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Abstract

In this paper, we present the concept of speaker-specific mapping for the task of speaker recognition. The speaker-

specific mapping is realized using a multilayer feedforward neural network. In the mapping approach, the aim is to

capture the speaker-specific information by mapping a set of parameter vectors specific to linguistic information in the

speech, to a set of parameter vectors having linguistic and speaker information. In this study, parameter vectors suitable

for speaker-specific mapping are explored. Background normalization for score comparison and network error criterion

for frame selection are proposed to improve the performance of the basic system. It is shown that removing the high

frequency components of speech results in loss of performance of the speaker verification system. For all the 630

speakers of the TIMIT database, an equal error rate (EER) of 0.5% and 100% identification is achieved by the mapping

approach. On a set of 38 speakers of the dialect region ‘‘dr1’’ of NTIMIT database, an EER of 6.6% is obtained.

� 2002 Elsevier Science B.V. All rights reserved.

R�eesum�ee

Dans ce papier, nous pr�eesentons une approche de reconnaissance du locuteur bas�eee sur une projection sp�eecifique �aa
chaque utilisateur. Cette projection est r�eealis�eee au moyen d�un r�eeseau de neurones multi-couches. Le but de la projection

est de capturer les informations sp�eecifiques au locuteur en transformant un ensemble de param�eetres repr�eesentant
l�information linguistique en un ensemble de param�eetres caract�eerisant l�information linguistique ainsi que l�information

propre au locuteur. Dans cette �eetude, les param�eetres les plus appropri�ees pour faire cette tranformation sont �eegalement
�eevalu�ees. On montre aussi que la normalisation des scores, ainsi que l�utilisation du crit�eere d�erreur du r�eeseau de neurone

pour la s�eelection des vecteurs acoustiques, augmentent les performances du syst�eeme. Nous montrons �eegalement que le

fait de laisser tomber les composantes haute fr�eequence du signal r�eesulte en une d�eeterioration des performances du

syst�eeme. Sur un ensemble de 630 locuteurs de la base de donn�eees TIMIT, un �eegal taux d�erreur de 0.5% et 100%

d�identification sont obtenus par l�approche propos�eee ici. Sur un ensemble de 38 locuteurs de la r�eegion dialectale ‘‘dr1’’

de la base de donn�eees NTIMIT, un �eegal taux d�erreur de 6.6% est obtenu.

� 2002 Elsevier Science B.V. All rights reserved.

Abbreviations: MLFFNN: multilayer feedforward neural network; Ne criterion: network error criterion; EER: equal error rate; ANN:

artificial neural network; LI: linguistic information; SI: speaker information; LSI: linguistic and speaker information; GMM: Gaussian

mixture model; HMM: hidden Markov model; BG: background.
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1. Introduction

Speech signal contains information about

speaker, emotional state of the speaker, and the

linguistic information (LI) that corresponds to the

message part of the speech signal. All the above

information is embedded in the speech signal.

Human beings seem to perform effortlessly the
task of extracting the relevant information of each

component. It is necessary to extract features

specific to a speaker for recognizing the speaker.

LI and emotional state of the speaker have also

clues for speaker identity. For example, some

speakers may use some phrases or words more

often than others.

There are two types of tasks in speaker recog-
nition: identification (Gish and Schmidt, 1994) and

verification (Rosenberg, 1976). In the identifica-

tion task, given a test utterance, the goal is to find

the identity of the test speaker. In contrast, in the

verification task, a test speaker claims himself as a

speaker enrolled with the system, and the goal is to

check the validity of the speaker�s claim. The

output of a speaker verification system is binary,
i.e., the claim of a test speaker is either accepted or

rejected. This decision is made based on similarity

of the test utterance to the target model. A

threshold is required to check the level of similarity

(Matsui et al., 1996).

Speaker recognition can be performed in three

modes: text-dependent, text-prompted and text-

independent. In a text-dependent system (Furui,
1981) the training and testing utterances are same,

and matching is done usually at the acoustic level.

In a text-prompted system, system prompts a user

to speak a combination of digits (or words) ran-

domly selected from a pre-stored set of digits (or

words) at the time of testing. A speech recognition

system is used to verify whether the user has ut-

tered the same digits (or words) as prompted by
the system. If the user utters the correct digits (or

words) then only his/her claim is verified. In a text-

independent system (Gish and Schmidt, 1994),

training and testing utterances need not be the

same. Some statistical characteristics of speech

features are used to arrive at a decision. The four

main issues in speaker recognition are the follow-

ing: feature extraction from speech signal, gener-

ation of speaker model, matching and decision

logic.

