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Abstract: The method of projection onto convex 
sets (POCS) is used in signal reconstruction to 
find a function that satisfies a collection of con- 
straints, provided each of these constraints defines 
a convex set. If the constraints are inconsistent 
then a modified method of POCS may be used to 
find the fixed point of the POCS operator. This 
problem arises in the area of signal reconstruction 
from noisy multiple-frequency digital holograms, 
where it is required to compute a signal that 
satisfies known data subject to the constraint that 
it has a finite region of support. For noisy data 
there may exist no such signal and hence the con- 
straint is inconsistent with the known data. Thus a 
modified POCS method needs to be applied. The 
paper reviews the method of image reconstruction 
from digital holograms. Two ways of applying the 
modified POCS method (called the PONICS 
method) are presented. Studies reported here show 
the effectiveness of the method for image recon- 
struction from noisy multiple-frequency holo- 
grams. 

1 Introduction 

In this paper we consider the problem of image recon- 
struction from digital holograms [l, 23. In the noise-free 
case the data from multiple-frequency holograms can be 
combined in an iterative manner using the projection 
onto convex sets (POCS) [3-51 method for computing a 
solution that has finite support and that satisfies the 
known data at each of the multiple frequencies. However, 
if there is noise in the data then no solution may exist 
that satisfies the given finite support constraint and the 
known data. Hence, what we mean by a solution is itself 
an issue to be addressed. If the data is available at only 
one frequency then our aim would be to find a solution 
that has a finite region of support and has the least error 
with respect to the known data. A similar description of 
the nature of the solution for the multiple-frequency case 
is not possible. The problem of image reconstruction 
from noisy phase of a digital hologram was considered in 
Reference 6. It was found that reconstruction from quan- 
tised phase was better than that from full phase. No 
attempt was made to make use of the magnitude data. In 
this paper we propose a method that makes use of the 
magnitude and full phase of a noisy digital hologram. In 
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what follows we shall give a brief description of the 
problem we are considering and discuss the suitability of 
the POCS method for solving it. 

Consider a linear shift invariant system. Let 

f =  h * g + n  (1) 

where f is the transformed (received) signal, g is the 
(transmitted) signal to be recovered, h is the impulse 
response of the system, n is the noise function and * 
denotes convolution. 

If g is a finite duration signal and T-' is an inverse 
operator onJ then 

T-' f = g + T-'  n (2) 

If n = 0 and T-'  is well behaved, then the solution 
obtained by applying the inverse operator may be satis- 
factory. However, owing to the presence of noise it is 
clear that even if T-' is well behaved, T-I afmay not 
be a finite-duration signal. Of course one can truncate the 
signal according to the previously known duration of the 
transmitted signal. This solution may not be the best esti- 
mate as there may exist some other signal of the same 
duration that fits the received data better. Our aim is to 
find a go that minimises p(h h * g) for all g E C,, , where 
C, denotes the set of all signals with known finite dura- 
tion. Here p refers to the metric on the space of solutions. 
Such a solution is referred to as a quasisolution [7]. It 
will be shown later that iff is known completely, then the 
quasisolution will be unique. We shall now discuss some 
of the earlier approaches for signal reconstruction in the 
presence of noise. 

Many of the earlier approaches are based upon regu- 
larisation techniques. These methods assume some know- 
ledge of the statistics of the signal or noise. For example, 
it may be assumed that the noise is stationary and that 
the distribution of noise or its power spectrum is known 
a priori. Linear filters, such as Wiener filtering, or nonlin- 
ear filters, such maximum entropy estimation, were devel- 
oped on this basis. Recently, another approach based on 
the method of POCS has been proposed [8, 91, in which 
it is required to compute a feasible solution satisfying the 
available data to within a certain degree. For example, it 
may be assumed that the magnitude of the noise is 
bounded. In other words I nl = I f- h * g1 < d, where d 
is a known positive real value. This method works well if 
d is known accurately. If the estimated value d is more 
than the actual value, then the reconstructed signal will 
be a conservative estimate in that the variance of the esti- 
mate may be large. If the estimated value of d is lower 
than the actual value, then the method of POCS may not 
converge at all. Another possible approach is to assume 
that llnll < I, that is the norm of the noise, which is 
usually the squared sum of the noise at individual points, 
is bounded [SI. In both the above mentioned cases the 
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aim is to compute a signal that has a fmite region of 
support and that satisfies the known data to within the 
bounds just mentioned. Moreover, the POCS method 
merely tends to the feasible solution, but in practice the 
convergence is very slow. In this paper we present results 
of applying a modified POCS method for image recon- 
struction from noisy digital holograms. The method is 
called projection onto nonintersecting convex sets 
(PONICS). 

