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Abstract. The representation of signals in the group delay domain has been suggested in the literature recently. Because of 
some special properties of  the group delay functions, this representation offers some advantages in several signal processing 
situations like digital filtering, pole-zero decomposit ion and deconvolution. In this paper, we study the effectivenesss and 
limitations of the group delay representation of signal information. We show that most of  the limitations arise from the 
discrete nature of  handling the signals in the time and frequency domains.  We also show that, as the number  of  DFT points 
is increased, the signal derived from the group delay functions, though our reconstruction algorithms, approaches the original 
signal. We discuss the limitations of the group delay functions in terms of location of the roots of  the z-transform of  the 
given discrete time signal. The group delay functions provide an accurate representation of the signal information, as long 
as the roots are not too close to the unit circle in the z-plane. The errors for the case of close roots are mostly due to 
reconstruction of phase from the group delay function. 

Zusammenfassung. Ein Vorschlag zur Signaldarstellung im Gruppenlaufzeit-Bereich wurde kiJrzlich ver6tientlicht. Wegen 
einiger besonderer Eigenschaften der Laufzeitfunktionen bietet diese Darstellung bei diversen Signalverarbeitungs-Aufgaben 
gewisse Vorteile; z.B. bei der digitalen Filterung, der Pol-Nullstellen-Zerlegung und der Entfaltung. Im folgenden Aufsatz 
untersuchen wir die Wirksamkeit und die Grenzen der Gruppenlaufzeit-Darstel lung yon Signalinformationen. Wit zeigen, 
da8 die Grenzen im wesentlichen durch die Diskretisierung des Signals im Zeit- und Frequenzbereich hervorgerufen werden. 
Wit zeigen auch, dab mit Hilfe unserer AIgorithmen aus den Gruppenlaufzei t -Funktionen ein Signal rekonstruiert werden 
kann, das bei Vermehrung der DFT-Werte das Originalsignal immer besser approximiert. Wir diskutieren die Begrenzungen 
der Gruppenlaufzei t -Funktionen beziiglich der Lage der Nullstellen der z-Transformierten des gegebenen diskreten Zeitsignals. 
Die Gruppenlaufzei t -Eunktionen liefern eine genaue Darstellung der Signalinformation, solange diese Nullstellen nicht zu 
dicht am Einheitskreis der z-Ebene liegen. Eehler im Falle zu dicht am Kreis liegender Wurzeln sind haupts~ichlich au f  die 
Rekonstruktion der Phase aus der Gruppenlaufzeit  zurfickzuffihren. 

R~sum~. La reprrsentation des signaux dans le domaine du retard de groupe a 6t6 r rcemment  suggrrre  dans la littrrature. 
GrS.ce fi certaines proprirtrs  sprciales des fonctions de retard de groupe, cette reprrsentation offre des avantages dans plusieurs 
situations de traitement des signaux telles que filtrage numrrique,  drcomposi t ion prles-zrros et drconvolution.  Dans cet 
article, nous 6tudions I'efficacit6 et les limitations de la reprrsentation de l ' information des signaux par les fonctions de retard 
de groupe. Nous montrons  que la plupart des limitations provient de la nature discrete des manipulat ions des signaux dans 
les domaines temporel et frrquentiel. Nous montrons 6galement que les signaux drrivrs par les fonctions de retard de groupe 
par nos algorithmes de reconstruction s 'approchent  des signaux originaux au fur et / l  mesure que l 'on augmente le hombre 
d ' rchanti l lons dans la TFD. Nous discutons les limitations des fonctions de retard de groupe en termes de position des 
racines de la t ransformre en z du signal discret donn& Les fonctions de retard de groupe fournissent une reprrsentation 
prrcise de l ' information signal tant que les racines ne sont pas trop pros du cercle unit6 dans le plan des z. Les erreurs darts 
le cas des racines proches due cercle unit6 sont principalement dues h la reconstruction de la phase ~ pattie de la fonction 
de retard de groupe. 
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1. Introduction 
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Representations of signals in the time domain, 
frequency domain, z-transform and cepstrum are 

