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Abstract. In this paper we demonstrate the feasibility of processing the Fourier transform (FT) phase of a speeech signal to 
derive the smooth log magnitude spectrum corresponding to the vocal tract system. We exploit the additive property of the 
group delay function (negative derivative of the FT phase) to process the FT phase. We show that the rapid fluctuations in 
the log magnitude spectrum and the group delay function are caused by the zeroes of the z-transform of the excitation 
components of the speech signal. Zeroes close to the unit circle in the z-plane produce large amplitude spikes in the group 
delay function and mask the group delay information corresponding to the vocal tract system. We propose a technique to 
extract the vocal tract system component of the group delay function by using the spectral properties of the excitation signal. 

Zusammenfassuag. In diesem Beitrag zeigen wir dab aus den Phasen Fourier-Transformierten eines Sprachsignals ein 
gegl~ittetes logarithmiertes Betragsspektrum gewonnen werden kann, das dem Spracbtrakt-Betragsfrequenzgang entspricht. 
Bei der Bearbeitung der Phasen des Spektrums wird die Additivit~itseigenschaft der Gruppenlaufzeit (negative Ableitung des 
Phasengangs) ausgenutzt. Wir zeigen dab die schnellen Schwankungen im Iogarithmierten Betragsspektrum und der Gruppen- 
laufzeit dutch die Nullstellen der Z-Transformierten der Sprachsignal-Erregung verursacht werden. Nullstellen in der N~ihe 
des Einheitskreises der Z-Ebene rufen hohe Spitzen in der Gruppenlaufzeit-Funktion hervor und verdecken die Information, 
die in der Gruppenlaufzeit fiber den Sprachtrakt enthalten ist. Wir schlagen eine Methode vor, die es erlaubt, durch Ausnutzung 
der spektralen Eigenschaften des Erregungssignals aus der Gruppenlaufzeit die Sprachtrakt-Komponente zu extrahieren. 

R6sum6. Pour obtenir des informations pertinentes sur le signal de parole, on peut utiliser la phase, en exploitant les propri6t6s 
d'additivit6 et de haute r6solution du temps de propagation de groupe (d6riv6e n6gative de la phase de la transform6e de 
Fourier). On montre que les variations rapides du logarithme du spectre d'amplitude et du temps de propagation de groupe 
sont dues aux z6ros de la transform6e en Z de l'excitation. Les z6ros, voisins du cercle unit6, engendrent les pics d'amplitude 
61ev6s du temps de propagation de groupe et masquent les informations temporelles li6es au conduit vocal. Pour estimer le 
temps de propagation de groupe, on propose une m6thode ayant pour base les propri6t6s spectrales du signal d'excitation. 
Son comportement est 6valu6 ~ I'aide d'une s~rie d'exp6riences portant sur une gamme vari~e de signaux d'excitation. On 
montre que cette technique est bien adapt6e au traitement des signaux de parole, surtout s'ils sont perturb6s par des bruits 
additifs. 

Keywords. Fourier transform phase, group delay functions, speech processing, formants. 

I. Introduction 

In the Fourier analysis of real data we have both 
magnitude and phase components,  although the 
phase part is seldom used for parameter extraction. 
The phase spectrum of a signal appears to be noisy 
and difficult to process because it is available in a 
wrapped form (confined to the interval :err). But 
a significant feature of  the phase function of a 
cascade of  resonators is that the component phase 

spectra are additive, unlike that of the magnitude 
spectrum where the component  magnitude spectra 
are multiplicative. In this paper we suggest a pro- 
cedure to process the phase without destroying its 
additive property. 

Our studies have shown that the FT phase is as 
important as the FT magnitude, and the relation 
between them can be explained through group 
delay functions [7]. The additive property of the 
phase is retained in the group delay function. 
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Another advantage of computing the group delay 
function rather than the phase spectrum is that the 
group delay function can be computed directly 
from the time domain signal without having to 
compute the unwrapped phase [4]. 