2 Image reconstruction from inconsistent 

In this Section we shall review the method of image 
reconstruction from inconsistent contraints [lo]. Essen- 
tially the method attempts to find the fixed point of a 
nonexpansive operator. Note that the projection oper- 
ation onto a closed convex set is nonexpansive [4]. 
Moreover, any finite sequence of nonexpansive operators 
is also nonexpansive [4]. Later we shall show that any 
convex combination of nonexpansive operators is also 
nonexpansive. By proper application of the nonexpansive 
operator it is possible to converge to a fixed point of the 
operator, provided such a point exists. We attempt to 
show strong convergence by proving that repeated appli- 
cation of the operator yields results that belong to a 
compact set. Let us begin with a few definitions. 

Consider a Hilbert space H with elements x, y, . . . etc., 
with (x, y) denoting the inner product and llxll denoting 
the norm. In particular, let LZxz(R) denote the space of 
square integrable functions; the associated Hilbert space 
is the quotient set induced by the equivalence relation 
((x, - xz(( = 0 for x, and x2 in Lzx2(R). A sequence {xN) 
in the Hilbert space H is said to converge strongly to x if 
limN+m llxN - xII = 0. The convergence is weak if 
1imNdm (xN, y) = (x, y) for all y in H. Note that weak 
convergence is convergence in the dual space. Hence- 
forth, unless otherwise specified, convergence means 
strong convergence. 

DeJinition: An operator T of the Hilbert space H is a 
nonexpensive operator if IITx - Tyll < kllx - yll, where 
k is a real positive number such that k < 1. T is a con- 
traction mapping if k < 1. 

It is well known that a nonexpansive operator T oper- 
ating on a closed, convex and bounded set has at least 
one fixed point [ll]. The following theorem suggests a 
way of computing a fixed point of a nonexpansive oper- 
ator under some very general conditions. 

Lemma 1:  Let T be a nonexpansive mapping from 
C -+ C, where C is a closed convex and bounded subset 
of H. For any given s, let T, = 1 + s(T - l), where 
0 < s < 1. For x E C the sequence {Tr(x)} converges 
weakly to a fixed point of T. The convergence is strong if 
at least one of the subsequences converges strongly. 

The above lemma is a corollary of a well known theorem 
due to Browder and Petryshyn [l2]. Its application to 
signal synthesis was pointed out in Reference 10. In 
Reference 13 its application to signal reconstruction was 
pointed out. Consider the problem mentioned in Section 
1. Suppose by varying some parameter I in h of eqn. 1 
that it is possible to obtain f for various values of I, then 
we may formulate the problem as: find g E C,c such that 

(3) 

constraints 

f, = hA a g for I = I,, I , ,  ..., I ,  
352 

The problem may have no solution at all if the dataf, is 
corrupted with noise. Let us consider first the noise free 
case. It is trivial to show that 

C = {g:fi = hi * g for givenf,, h, and 2. = A,} 
is a closed convex set [ll]. Let Pi denote the projection 
onto the set Ci, and P,, denote the projection onto the 
set C,c. By the method of POCS we can iteratively 
compute g E c,, , ci as follows: 

where the initial estimate is any go E H. Notice that if the 
data is noisy, that is, if the known data is 

( 5 )  
where n is a noise function, then C may be empty, and 
hence the above mentioned iterative procedure may not 
converge. However, if we choose an initial estimate go in 
C,, , then strong convergence can be shown if the result 
of successive application of the operator 

0 < s < I 

gN+1 = p , c p l p , ,  ...) pmgN (4) 

f i  = h, a g + n 

1 + $PI ,  P , P , ,  . . . , P.- , )  
is bounded. Lemma 1 assures strong convergence if any 
subsequence is convergent strongly. Note, however, that 
the exact nature of the solution is not well understood, 
although an attempt has been made in the literature to 
give an intuitive feel for the nature of the solution [13]. A 
precise characterisation of the nature of the solution is 
possible if only two convex sets are involved. For 
example, it can be. shown [3] that the distance between 
the dual fixed points of the operator P, ,P ,  is the 
minimum distance between the two convex sets C,, and 
C,. In other words, let x be a fixed point of Plc P,. Then 

