
the white light beam at the device output, then measuring the 
optical power at the four input ports. The transmission 
spectra from four ports, A, B, C and D, are shown in Fig. 3. 

0 7 5  0 80 0 85 
wavelength, prn 

Fig. 2 Transmission spectrum for long T M I  section (4 5 m m )  at 0 V 
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Fig. 3 Four-channel W D M  transmission spectra at ports A .  B, C and D 

Each spectrum has a main transmission peak and several 
nulls. Ideally, the main peak will line up to the null on all 
other ports. The exact voltages for fine-tuning the electrodes 
and the exact wavelengths for four channels cannot be resolv- 
ed by looking only at these spectra because of the small 
signal/noise ratio of this measurement. A precise measurement 
using laser diodes will now be explained. 

The optimum wavelengths for minimising the crosstalk 
through the long TMI section were obtained by launching 
light from laser diodes into the device while thermally tuning 
their wavelengths. After fixing the wavelengths of the laser 
diodes, voltage-tuning of the short TMI sections was neces- 
sary. Because the long TMI section determines the wave- 
lengths of the four channels, with no voltage applied tc that 
section, we had on-hand only three out of the four laser 
diodes for matching four adjacent channels. The missing 
channel was in the range of 765 nm. 

Since a diode of this kind was not available, tuning the long 
TMI section electrode to match to the available laser diodes 
was needed. Also, to minimise the voltage tuning require- 
ments, we left one of the two short TMI sections at OV, and 
tuned the long TMI section to match it. In this case, 65 V was 
applied to the long TMI section. The transmission spectrum 
of the long TMI section is similar to Fig. 3, except that the 
curve is shifted towards the shorter-wavelength direction by 
about 20nm. For optimum operation, 140V was applied to 
the other short TMI  section. The results are shown in Table 1. 

Table 1 OPTICAL CROSSTALKS FOR 
FOUR-CHANNEL WDM 

Output 2, 7. i., 
port 74938, 78018, 8;;A 83398, 

dB dB dB d B  
A - 25 0 -32 -21 
B -24 -29 -30 0 
C 0 -30 - 1 8  -26 
D -21 -19 0 - 33 

Voltages. V, = 65 V. V,, = O V ,  V,, = 14OV 
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The four channel wavelengths were found to be 749.3, 780.1, 
809.7 and 833.9 nm. Optical crosstalk ranged from - 18 to 
- 33 dB. 

Conclusion. A four-channel WDM comprising cascaded, dual- 
channel TMI WDMs was demonstrated. The operating 
channel wavelengths were 749.3, 780.1, 809.7 and 833.9 nm. 
Measured optical crosstalk ranged from -18 to -33dB. 
Because laser diodes tend to mode-hop with temperature 
changes, the exact wavelength for perfect operation could not 
be easily obtained. A 1 nm deviation in wavelength from the 
perfect operation point may result in a degradation of 3 dB in 
crosstalk. In principle, all three electrodes on the device can be 
tuned at the same time to match the available laser diodes. 
Tuning the long TMI section is always preferable for locating 
the four channel wavelengths. Tuning of the two short TMI 
sections follows for obtaining the optimum crosstalk. 

We thank M. Hamilton for useful discussions, W. Dough- 
erty for photomask layout and T. Traynor for the white light 
source set-up. 
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FORMANT EXTRACTION FROM PHASE 
USING WEIGHTED GROUP DELAY 
FUNCTION 

Indexing terms Signal processing, speech processing, Fourier 
transforms. Grouo delav function, Formant extraction 

~~ ~~ 

A method to extract formants from Fourier transform (FT) 
phase using a group delay (GD) function is presented. The 
GD function of the speech signal is dificult to process owing 
to the presence of large amplitude spikes. The spikes are 
de-emphasised by modifying the expression lor computing 
the GD function, which facilitates formant extraction. 

Introduction: Although complete information about a finite- 
duration signal is available in its Fourier transform (FT) 
phase,’ no attempt has been made to estimate any useful 
parameters such as formants from the phase, because i t  
appears to be noisy and is difficult to interpret. However, the 
negative derivative (with respect to the angular frequency) of 
the FT phase. called the group delay (GD) function, has 
potential applications in speech processing’ because of its 
additive and high-resolution properties. The G D  function of 
speech is, however, difficult to process owing to the presence 
of large amplitude spikes caused by the spectral fine structure. 
In this letter we present a method for formant extraction from 
the G D  function, which involves modifying the expression for 
the computation of the group delay spectrum from the time 
signal. The effect of this modification is equivalent to weigh- 
ting the group delay function by a fractional power of the FT 
magnitude. 
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Formant extraction from group delay function: A speech signal 
can be considered as a convolution sum of the vocal tract 
response and the glottal excitation signal in the time domain. 
The vocal tract system and the glottal excitation contribute a 
slowly varying component and a rapidly changing component 
(also called the fine structure), respectively, in the spectral 
domain. These components are multiplicative in the FT mag- 
nitude and additive in the group delay spectra.2 The fine 
structure is due to the zeros of the transfer function intro- 
duced by the window and glottal effects, whereas the slowly 
varying component is due to the poles and zeros of the trans- 
fer function introduced by the vocal tract system. 