In this paper a mapping approach is proposed

for the task of text-independent speaker recog-
nition. In this approach the mapping property

(Funahashi, 1989; Hornik, 1991) of a multilayer

feedforward neural network (MLFFNN) is used

to generate a model for each speaker (Haykin,

1999; Lippmann, 1987; Yegnanarayana, 1999). In

Section 2, the background (BG) for the mapping

approach is presented. Analysis of the mapping

approach is given in Section 3. The choice of pa-
rameters/features and their suitability for speaker-

specific mapping are discussed in Section 4. In

Section 5, the issue of BG normalization is ad-

dressed in the context of the proposed mapping

approach. A method for selecting speaker-specific

frames is proposed in the same section. In Section

6, the importance of the high frequency compo-

nents for speaker recognition is examined.

2. Mapping approach

Gong and Haton (1992) proposed a ‘‘nonlinear

vectorial interpolation function’’ in their text-

dependent speaker recognition studies. They used

the mapping property of a MLFFNN to obtain the

‘‘interpolation vector’’ for each speaker. For these

studies, transcription of the utterances was re-
quired during training and testing. Hermansky

and Malayath (1998) suggested speaker-specific

mapping approach for text-independent speaker

recognition. Cepstral coefficients derived from the

perceptual linear prediction (PLP) (Hermansky

et al., 1992) were used as features, and the re-

sults were comparable to the approach based on

Gaussian mixture model (GMM) (Reynolds, 1994,
1995).
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In the mapping approach the goal is to capture

the speaker-specific information. This may be ac-

complished by mapping a set of parameter vectors

specific to LI in the speech, to a set of parameter
vectors having linguistic and speaker information

(LSI). Such a mapping function is captured for

every speaker. The choice of mapping from LI to

LSI is better than mapping from LSI to LI, as

discussed later in this section.

Linear prediction (LP) (Makhoul, 1975) analy-

sis provides some clues to obtain parameters that

contain predominantly LI or LSI. The order of the
LP analysis determines the number of peaks of an

all-pole system. Each complex pole-pair accounts

for one resonance peak, and the real poles account

for the roll-off of the spectrum. A low (4–8) order

LP analysis captures the gross features of the en-

velope of speech spectrum. Speaker information

(SI) may be lost in such a representation, while LI

may be preserved. In contrast, a higher (>12) or-
der LP analysis captures both the gross and finer

details of the envelope of the spectrum, thus pre-

serving both linguistic as well as speaker-specific

information. But if the order of the LP analysis is

very high, then the model may also capture spu-

rious peaks in the spectrum. Generally it is difficult

to determine the correct LP analysis order (and

model) for capturing the LSI.
Fig. 1 shows some results of qualitative analysis

to demonstrate the speaker-specific features in the

LP spectrum. Speech utterances sampled at 16

kHz were collected from two speakers (1 female

and 1 male) over a microphone. Four utterances

for the vowel /a/ were collected from each speaker.

A frame size of 20 ms was considered for analysis.

The samples were Hamming windowed after dif-
ferencing (pre-emphasis). Figs. 1(a) and 1(b) show

the LP spectra for the female speaker obtained

using 6th and 14th order LP analysis, respectively.

Each spectrum pair was obtained for the same

segment of the utterance. Similarly, Figs. 1(c) and

1(d) are the LP spectra for the male speaker. We

observe the following: For the 6th order LP

analysis, the spectra for different utterances of the
same speaker are similar, and the spectra of the

two speakers are also similar. For the 14th order

LP analysis, the spectra for different utterances of

the same speaker are similar, and the spectra of the

two speakers are significantly different. These dif-

ferences can be attributed to the speakers because

the LI is same for both the speakers.

Fig. 2 shows the LP spectra for four different
speakers. Speech for the utterance of the vowel /a/

was collected from four speakers (1 female and 3

males). As in the previous experiment, the steady

portions of the utterances were considered for

analysis. Figs. 2(a) and 2(b) show the spectra ob-

tained with 6th and 14th order LP analysis, re-

spectively, for the utterances of the four speakers.