well known in the literature [1]. In [3] it was shown 
that signal information can also be represented by 
using two group delay functions, one derived from 
the magnitude of the Fourier transform and the 
other from the phase. The objective of this paper 
is to discuss the adequacy of representation of 

signals through group delay functions. 
Group delay functions have some interesting 

properties like additive and high resolution proper- 
ties [2] which can be exploited for many applica- 
tions such as design of digital filters and pole-zero 
modelling [3]. These properties enable effective 
manipulation of signal data in many signal pro- 

cessing situations, like waveform estimation from 
an ensemble of noisy measurements [4]. But it is 
not clear whether the group delay functions and 
the signal reconstruction algorithms from these 
functions preserve the complete information of the 
signal or not. We must know under what conditions 
loss of information, if any, occurs and how com- 

mon are these conditions in practice. 
It was with this objective that we conducted a 

systematic study to investigate the accuracy of the 
group delay representation together with the signal 
reconstruction algorithms from these functions. In 
Section 2 we introduce the group delay functions 
and discuss briefly some important properties of 
these functions. Implementation of the algorithms 
for computing the group delay functions and for 
deriving the signal from these functions requires 
discrete Fourier transforms (DFTs). We study the 
nature of errors introduced in the group delay 
functions by the discrete nature of the signal rep- 
resentation. Experiments designed to bring out 
these errors are described in Section 3. We first 
discuss the effect of proximity of zeros of the 
z-transform of the signal to the unit circle in the 
z-plane and then the effect of the number of such 
zeros on the signal reconstructed from the group 
delay functions. We also show that the number of 
points chosen in the DFT computation affects the 
Signal Processing 

reconstruction error. The consequences of these 
errors in signal processing are discussed in 
Section 4. 

2. Group delay functions 

In this section we briefly review the definitions 
and some important properties of group delay 
functions. Algorithms for computing the group 

delay functions, as well as algorithms for deriving 
the signal from the group delay functions are given 
in [3]. For implementing the algorithms, it is 

necessary to use the DFT, which involves discretiz- 
ing the frequency variable also. This discretization 
causes aliasing. The severity of this aliasing in 
deriving the signal from the group delay functions 
is considered in Section 3. 

2.1. Definitions of group delay functions 

For a discrete-time signal {x(n)}, we define the 
group delay functions as follows: 

Let 

X(o)) = IX(o))l e j°~'°~ (1) 

be the Fourier transform (FT) of  the signal {x(n)}. 
Then the group delay function is defined as the 
negative derivative of the unwrapped phase func- 
tion. That is 

-d0u(o)) 
3-p(o)) - do) ' (2) 

where 0u(o)) is the phase function in unwrapped 
form. We call this the group delay function derived 
from the FT phase. Similarly we define a group 
delay function 5rm(o)) derived from the FT magni- 
tude function ]X(o))]. It can be shown [3] that 
5Cm(o)) is the negative derivative of the phase of 
the unique minimum phase equivalent signal 
derived from Ix(o,)l. 

2.2. Properties of group delay functions 

We give a summary of the important properties 
of grp(tO) and J-m(tO) which were discussed in 
detail in [3]. 
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(1) For a minimum phase signal, 

~ p ( o ~ )  = 3-m(O~).  

(2) For a maximum phase signal, 

3-p(o. , )  = - ~m(O- ' ) .  

(3) For a mixed phase signal, 

13-p(,o)l ~ I J-m('O)l . 

(4) Additive property: Convolution of signals in 
the time domain is reflected as summation of their 

respective group delay functions in the group delay 
domain, as shown in Fig. 1. 