In the group delay domain the vocal tract and 
the excitation components are additive. The group 

delay function of  speech is however difficult to 
process due to the presence of high amplitude 
positive and negative spikes corresponding to the 
spectral fine structure. These peaks are contributed 

by the zeroes close to the unit circle in the z- 
domain. In this paper we present a new method 
for extracting the group delay function corre- 
sponding to the vocal tract spectrum. In Section 2 
we briefly discuss the properties of the group delay 
functions. In Section 3 we derive a modified group 
delay function corresponding to the vocal tract 
system. In Section 4 we study the effect of various 
parameters on the proposed method of deriving 
the smoothed magnitude response from the FT 

phase. 
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Fig. 1. Illustration of properties of the standard group delay function for the impulse response of  an all-pole system. Fig. 2. Illustration 
of  properties of  the standard group delay function for a random noise sequence. Fig. 3. Illustration of properties of the standard 
group delay function for a train of impulses separated by a pitch period (p = 80). Fig. 4. Illustration of properties of the modified 
group delay function for a signal generated by exciting all-pole system with a random noise sequence, i.e., convolution of the signals 
in Figs. I(A) and 2(A). Note that Fig. 4(E) is generated by multiplying the signal in Fig. 4(D) with an estimate of the excitation 
magnitude spectrum in Fig. 2(B). Fig. 5. Illustration of  properties of the modified group delay function for a signal generated by 
exciting all-pole system with a periodic impulse train, i.e., convolution of the signals in Figs. l(A) and 3(A). Note that Fig. 5(E) is 

generated by multiplying the signal in Fig. 5(D) with an estimate of the excitation magnitude spectrum in Fig. 3(B). 
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2. Theory and properties of group delay functions 

In the theoretical discussion that follows initially 
we use continuous time and frequency variables 
and express the transfer function in terms of the 
Laplace transform. This helps us to visualize the 
resonance behaviour of  the group delay function 
analytically. Later we use digital signals and the 
z-plane for the computation and discussion of  the 
technique. 

To explain the principle of the method, we con- 
sider a cascade of M resonators. The frequency 
response of  the overall filter is given by 

M 1 
H ( t o ) =  [I 2 2_to2 (1) 

i=1 (a i  + fli - 2 jwoq) '  

where (ai +jfli) is the complex pair of poles of the 
ith resonator. The magnitude spectrum is given by 

M 1 
IH(to)l 2= [I (2) ,=, [ ( oe[ + fl [ - w 2 ) 2  + 4we a 2] ' 

and the phase spectrum is given by 

M 2ton  i 
0 ( t o ) = / H ( t o ) =  ~ tan -l 2 2 (3) 

i = l  Ol i "~ ~ i - t o 2 "  

It is well-known that the magnitude of an 
individual resonator has a peak at to2 = fi2_ a2 and 

a half-power bandwidth of a~. We now consider 
the negative derivative of  the phase spectrum (or 
group delay function) 

dO(w) 
~ ( t o )  - - _ _  

dw 
2 ~ , ( ~ + / ~ , ~ +  to 2 ) 

= ]~ ( a / 2 + , - , 2  2 . 2 - .  2 2" ( 4 )  
i = l  P i - - t o  ) - t - q . t o  O~ i 

It was shown in [6] that around the resonance 
frequency to~ = f12_ a~ the group delay function 
behaves like a squared magnitude response. The 
response due to each resonator approaches zero 
asymptotically for to away from the resonance 
frequency. The overall group delay function is a 
summation of  the group delay functions due to 
individual resonators as can be seen from Fig. 
I(D). Figure I(A) shows the windowed impulse 
response of a 10th order all-pole filter. Figures 1 (B, 
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C, D) show the corresponding magnitude, phase 

and group delay spectra. Note that the group delay 
function (Fig. I(D)) has sharp peaks around the 
resonances due to the squared magnitude 
behaviour and has very small values in between 
two resonance peaks due to the asymptotic 
behaviour for frequencies away from the resonance 
frequency. 

It was shown in [1] that the digitally computed 
group delay functions accurately represent the 
signal information as long as the roots of  the signal 
z-transform are not too close to the unit circle in 
the z-plane. It was noticed that adequate sampling 
based on the Nyquist criterion in the time domain 
does not necessarily result in proper sampling in 
the group delay domain. 

