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Abstract. The maximum entropy approach has been applied to several problems including spectrum estimation, image 
reconstruction, etc. In this paper we use this approach to address the interpolation problem. Specifically, we address the 
problem of recovery of the missing samples of a signal from a few of its randomly distributed samples. We also discuss the 
appropriateness of the maximum entropy method for different distributions of the known samples. Finally, we extend this 
method to handle additional information about the signal, if available. 

Zusammenfamnng. Der Maximum-Entropie-Ansatz ist auf verschiedenartige Probleme angewandt worden wie etwa die 
Spektralsch/itzung, die Bildrekonstruktion, usw. Im folgenden verwenden wir diesen Ansatz, um das Interpolationsproblem 
anzugehen. Insbesondere wenden wir uns der Aufgabe zu, die fehlenden Abtastwerte eines Signals aus wenigen, in zufiilligen 
Punkten gegebenen Werten wiederzufinden. Wir diskutieren auch die Eignung des Maximum-Entropie-Ansatzes bei unter- 
schiedlichen Verteilungen der bekannten Abtastwerte. SchlieBlich dehnen wir dieses Verfahren aus auf die Ausniitzung 
zus/itzlicher, unter Umst~inden verfdgbarer Informationen fiber das Signal. 

R6sum6. Le principe du maximum d'entropie a 6t6 appliqu6 /t divers probl6mes parmi lesquels I'estimation spectrale, la 
reconstruction d'image, etc. Dans cet article, cette approche est utilis6e pour rinterpolation. On 6tudie plus pr6cis6ment le 
probl6me de la r6cup6ration de points manquants d'un signal /t partir de quelques 6chantillons distribu6s al6atoirement. 
L'opportunit6 de la m6thode du maximum d'entropie pour diverses distributions des 6chantillons connus est 6galement 
discut6e. Finalement, cette approche est 6tendue pour exploiter d'6ventuelles informations suppi6mentaires sur le signal. 
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1. Introduction 

The p rob lem of  recovery of  a signal f rom part ial  

i n fo rma t ion  arises in several s i tuat ions.  In  noisy 

e n v i r o n m e n t  as in radar,  or  dur ing  measurement s  

taken  us ing faulty ins t ruments ,  the signal may be 

so cor rupted  that  some of  its values may have to 

be discarded.  The data  here consists of  a few 

received signal values that  are reliable. Usual ly ,  in 

such s i tuat ions ,  some a priori  i n fo rma t ion  is also 

available.  For  example ,  we have the band l im i t ed  
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signal in te rpo la t ion  p rob lem [ 11 ] (with b a n d w i d t h  

known) ,  the recons t ruc t ion  from phase p rob lem 

[12] (dura t ion  of  the signal  known) ,  etc. In  this 

paper ,  however,  we are interested in the recovery 

of  a signal f rom only  a few of  its r andomly  dis- 

t r ibuted  samples.  No  a priori  i n fo rmat ion  is 

a s sumed  to be avai lable.  In  other  words,  we 

address  the t radi t ional  in te rpola t ion  problem.  

In te rpo la t ion  has been  a t tempted  using several 

different approaches .  These inc lude  po lynomia l  

in te rpo la t ion  schemes (such as Lagrangian ,  spl in  e, 

etc.), n o n u n i f o r m  sampl ing  methods  [13] and  

mode l -based  approaches  [5]. All these methods  

make some as sumpt ion  abou t  ei ther the n u m b e r  

of  samples  k n o w n  (see [5]), or  the d is t r ibut ion  of  
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these samples (such as a Poisson distribution as 
in [13]). This phenomenon is also observed in the 
maximum entropy spectrum estimation methods 
[10]. Since these methods do not explicitly incor- 

porate the frequency information that may be pres- 
ent in the given data (i.e., in the known samples) 
during interpolation, they often cause a low 
frequency bias. Also, since the recovery of  the 
missing samples is not possible with the given 
information (it is an underdetermined problem), 
these methods try to give only an estimate of  the 
solution. 

In this paper we consider yet another method 
of  obtaining an estimate of  the signal based on the 
given data. We look for an estimate that is not only 
consistent with all the available data but is also 
maximally noncommittal about the missing infor- 
mation. In other words, we look for a maximum 
entropy approach to interpolation. The concept of  
maximising the entropy to get a solution is not 
new. The rationale behind such a problem solving 
methodology was given by Jaynes [6]. It has been 
applied to several areas including spectrum estima- 
tion [3], image reconstruction [4], etc. 