(5) High resolution property: The resonance 
peaks (due to complex conjugate pairs of poles or 
zeros) of a signal are better resolved in the group 
delay domain than in the spectral magnitude 
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domain [2]. Furthermore, the signal information 
is confined to the narrow regions around the pole 
or zero locations, as shown in Fig. 2. 

2.3. Problems due to discretization 

In general, discretization and quantization may 
bring about partial loss of information in the group 
delay domain. The severity of the information loss 
depends on the nature of the signal being pro- 
cessed. For instance, the linear phase term, which 
is the average of 3-p(~o), cannot be computed accur- 

ately by averaging the limited number of samples 
{~-p(to)} when there are large fluctuations in that 
function. Similarly, aliasing in the cepstral domain 
contributes errors in J-m(tO). 

In the next section, we investigate the effect of 
discretization on the representation of signals 
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Fig. 1. Illustration of the additive property of the group delay functions: (a) Time domain signals; (b) the corresponding log-magnitude 
spectra, and (c) group delay functions (gp). 
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Fig. 2. Illustration of the high resolution property of the group 

delay functions: (a) Log-magnitude spectrum showing two 

poles and a zero; (b) the corresponding group delay function 

through group delay functions and on the recon- 

structed signals. We identify the signal parameters 
which may affect the signal reconstruction error. 

Further, we discuss the nature of  dependence of 

this error on these parameters. 

3. Study of  the nature of  errors in the group delay 
representation 

For any representation to be effective, it is desire- 

able that the complete information in the signal 
be preserved in the representation. On reconstruc- 
tion from the group delay functions, if the original 

signal is obtained without any loss of information, 
then we can conclude that the group delay rep- 
resentation together with the reconstruction 
algorithms is accurate. 

If  continuous time and frequency variables are 

used throughout, then the errors due to aliasing in 

the cepstral domain are avoided in the computa- 

tion of the group delay functions. But digital pro- 

cessing of data necessitates discretization, which 

may result in partial loss of information. Hence 

this discretization process of all variables in the 
computation of the group delay functions and 

reconstruction algorithms may affect the accuracy 

of signal representation. Moreover, the accuracy 

of representation may depend on the characteris- 

tics of  the signal itself, such as the number of  roots 

and their location in the z-plane with respect to 

the unit circle. 

3.1. Accuracy of signal representation in group delay 

domain 

We will derive an expression for the magnitude 

group delay function computed from the algorithm 

given in [3]. 
Consider a real, causal and finite length 

sequence x(n)  whose z-transform is of  the form 

mj m 

IAI H (1-akz ') H' (1 -b~z)  
k = l  k = l  

X ( z )  - p, , (3) 

H (1 - c~z- ' )  
k = l  

where l a g  Ibkl and Ickl are all less than 1. Here 
the Ck and ak correspond to the poles and zeros 
inside the unit circle, respectively, and the bk corre- 

spond to the zeros outside the unit circle in the 

z-plane. 
The complex cepstrum ~(n)  of  x(n)  is given by 

[1] ,  
( log IAI, n = 0 

~ - - -  - -  n > 0  
~ ( n ) =  , i n (4) 

n < 0  
kk=l n 

The magnitude cepstrum c(n),  which is the 
inverse Fourier transform of the log-magnitude 
spectrum, is the even part of the complex cepstrum 

Signal Processing 
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and can be expressed as 

log IAI, n = o 

Ck 1 a k  1 ' b k  1 - - - - ~  - - - - ~  - - ,  

k 1 n k - I  n k - 1  n 

c(n)= n > 0  (5) 

l c k  . 1 a k  ' bk 
--~ --t~ "~ , 

k - t  n k - ~  n k - 1  n 

n < 0  

The magnitude group delay function is given as 
cc 

J-m(tO) = ~ nc(n) cos no) 
n = l  

cc P~ 
l =2 E E c~cosno, 

n = l k  1 

cc m 

- -  ~ a k C O S  n o )  
n = l  k - I  

cc m 

_ l  E Z b~,cosnw. (6) 
n - l k  1 

Equation (6) shows that the magnitude group 
delay function is the Fourier transform of the 
summation of the complex exponentials formed 
by the poles and zeros of the signal. We observe 
that when any of the roots are close to the unit 