3. Basis for the proposed method: Modified group 
delay function 

In digital processing of speech signals, the vocal 
tract system and the excitation contribute to the 

envelope and the  fine structure, respectively, of  the 
spectrum. Techniques used to extract resonances 
from the FT magnitude try to capture the spectral 
envelope and disregard the fine structure. 
Similarly, to derive the vocal tract characteristics 
from the group delay function, the component due 
to spectral fine structure must be deemphasized. 
Zeroes close to the unit circle manifest as spikes 
in the group delay function. The strengths of  these 
spikes depends upon the proximity of the zeroes 
to the unit circle. The polarity of the spikes depends 
on whether the zero lies inside or outside the unit 
circle. These spikes form a significant part of  the 
fine structure and their effect cannot be eliminated 
by normal smoothing techniques. In our previous 
attempts [2], the speech signal was modified prior 
to the group delay computation to reduce the effect 
of  the spikes in the group delay domain. Here we 
suggest a method for reducing the contribution of 
tho fine structure to the group delay function by 
modifying the group delay function derived 
directly from the time domain signal. This 
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modification is based on the conjecture that the 
spikes in the group delay function are caused by 
zeroes close to the unit circle. Our initial attempts 
to compensate for the zeroes involved modifying 
the expression for computing the group delay func- 
tion in an ad hoc manner which is reported in [3]. 
We now substantiate this conjecture with both a 
theoretical analysis and experimental results, and 
suggest a modification which does not involve any 
empirical parameters. 

Since speech signal can be characterized as the 
response of an all-pole filter to an excitation either 
from a periodic train of  impulses or from a random 
noise sequence, the z-transform of the system gen- 
erating the speech signal can be written as 

NCz) 
H(z) - D(z)" (5) 

The numerator polynomial N(z)  corresponds to 
the contribution by the excitation, and the 
denominator polynomial D(z) corresponds to the 
contribution by the poles of the vocal tract system. 
The frequency response of  H(z) is given by 

N(w)  
H(w)  = - -  (6) 

D(~o) ' 

where H(~o), N(w)  and D(~o) are obtained by 
evaluating the corresponding polynomials on the 
unit circle in the z-plane. 

The group delay (negative derivative of the 

phase) function of H(~o) is given by 

z(w) = zN(w ) - to(w) ,  (7) 

where zN(w) and zD(w) are the group delay func- 
tions corresponding to N(w)  and D(w). We have 
already discussed the shape and properties of 
-'to(W) through (4). Although it is difficult to 
derive an analytical expression for zN(w), we can 
study its behaviour in terms of the characteristics 
of  excitation signals. Since N(z)  corresponds to 
the z-transform of the excitation signal, the zeroes 
of N(z)  close to the unit circle produce large 
amplitude spikes in "oN(w). The polarity of  the 
spikes depends on whether the zeroes are lying 
inside or outside the unit circle in the z-plane. 
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Figures 2 and 3 illustrate the behaviour of 9"N(O] ) 
for a random noise sequence and impulse train, 
respectively. Note that the log magnitude spectra 
(Figs. 2(B) and 3(B)) have nearly a flat spectral 
envelope with rapid fluctuations superimposed 
on it due to zeroes close to the unit circle. The 
group delay functions (Figs. 2(D) and 3(D)) have 
large fluctuations around zero. The large posi- 

tive and negative spikes of rN(~O) mask the details 
of the resonance peaks due to -rD(oJ)  in the 
combined response r(w). This is illustrated in Figs. 
4 and 5. The signal in Fig. 4 corresponds to a 
windowed version of the signal generated by con- 
volving the random noise sequence (Fig. 2(A)) 
with the impulse response (Fig. I(A)) of an all-pole 
system. The group delay function (Fig. 4(D)), 
which is simply the sum of the plots of Fig. I(D) 
and 2(D) shows that the resonance peaks are 
indeed masked by the large amplitude spikes. Note 
that the vertical scales in Figs. I(D) and 2(D) are 
different, the peak amplitudes in Fig. 2(D) being 
very much larger than the amplitudes in Fig. I(D). 
Similar behaviour is observed in Fig. 5, where the 
signal is a windowed version of the signal obtained 
by convolving the impulse train in Fig. 3(A) with 
the impulse response (Fig. I(A)) of an all-pole 
system. 