The general strategy behind applying the 
maximum entropy method has been as follows. 
The procedure begins with the building of  a statis- 
tical model of  the process at hand. A measure of  
entropy is then chosen. This measure indicates the 
randomness or uncertainty in the statistical 
environment. All a priori knowledge about the 
problem is then expressed as constraints. The 
entropy expression is then combined with the con- 
straints using the Lagrangian multiplier method. 
This combined function, in effect, represents our 
total awareness of  the problem, since it expresses 
the known information as well as our ignorance 
about the unknown information. This is then 
maximised with respect to the unknown variables 
of  the system to obtain a solution for these vari- 
ables. 

Thus any new application of  the maximum 
entropy (ME) method entails doing the above 
operations for the given problem domain. In this 
paper we show how the interpolation problem can 
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be addressed using the above formulation. The 
paper is organized as follows. In Section 2 we 
obtain an ME estimate for the signal. In Section 
3 we present an algorithm for obtaining such an 

estimate. We discuss implementation aspects in 
Section 4 and present some experimental results. 
In Section 5 we discuss the role of  the known signal 
samples in generating the ME estimate. Finally, in 
Section 6 we extend the method to include other 
a priori information that may be available. 

2. Interpolation using ME method 

In interpolation, the missing samples that are in 
between the known samples of  a deterministic 
signal are to be recovered. Therefore the concept 
of  a most random estimate for such samples (using 
the ME principle) seems counterintuitive. 
However, the following stochastic model for this 
deterministic process justifies the ME approach: 

For any given distribution of  the known samples, 
several signals are possible that have these known 
samples, but have completely different values at 
the locations of  the unknown samples. All these 
signals then constitute the sample functions of  a 
random process. In this process, a probability Pu 
is associated with a signal sample at instant i, to 
denote the likelihood of  it taking a value xj, where 
xj is any real number. The desired signal is thus 
one of  a number of  possible signals in this random 
process. Since it is difficult to choose it exactly, 
one way is to settle for an estimate of the desired 
signal. This estimate could be such that it agrees 
with all the known sample values, and at the same 
time remains maximally noncommittal with regard 
to the unknown values. To obtain such an estimate, 
the uncertainty about the unknown values should 
first be expressed in a measure. One such uncer- 
tainty measure is the Shannon's measure: the 
entropy. It is given as 

H = - f;p(u) log p(u) du, (1) 
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where p(u)  is the probability distribution of  the 
signal amplitude. Since p(u)  is not available, we 
circumvent this difficulty by relying on a difference 
in entropy rather than the absolute entropy. This 
approach is similar to the one used for spectrum 

estimation [1]. Specifically, we use the linear filter 
method of  [1]. For this, we assume that the signal 
spectrum decays after some frequency tr (this is 
the usual assumption made while selecting the 
sampling rate). Then we can regard the signal 
spectrum to be bandlimited to tr. That is 

s ( , , , )  = 0 fo r  Io~1> ~. (2) 

Note that we are not considering the case of  
bandlimitedness as a priori information here. In 

that case the exact location and extent of  the band 
would be known. This case will be considered later 
in Section 6. Also, note here that by signal spectrum 
we mean the Fourier transform of  the signal and 

not its power spectrum. 
Using the above information, and the linear filter 

method, the output entropy rate Hs can be 
expressed in terms of  the input entropy rate Hg as 
(for details see [9]) 

Hs = Hs+  ~ l  f ~  log IS(o,)l de0. (3) 
2a  J_~ 

Even though we now have the entropy rate, it 
does not matter since maximising the entropy rate 
is equivalent to maximising the entropy itself (for 
a fixed sample size). The difference between the 
input and output entropy rates is given by 

A H  = ~---~ log Is( ,)l do,. (4) 
o" 

For the output  s(t)  to have as great an entropy 
as possible, AH, the so-called entropy gain of  the 
filter, should be made as large as possible. There- 
fore we choose AH as our  entropy measure I. 

Expressing the entropy in terms of  the DFT 
samples of  the signal spectrum, we have 

M 

I = A H = K m  ~. loglS(k)],  (5) 
k = - - M  

19 

where K~ =lr/Ntr ,  M =  [Ntr/21rJ, N is the num- 
ber of  D F T  points and S(k )  are the DFT samples 
of  S(oJ). 

At this point we notice that the entropy 
expression involves the signal spectrum rather than 
the signal itself. But this again does not matter 
since recovering the Fourier spectrum of  the signal 
is equivalent to recovering the signal itself. 