circle, the corresponding complex exponentials do 
not decay fast enough with increasing n. Hence, 
aliasing takes place in the function nc(n), as the 
DFT size used in the actual implementation is 
finite. This contributes to errors in the magnitude 
group delay. We also observe from equation (6) 
that when the number of  roots is increased, the 
total error, which is the summation of the error 
contributions of each root, also increases. As the 
DFT size used in the computation is increased, the 
severity of aliasing in {nc(n)} is reduced and con- 
sequently the error in the group delay function 
would be less. We note here that the magnitude 
group delay function is more sensitive to aliasing 
problems than the cepstrum, for the decay of func- 
tion nc(n) is much slower owing to the multiplica- 
tion factor n. 

The phase group delay function also undergoes 
errors in the representation of the signal informa- 
tion under a similar set of conditions to those 

described above. But here these errors manifest 
themselves as under-sampling of  the group delay 
function. The algorithm for computing phase 
group delay as given in [1, pp. 495-498] gives 
accurate values of the group delay at the sample 
points. But in the reconstruction algorithm from 
phase group delay, we have to compute the cep- 
strum, where aliasing occurs owing to the under- 

sampled phase group delay function. This results 
in the distortion of the reconstructed signal. 

3.2. Experimental results 

We conducted some experiments to demonstrate 
the effects of discretization on group delay rep- 
resentation of signals. The choice of experiments 
is based on the discussion given in the previous 
section and our experience with the use of group 
delay functions over the past several years. Com- 
posite signals of the form shown in Fig. 3 are used 
for these experiments. Each signal is a summation 
of the windowed impulse response of a 12th order 
all-pole system (referred to as the basic signal) and 
its scaled and shifted version (referred to as its 

echo). We will not consider the effect of windowing 
in the following discussion although a single-sided 
Hamming window is used as mentioned above. 
This signal is represented in the time domain as 

y(t)=x(t)u(t)+yx(t-tl)U(t-h),  (7) 

1.0 ' ' ' i 
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Fig. 3. A typical composite signal used in the experiments. 
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where u(t) is the unit step function and Y is the 
ratio of the echo amplitude and the basic signal 
amplitude. The discrete time version of this signal 
is given by 

y(n)=x(n)u(n)+yx(n-nl)u(n-nl).  (8) 

Taking the z-transform for the equation (8), we 
get 

Y(z) = (1 + 7z-"')X(z), (9) 

where Y(z) and X(z) are the z-transforms ofy(n)  
and x(n) respectively. X(z) contains six pairs of 
complex conjugate poles located inside the unit 
circle in z-plane. 

From equation (9), we observe that in the z- 
plane the signal contains twelve poles due to the 
basic signal and nl zeros symmetrically distributed 
around the origin at a distance of 7 from it due 
to the echo. If 7 = 1, the zeros are on the unit circle 
and when 7 <  1 or 7 >  1, the zeros are inside or 
outside the unit circle, respectively. 

Experiments were conducted to see the effects 
of various parameters on the errors resulting from 
the reconstruction from group delay functions. 

The following procedure is followed in all the 
experiments. The details of the computation 
algorithms are given in [3]. 

(1) Form a composite time signal x(n) by taking 
the summation of a basic signal and its scaled and 
shifted replica. The basic signal is constructed from 
the impulse response of a 12th order all-pole sys- 
tem derived from speech data. A single-sided Ham- 
ming window is used to limit it to a finite length 
to ensure that the composite signal sequence is not 
more than ~N samples in length. Form an N-point 
sequence by padding the above sequence with 
zeros. 