The equation for -r(w) can be written as [4] 

x R ( ~ )  YR(~) + x , ( ~ )  v , ( ~ )  
~(,o) = ] x ( ~ ) l :  , (8) 

where X(w)  and Y(w) are the Fourier transforms 
of the discrete-time signals x(n) and y(n) = nx(n), 
and the subscripts R and I stand for the real and 
imaginary parts, respectively. In the expression for 
computing rN(to), [N(to)[ 2 appears in the 
denominator.  Small values of ]N(to)[ 2 at fre- 
quencies near zeroes of  N(~o) contribute to the 
large amplitude spikes. For computing rD(w), the 
term [D(w)] 2 appears in the denominator. Since 
D(z) has all the roots well within the unit circle, 
ID(o~)[ 2 will not have very small values as in 
]N(o~)[ 2. Hence ZD(W) will not have large ampli- 
tude spikes as in ZN(W). The combined group delay 
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function is now given by 

~(o~) : ~-N ( ` o ) -  ~'D(`o) 

~N(,o) '~,~(,o) 
_ iN(`o)12 iD(,o)12, (9) 

where aN(,o) and ao(,o) are the numerator terms 
of (8) for ZN(,o) and zo(,o), respectively. 

Suppose we multiply r(`o) with [N(to)[ 2. Then 

the contribution due to the zeroes is significantly 
reduced. Since the envelope of [N(`o)[ 2 is nearly 
fiat, the significant features (resonance peaks) of 
the second term will still shown up, with superim- 
posed fluctuations of [N(`o)[2. The modified group 
delay function is given by 

ro(,o) -- ~-(`o)l N(`o)[ 2 

~ ( , o )  [N(,o)l 2. (lO) =aN(w) Ip(w)[ 2 

In (10) the contribution of  the first term aN(`o) 
should be small compared to the second term in 
order to emphasize the group delay component of 
the second term. That aN(`o) is small for a random 
noise sequence can be seen from Fig. 4(E), where 
the modified group delay function Zo(`o) is plotted 
for the signal in Fig. 4(A). Note that between two 
resonance peaks the value of rD(~O) is nearly zero 
(as discussed earlier) due to the additive property 
of  the group delay function. That is why the 
modified group delay function resembles the group 
delay function for the impulse response of the 
all-pole system as can be seen from Figs. 4(E) and 
I(D). Note that the modified group delay function 
in Fig. 4(E) is obtained by multiplying the function 
in Fig. 4(D) with an estimate of the excitation 
spectrum in Fig. 2(B). Figure 5 illustrates similar 
results for the periodic impulse excitation. Later 
in the experiments we show that for a variety of 
excitation functions aN (,o) is small. 

Therefore, the problem of determining the com- 
ponent due to the resonances is reduced to the 
estimation of  the function [N(,o)[ 2. In practice 
]N(,o)[ 2 has to be estimated from the given signal. 
It is important to preserve the values of  IN(w)[ 2 
around the zeroes so that it cancels the small values 

in the denominator of  the first term in (9). There- 

fore [N(`o)] -~ should retain all the sharp fluctuations 
of the log magnitude spectrum and should have a 
flat spectral envelope. We will show that the second 
condition is not as critical as the first one. An 
approximation ,~(to) to IN(`o)] 2 can be obtained 
by dividing the signal spectrum (S(w)= ]H(w)l 2) 
with a cepstrally smoothed spectrum V~(w) 
[4, p. 519]. That is, 

2(,o) = s(,o) 

< ( , o ) ,  (1~) 

where S(,o) is the signal spectrum and Vc(,o) is 
the cepstrally smoothed spectrum of S(,o). Figures 
4(E) and 5(E) show the results of processing the 
group delay function using an estimate Z(,o) for 
IN(,o)[ 2 derived from a cepstrally smoothed spec- 

trum of the signal. The figures show that we have 
indeed obtained a group delay function that is 
close to Fig. I(D). 

Since the modified group delay function roughly 
corresponds to the group delay function of an 
all-pole system, it is possible to derive the corre- 
sponding log magnitude spectrum using the 
minimum phase property. The algorithm involves 
computation of the linearly weighted cepstral 
coefficients from Zo(W), followed by the computa- 
tion of the cepstral coefficients and finally the log 
magnitude [7]. 

