig. 4 depicts events
detected at various scales (p = 3-8).
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Fig. 4. Events detected at different scales for trajectory of opening the cabinet
door. The scale parameter p varies from (a) p = 3 to (f) p = 8.

A. Parameter Selection

In this section, we discuss the choice of HMM model order
(i.e., number of states) N and scale parameter p. Researchers
have proposed several criteria ([39], [43]) to estimate the op-
timal model order N* for HMMs. We use the Bayesian informa-
tion criterion (BIC) in our experiments since it has been shown
to be a strongly consistent Markov order estimator [43]. The op-
timal value N* is given by

N* = i (Logl(V) + ™ 1og T 12
—arg]{;gﬁ/(og( )+ = log > (12)
where Logl is the negative log likelihood of the observed mo-
tion trajectory of length 7" and &y is the degrees of freedom
associated with the Nth-order model. We describe two choices
of scale parameter p: conditionally optimal p* (conditioned on
optimal N*) and jointly optimal (N, p)*.

1) Conditionally Optimal Scale Parameter p*: Using BIC,

the scale parameter can be chosen as follows:

p* = arg min (Ziipef(k, )+ P logT) . (13)
pEP 2

These two criteria for optimality, i.e., N = N* and p = p*
imply that both the representation of trajectory and the sequence
of events are optimal. This is a stronger requirement than finding
the optimal scale of event representation. Instead of the op-
timal pair (N*, p*). there may be a pair of values (IV,p)*
(N1, p1) that gives an optimal representation of event probabil-
ities, where /N1 may be a suboptimal order. This suggests a way
to modify the optimality criterion to focus on the event proba-
bility sequences.

2) Jointly Optimal Parameters (N, p)*: Events at certain key
frames are said to represent the activity. This does not require
the entire trajectory to be modeled optimally. So, we can confine
the penalized likelihood calculations to the key frames, or equiv-
alently to the sequence of event probabilities {e? ¢ € [1,T]}.
If the underlying HMM is ergodic, each event can be one of
N2 — N possible types as given by (6). If a left-to-right model
is assumed for the HMM, then the degrees of freedom for the
possible types of events is halved. The overall penalty is ce( N2 —
N) + p, where 0 < « < 1 with equality for ergodic HMM. For
a left-to-right model, « = (1/2). The event likelihood term as-
sociated with the pair (N, p) is ), €7. We discuss the behavior
of event probability sequences for different values of N and p.

3) Case 1: Low value of N: Since only a few events are
allowed to occur, we may not be able to obtain a sufficiently rich
sequence of events to represent the activity. For example, with

11 ()al bi(01—p12)bi(01—p3) - .

bi(00)aijb;(041)bj(0r42) - - bj(0r4p) s Bryp ()

Gi,9) =

POV (b
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a two-state HMM, only two types of events are allowed: (1, 2)
and (2, 1), where 1 and 2 are state indices. Even at moderate p
values, many activities may resemble each other leading to poor
recognition performance.

4) Case 2: Highvalue of N: This allows for several types of
events. Reliable estimation of event probabilities requires more
number of trajectories of the activity. The maximum value of
scale P has to be smaller than that of Case I because the tran-
sitions in (6) may not be computable for large p.

B. Matching Event Probability Sequences

Given a test sequence Og, we extract the motion trajectory
as before. Suppose there are R trajectories in the training set.
Then there are R sets of event probability sequences that are
computed using the respective HMMs for different values of
p. In general, the number of distinct HMMSs is less than the
number of training trajectories. Multiple trajectories may be as-
sociated with the same HMM, but each of the trajectories is as-
sociated with an event probability sequence. We compute R can-
didate event probability sequences using Oy as the observation
sequence in (5) and (6).

The candidate event probability sequences are compared with
the event probability sequences that were obtained during the
training phase (at the same scale) to compute a similarity score.
If there are P candidate event probability sequences computed
for different scale parameters, we obtain P similarity scores. A
direct frame-to-frame matching of event probability sequences
is not realistic since the events need not occur at exactly the same
time instants during different realizations of an activity. There
have to be allowances for missed or spurious events as well. We
use DTW for computing the similarity score since it allows for
nonlinear time normalization [42].