(6) 

We can also show that the operator 1 + s’(P,, P ,  - I), 
0 < s’ i 2, is a nonexpansive operator from Cfc + C ,  
and that the sequence generated by the following iter- 
ative procedure converges strongly: 

Ilx - P,xl/ = min IIy - zll 
Y E C l  Z E C J ~  

gN+ 1 = gN + ”(‘fc ‘1gN - gN) (7) 

Recall that Tl = 1 + s , (P ,  - l), 0 < s1 < 2, is also a non- 
expansive operator. Hence the application of the oper- 
ator 1 + s(P,,T, - 1) assures strong convergence. Using 
a value of s1 that is not necessarily unity may help in 
speeding up the convergence. P,, cannot be replaced by a 
corresponding TI, since then the result of every iteration 
may not belong to C,c and hence strong convergence 
cannot be assured. Note also that P,, is a linear oper- 
ator. We intend to show that the operator 1 + s’(P,, P ,  
- 1) is equivalent to 1 + s(P,,T, - 1). In other words, 

for every choice of s and s,, 

1 + $P,,T, - 1) = 1 + s’(P,, P ,  - 1) 

s’ = SS1 

9 + s(P,,T,g - 9) = 9 + s(P,,(g + s1(P,g - 9)) - 9) (9) 

(8) 

where 

This may be shown as follows: for any g E C,c, 

Since P,, is a linear operator and for g E C,, , 
the above equation reduces to 

g = g, 

9 + $P,,T,g - 8) = 9 + s(P,,g + P,,Sl(P,~ - 9) - 9) 
= 9 + ss,(P,, P1g - e) (10) 
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From the above equation the desired result trivially 
follows. Moreover, the &ed points of 1 + s'(P,, PI - 1) 
are just the fixed points of P,,T,, which in turn are just 
the fixed points of PrC P,. 

Consider now the operator 1 + s(P,,T,T,, . .., T,-l). 
Here TI, T2,  ..,, '& are applied in sequence. It would be 
better if the operators could be applied in parallel and 
combined in a suitable manner. This helps to speed up 
convergence in a multiprocessor environment. More 
importantly it lays equal emphasis on every set of avail- 
able data. If the operators are applied in a sequence, 
unequal and unknown relative emphasis is likely to be 
placed on each of the available data. The following 
lemma suggests a method of applying the operators in 
parallel. 

Lemma2: Let R I ,  R , ,  ..., R, be a collection of non- 
expansive operators. Let 

R = a,R,  + a,R2 + + anRn (1 1) 

where a, + a2 + ... +a ,  = 1, and a,, a,, ..., a, are all 
greater than zero. R is a nonexpansive operator. Further- 
more, if R,  for some i ,  1 < i < n, is a contraction 
mapping, then so is R. 

Let us consider the nature of the solutions provided by 
the two operators Pf,TIT,,  ..., T, and P,,(a,T, + a,T, 
+ . . . + a,'&). Here, as in the rest of the paper, a,, a2,  

. . . , a, denote a set of real numbers satisfying the con- 
straints specified in lemma 2. The two operators may not 
necessarily have the same fixed points. However, if the set 
C ,  , Ci is nonempty, then we can show that the set 
of fixed points of the two operators is identical and is 
precisely the set C,, nel Ci. It has been shown earlier 
that the set of fixed points of the operator P,<T, T2 , . . . , 
'& is the set C,, , C ,  . Our aim is to show that the set 
of fixed points of Pf,(alT, + a2T2 + .. . + a,TJ is also 
C,< n:= , C, . It is obvious that C,< n:= , C ,  is a subset of 
the fixed points of Pfc(a,T, + a,T, + ... + a,'&), since 
every g E C ,  nlZl C, is also a fixed point of P,,(a,T, 
+ a,T2 + . . . + a,TJ The containment in the other 

direction can be shown as follows. Let y be a fixed point 
of P ( a l T l + a 2 & + . . . + a n q )  and x an element of 
C,, fi=, C , .  Consider IIx - yl(. Since x is also fixed 
point of P,,(a,T, + a2T, + ... + a,T,), 