The constraints in the interpolation process are 
provided by the known signal samples. They are 
related to the signal's spectrum as 

Qi:K2 Y. S ( k ) e x p  - s ( t i ) = 0 ,  
k = - - M  

(6) 

where 1 ~ i ~ L, K2 = 1/ N and s( ti) are the known 
signal samples at instants ti. Here L samples are 
assumed to be known. 

We now use the Lagrangian multiplier method 
to solve for S(k) .  I in (5) can be expressed as a 
function of  2 M +  1 variables S(k)  as 

I = ~ ( S ( - M ) ,  . . . ,  S ( M ) ) .  (7) 

Note that both I and Oi are real functions of  
the complex variables S(k) .  Now form a function 
gt given by 

L 

r F ( S ( - M ) , . . . ,  S ( M ) )  = I +  Z A,Q,, (8) 
i = 1  

where A~ are the Lagrangian multipliers. Maximis- 
ing gt with respect to the variables 
S ( - M ) , .  . . ,  S ( M )  yields 

K3 
S ( k ) =  

Y PV-ff-) - ex /j2~rhk'~' (9) 

i = 1  

where -M<~ k<~ M and K 3 = Kt /K2 .  
Using (6) and (9), we get 

oxo( _9 
s ( t , ) = - r ,  Z , (10) 

where 1 ~< p <~ L. 
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Equation (10) is a set of simultaneous nonlinear 
equations in A~. The A~s solved using (10) can then 
be substituted in (9) to get S(k).  Finally, by per- 
forming the inverse DFT, we can recover all the 
samples of the ME estimate as 

s ( n ) = - K ,  ~. , (11) 
k=-M ,=1 ~" A' exp ( ~  k) 

where 0 ~< n <~ N -  1. 

3. Algorithm for obtaining the MEM 
signal estimate 

S.T. Fathima, B. Yegnanarayana / A maximum entropy approach to interpolation 

The algorithm to obtain the maximum entropy 
estimate of the signal when some of its randomly 
distributed samples are known, is given below. It 
essentially uses Broyden's method for solving non- 
linear simultaneous equations [2] extending it to 
handle complex variables, since the langrangian 
multipliers will in general be complex. 

1. Construct a signal yo(n) as follows: 

, , [s(n) ,  n ~ l T a n d O < ~ n < ~ N - 1 ,  
Y° tn)=lO,  n ~ l T a n d O < ~ n < ~ N - 1 .  (i2) 

2. Compute the Fourier transform of yo(n), as 

go(k). 
3. Take L samples of Yo(k). 
4. Solve for the initial estimates of A ° using the 

following set of linear equations obtained from 
the L samples of Yo(k) chosen in Step 3 as 

 ooxp(  9 
,ffil = -  Yo(k)" (13) 

The above equations can be solved using 
Gaussian elimination. 

5. Compute A0 the Jacobian [ofdaa°], 1 ~< i,j <~ L, 
where 

f ~ = s ( t , ) + K ,  ~. . . (14) 

Iff i l  
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6. Compute Ko = Ao ~. 
7. Obtain the vector F(A  °) (where A = [Ai]) as 

F ( A ° ) = s ( t p ) + K ,  Y~ 

(15) 

for l<~p<~L. 
8. Set m = 1. 
9. Update the Lagrangian multiplier vector A m 

as follows: 

A m+l = A m - K s  * F(Am). (16) 

10. Compute the difference vector AA as 

AA = A m+l - A  m. (17) 

11. Compute the vector F(A  re+l) as in Step 7. 
12. Compute the difference vector AF as 

A F  = F(A  re+l) - F (A  m). (18) 

13. Update the inverse of the Jacobian Ks as 

[Ks  * A F - A A ]  * (AA)T* Km 
Km+I = Km (AA)T* K m * A F  

(19) 

14. Repeat Steps 9 through 13 until convergence 
is reached (i.e., F ( A m ) ~ o ) .  In other words, 
the absolute value of each element of the vector 
F(A  m) should be 0. 

From the above description of the algorithm, it 
is evident that it takes O(L 3) operations for Step 
6, while for Steps 9 through 13, it takes only O(L 2) 
operations per iteration. 