A brief outline of the DTW algorithm is given below;
a detailed explanation is available in [42]. The objective
of the algorithm is to align a test sequence indexed by
{z(t),t = 1,...,T1} with a reference sequence indexed by
{y(t),t = 1,...,T2} so that the distance between the two
sequences along the warping path {C(t),t = 1,...,T} is
minimized, subject to the following constraints.

* Endpoint constraint: The first and last points of the two

sequences are matched, ie., z(1) = 1, y(1) = 1, (T) =

Tl, y(T) = T2.
* Monotonicity constraint: To ensure temporal ordering
during time normalization, z(t — 1) < z(¢) and

y(t —1) < y(t).

* Local continuity constraint: To ensure that every point
along the test trajectory is used when comparing the
sequences, z(t) —z(t — 1) =land y(¢) —y(t — 1) < 2.

* Global path constraint: A band of size 2W is defined along
the diagonal, which constrains the warping region. Instead
of a diagonal band, a parallelogram band can also be used.

For every point within the warping region, the distance be-

tween the test and reference vectors is computed using a suit-
able norm (Euclidean, in our case). The cumulative distance is
computed using the above constraints. And the warping path is
found by backtracking such that the distance between sequences
is minimized.

599

VI. VIEW INVARIANCE IN REPRESENTATION

In this section, we describe view invariance of event proba-
bility sequences and develop constraints on the HMMs to allow
for view invariance. Motion trajectories on the image plane can
change because of relative motion between the camera and the
person performing an activity; or because of differences in style
of execution. The differences, however, are minimal at the time
of occurrence of events. For example, changes near the pick up
event is similar in different instances of the activity irrespec-
tive of initial position, speed and person performing the activity.
This is observed in surveillance scenarios such as an airport
tarmac. A luggage cart that is meeting a plane on arrival, can
enter scene in a wide area. The luggage transfer event occurs
when it stops near the plane. This has little variation though the
rest of the trajectory can vary drastically. So, event probability
sequences can be expected to resemble each other in spite of
differences in motion trajectories.

We describe a sufficient condition on the structure of HMMs
corresponding to different viewing directions to ensure that sim-
ilar events are observed across viewing directions. Assume that
an affine camera model is used to relate the 3-D trajectories to
the 2-D trajectories viewed from two different viewing points.
The state descriptions represent the spatial context in the image
plane. The transition matrix encodes the temporal evolution of
the activity. The key idea is that equivalence relations between
models corresponding to two different views can be captured by
event probability sequences.

Definition 1: A pair of HMMs is said to be conforming if
there exists a homeomorphism between the set of states of the
HMMs.

1) Proposition 1 (Sufficient Condition for View Invariance
of Event Probability Sequences): For event probability se-
quences to be invariant under changing viewing conditions,
the generating HMMs must be conforming. (Proof is given in
Appendix II).

To illustrate the above proposition, we consider a set of
straight-line trajectories generated by a person walking from
one part of the scene to some other fixed part. Assume that
the camera axis (z-axis) is perpendicular to the 3-D trajecto-
ries. Let the mean-subtracted trajectories be modeled using a
2-state HMM in which each state emits instantaneous positions
according to a Gaussian distribution. From (5), an event is
detected at the instant of switching from state 1 to 2. Then we
analyze the effect of changes in viewing direction.

Rotation by an angle # about the z-axis causes the 2-D
trajectory to rotate by 6 and the HMM parameters change
correspondingly. In particular, the mean values of the two
states also rotate by the same angle. The homeomorphism
between the two trajectory models across viewing directions
ensures that there exists a corresponding pairs of states (k, )
and (k1) such that nﬁp )(i,j) and nt(p )(5,5) respectively are
maximized; and the event probability sequence is preserved.
As the angle changes beyond 90°, the roles of the two states
are reversed. Rotation with respect to z-axis (tilt) does not
change the 2-D trajectory. Camera rotation with respect to
y-axis (pan) by an angle « causes a shortening of the 2-D
trajectory by a factor cos «. And the mean values of the two
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states move closer. As long as the two states are physically
separated in the 2-D image, the states remain distinct. This
ensures that O and é, as described in the proposition, are of
the same dimension. In practice, this means that straight-line
trajectories in one viewing direction do not collapse to a point
when viewed from most directions (except certain viewpoints).