Each spectrum pair belongs to one speaker, and
the lower and higher order LP analysis was per-

formed on the same segment of the utterance. For

the 6th order LP analysis, the spectra for all the

four speakers are similar, except for small differ-

ences in the high frequency region (Fig. 2(a)). But

for the 14th order LP analysis (Fig. 2(b)), the

spectra of the speakers are significantly different.

The 6th order LP analysis qualitatively validates
the assumption that the parameter vector contains

LI, since for the same vowel sound the spectra are

similar for all the speakers. For the 14th order LP

analysis, the spectra of the four speakers are sig-

nificantly different. These variations can be at-

tributed to SI, since the LI is same in all the four

cases. Thus the low order LP spectrum (6th order

in the present case) captures the LI, whereas the
higher (14th) order LP spectrum captures both

LSI. This study shows that by choosing suit-

able order for LP analysis, parameter vectors

containing LI or LSI can be extracted from speech

signals.

It appears that a mapping function can be de-

rived by mapping the LI feature vector to LSI

feature vector or vice versa. But mapping from LSI
to LI is likely to be less effective because of the

nonuniqueness of the projection from a higher

resolution spectrum to a lower resolution spec-

trum. We will also show experimentally that this

conjecture is true.

3. Analysis of mapping approach

Let Fð�Þ denote the nonlinear mapping from LI

to LSI. For N input–output vector pairs, the av-
erage mapping error is given by
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EðFÞ ¼ 1

N
�
XN

n¼1

jon �FðinÞj2; ð1Þ

where the vector in contains the LI, the vector on
contains the LSI, and j � j is the Euclidean distance

between the two vectors. The aim is to find the

mapping function such that EðFÞ is minimized.
The assumption in this analysis is that (in; on),

n ¼ 1; . . . ;N , are related by the mapping function

Fð�Þ. As in represents the LI and on the LSI, the

mapping function that minimizes EðFÞ should be

specific to the speaker. The task is to derive this

speaker-specific mapping function using (I ;O),

where I ¼ fi1; i2; . . . ; iNg and O ¼ fo1; o2; . . . ; oNg.
Let us assume that there exists a function Fkð�Þ

for the kth speaker that performs a nonlinear

Fig. 1. (a) and (b) are the 6th and 14th order LP spectra for four different utterances of the same vowel sound (/a/) by a female speaker,

respectively. (c) and (d) are similar spectra for a male speaker. Segment size is 20 ms and sampling frequency is 16 kHz.
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mapping between I and O. The free parameters of

Fk are adjusted by minimizing EðFkÞ to obtain

the kth speaker model (Mk). In the case of identi-

fication, the speaker model (Mk) that gives the least

error for a test utterance is adjudged as the iden-

tified speaker.

After selecting the parameter vectors suitable
for mapping, the next task is to derive the map-

ping function itself. The nonlinear speaker-specific

mapping function can be captured using an

MLFFNN. In MLFFNN, the mean-square-error

is minimized using a gradient descent algorithm.

In the present studies, the parameter vectors ob-

tained from the training data are used to adjust

the weights using backpropagation learning law
(Haykin, 1999; Yegnanarayana, 1999). Models

(Mk) are derived for each speaker (k) using all the

frames in the training data of that speaker. For

testing, the input parameter vector is given to each

of the MLFFNN. The difference between the de-

sired output vector and the actual output vector of

the MLFFNN is used as distance for that frame.

The total accumulated distance averaged over all
the test frames gives an indication of the proximity

of the test utterance to the speaker model. Test

data different from the training data is used to

study the performance of the speaker models for

identification and verification. For identification,

the parameter vectors of the test utterance of each

speaker are given to each of the models. The

speaker model that gives the least distance is the

identified speaker. For verification, the perfor-

mance is expressed in terms of equal error rate

(EER). The EER is computed using the K 	 K
matrix of distances, obtained when the test utter-

ance of each speaker is evaluated with models of

all the speakers, where K is the number of regis-

tered speakers. For computation of EER, the mini-

mum and maximum distance values are found

from the distance matrix, and the threshold for

acceptance is incremented from the minimum

value to the maximum value in small steps. At
each threshold value, false acceptance and false

rejection rates are computed. For the threshold

value where the false acceptance rate is equal to

the false rejection rate, the corresponding error is

marked as EER.