Ilx - yll = IIP,&,T, + azT2 + ... + a,T&x 
- Pfc(a,T, + a,T, + ... + a,TJyl/ (12) 

Again, since Prc is a linear operator, the above equation 
can be written as 

IIx - Y I I  = Ila,(Pf,Tlx - P,,T,Y) 

+ a APr, TZ x - p,c T2 Y) 
+ ... + a,(P,,'&x - P,,T,y)II (13) 

< alII(Pf,T,x - PIcTly)ll 

+ a,ll(P,,T2x - P,,TzY)II 

+ ". + a,ll(P,,T,x - P,,T"Y)ll (14) 
< a,Ilx - yll + a211x - yll 

+ . . . + aJx - yll (15) 

= IIX - Yll (16) 
Eqn. 14 follows from triangular inequality and eqn. 15 
follows from the fact that P,cT is a nonexpansive oper- 
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ator. Hence we have 

alII(PfcT,x - P,-,T,y)li + a211(PJ,T2~ - pfcT,~)ll 

+ ... + a,llbrcT,x - P,cT,~)ll 

=a , l l x -~ I I  +a2l Ix-yl l  + . . . + a ,  lix-YII (17) 
Ci. Now Pf,Tx = x, for 1 < i < n, since x E C,< 

Hence 

a,l/x - P,,T,y// + a2Ib  - PJ,T2~/l  

+ " ' +  a,Ilx- PfCT,Yli 
= alllx - YII + a211x - yII + ... + a,llx - yll (18 )  

Since the above equation holds for any choice of {a,),  we 
deduce that, for i = 1,2, .  .., n, 

(19) 
If y 4 C,, n:=, Ci, then Ilx - PfcTyIl i llx - yll. Hence 
by contradiction y E C, nl=l C,. Since y was an arbi- 
trary fixed point of P,c(a,Tl + a2T, + ... + a,'&), it 
follows that every fixed point of P,,(a,T, + a,T2 + . . . 
+ a,T& also belongs to C,c Ci.  This implies that 
the fixed points of PJc(alT1 + a2T2 + . .. + a,T,) are just 
the fixed points of PlpT,T2, . . ., T,. Notice, however, that 
this result does not hold if C ,  

In the next Section we shall show how these methods 
can be applied for signal reconstruction from noisy 
digital holograms. 

Ilx - PfcTYIl = IIX - YII 

C ,  is empty. 

3 

In the previous Section some iterative algorithms for 
signal recovery were discussed. In this Section we shall 
apply these algorithms to a sensor array imaging 
problem, namely digital holography. After a brief dis- 
cussion of the theory of imaging, we shall discuss the 
application of the iterative algorithms for the problem of 
image reconstruction from noisy digital holograms. 

In digital holography an object is illuminated by an 
optic or acoustic wave, and the reflected wave field 
pattern is sensed on a receiver plane at a finite set of 
points. The relation between the field distribution on the 
object plane and the receiver plane is governed by the 
following equation [l] : 

(20) 
where f(x, y) is the field distribution on the receiver 
plane, g(x, y) is the field distribution on the object plane, 
and h(x, y) is the impulse response given by 

Image reconstruction from digital holograms 

f (x ,  Y) = h(x, Y) * g(x, Y) 

1 
h(x, y) = - exp ( jk (x2  + y2 + . z ~ ) ~ / ~ )  

122 

Here z is the distance between object and image planes, k 
is the wave number and is equal to 2n/2, and 1 denotes 
the wavelength of the transmitted wave. From the con- 
volution theorem we have 

(22) 
where F(u, U), G(u, U) and H(u, U) are the Fourier trans- 
forms of f ( x ,  y), g(x, y) and h(x, y), respectively. H(u, U )  is 
given by [ 11 : 