A. Conforming HMMs

The above example is elaborated using synthetic data. The
effect of changing viewing direction can be analyzed by rotating
the observed (straight-line) trajectory in the image plane. It has
been shown that the apparent slope of the line varies directly
with the slope of the line in the 3-D world, assuming that the
trajectory is approximately parallel to the ground plane [44],
ie, tanf = (1/K)tan«, where 6 is the change in angle in
the 3-D world and « is the corresponding value in the image
plane; K depends on focal length and can be obtained by camera
calibration. The effect of changes in « is described next.

Two HMMs are trained using trajectories captured from
multiple viewing directions. From proposition 1, we require
a one-to-one correspondence between the states of the two
HMMs. A natural measure of similarity between the states
is the KL-divergence D(p|lq) [39] or the symmetric form
D(pllq) + D(ql||p), where p and ¢ represent the output distribu-
tions corresponding to the two states. The comparison yields a
real-valued matrix S of size N X N, where N is the number of
states in the two HMMs. The condition on conforming HMMs
can then be expressed as follows.

Definition 2: For every i € {1,2,...,N}, if 35 =
J(i) = argming _ nySi; such that j # j(i_), where
i- = {1,...,i — 1}, the HMMs that are compared in S are
conforming.

Viewing changes within a 126° hemisphere are simulated so
that the slope of the line in the image plane varies between
tana = —2 to tan a = 42. Straight line trajectories are sim-
ulated with several values of tan «, and contaminated by addi-
tive Gaussian noise. Trajectories are divided into three classes
for analysis. In the first case, trajectories are divided into two
classes; the spread of slopes in each class is 2, i.e., tana; €
[0,2], tanas € (0,—2]. In the second case, there are three
classes; the slope spread within each class is 1.5. In the third
case, there are four classes; the slope spread in each class is
1. In each of these cases, an HMM was trained using trajec-
tories from the respective classes. Let A,,,, denote the HMM,
where m = {1,2,3} corresponds to the three cases, and n
is the number of classes in the three cases. So, when the tra-
jectories are divided into two sets (m = 1), there are two
HMMs {11, A2} Similarly, for m = 3, there are four classes
and, therefore, four HMMs: {31, A32, As3, A34 }. For proposi-
tion 1 to hold, we need to check that for each m = {1,2,3},
HMMs J,,., taken pairwise, are conforming. This is verified
using definition 2. In all the cases, forz = 1,...,5, we found
that j = j(4) = 4.

The two sets of event probability sequences {m = 3,n = 1}
and {m = 3,n = 4} were used for training and the sets
{m = 3,n = 2} and {m = 3,n = 3} were used for testing
(Fig. 5). The event probability sequences of {rn = 3,n = 1}
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Fig.5. View invariance of event probability sequences using synthetic trajecto-
ries. Four viewing directions ranging from —65° and 4-65° are used to demon-
strate the invariance of location of events (i.e., local maxima in event probability
sequences). Event probabilities are plotted as a function of time.
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set matched closer to {m = 3,n = 2} than {m = 3,n = 4}.
Similarly, those of {m = 3,n = 3} matched closer to those of
{m = 3,n = 4}. These are plotted in Fig. 5 and superimposed
on event probability sequences of the training set to illustrate
the location of events remains invariant to changes in viewing
direction. Each plot in Fig. 5 depicts multiple event probability
sequences computed for four viewing directions (—65°, —30°,
65° and 30°) respectively. In Fig. 5(a) and (b), the HMM trained
using the —65° viewing direction is used to compute event prob-
abilities. In Fig. 5(c) and (d), the HMM corresponding to 65° is
used. So, the test directions in Fig. 5(b) and (c) are previously
unobserved. That the strength of event probability sequences
changes with viewing directions is not crucial since only the lo-
cations of events (local maxima in event probability sequences)
are matched during recognition.

VII. EXPERIMENTS

The utility of event probability sequences is demon-
strated using indoor and outdoor video sequences. The fol-
lowing datasets are used: the UCF human action dataset, the
CMU/Credo Intelligence Inc. MOCAP dataset and the TSA
airport tarmac surveillance dataset.

A. Activity Recognition

1) UCF Human Action Dataset: The UCF dataset (Fig. 1)
consists of common activities performed in an office environ-
ment. We divide the dataset into the following seven classes (the
number of samples per class is given in paranthesis): open door
(18), pick up (21), put down (17), close door (4), erase board
(4), pour water into cup (3), and pick up object and put down
elsewhere (8). The hand trajectories are obtained after initializa-
tion using a skin detection technique. The resulting trajectories
are smoothed out using anisotropic diffusion [45]. Detailed de-
scription of the dataset and preprocessing are available in [12].
Most of the activities last for a few seconds.