4. Parameters for speaker-specific mapping

To derive the parameter vectors suitable for the

mapping approach, we have used the LPC derived
cepstral coefficients (Furui, 1981; Rabiner and

Fig. 2. (a) Sixth order LP spectra for the vowel sound (/a/) spoken by four different speakers and (b) 14th order LP spectra for the same

segment as in part (a). Segment size is 20 ms and sampling frequency is 16 kHz.
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Juang, 1993). In the following experiments, 38

speakers (14 female and 24 male) of the dialect

region ‘‘dr1’’ of the NTIMIT (Jankowski et al.,

1990) database are used. Out of the 10 sentences of
each speaker, 2 sentences are same for all the

speakers. The remaining 8 sentences are different

for each speaker. We have used the common two

sentences plus five other sentences for training the

speakers� models. The remaining three sentences,

used for testing, are different for each speaker. We

have used the average distance, obtained from

concatenation of all the three test utterances, to
calculate the performance. This provides a text-

independent evaluation of the system.

A frame size of 20 ms and a frame shift of 10 ms

are used in these experiments. Speech is pre-

emphasized and Hamming windowed. Durbin�s
algorithm is used to extract the LP coefficients

(Rabiner and Juang, 1993). Cepstral coefficients

are obtained from the LPCs using the following
recursive relation:

c0 ¼ ln r2;

cm ¼ am þ
Xm�1

k¼1

k
m
� ck � am�k 16m6 p

¼
Xm�1

k¼1

k
m
� ck � am�k m > p;

where r2 is the gain term in the LPC model, cn is

the nth cepstral coefficient, and am is the mth LP
coefficient. Linearly weighted cepstral coefficients

(Yegnanarayana and Reddy, 1979) are used as a

parameter vector in these experiments.

Let m and n be the orders of the LP analysis for

the input and output vectors, respectively. From

each set of LPCs, 20 weighted cepstral coefficients

are obtained. The first coefficient, being zero, is

ignored. The remaining 19 coefficients are used as
a parameter vector. Even though the dimensions

of the input and output parameter vectors are the

same (19), the corresponding LP analysis orders

are different. A dimension higher than the order of

the LPCs is used to represent the weighted cepstral

parameter vector, as this will improve the resolu-

tion of the formants in the spectral domain cor-

responding to the parameter vector. Note that
normally a large dimension weighted cepstral

vector is required to represent the LP spectrum

accurately.

The structure of the MLFFNN used in these

studies is 19L30N10N19L, as shown in Fig. 3,

where L denotes linear units and N denotes non-

linear units. The nonlinear activation function of
each unit is given by ð16=9Þ tanhð2x=3Þ, where x is

the input activation value. The number before L

(or N) denotes the number of units in that layer.

The first layer is the input layer (19L), while the

last one is the output layer (19L). The first hidden

layer has 30 nonlinear units and the second hidden

layer has 10 nonlinear units. In the experiments,

the order (p) of LP analysis is m for the input and n

for the output parameter vectors, respectively,

whereas the size of the input and output parameter

vectors is 19. The weights of the network are ini-

tialized with randomly generated numbers in the

range �0.5 to 0.5.

Table 1 shows the performance of the mapping

approach for the verification task in terms of EER.

The entries in the table are the performance for a
pair of LP orders used for deriving the input and

output vectors. The upper triangular matrix of the

table shows that, for a given order (m) of the LP

analysis for deriving the input parameter vector, as

Fig. 3. Structure of an MLFFNN to capture speaker-specific

mapping feature.
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the order (n) of the LP analysis for the output is
increased, initially the EER decreases, reaches a

minimum value, and then starts increasing. We can

interpret that in this case the LI is kept constant at

the input, and the SI is progressively increased at

the output. For very high order of the LP analysis

for deriving the output vector, the LP spectrum

starts picking up spurious peaks, masking the

speaker-specific information. That is why the EER
performance is decreased when n is increased be-

yond 14. On the other hand, for a given order of

the LP analysis for the output parameter vector, as

the order of the analysis for the input increases, the

EER increases in the upper triangular matrix of

the table. This is because as the difference between

the input and output orders is reduced, the net-

work cannot capture any speaker-specific infor-
mation. That is why the performance of the system

is least when there is no difference between the

input and output order, as can be seen from the

diagonal values.