H(u; U )  = 

WJ, U) = G(u, W ( u ,  4 

exp (jkz[l - (1~)' - (Au)~]'/~) 
for 1 - (nu)' - (nu)' > 0 (23) 
otherwise 
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Since h(x, y) is band-limited, f ( x ,  y) is also band-limited. 
However, due to the finite size of the aperture (object), 
g(x, y) has a finite region of support, and hence G(u, U) is 
not band-limited. Using the method of POCS, it is pos- 
sible to recover g(x, y) if f ( x ,  y) is known. The following 
iterative procedure converges to a unique solution: 

hologram known on a finite set I,. Let us denote as CI,, 
C,, , . . . , C,, the set of all functions g(x, y) that gives nse 
to hologramsf,(x, y),f2(x, y), . . . ,fn(x, y), respectively, and 
let P,,, P f 2 ,  . . . , P,, denote the corresponding projection 
operators. Define 

(31) P' Pj,(siTji + S z T j z ,  ...) s~T',) 
g N +  Y )  = p J c  p,o BAx, Y )  (24) where 

where P,, can be defined as follows. Let g'(x, y) = 
P,,,g(x, y )  and G(u, U) and G(u, U) represent the Fourier 
transforms of g'(x, y) and g(x, y). respectively. Therefore 

F(u, u)/H(u, U) for U' + U' < 1/1' 
G ' k  4 = { G(u, otherwise 

g'(x, y) can be computed from Cyu, U). 

s1 + sz + ' . . + = 17 si ' < < 
and 

T,, = 1 + s,,(P,, - 1) with 0 < s,, < 2 

It has been shown [4] that Tli is a nonexpansive oper- 
ator. From lemma 1 and lemma 2 it is seen that the fol- 
lowing iterative procedure converges: 

(25) 

That the solution is unique can be shown as follows. 
Let g(x, Y )  be a fixed point of p,, p,o. Since g(x, Y )  has a 

QN+ ,(x, y )  = sgdx, y )  + (1 - s)P'gdx, y )  (32) finite region of support, G(u, U) is analytic [14]. We have 
where g,,(x, y) is any bounded signal with known finite 
support and 0 < s < 1. Similarly, define G(u, U) = F(u, u)/H(u, U) . for U' + U' < 1/i2 (26) 

Hence, by analytic continuation G(u, U) is unique. 
In reality,f(x, y) is known only at a finite set of sam- 

pling points and hence F(u, U) cannot be known accu- 
rately. Also, the received data is corrupted by noise and 
hence eqn. 20 must be modified as 

(27) 
where n(x, y) is some additive noise function. We resort 
to computing only the quasisolution, as computing an 
actual solution may not be feasible. The following claim 
can be made. 

f ( x ,  Y )  = h(x, Y )  * dx, Y )  + n(x, Y )  

Lemma 3: If the solution set is compact and g * h = 0 has 
only the zero solution, then a quasisolution to the 
problem of computing g fromfexists and is unique. 

Let the solution set C,c consist of all bounded functions 
with finite regions of support. Consider the operator 

p = p,c pro (28) 
where P,c and P,, are as defined earlier. Since P is a 
nonexpansive operator on a closed, convex and bounded 
set, there exists a fixed point for the operator P.  Hence, 
from the above lemma the solution is unique. From 
lemma 2 and the arguments that followed it, the iterative 
algorithm given below converges to a fixed point: 

gN + I(x? = gdx? Y )  + s'(pgdx(x, Y )  - gdx, Y ) )  (29) 
where 0 < st < 2. 

Now let us suppose f ( x ,  y) is known only on a finite 
set of points I,. In this case no unqique solution exists to 
the problem, even in the absence of noise. Let C,, denote 
the set of all object field distributions g(x, y) that give rise 
to the hologram data known on the set I,. It is easily 
shown that C,, is a closed convex set. Let P f  , denote the 
projection onto C,, and define P = P,c P,l. Then P is a 
nonexpansive operator on the set of functions with 
known region of support and the iterative procedure of 
eqn. 29 converges to a fixed point of P. Notice also that 
any fixed point of P is a quasisolution to the problem. In 
other words, if g(x, y) is a fixed point of P, then 

s'(x. Y) E Cfr 
Y X  C,,) = min P(g'(x, Y) ,  C (30) 

If the hologram data is known for various wavelengths 
A,, A,, ..., 1, on a set I,, then each such hologram 
defines a convex set of functions that gives rise to a 

p " = P f , T ' i T f z , . . . ,  Tj, 
The following iterative procedure converges to a fixed 
point : 

(33) g,,(x, Y )  = sgdx, Y )  + (1 - s)PgN(x, Y )  
where go(x, y) and s are chosen as mentioned before. 

and 33. The results are given in the next Section. 
Simulation studies were conducted using both eqns. 32 

4 Simulation studies 

The purpose of the simulation studies is threefold, 
namely, 

(i) to show the convergence of the PONICS method 
(ii) to compare the methods of POCS and PONICS 

for different cases 
(iii) to compare the parallel and sequential implemen- 

tations of the PONICS method. 