Training Conforming HMMs: Given trajectories of an ac-
tivity, we train an HMM using the Baum-Welch algorithm [39].
Each state is modeled using a single Gaussian distribution. A
fully connected state transition matrix is initialized, which has
equal probability of transition to any state. The output distribu-
tions for each state are initialized using the segmental k-means
algorithm. After reestimation, the matrix exhibited a left-to-
right structure.

If variations in viewing direction are small, multiple HMMs
are not required since the distribution of the states of the HMM
provides sufficient generalization across these views (except in
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case of accidental alignment). Variance of the output distribu-
tion tends to increase with increasing variations in viewing di-
rection. During training, we train multiple HMMs for an activity
if viewing conditions change significantly. By inspection, we
found that each of the following activities needed two HMMs:
open the cabinet door, pick up an object, put down an object,
whereas close the cabinet door, erase white board, pour water
into a cup, pick up an object and put it down elsewhere all had
one HMM per activity.

Event Probability Sequences for training data: Using the
learned HMM, we compute an event probability sequence for
every trajectory using (5) and (6). The event probability se-
quence along with the HMM forms a signature of the activity.
Events detected at different values of scale parameter are illus-
trated in Figs. 3 and 4.

Matching: Given an new trajectory z, we compute a set
of candidate event probability sequences e;’?(k,l) for every
learned HMM using HMM )\, for ¢ = 1,...,G, where G
is the number of HMMs obtained during training. The DTW
algorithm is used to compare the candidate event sequences
with those obtained during training (Section V-B). We compute
candidate event probability sequences at 6 scales for scale pa-
rameter values p = 3 to p = 8. They are matched with training
event probability sequences, at the corresponding scale and 6
similarity scores are obtained. Coarse-to-fine matching is used
to compute the overall similarity score (Section V-B). Fig. 11
shows recognition rates and comparison to those in [12].

Analysis of results: We illustrate properties of the recognition
scheme using a few examples.

* Context insensitivity: Fig. 7 shows trajectories and event
probability sequences of two pick up activities that differ
in context. Though HMMs for the two cases—picking up
object from a desk and picking up an umbrella from a cab-
inet—are different, both their event sequences show peaks
surrounding the instant when the pick up event occurs.

* Quasi view invariance: As long as viewing directions do
not create singularities, events detected remain insensitive
to the viewing direction. Fig. 8 shows differences in ap-
pearance due to differing position of the person opening
the cabinet. All the four trajectories were correctly recog-
nized.

» Spurious events: Stylistic variations or errors in tracking
may cause spurious events (Fig. 6). Event sequences are
correctly recognized because of the DTW algorithm used
in matching.

* Subactivities: Composite activities may have subactivities
embedded within them. Depending on the application, we
may wish to recognize subactivities separately; or the com-
posite activity. Fig. 9 illustrates the former. The top three
matches were subactivities, and the fourth match was the
correct composite activity. In Fig. 10, the composite ac-
tivity is recognized correctly in the top first and second
matches. The next three matches are the subactivities.

Comparison with the UCF method [12]: Rao et al. treat ac-
tivities as a sequence of dynamic instants [12], which are points
of maximum curvature along the trajectory. Unlike [12], events
in e; are robust to changes in curvature. For instance, pick up
umbrella while twisting the hand is not recognized in [12] be-
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Fig. 6. Invariance to spurious events: (a) hand trajectory for closing the door,
(c) its event probability sequence, (b) closing the door along with random mo-
tion. This generates a spurious peak in the event probability sequence, shown in
(d). The activity is recognized correctly in spite of the spurious peak.
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Fig. 7. (a) Hand trajectory and (b) its event probability sequences for picking
up object from desk with p = 5; (c) and (d) for pick up an umbrella from

cabinet. Both instances of pick up activity have two dominant events.
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Fig. 8. Quasi-view Invariance: Different samples of opening the cabinet door.
The appearance of the trajectory depends on the location of the person per-
forming the activity. (a)—(c) Hand trajectories; (d)—(f) corresponding event prob-
abilities.
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Fig. 9. Recognizing subactivities: (a) hand trajectory for pick up object from
desk and put it on desk; (c) its event probability. (b) Pick up object trajectory
and (d) the event sequence for the top match using (a) as test sequence.
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Fig. 10. Recognizing composite activities: (a) hand trajectory for picking up
an object from the desk and putting it back on the desk; (c) corresponding
event probability. (b) Another sample of the same composite activity. It was
the top match when (a) as test sequence. (d) Event probability sequence com-
puted during the testing phase.