In the lower triangular matrix, the input to the

network can be interpreted to contain LSI, and the

desired output to contain LI. Although from

the ER values we can see that even in this case the
network captures some speaker-specific informa-

tion when the difference between the input and the

output orders is more, the performance in these

cases is relatively poorer compared to the results in

the upper triangular matrix corresponding to

mapping from LI to LSI. This is because in the

case of mapping from LSI to LI, the network has

to produce a smooth output spectrum compared

to the input spectrum. The desired output is also a
smooth spectrum, and hence the difference be-

tween the desired and the actual smooth spectra

will not be able to bring out the discrimination

between speakers. Thus we cannot expect sym-

metry in the performance matrix. The best per-

formance of 13.2% EER is obtained when the

order of the LP analysis is 6 for the input and 14

for the output. This result is significant in the sense
that it validates our conjecture that mapping from

LI to LSI indeed captures the speaker-specific in-

formation. We use this mapping in the speaker

recognition experiments discussed in the following

sections.

5. Background normalization and frame selection

So far the Euclidean distance between the out-

put of the network and the desired output pa-

rameter vector was used for evaluating the

performance of a speaker model relative to the

models of other speakers. The concept of relative

score with respect to a reference BG model is
known to improve the performance of a speaker

verification system (Heck and Wientraub, 1997).

Therefore a BG model is generated using the pa-

rameter vectors extracted from speech utterances

of a large number of speakers. These speakers are

different from the speakers registered with the

system. An MLFFNN is trained with the pooled

input–output parameter vectors from all these
speakers. The weights of the BG model are used as

Table 1

Verification performance by mapping approach

LP order for output

LP order for input 6 8 10 12 14 16 18 20

6 27.3 24.1 21.1 15.8 13.2 15.8 18.5 20.4

8 21.1 31.2 24.5 15.8 18.5 21.1 23.7 29.0

10 23.7 22.6 33.6 23.7 23.5 26.4 28.5 29.0

12 20.3 20.7 22.9 36.7 26.3 26.4 30.9 29.0

14 23.7 25.8 18.5 20.3 32.7 28.6 29.5 29.0

16 24.5 20.5 21.1 19.3 28.7 31.6 28.6 27.8

18 27.9 23.7 17.9 16.3 21.9 28.4 36.3 29.0

20 27.0 22.7 23.0 22.4 23.7 27.5 29.0 26.4

Input–output parameters are LPC derived cepstral coefficients of dimension 19 (1st coefficient is ignored); number of speakers is 38;

network structure is 19L30N10N19L.
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initial weights to train each speaker model. This is

to avoid any bias the choice of arbitrary initial

weights may introduce while generating a speaker

model. The structure of the speaker model and the
orders of the LP analysis for deriving the input

and output parameter vectors are same as those

for the BG model. A speaker model is thus fine

tuned to a given speaker, over and above the BG

model. The relative score for the test utterance of a

speaker is obtained using the difference between

the average distance for the BG model and the

speaker model.
For generating the BG model, all the 76

speakers of the ‘‘dr2’’ set of NTIMIT are used.

The first 7 utterances from each of the 76 speakers

are taken, and the input–output parameter vector

pairs are extracted. A frame size of 20 ms and a

frame shift of 10 ms are used. Speech signal is pre-

emphasized and Hamming windowed. The orders

of the LP analysis for deriving the input and out-
put parameter vectors are 6 and 14, respectively.

The total number of input–output vector pairs

obtained from the 7 utterances of the 76 speakers

is 160442. From this pool of parameter vector

pairs, one sixth of the vector pairs are taken at

random to train the BG model. The experimental

conditions are same as used in Section 4. The same

38 speakers of ‘‘dr1’’ of NTIMIT are considered
for enrollment. Out of the 10 utterances of each

speaker, 7 are used for training and 3 for testing.

The MLFFNN structure used for generating the

BG model as well as the speaker model is

19L30N10N19L.

The performance in terms of EER using the

relative score is shown in Table 2 for different

number of iterations used for training the BG
model. It is to be noted that poor training (say

using 1 iteration) of BG model may be viewed as

random initialization for further training to gen-

erate a speaker model. This gives an EER of about

18%. This is because poor initialization leads to

poor normalization. On the other hand, proper

training of the BG model using 10 or more itera-
tions results in improved performance due to bet-

ter normalization. The use of the BG model for

normalization of the scores reduced the EER sig-

nificantly from 13.2% (in Table 1) to 7.1% (in

Table 2). It is interesting to note that the perfor-

mance is relatively invariant to the number of it-

erations used for training the BG model.