We now discuss some issues that arise in solving 
for the ME estimate using (10). The algorithm 
given above uses an iterative method to solve (10). 
As we know, such methods require good initial 
estimates (here for the Ai values) to converge to a 
solution. In general, for a large number of con- 
straints (and hence a large number of Ajs), it 
becomes difficult to choose good initial estimates. 
Several ad hoc methods are used for this purpose 
(see for example [7], where the problem of choos- 
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ing the initial estimates for ;ti and the autocorrela- 1.s 

tion values is discussed for the 2D power  spectrum 
estimation problem).  We have chosen to find the 1.~ 
initial estimate from the given data, and any a 

priori information that may be available, o.s 
Specifically, we use the Fourier spectrum of  the 
data to obtain the initial estimates. This is justified o.o 
due to the following observation. It has been found 
that even with as many  as 90% of  the signal samples 

missing, the data spectrum, in most cases, does 

indicate the true spectrum, especially the peaks in 1.s, 

the signal's spectrum [ 11 ]. Therefore,  we make use 
of  L samples of  the data spectrum S ( k )  from 1.0- 
k = - ½ L +  1 to ½L to solve for the L Ai values using 

(9). However,  other choices of  these L spectrum o . s ,  
samples are also possible. For example,  L samples 
can be chosen around the peaks in the data i 
spectrum, o.0 

Using the data spectrum has also another  advan- 

tage. It allows any frequency information inherent 1.s 
in the given data to be incorporated in the interpo- 
lation procedure.  This together with the fact that 

1.o 
this procedure gives a maximally noncommittal  

estimate is the reason why the resulting interpo- 
o.s 

lated signal does not suffer from low frequency 
bias. 

O.O 
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4. Results  o 

We now illustrate the ME method by an 
example.  Consider  the low pass signal shown in 
Fig. l(a).  The bandwidth of  this signal is given in 

Table 1. Knowing tr and N, the number  of  D F T  
points, the constants M, K , ,  K2, K3 can be evalu- 

re) tO 
J I 

iS  0 
Time In Sampleg Frequency In Samples 

Fig. 1. Illustration of signal reconstruction from partial data 
using the maximum entropy method--Randomly distributed 
samples case. (a) Original signal. (b) Spectrum of the original 
signal. (c) Given partial data. (d) Spectrum of the partial data. 
(e) Reconstructed signal after 8 iterations. (f) Spectrum of the 
reconstructed signal. 

Table 1 
Parameters used for the illustration 

band- DFT band signal known K~ K 2 K 3 
width points extent length samples 
cr N M L 

0.375 ~r 16 ±3 16 5 0.166 0.0625 2.67 
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ated using their definitions given in (5), (6) and 
(9), respectively. These parameters are also indi- 
cated in Table 1. The signal duration is assumed 
to be 16 samples. Five signal samples are available 
as the known data. Figure l(c) shows a possible 
known sample distribution. The reconstructed sig- 
nal using the ME method, obtained after 8 iter- 
ations is shown in Fig. l(e). Its spectrum is shown 
in Fig. l(f). 

Figure 2(a) shows another data distribution of 
the same signal of  Fig. l(a). This is an instance of  
the extrapolation problem. The reconstructed sig- 
nal obtained after 10 iterations is shown in Fig. 
2(c). 

The above two examples were for the case where 
the signal was even, that is, the Fourier transform 
was real. Figure 3 demonstrates the effectiveness 
of the method for the case where the Fourier trans- 
form is complex. The parameters used are again 

1.5! 

1.0 

0.5 

0.0 II 
re) 

1:1:t Ill, 
O.O/ 

(b) 

1.5 

1.0. 

0 .5  

0.0 

20.0 

10.0 l 

l,lJl, II,[ o o 1 . . . .  

(c) (d3 
t l 1 

15 0 8 
Time In Samples Frequency In Samples 

Fig. 2. Illustration of signal reconstruction from partial data-- 
An extrapolation case. (a) Given partial data for the original 
signal of Fig. l(a). (b) Spectrum of the data. (c) Reconstructed 
signal using ME method after 10 iterations. (d) Spectrum of 
the reconstructed signal. 
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Fig. 3. Illustration of signal reconstruction from partial data-- 
A nonlinear phase spectrum case. (a) Original signal. (b) Mag- 
nitude spectrum of the signal. (c) Phase spectrum of the signal. 
(d) Given partial data for the signal of Fig. 3(a). (e) Magnitude 
spectrum of the given data. (f) Reconstructed signal after 5 
iterations. (g) Magnitude spectrum of the reconstructed signal. 

as indicated in Table 1. Here again, the duration 
of the signal is 16 samples. Notice in Fig. 3(c) that 
the phase spectrum of  the signal is nonlinear. 

After trying several different signals we found 
that, in a number of cases, the ME method conver- 
ges to an estimate that closely resembles the 
original signal (i.e., with a low mean square error 
~2 * 10-4). These results, however, must be inter- 
preted carefully, as we show in the next section. 