Event Probabity
Event Probabity

cause of excessive peaks in the curvature. The event probability
sequences are correctly matched. Trajectories without finite cur-
vature cannot be recognized by dynamic instants. This is not a
limitation in the proposed method. A comparison of recognition
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Fig. 11. (a) Recognition rate for UCF database. Dotted line: UCF results [12].
Dashed line: Overall similarity obtained by integrating P similarity scores from
coarse-to-fine scales. Gray bar: Conditionally optimal p*. Black bar: Jointly
optimal (N, p)*. (b) ROC curves for different activities in the conditionally
optimal case.
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rates is given in Fig. 11. It demonstrates that a jointly optimal
choice of parameters (N, p) improves recognition performance.

2) Motion Capture (MOCAP) Dataset: The MOCAP dataset
available from Credo Interactive Inc. and CMU consists of
motion capture data of subjects performing different activities
including walking, jogging, sitting, and crawling. The system
tracks 53 joint locations and stores the trajectories in bvh
format. Since not all the 53 points are relevant to the types
of activity that we are interested in, we use only a few of the
trajectories. For example, trajectories of fingers and toes may
not be as informative as the location of the arms, legs or hip for
activities such as walking or sitting. We choose the following
five such regions to demonstrate activity classification: head,
neck, shoulders, hands and feet. Within each region, multiple
points are tracked. The trajectory of each region is computed
using the mean of points in the region. Averaging over a local
region also helps in dealing with limited availability of data.

The dataset contains nine activities and 75 sets of trajecto-
ries. Some trajectories (e.g., walking) consist of multiple cycles
of the activity. The sequence is divided into walking cycles and
each half-cycle is treated as an observation. Half-cycle refers to
the part of the walking cycle starting from the standing pose,
right (or left) leg forward, reaching the swing pose, and with-
drawing the right (or left) leg to the standing pose.

Training event probability sequences: The dataset is di-
vided into two halves for training and testing. Using the training
set, one HMM is learned per activity. A four-state HMM with
single Gaussian output distribution is used. Event probability
sequences are computed for every trajectory (Section IV) using
the learned HMM for the activity. This forms the training set
of event probability sequences. Fig. 12 shows event probability
sequences for sit, blind walk, and normal walk.
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Fig. 12. MOCAP dataset: Examples of event probability sequences. Each
figure has multiple event sequences corresponding to multiple observations.
(a) Sit, (b) blind walk, and (c), (d) two instances of normal walk.

TABLE I
MOCAP DATASET: CLOSEST-MATCHING ACTIVITIES BASED ON COMPARING
EVENT PROBABILITY SEQUENCES. ALL ACTIVITIES WERE CORRECTLY
RECOGNIZED. THE SECOND BEST, THIRD BEST, AND
FOURTH BEST MATCHES, RESPECTIVELY

Test activity 20 best | 3™ best | 4™ best
match match match
Blind-walk (BW) EwW NwW Jog
Prowl-walk (PW) NW EW Jog
Broom Broom?2 EW NW
Crawl PW Jog NW
Exaggerated walk (EW) NW Jog BW
Jog NW PW EW
Sit Sit1 Jog PW
Normal walk (NW) SwW Jog PW
Sad walk (SW) NW Jog Jog

Comparing test data: Given a test sequence, we compute
the same number of candidate event probability sequences as
the number of learned HMMs. The scale parameter is fixed at
p = 3. Increasing the value of p from p = 4 to p = 8 did
not produce significant changes in the events detected. Event
probability sequences are compared with those in the training
set using the DTW algorithm. All the activities were correctly
recognized. Table I summarizes activities that were the closest
matches following the top match. We observe that the different
types of walking resemble each other whereas the similarity
scores corresponding to sitting, sweeping with a broom are sig-
nificantly larger.

View invariance: We tested view invariance of event prob-
ability sequences for two activities across four viewing direc-
tions within a 120° hemisphere (60° on either side of reference
direction). We chose walking and sweeping with a broom as
the two activities. The trajectories for the different test condi-
tions were synthetically generated from the 3-D motion capture
data. The classification rates are summarized in Table II. The
training data in all four test viewing directions was the refer-
ence « = 3 = v = 0. The event probability sequences for the
test sequences are generated using the trained HMM for the ref-
erence direction. The classification rates (Table II) demonstrate
robustness of event probability sequences to viewing direction.