The techniques used to extract formants from the FT mag- 
nitude try to capture the slowly varying component and disre- 
gard the fine structure. To  derive the vocal tract 
characteristics from the GD spectrum, the fine structure com- 
ponent has to be de-emphasised. Zeros close to the unit circle 
appear as impulses in the G D  function. These impulses form a 
significant part of the fine structure, and their effect cannot be 
completely eliminated by clipping or standard smoothing 
techniques. 

The algorithm to compute the group delay function is given 
below. This is based on the expression for the derivative of FT 
phase as given in Reference 3. 

Let x ( n )  be the given time-domain sequence of length N / 2  
samples : 

( a )  Compute the N-point DFT X(k)  and Y ( k )  of the sequences 
x ( n )  and nx(n) by appending the sequences with N / 2  zeros. 

(b) Compute the group delay function T~ as 

where the subscripts R and I denote the real and imaginary 
parts, respectively. If some zeros of the signal are on the unit 
circle in the z-plane, r,(k) at those frequencies might become 
undefined. To  avoid this, we replace the denominator by a 
small positive value when I X(k)  I = 0. 

Fig. 1 shows a segment of speech (sampled at 10kHz) and 

I 

- 1  

0 2 5  6 
time. ms 

rn 
Fig. 1 Segment ofspeech 

its FT  magnitude, and Fig. 2 shows its FT  magnitude, (linear 
prediction) LP and FT  phase spectra. Fig. 3a shows the GD 
spectrum obtained using eqn. 1. Note that there are a number 
of spikes in the group delay function. The spikes are caused by 
the zeros close to the unit circle, which also appear as sharp 
valleys in the FT magnitude spectrum. The polarity and 
strength of a spike in the GD spectrum are determined by the 
location and proximity of the zero (with respect to the unit 
circle), re~pectively.~ 

To see the underlying structure of the vocal tract response 
from the group delay function, the effect of the spikes has to 
be eliminated. This is illustrated in Fig. 3a, where we show the 
lowpass-filtered G D  function (thick line) where the smoothed 
spectrum is dominated by a large positive spike. We note that 
the locations of the peaks do not correspond to formants. We 
note from Figs. 2a and 3a that corresponding to each spike in 
the G D  function, there is a sharp valley in the FT magnitude 
function, whose values are relatively very small. We observe 
from eqn. I that the square of the FT magnitude, whose 
values are very small at the valleys, contributes to the large 
spikes as it appears in the denominator. This suggests an 
approach to de-emphasise the spikes in the group delay by 

replacing the term IX(k)l' in eqn. 1 by lX(k)ln'kl, where a(k) 
varies linearly with frequency and takes on the boundary 
values a(0) = a1 and a ( N / 2 )  = a2, where 1.0 I a2 < x 1  < 2.0. 

loo- 

Fig. 2 Magnitude and phase spectra oJspeech 
a Fourier transform magnitude spectrum and its smoothed 
envelope (linear prediction spectrum) 
h Fourier transform phase spectrum 
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N 
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U 
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Fig. 3 Group delay spectrum derived Jrom speech segment 
a Original group delay spectrum and its smoothed envelope 
h Modified group delay and its smoothed envelope 

This term is made a function of frequency to adjust for the 
large dynamic range in r,(k) due to formants. 

Fig. 36 shows the modified group delay spectrum. In our 
present study we found that the values a I  = 1.25 and a2 = 1.0 
seem to give good results for a large number of segments. The 
values of z1 and a2 are not very critical as long as they are 
close to 1. We observe that the strength of the spikes has been 
significantly reduced relative to the neighbouring values. The 
thick line in Fig. 3h shows the smoothed group delay spec- 
trum. On comparison with the thick line in Fig. 2 we note that 
the location of peaks matches with that of the LP spectrum 
peaks. 

Conclusions: In this letter we describe a procedure to extract 
formants from FT phase by processing a modified group delay 
function. The peaks and valleys in the smoothed modified 
group delay correspond to formants and natiformants, respec- 
tively. Our experiments with synthetic and natural speech 
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data have demonstrated that formants can be estimated con- 
sistently and reliably from the smoothed modified group delay 
function. 
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ANALYSIS OF FORWARD WIDE-ANGLE 
LIGHT PROPAGATION IN  SEMICONDUCTOR 

STRUCTURES 
RIB WAVEGUIDES AND INTEGRATED-OPTIC 

Indexing terms 
tronics, Integrated optics 

Waveguides, Optical waveguides, Optoelec- 

We analyse longitudinally varying semiconductor rib wave- 
guides with a new nonparaxial wide-angle equation for uni- 
directional light propagation. We further develop a solution 
method involving multiplication of the incoming electric field 
by a series of unitary operators which are evaluated by split- 
step fast Fourier transform and finite dimerewe techniques. 
In the test case of a strongly guiding rib waveguide Y- 
junction, the estimated losses nearly coincide with those of 
standard Fresnel equation procedures. We also present a 
numerical analysis oi an integrated-optic lens, demonstrating 
significant errors in previous results. Finally, we explicitly 
illustrate the increased accuracy of our new method in com- 
parison to the Fresnel equation for a highly nonparaxial 
Gaussian heam. 