5. Discussion 

We now discuss the implications of using the 
ME approach for interpolation. From the formula- 
tion given in Section 2, it is clear that there is no 
restriction on the distribution of the known 
samples. Thus extrapolation, uniform distribution, 
as well as other distributions can be handled in a 
uniform manner. This is borne out in Figs. l(e) 
and 2(c). An inspection of  these figures also reveals 
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that they resemble the original signal in Fig. l(a). 
However, this is not always the case, because the 
ME approach does not aspire to reconstruct the 
signal exactly. It only gives an estimate that is 
guaranteed to be the most noncommittal  one, given 
the known information. Thus any comparison with 
the original signal is not really appropriate. This 
also raises the question of  when this approach is 
then suitable. Clearly, when a large number of  
samples are known, it is reasonable to assume that 
the unknown samples can be predicted using them. 
For example, it is known that the samples of  an 
over-sampled bandlimited signal are dependent  on 
each other [8]. That is, the known samples can 
provide information about the missing samples. 
Then any approach such as the polynomial inter- 
polation, or relaxation scheme, which makes use 
of  this dependency will work just as well, or even 
better (see [11] for an algorithm that employs this 
dependency for signal recovery). On the other 
hand, if there are only a few samples known and 
they are arbitrarily distributed (possible far apart), 
and if the signal is not bandlimited, the traditional 
interpolation schemes using the dependency prin- 
ciple do not work well. In such cases, the ME 
approach, which allows an element of randomness 
in the unknown samples, can be recommended. 
This has also been verified in our experiments. 

6. Extension of ME estimate 

So far we have assumed that the only available 
information about the signal is a set of  randomly 
distributed signal samples. If  now some additional 
information is known, it can also be incorporated 
as long as it can be expressed as constraints. To 
see this, consider the case when a few spectrum 
values are known in addition to the known signal 
samples. These spectrum values can be incorpor- 
ated as part of  the constraints in (6), so that 

Qi:K2 ~ S(k)  exp ( ~  k ) 
k~lF,]k['~M 

+K2 ~ S(k) e x p ( ~ k ) - s ( t i ) = O ,  (20) 
k E l  F 
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where 1 <~ i <~ L and IF is the set of  frequency points 
at which the signal spectrum is known. Equation 
(10) is similarly modified as 

S(tp) = K2 ~. S(k)  exp ( ~ )  
kc lF  

- K ,  E (21) 

where 1 ~ p ~ L. 
From the above equation we notice that only 

L Ai values have to be solved. Thus even though 
the constraints have increased, the solution does 
not become more complex since the extra con- 
straint is integrated as part of  Qi itself. The ME 
estimate will now be different since it will not only 
agree with the known signal samples but also with 
the known spectrum samples. Also, since more is 
known about the signal than before, the total 
uncertainty and hence the entropy is reduced. But 
with respect to the currently available information, 
the entropy is still the maximum. 

We can similarly incorporate other information 
if it can also be expressed as a constraint. Thus if 
it is known that the spectrum of  the signal is 
bandlimited to a given frequency band, and that 
it is low pass in nature, it can be easily incorporated 
into the above analysis by changing the value of  
the parameter M (M will now be [N~,/2~r],  
where o-, is the actual extent of  the band). Every- 
thing else is the same except that there are fewer 
spectrum values to be solved using (9). If  the 
spectrum is bandlimited but of  the bandpass type, 
then the limits of  the integral in (3) have to be 
changed appropriately. 

Thus we see that when some a priori knowledge 
is available, it can be incorporated into the estimate 
as long as it can be analytically expressed as a 
constraint. It is also interesting to see how such 
previous knowledge modifies the convergence of 
the algorithm for obtaining the ME estimate given 
in Section 3. If  the extra information can be 
integrated well with the already existing con- 
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straints, then the cost of  obtaining a solution does 

not g o  up. In that case, the solution is obtained 
faster. This we have seen for the specific case when 
the a priori information is some samples o f  the 
signal's Fourier transform. There the solution 
could be obtained faster as there were fewer vari- 
ables to solve for. However,  if  the constraints are 
such that they result in complex  computat ions for 
the same number o f  variables to solve for, then 
the updation o f  A in (16) takes a long time because 
o f  the longer time taken to update the inverse o f  
the Jacobian in (19). 

7. Conclusions 

In this paper we have addressed the interpola- 
tion problem using the maximum entropy 
approach. We have given an ME estimate for a 
signal when a few of  its samples are known. We 
have also discussed the appropriateness of  the ME 
estimate for different data distributions and, 
specifically, its suitability for sparse data situ- 
ations. Finally, we have extended the ME approach 
to handle more information without increasing the 
complexity of  the solution process. 
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