B. Anomalous Trajectory Detection

The TSA airport tarmac surveillance dataset is used to
demonstrate the usefulness of event probability sequences for
anomalous activity detection.

1) TSA Airport Tarmac Surveillance Dataset: The TSA
dataset (Fig. 13) consists of surveillance videos of an airport
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TABLE II
MOCAP DATASET: EFFECT OF CHANGING VIEWING DIRECTION:
CLASSIFICATION RATE FOR DISTINGUISHING BETWEEN TwO
ACTIVITIES—WALKING, SWEEPING. T.V.D. = TEST DATA VIEWING
DIRECTION. ALL FOUR CASES ARE COMPARED TO THE
REFERENCE (0, 0, 0) VIEWING DIRECTION

T.VD.#1 | TVD.#2 | T.VD. #3 | T.VD. #4
Walk 100 94 91 80
Sweep 100 98 95 95

(@) ' )

Fig. 13. (a) Snapshot of TSA dataset. (b) Simulated anomaly—person deviates
from virtual path between plane and gate, and walks toward fuel truck.

tarmac captured using a stationary camera that operates at ap-
proximately 30 frames per second. The image size is 320 x 240.
It contains approximately 230000 frames or 120 minutes of
data. Activities include movement of ground crew personnel,
vehicles, planes and passengers. The trajectories of vehicles,
passengers and luggage carts are extracted as follows.

The background is modeled using a Gaussian distribution at
every pixel. Ten consecutive frames are used to compute the
background model and moving objects are detected. The KLT
tracker, which was originally developed as an image registration
method, was used to obtain motion trajectories [46]. The back-
ground model is updated every 100 frames.

Event probability sequences for normal activities: We
trained HMMs for three activities that occur around the plane:
passengers embarking, passengers disembarking and luggage
cart leaving the plane. During the training phase, HMM pa-
rameters are estimated using the Baum-Welch algorithm and
event probability sequences are computed using the learned
HMMs. Fig. 15 shows event probability sequences at different
scale parameters for passengers disembarking from the airplane
and proceeding to the gate. We observe that fewer number of
events are detected at coarser scales as expected. At a particular
scale, we may think of the events as reflecting the progress
of a passenger as he/she walks from the airplane to the gate.
Events partition the path into regions. If we use a left-to-right
HMM model, these regions roughly correspond to the states
of the HMM at a sufficiently fine scale. In other words, at the
appropriate scale p, we may expect N — 1 events, where N is
the number of states at regularly spaced intervals. Given a test
trajectory, we use each of the three HMMs (for the three activ-
ities) and obtain three candidate event probability sequences.
We compare these candidates with the trained event sequences
using DTW. All activities were correctly recognized. Not sur-
prisingly, in this limited setting, the HMM itself (without event
probability sequences) is able to correctly classify activities.
The utility of event probability sequences lies in anomaly
detection.

Anomaly detection using event probability sequences:
Consider normal trajectories of passengers disembarking from
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Fig. 14. Negative log likelihood for normal (“2”) and anomalous (“0”) in-
stances of people walking from plane to gate in the TSA airport surveillance
dataset. Values on the left end of the scale are more likely to be generated by
the learned HMM.
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Fig. 15. Event probability sequence at different scales for normal trajectories
of people deplaning. At coarse scales, we see fewer events. The scale parameter
increases from (a)—(d).

the plane and walking toward the gate [Fig. 13(a)]. Deviations
from the normal path taken by passengers may be considered
anomalies. We simulate a spatial anomaly because there are
no anomalies in the dataset [Fig. 13(b)]. The person violates
the normal path, and walks toward the fuel truck [lower left
corner of Fig. 13(b)]. The extent of deviation is controlled by
a parameter o. As the value of ¢ increases, the V-shape of the
trajectory in Fig. 13(b) deepens, and the deviation increases.