In speaker recognition, all the frames of a
speech utterance may not be equally important.

Some frames may contain significant speaker-

specific information (Eatock and Mason, 1990). If

such frames are used, then the performance of the

system can be improved. In the present work, we

suggest a network error (Ne) criterion to select

frames having speaker-specific information. This

criterion involves training the speaker model ini-
tially for a fixed number of iterations (about 50)

using all the frames of the speaker data. At this

stage the frames that give the lower distance are

termed as good frames, and are segregated from

the bad high distance frames. The initially trained

speaker model is further trained using the good

frames. The number of iterations for training the

model in the second phase of training is nearly 600
in the present study. The EER for the 38 speakers

set is reduced from 7.1% to 6.6% when the Ne

criterion is used.

6. Significance of high frequency components

For the studies in the previous sections, the

NTIMIT database was used. The NTIMIT data-

base was derived from the TIMIT database

(Jankowski et al., 1990). In this section the results
obtained on both TIMIT and NTIMIT databases

are compared.

The same 38 speakers of the dialect region

‘‘dr1’’ of the TIMIT and NTIMIT are used for

comparison. Two experiments are conducted in

this comparative study. In the first experiment, the

standard TIMIT database is used. In the second

experiment, the TIMIT utterances are passed
through a finite impulse response (FIR) low pass

Table 2

Effect of number of iterations for BG model on the perfor-

mance of speaker verification

Number of

iterations

10 20 30 40 50

EER 7.8 7.9 7.5 7.1 7.1

The EER values are for a set of 38 speakers. The network

structure is 19L30N10N19L.
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filter (LPF) of order 33 with a cut-off at 3560 Hz.
The objective of the experiment is twofold: (1) to

see the effect of removing the high frequency

components on the performance of the system,

and (2) to check the effect of channel distortions on

the performance of the mapping approach. The

results of these two experiments are compared

with the results of the experiment with the same 38

speakers set from the NTIMIT database that was
used in the previous studies.

The results of the three experiments are shown

in Table 3. The EER obtained on the TIMIT

database is low as expected. When the clean speech

of the TIMIT data is low-pass filtered, the per-

formance is degraded to an EER value of 6.1%,

which is comparable to the performance of 6.6%

EER for the NTIMIT data. This shows that
speaker-specific information is available in the

higher frequencies (above 4 kHz), and it is lost in

the low-pass filtered TIMIT data as well as in the

NTIMIT data.

Finally, the performance of the mapping ap-

proach is obtained using all the 630 speakers of the

TIMIT database. The results are that we get an

identification of 100% and an EER of 0.5%. These
results are similar to the performance obtained

using GMM (Reynolds et al., 1995), indicating

that the proposed mapping approach indeed cap-

tures speaker-specific mapping.

7. Summary and conclusion

In this paper we have shown that speaker-spe-

cific information can be captured by suitable

mapping of parameter vectors. The aim was to find
out the parameter vector pair suitable for the

mapping approach. The parameter vector pair

derived from the 6th and 14th order LP analysis

for the input and output, respectively, was found

to be most suitable. The input vector may be
considered as representing the LI and the output

vector representing the LSI.

We proposed a BG normalization technique to

improve the performance of the system. An Ne

criterion was proposed to select frames having

significant speaker-specific information. An EER

of 6.6% was obtained when both the BG normal-

ization and Ne criterion were used together, com-
pared to an EER of 13.2% without using them.

We have shown experimentally that the high

frequency components are important for a speaker

verification system. The mapping approach was

shown to perform as well as the GMM-based ap-

proach for all the 630 speakers of the TIMIT

database.

The speaker-specific mapping was captured
from the training data itself, and no assumption

about the underlying probability density functions

was made. Another advantage in the proposed

method is that the number of free parameters is

significantly less compared to a GMM-based ap-

proach. The number of free parameters (weights of

the network) in the present studies are 1119,

whereas in a GMM they are typically 19456 for a
1024 mixture model and for a parameter vector

dimension of 19, assuming that the variances of

the Gaussians are held constant.
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