4. Effect of  various parameters 

While the group delay function has many inter- 
esting properties, its computation in the digital 
domain causes some problems. We have conducted 
a series of  experiments to study the robustness of 
the proposed technique. The choice of the experi- 
ments is based upon the discussion given in an 
earlier paper [1] and our own experience with the 
use of group delay functions over the past several 
years. Composite signals of  the form shown in (12) 
are used in these experiments. Each signal is 
obtained as the response of a five formant vocoder 
to a train of  impulses separated by a pitch period. 
The amplitude of the impulses are 1, 3,, 3, 2, y3, . . . .  
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The composite signal is given by 

y(n)= x(n)+ yx (n -  p) 

+y2x(n -2p)+y3x(n -3p)+ . .  ., (12) 

where x(n) is the basic signal corresponding to 

the impulse response of the system. Taking the 
z-transform of the above equation we get 

X(z) 
= (13) Y(z) 1 - y z  -p" 

This signal contains 5 pairs of  complex conjugate 
pole pairs located inside the unit circle in the 
z-plane due to the basic signal. The distribution 
of zeroes and the number of zeroes are determined 
by the values y and p, respectively. If y = 0, we 
only have the basic signal. The choice of such a 

signal is justified because speech is indeed a type 
of composite signal. In the following experiments 
a particular parameter is varied, the modified 
group delay function and the corresponding log 
magnitude spectrum of the vocal tract system are 
computed. The performance is judged by compar- 
ing the modified group delay function with the 
true group delay function for the vocal tract system 
for synthetic signals. The smoothed log magnitude 
spectrum is also used to demonstrate the usefulness 

of the proposed method. 
A few comments are given here to explain the 

organisation of the plots in our studies. For each 
case we have given the time domain signal usually 
of 256 samples, followed by the log magnitude 
spectrum of the signal. A 16th order LP spectrum 
is superimposed on the log magnitude spectrum. 
For synthetic signals the LP spectrum corresponds 
to the ideal log magnitude spectrum of the vocal 
tract system. Our main aim is to show that it is 
possible to process the Fourier transform phase 
through the group delay functions. Therefore in 
each figure the phase spectral plots are given to 
illustrate the complexity of the phase data due to 
wrapping. The complexity is reduced in the group 
delay function plot because the effects of wrapping 
are absent. However the effect of zeroes close to 
the unit circle mask the information about the vocal 
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tract system. The complexity is further reduced in 
the modified group delay plot to bring out the 
features (like formants) of  the vocal tract system. 
Finally a smoothed log magnitude spectrum is 
given corresponding to the modified group delay 
function. In all the figures vertical scale is not 

explicitly mentioned, since we are only looking at 
the features in the plots. 

Experiment 1 : Effects of various analysis parameters 
We have considered the effect of each of the 

following parameters on the modified group delay 
function and the resulting smoothed log magnitude 
spectrum: 
(a) Size of cepstral window to derive Z(to) in (11). 

(b) Size and shape of the analysis window for the 
signal. 

(c) Proximity of zeroes to the unit circle by varying 
y in (12). 

(d) Number of zeroes by varying p in (12). 
(e) Proximity of resonances. 
We have found that the modified group delay 
function is almost the same over a range 4 to 20 

samples of the cepstral window used to derive 
Z,(w) in ( l l ) .  This shows that the size of the 
cepstral window is not very critical in the proposed 
method of deriving the smoothed magnitude spec- 
trum. Our studies on the effects of the other para- 
meters also show that the method is not critically 
dependent  on the size and shape of the data win- 
dow, the distribution of  the zeroes due to excitation 
and the distribution of resonances of the system. 
It should be noted, however, that the limit on the 
resolution of the formants peaks is governed by 
the size of  the data window, since our starting 
point is still the discrete Fourier transform of the 
given data for computation of the modified group 
delay function. 

Experiment 2: Different types of excitation functions 
So far we have only considered synthetic signals 

which correspond to the response of an all-pole 
system to a sequence of periodic impulses. In this 
experiment we compare the modified group delay 
functions derived from signals generated using 
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LOG MAGNITUDE SHOOTHED LOG 

SPECTRUt'I WITH HODIFIED MAGNITUOE SPECTRUM DIFFERENT EXCITATION FUNCTIONS 
SUPERIHPOS~D PHASE GROUP DELAY GROUP DELAY FROH HOOIFIED 
LP-16 SPECTRUM SPECTRUM ~:>ECTRUH SPECTRUM GROUP DELAY 

(A) IHPULSE 

(B) GLOTTAL PULSE 

(C) GLOTTAl- PULSE 
WITH RADIATION LOAD 

(D) RANDOH NOISE 

Fig. 6. Illustration of the effect of different excitation functions on the modified group delay function: (A) impulse, (B) glottal 
pulse, (C) glottal pulse with radiation load and (D) random noise. 

four different excitation functions: (a) An impulse 
sequence separated by pitch period (100 samples); 

(b) Synthetic glottal pulse sequence as defined by 

Rosenberg [5, p. 103]; (c) Glottal pulse sequence 

with radiation load [5, p. 102] and (d) Uniformly 

distributed random noise. Figure 6 shows the 

results for the different excitation functions. We 

can see that the effect of  these excitation functions 
on the modified group delay function is minimal. 