Using the set of normal trajectories, a five-state HMM is
trained. Fig. 14 shows a plot of negative log-likelihood for
different normal (marked with a cross) and anomalous (marked
with a circle) trajectories. As the value increases along the
x-axis, the trajectories are less likely to be generated by the
trained HMM. Using this, it may be tempting to find a threshold
above which trajectories are declared anomalous. This is not
feasible as illustrated in Fig. 14. Some anomalous trajectories
have higher likelihood (more left on the scale) than normal
trajectories. The HMM likelihood ignores anomalies that can
be subtle deviations from normal trajectories. Moreover, the
deviations can be confined to a part of the activity. These
deviations that cause anomalies can be detected using event
probability sequences.

Given a new trajectory, event probabilities are computed
using the learned HMM. Anomalies are reflected in the se-
quence of events detected, even if they are present in a part
of the trajectory. This is so because the method does not
accumulate errors at all time instants, but only based on the
times when events occur or when an event was expected to
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Fig. 16. (a)—(c) Event probabilities for three normal trajectories of people de-
planing and walking toward the terminal. There are four dominant events in the
normal trajectories, irrespective of the exact paths that people follow. (d)—(f)
Event probability sequences for deviating trajectories with increasing extents of
deviation o2 = 2, 4, 16 respectively.

occur as seen in the training data. To declare an anomaly, we
use both the number of events detected (spurious and missing
events are both anomalies) as well the location of the detected
events. Fig. 16(d)—(f) shows the event probability sequences for
a person who deviates from the normal path and later rejoins
the virtual path. Fig. 16(a)—(c) shows three such sequences. We
observe that the latter two dominant event probability peaks
resemble the latter half of the normal event sequences, whereas
a missing event in the first half indicates an anomaly.

Measuring relative speed using event probability se-
quence: The relative strength of events is a measure of walking
speed of the passenger. Consider the event probability sequence
at scale p. The event variable 7 (4, j) measures the probability
of persisting in state ¢ for p frames, transitioning to state j at
time ¢ and persisting in state j for p frames conditioned on the
observed data. A faster moving person is likely to persist to a
lesser extent in either state ¢ or 5. Consequently, the strength of
the event is likely to be less compared to a passenger walking at
a slower speed. Whereas a passenger who stops at an interme-
diate point will not produce an event since the necessary state
transition does not occur. The relative strength of the events
in the event probability sequence bears an inverse relation to
speed. In Fig. 15(a) and (b), we see that the second event is
larger than the rest. This means that initially, as the passenger
started walking from the plane, he/she was walking slowly.
Gradually, as the passenger approached the terminal, he/she
picks up speed as the latter event probabilities show.

VIII. SUMMARY AND FUTURE WORK

A sequence of instantaneous events is said to represent an
activity. It provides a compact model for recognizing activi-
ties and detecting anomalies. We formulate the event detection
problem within the HMM framework and compute event proba-
bility sequences that contain the probability of event occurrence
as a function of time. Event probability sequences were demon-
strated to be robust to changes in viewing direction.

The event probability is based on a simple step edge
with a certain support region, i.e., for p = 3 we have an
event if the posterior probability of the state sequence, say
Q = {2,2,2,1,1,1}, attains a local maximum. We categorize
events based on the pair of states (2,1) involved in the transition,
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the region of support and the probability of the transition. This
can be modified to include more complex patterns so that the
events of various types can be detected; for example, an event
of the type @ = {2,1,2,1,2,1}. Instead of assuming a family
of events, discovering event patterns using training data is a
challenging problem.

APPENDIX |

The calculations to derive event probability variables in (8)
and (11) are shown here. For the p = 2 case, we show the
algebraic manipulations needed to derive (8). The proof for
(11) is by induction. The calculations use Bayes rule, Markov
property of states and conditional independence of data given
the current state of the HMM. For compactness, let qt2 = i rep-
resent the state sequence {q;, =%, qt,+1 = %,-..,qt, = i }. Let
oif denote the observation sequence {0t,,0¢,41,-..,0t,}-
Let b; (o)) denote the product of output probabilities
bi(0,)bi (04, 41) - - - bi(0y, ). Let V) = P(O|N)nP (i, ).