Introduction: Earlier numerical studies of the difTerential 
losses of semiconductor rib waveguide Y-jun~tions'-~ have 
been restricted to the Fresnel equation. While the paraxial 
approximation was proven in these studies to agree in the 
weakly guiding limit with the standard effective index 
method4 and in the strongly guiding limit with experimental 
mea~urements,~ no theoretical treatment of the errors associ- 
ated with nonparaxial radiation modes has yet been advanced. 
Accordingly, we here derive a new wide-angle wave equation 
applicable to general waveguiding structures. We then intro- 
duce a solution procedure incorporating both fast Fourier 
transform and finite difference methods, and apply this 
method to the computation of the differential loss of a strong- 
ly guiding and longitudinally varying semiconductor rib wave- 
guide. We also repeat this calculation with a paraxial 
algorithm that does not require matrix inversions or Fourier 
transformations.6 The results are in excellent agreement with 
those of the wide-angle formulation. We further consider a 
fisheye lens, which we find can similarly be analysed with the 
Fresnel equation. Finally, we consider the propagation of a 
highly nonparaxial Gaussian beam in a homogeneous 
medium. This example clearly illustrates the greater range 01 

applicability of the wide-angle equation in comparison to the 
Fresnel equation. 

Numerical method: Derivations of wide-angle wave equations 
generally proceed from the following expression for a single 
polarisation component of a forward-propagating monochro- 
matic electric field: 

(1 )  

We have introduced S = -ik,n,Az and X = X, + N with 
N = [ (n2/n:)  - I], X, = (l/k,n,)2(a2/ax2) and Y = 
(l/k,n,)2(a2/ayz). The variables k,, no and Az denote the 
vacuum wavevector, a typical guided mode refractive index 
and the longitudinal step length, respectively. Unlike previous 
studies in which the square-root operator in eqn. 1 was 
written in polar co-ordinates and only the radial term expand- 
ed to second-order,' we here write 

E ( x ,  y,  z + Az) = e6-'1+X+Y)E(x, y, z )  

e"l, I I + x +  Y l -  I I  - - e(6121[x -1X~i411 

(2 )  

which may be approximated still to second-order in X and Y 

e-i61Rl(NY + Y N l e l ~ 1 2 ~ I Y - I Y ~ 1 4 ~ - ( X o l / Z ~ 1  

by' 

e(6/21LY - ( Y 2 / 4 1  t IXaYI2) (3) 

The first two and the last of these operators are then evalu- 
ated using a standard finite difference procedure and the split- 
step fast Fourier transform algorithm, respectively. Note that 
if we instead define X = Xu + N / 2  and Y = Yo + N / 2 ,  we 
obtain a fully symmetric expression in place of eqn. 2 which 
can be analysed in a similar fashion. 

An alternative Fresnel equation approach which has not 
previously been applied to optical propagation problems 
involves direct multiplication by unitary band-diagonal 
matrices,6 and may be formulated as follows: 

E ( x ,  y, z + Az) I Y~2)Y~i)y12~X'z)X'i'X(2) 

X, Y, Z) + O(AZ)~  (4) y12) y( 1)  yI2)xi21xI 1 1 ~ 1 2 ) ~  ~ 8kmoAzE(  

Assuming an even number of grid points N ,  separated by a 
distance Aw in the w-direction, where w E {x, y } ,  W@) with 
W E {X, Y} and L E  { I ,  2 )  is the symmetric and unitary 
block diagonal matrix with nonzero upper elements given 
by Wy:=cosA',L) for j = 3 - L ,  4 - L ,  ..., N , + L - 2  
and W $ ) + , - L  2 j + 2 - L  = - i  sin A t 1  for j = 1, 2, .. ., ( N / 2 )  + L - 2 and A($ = Az/(4kU nu L ( A w ) ~ ) .  While each propaga- 
tion step is now very rapid, small step lengths are essential. 

Results: We have first considered the effect of nonparaxiality 
on light propagation in integrated-optic rib waveguides. In 
particular, we considered a rib waveguide 1.1 pm high and 
2pm wide etched into a 1.3pm-thick epilayer with refractive 
index n i  = 3.44. The cladding refractive index is n2 = 3.34 for 
which the normalised modal refractive index at our light 
wavelength i = 1.55pm equals b ( N 2  - n:)/(n: - n:) 2 
0.498. The refractive index profile of our 40pm-long Y- 
junction is given by the union of two such waveguide profiles 
centred at +x(z), where x(z) = 1 - cos (nz/40pm). Our 
analysis employs a computational window with L, x L, = 8 
x 4pm2 and N ,  x N ,  = 64 x 64 transverse grid points. 

Further, to absorb the radiated light we add -5,631' and 
-2.81i to the squared refractive index of the grid points at the 
computational window edge and of the immediately adjacent 
points, respectively.1,2,R 
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