This is due to the fact that all the excitation func- 

tions are finite duration signals which introduce 
zeroes in the z-plane. The effect of  these zeroes is 

reduced in the modified group delay function. 

Experiment 3. Natural speech 
In this experiment we consider different seg- 

ments of  natural speech. Figure 7 shows the plots 
for four consecutive segments of  speech chosen 
arbitrarily from an all-voiced utterance. The results 
show that the formant information is preserved in 

the modified group delay function. Note that the 

resulting log magnitude spectra are derived 
without implying any model for the vocal tract 

system. 

Experiment 4. Noisy speech data 

In this experiment we consider an arbitrarily 

chosen segment of  synthetic speech which is cor- 
rupted by additive white Gaussian noise. The 
signal-to-noise ratio (SNR) is progressively 

decreased. The effect on the modified group delay 

function is shown in Fig. 8. Notice that significant 
features are preserved even when the SNR is 0 dB. 

This point is also illustrated in Fig. 9 for natural 

speech. An important  observation is that the spec- 
tral dynamic range has been restored to almost the 
original value as can be seen from the derived 
smoothed log magnitude function. These spectra 
also preserve the formant  information as can be 
seen from the modified group delay function. For- 
mant peaks at low SNR regions in the spectrum 

are obviously lost in most cases. 
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SIGNAL 

LOG HAGNITUOE SPIOOTHED LOG 
SPECTRUM WITH rIODIFIED HAGNJTUDE SPECTRUM 
SUPERIHPO~.D PHASE GROUP DELAY GROUP DELAY FROH MODIFIED 
LP-16 SPECTRUH SPECTRUPI SPECTRUM SPECTRUM GROUP DELAY 

TI~(~C)  50 0 FEO.(KHZ) 5 0 FEO.(KHZ) 5 0 rR~O.(KHZ) 5 0 FREO.(KHZ) 5 0 FEO.(KHZ) 

Fig. 7. I l lustration of modified group delay functions for some segments of natural speech. 
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"rIPE(HSEC) 50 

LOG HAGNITUOE 
SPECTRUH WITH HODIFIED 
SUPERINIPOS~D PHASE GROUP DELAY 
LP-16 SPIEC TRUM SPECTRUPI SPECTRUM 

GROUP DELAY 
SPECTR 

SHOOTHED LOG 
HAGNITUOE SPECTRUM 
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GRO(JP DELAY 
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(B) SNR - 10 

(c)  ~ = 0 dB 

Fig. 8. Effect o f  noise on the modified delay function (synthetic speech): (A) clean signal,  (B) SNR = 10 dB and (C) SNR = 0 dB 
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LOG ~ I T U O E  
SPECTRUH WITH 
SUPERIHPOSED PHASE 
LP-16 SPIECTRUH SPECTRL~ SIGNAL 

SP1OOTHF.D LOG 
HODIFIED MAGNITUDE SPEC TRUH 

GROUP D(ELAY GROUP DELAY FROPI PtOOIFIED 
SPECTRUPI SPIECTRUPI GROUP D~LAY 

(B)  SNR = 10 dB 

(C) Si',IR = 0 dB 

Fig. 9. Effect of noise on the modified group delay function (natural speech): (A) clean signal, (B) SNR = 10 dB and (C) SNR = 0 dB. 

5. Conclusions 

In this paper  we have proposed a new technique 

for processing the Fourier transform phase spec- 
trum of a speech signal. The standard phase 

spectrum is considered difficult to interpret due to 

the artifacts introduced by the zeroes of  the z- 
transform of  the excitation function. We have pro- 

posed a technique to process the phase in which 

the effect of  these zeroes is significantly reduced. 
The main results of  this study are 

(1) The fluctuations caused by zeroes are reduced. 
(2) The effects of  time window functions are sig- 

nificantly reduced. 
(3) The most striking result is that the spectral 

dynamic range appears  to be restored for noisy 
speech in most cases. 
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