For the base case p = 2, using (7), we have
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=o—1(1)ai Plorqr =i, A)

@it =J,ofle =1, )

(o
(
P
(
P

= 1(L)an i(00)P (a117 = j. ofalar = i, A)
()aiibi(or) P(qe+1 = jlge = i, A)
P
(
P
(

=01
Q42 = J, 0111 lqr41 = 4, A)
= ay—1(4)a;ibi(or)ai; P(or41|qr+1 = j, A)
Gr2 = J,0t1algr1 = 4, A)
=ay_1(%)a;ibi(04)ai;jbj(0441)
(q 2 = ]|(Jt+1 =7, )\)P (0$+2|Qt+2 = j7)\)
= O— 1(l)an bi(ot)aijb;(0r41)aj;

P(0tt2lges2 = 3. A)P (o 1 alar2 = 4, A)
= 1( 1)aiibi(04)aijb;(0141)a;bj(0142)

X Bry2(4)-

Rearranging (15), we get (8). To extend the above calculation

15)

for m@, p > 2, (14) is written as follows:
v@ =p (qt—1 =i, 0} 1|)\)
X P(q=1i,q{7 = j, 0y a1 =1,
x P (0f43lqr42 = j, \) (16)
=o—1(1) NP B2 () (17)
where N?) = p (qt = L,qt+1 = j,0 g1 =1, /\)
Comparing  (15) and  (17), N® =

aiibi(0t)aijbj(0111)a;ib;j(0t42).
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Assume that (11) is true for some p = k, i.e.,
vk =p (qg—k—i-l =1 qtﬂ =J,01 |)\)
=P (qr—i41 = 1,0 *THA) N

X P (0$+k+1|qt+k =Js /\)

= k41 (1)) NP By () (18)
where N =Pl gt o =i,qTF =
Ot+k | =1 /\
t—k+2|Tt—k+1 = 1
aji ' bi (0f_ji2) aijb; (Oiff) . (19)

To prove (11), we have to show that V() — V(+1D Consider

thecasep = k + 1

VD = P (gf_y, = 7q§ff+l =j,01|\)
:P(qt,k i, 0} k|)\)
x P (Qt kbl =1 Qti:ILchl
X P (0t+k+2|qt+k+1 = J»)\)
= Olt—k(i)N(k+1)ﬂt+k+1(j)
NG+ = P(qt—k+1 = 1, 04— g1|@r—r = 0, A)
x P (qffk+2 = Lqiilf =J; O;t2+2|qt—k+1 = i’)‘)
X P(qesk+1 = Js Ottrt1|qesn = 5, A) - (20)

G0 i ilae k=i, A)

Using (19) to substitute for the second term in (20) and ex-
panding the first and third terms of (20), we get

NG+D :P(QT—k-l-l = ilg—x =14, A)

P(0r—kt1l@t—k+1 = i, AN
P(qiik+1 = Jlae+r =5, A)
P(0ot4k+1|qt+r+1 = J, A)

(Ot—k+4)1V(k)ajjb'(0r+k+1)

= az’{bi (0§—k+1) aijb; (Oii’fﬂ) Gjj-

- a”

21

From (21), V(*) — V(#+1) and the proof is complete.

APPENDIX I

Proposition 1 (Sufficient Condition for Event Sequence to
be View Invariant): For the event probability sequences to be
invariant under changing viewing conditions, the associated
HMMs must be conforming.

Proof: The basic idea of the proof is that for every event
of type (k;, ;) detected for a viewing direction, there must be
a corresponding event of type (k;,1;) when viewed from a dif-
ferent direction.

Let A = (A, B,II) be an HMM that generates output symbols
O, and X () the associated topological space. The structure of
the probability transition matrix A and the state distributions B
reflect the topology of the HMM. Let f : R™ — R™ be an affine
transformation of O. We can construct another HMM 5\, with
the same number of states, that generates O = f (O) such that
F : X(\) — X(}) is a homeomorphism.

605

1) By construction, the two HMMs have the same topology
(number of states, model structure etc). Since the two sets of
observation O and O are related by a nontrivial affine map, we
may write P(O € S/\) = P(f(O) € S/)) for some open S.
So, the map F" is surjective. If O1, O € X () are both mapped
to O € X()) under F, choose the observation sequence that is
generated by the optimal state sequence. So, the mapping F' is
made injective. 2) Every open set U in X (5\) has an open set
F~Y(U) € X()) as long as the dimension of O and O are the
same. Every open ball in X () is transformed to an open ball
in X ()) as long as the dimension of O and O = f(O) are the
same. It follows that F' is continuous. 3) By interchanging the
position of (O, A) and (O, X), we see that F~! is continuous.
From 1)-3), F is a homeomorphism. We see that these assump-
tions may break down at orthogonal viewing directions.
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