There are two types of noise: Gaussian noise 
(corresponding to the case of bounded noise energy) and 
uniformly distributed noise (corresponding to the case of 
bounded noise magnitude). In the present study we con- 
sider image reconstruction in the presence of uniformly 
distributed noise where the magnitude of the random 
noise is bounded. 

In general, the POCS method operating on noisy data 
diverges within a few iterations, therefore the iterative 
reconstruction has to be terminated before reaching a 
given quality. The number of iterations that can be per- 
formed with the POCS method will be fewer for higher 
noise levels. Use of data at a greater number of fre- 
quencies does not solve this problem. On the other hand, 
our studies show that the PONICS method converges to 
a solution most of the time. Moreover, we find that the 
number of iterations required to obtain a given quality 
using the PONICS method is in general smaller than the 
number of iterations required using the POCS method. 

In the following we consider an object plane of size 
128 x 128 pixels enclosing an object of size 64 x 64 
pixels. The receiver array consists of 128 x 128 points or 
sensor elements. The spacing between object and receiver 
planes is 2000 units and the spacing between adjacent 
sensors in the receiver plane is 0.51, where the wavelength 
1 of the incident wave is 0.25 units. Uniformly distributed 
random noise is used to generate complex noise samples 
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to be added to the received sensor signal samples. The 
signal-to-noise ratio in decibels is computed as the ratio 
of signal energy (sum of the squares of the signal ampli- 
tudes from all the sensors) and the noise energy (sum of 
the squares of amplitudes of the noise samples). Sparse 
data is generated by considering the output from selected 
sensors of the 128 x 128 elements on the receiver plane. 
For example, a 32 x 32 point sparse data set is obtained 
by considering every fourth point on the receiver plane. 

Fig. 1 shows the object used in our simulation studies. 

I P I 
Fig. 1 
point data away denoting the objectfield distribution 

64 x 64 pixel image appended with zeros to form a 128 x 128 

The effects of noise and multiple-frequency data are illus- 
trated in Fig. 2 which shows reconstructed images after 
50 iterations from PONICS and POCS using only 
64 x 64 points of the received data. The intermediate 
points are set to zero. In Figs. 2-5, the iterations for the 
POCS method were terminated just before divergence, 
whereas the PONICS method was applied for 50 iter- 
ations. We find that the quality of the reconstructed 
image does not improve significantly beyond about 20 
iterations. Fig. 2 shows that the quality of the recon- 
structed images using the PONICS method are as good 
as or better than those obtained using the POCS method. 
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The main advantage of the PONICS method is that the 
algorithm does not seem to diverge. This trend is evident 
for different noise levels and also for different numbers of 
frequencies. As expected, the degradation in the recon- 
structed image is greater for lower SNR. As the number 
of frequencies at which data is collected is increased, then 
the quality of the reconstructed image is improved signifi- 

straints are inconsistent. Simulation studies conducted 
using both the operators showed no appreciable differ- 
ence in the results obtained using either of the operators. 
We have also pointed out that a direct implementation of 
the POCS method may not work since the results of suc- 
cessive iterations may begin to diverge. 

The significance of these studies is that it is possible to 
cantly. 

0 

I 

rn 

reconstruct an image from sparse noisy sensor array 
data. A small number of sensors reduces the receiver 
complexity and the sparsity of data is compensated for 
by collecting data at multiple frequencies. Noisy data 
may generate empty intersections of sets and hence the 
POCS method may diverge The modified method 

empty. Hence the proposed PONICS method can be 
used even for noisy data, although the projection oper- 
ators are a little more complicated 

The simulation studies reported here are applicable for 
a simplified sensor array imagmg set-up in which plane 
waves are assumed to be incident on a planar object. In 
practice, the sphencal nature of the wavefront, diffraction 
effects due to object shapes and medium disturbances, all 
make the task of image reconstruction much more diffi- 
cult than has been presented in this paper 
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