(2) Find the log-magnitude and phase sequen- 
ces by using an N-point DFT of the composite 
time signal. 

(3) Find the magnitude group delay (fire) from 
the log-magnitude sequence. Save the scale factor 
which is equivalent to the average of fire. 

ffm is computed as follows: 
(a) Compute the DFT of the log-magnitude 

spectrum to obtain the cepstrum {c(n)}. 
Signal Processing 
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(b) Form the even sequence {nc(n)}. 
(c) Compute the IDFT of the sequence {nc(n)} 

to get 3-m. 
(4) Find the phase group delay (~p) from the 

given time domain signal. Save the average value 
of ~p, which represents the linear phase term. 

ffp is computed as follows: 
(a) Find the DFTs X(k) and Y(k) of the 

sequences x(n) and nx(n) respectively. 
(b) Compute the group delay Jp as 

XR(k) Yr.(k) + X,(k) Y,(k) 
3-p- X2e(k)+ X2(k) , 

where the subscripts R and I denote the real 
and imaginary parts respectively. 

(5) Reconstruct log-magnitude from 5r,, and 
restore the scale factor. This can be done by revers- 
ing the steps in (3). 

(6) Reconstruct phase from J-p and add the 
linear phase computed from the average value of 

The phase sequence is reconstructed from ffp as 
follows: 

(a) Compute the IDFT of 5rp(k) to get the 
sequence {nc(n)}. 

(b) Form the odd sequence with {c(n)}. 
(c) Compute the DFT of{c(n)} to get the phase 

sequence. 
(7) Reconstruct the time domain signal from 

the reconstructed log-magnitude and the phase. 
(8) compare the plots of the original time signal 

and the reconstructed signal from step (7). Observe 
the reconstruction error. 

The algorithms given in [3] are used for (i) com- 
puting magnitude and phase group delays from 
the spectral magnitude and the time domain signal 
and (ii) for reconstructing the spectral magnitude 
and phase from its magnitude and phase group 
delays. We note that the algorithm for reconstruc- 
tion of magnitude from ~rm consists of retracing 
the steps for the algorithm for computing 3m from 
log-magnitude, whereas for J-p the algorithms are 
entirely different. Hence, the reconstructed log- 
magnitude does not show any significant error, 
even though there may be error in fire- Because of 
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this the reconstruction error in the following 
experiments is predominantly contributed by error 

in the phase reconsturcted from J-o- We use the 

composite signal shown in Fig. 3 in these experi- 
ments. 

Experiment 1. Effect o f  varying the proximity of  
zeros to the unit circle 

From equation (9) it is seen that by changing 

the value of 1/, which is the ratio of the amplitudes 
of  the echo and the basic signal, we can move the 

zeros along the radial direction in the z-plane. An 

experiment was conducted in which 3' was varied 

from 0.5 to 2.0. Fig. 4 shows the superimposed 
plots of the original and the reconstructed signals 

for different values of 3'. It is observed from these 

plots that the reconstruction error is negligible for 

3' = 0.5, but increases steadily as the zeros approach 
the unit circle and becomes infinity on the unit 

circle (3' = 1.0). As 3' is further increased, the zeros 
fall outside the unit circle and move away from it. 
In this case it is observed that the reconstruction 

error decreases and becomes negligibly small when 

3' = 2.0. This shows that proximity of  roots (in this 

case zeros) to the unit circle introduces error in 
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the reconstruction irrespective of  whether they are 

inside or outside the unit circle. This may be 
attributed to the fact that as the zeros approach 

the unit circle, abrupt changes occur in the spectral 

phase at the frequencies corresponding to these 

zeros. Similarly in the spectral magnitude, the val- 

leys due to the zeros become steeper. These 
changes in the magnitude and phase result in poor 
sampling of the corresponding group delay func- 

tions and hence loss of  information in the group 
delay transformations. 

Experiment 2. Effect o f  number of  zeros 
The effect on the reconstructed signal of varying 

the number of  zeros equidistant from the unit circle 
was also studied. The delay n~ in equation (9) is 

equal to the number of zeros in the z-plane. Hence 

by varying n~ in the time domain signal, we can 

vary the number  of  zeros. An experiment was con- 

ducted in which n~ was varied from 1 to 20 and 

the corresponding plots of  the original and recon- 
structed signals are superimposed in Fig. 5. It is 
seen from these plots that as the number of  zeros 

are increased, the reconstruction error also 
increases. We may again conclude that this error 
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Fig. 4. Comparison of the original and reconstructed signals for different values of echo amplitude (y). 
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Fig. 5. Comparison of the original and reconstructed signals for different values of  the number of zeros (nl) in the z-plane. 

is due to the poor sampling of  the group delay 
functions. 

Experiment 3. Effect of number of DFT points 
The time signal length is fixed at 16 samples and 

zeros are padded to make up the N points. N is 
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changed from 32 to 1024 in steps, and the plots of 
the original and reconstructed signals for different 
cases are superimposed in Fig. 6. We observe that 
the reconstruction error decreases as the number 
of DFT points are increased. For N = 1024, the 
error is negligibly small. These results also show 
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Fig. 6. Comparison of  the original and reconstructed signals for different values of the DFT size (N).  
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that poor  sampling of group delay functions causes 

errors in the reconstruction. 

Experiment 4. Statistical studies 

We have conducted the above experiments on 

a large set of  data to verify whether the results 
obtained above are consistent. In each case, mean 

square error between the original and the recon- 
structed time signals is computed. This error is 

normalised and expressed in percentage. The data 

were derived from 60 sets of  12th order all-pole 

systems. The error plots are shown in Fig. 7. These 

plots confirm our earlier observations. 

4. C o n c l u s i o n s  

The studies given in this paper  clearly demon- 

strate the significance of the group delay repre- 

sentation and its limitations in terms of 

inaccuracies in the signal transformation 

algorithms. These signal transformation 
algorithms are accurate if the signals are con- 

tinuous in all domains. It is interesting to note that 

the reconstruction errors mentioned in the experi- 

ments in the previous section can be made as small 
as required by taking a sufficiently large number  

of  DFT points, provided there are no roots on the 

unit circle. This is achieved by zero-padding the 
given time signal to get the required N-point  

sequence. 
The effect of  the characteristics of  the signal on 

the reconstruction error is felt when the number  

of  DFT points chosen is not large. Though phase 

group delay gives accurate values at the sample 
points, magnitude group delay is distorted by alias- 

ing in the cepstral domain. The signal transforma- 

tion routines given in [3] for representation of 

signals in the group delay domain are accurate 

only when the number of  sample points is 
sufficiently high in the group delay domain. Hence, 
whenever signal characteristics, such as the num- 
ber of  roots and /o r  their proximity to unit circle, 
result in rapid variation in the spectral magnitude 

or phase, poor  sampling occurs in these domains. 
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Fig. 7. Reconstruction error averaged over 60 frames of data. 
The variation in the normalised mean square error (NMSE) 
with respect to: (a) Echo amplitude (y); (b) number of zeros 

(hi) in the z-plane, and (c) DFT size (N). 

We note that adequate sampling based on Nyquist 
criterion in the time domain does not necessarily 
result in proper  sampling in the group delay 
domain, because of the derivatives involved in the 
definition of group delay functions. 
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The above  conclus ions  are re levant  in the con- 

text of  compos i t e  signal  d e c o m p o s i t i o n  and speech 

analysis .  We will show in ano the r  p a p e r  how the 

studies r epor t ed  in this p a p e r  can be effectively 

used to in terpre t  the results  o f  compos i t e  signal  

decompos i t i on  using g roup  de lay  process ing,  

K. V. Madhu Murthy, R Yegnanarayana / Group delay representation of signals 
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