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Finding Axes of Symmetry From Potential Fields
V. Shiv Naga Prasad and B. Yegnanarayana

Abstract—This paper addresses the problem of detecting axes
of bilateral symmetry in images. In order to achieve robustness to
variation in illumination, only edge-gradient information is used.
To overcome the problem of edge breaks, a potential field is de-
veloped from the edge map which spreads the information in the
image plane. Pairs of points in the image plane are made to vote
for their axes of symmetry with some confidence values. To make
the method robust to overlapping objects, only local features in the
form of Taylor coefficients are used for quantifying symmetry. We
define an axis of symmetry histogram, which is used to accumulate
the weighted votes for all possible axes of symmetry. To reduce the
computational complexity of voting, a hashing scheme is proposed,
wherein pairs of points, whose potential fields are too asymmetric,
are pruned by not being counted for the vote. Experimental results
indicate that the proposed method is fairly robust to edge breaks
and is able to detect symmetries even when only 0.05% of the pos-
sible pairs are used for voting.

Index Terms—Axis of symmetry histogram, bilateral symmetry,
gradient vector flow field, potential field, voting.

I. INTRODUCTION

SYMMETRY is an important consideration in Gestalt laws
for perceptual grouping [1]. The reason is that it is very

difficult for two completely unrelated objects to be placed in
such a manner as to produce spatial symmetry. It is much more
likely that if a group of objects exhibit symmetry, then they are
related and are perceived in relation to one another (i.e., they are
grouped together perceptually). This has motivated research in
the detection of symmetries in images and shapes.

There are two types of symmetries [2], as follows.

1) Bilateral Symmetry (also called mirror symmetry): A
figure is said to possess bilateral symmetry if it is in-
variant under a reflection about a line (called the axis
of symmetry) passing through the centroid of the figure
[3]–[6].

2) Rotational Symmetry: A figure is said to possess rota-
tional symmetry of order if it is invariant under ro-
tations of radians about its center of mass. Central
symmetry is a special case of rotational symmetry with

(see [6]–[8] for work on rotational symmetry and
[9], [10] for central symmetry).
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Fig. 1. Example of different types of symmetries. (a) Rotational symmetry of
order 4 (C ). (b) Bilateral symmetry.

Fig. 1 illustrates the two types of symmetries. When symmetric
objects undergo skew transformation, they produce skew sym-
metries [11]–[13].

Symmetry of an object is a binary characteristic, i.e., an object
is either symmetric, or it is not. However, perfect symmetry is
rarely observed in real images. Objects, though inherently sym-
metrical, usually exhibit some deviations from the ideal. Thus,
in the real world there is a continuum in symmetry. This issue
has been discussed in [14], [15], where the amount of deviation
of a given figure from perfect symmetry is computed.

Some of the desired properties of any method used for de-
tecting symmetry are the following:

a) avoid a brute-force search in the image;
b) robustness to disjoint contours, including contours formed

out of dots;
c) robustness to minor deviations from perfect symmetry;
d) ability to detect multiple symmetries simultaneously;
e) robust to overlap and occlusion;
f) should not assume simple curves (e.g., nonself-intersec-

tion, convexity, etc.).
Several techniques have been proposed for detecting sym-

metry based on the computation of the medial-axis transform
(MAT) of the image, e.g., hierarchical Voronoi skeletons [16],
Hamilton–Jacobi transform [17], magnetic field-based methods
[18], etc. However, it is a known problem that the medial axis
of a figure can undergo radical deformation in the case of over-
lapping figures. The other generic approach cited in literature is
region based [6]. Although region-based methods are robust to
deformation, it is difficult to employ them in the case of broken
edges and overlapping figures.

In view of the above discussion, we adopt a middle course
between MAT-based and region-based approaches. We charac-
terize the space near/around the contour/figures and use local
features to quantify symmetry. The proposed method does not
address the problem of skew symmetries. The methodology
adopted is as follows. A potential field is generated taking into
account the location, orientation, and magnitude of the edge
gradient. Local features in the form of Taylor coefficients are
computed from the field at all points in the image plane. A
hashing algorithm is then used to detect pairs of points which
might possibly have symmetric fields (this avoids a brute-force
search). Pairs of points which pass this test are then made to
vote for their axes of symmetry, their vote being weighted by a
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confidence measure. All the votes are accumulated in a global
axis of symmetry histogram, which shows the net confidence
values for all possible axes. Potential fields have the property
of smoothing or “filling up” spaces (indicated by the Laplace
equation). As a result, they are robust to edge breaks and dotted
lines. Local features are used for hashing and voting, so that the
method is robust to overlap and occlusion. To accommodate
deviations from symmetry, the votes are weighted with confi-
dence scores. A global axis of symmetry histogram is used so
that multiple symmetries can be detected simultaneously, and
deviations from ideal symmetry can be accommodated.

Section II describes the development of potential fields from
the edge gradient. Section III describes the criteria for any two
points in the potential field to have locally symmetric fields.
Section IV describes the hashing scheme, the voting method,
and the axis of symmetry histogram. Section V describes ways
for further enhancing the axis histograms. Section VI presents
experimental results, and Section VII summarizes the work and
discusses possible extensions to the present work.

II. DERIVING POTENTIAL FIELD FROM EDGE GRADIENT

The objective of developing a potential field from the edge
gradient is to bring about interaction between the gradients at
different points in the image plane. The motivation for bringing
about interaction is that it makes the system robust to noise and
deformation. The potential field employed in the present work
is the gradient vector flow (GVF) field [19]. Let the image be

and let be its edge map, where is larger
near the edges and is the edge gradient. The GVF for the
image is denoted by , where and

are two fields defined on the image plane. Let
and be the partial derivatives of and . is
obtained by minimizing the energy functional , defined as

(1)

The first term in the integrand in (1) is the smoothing factor,
similar to the formulation of optical flow used by Horn and
Schunk [20]. This term imposes a penalty on the divergence and
curl of [21]. At points where is small (i.e., edge gradient
is low), the smoothing term dominates.

The second term is responsible for introducing image infor-
mation into . Wherever is significant (high edge gradient
is present), is forced toward . The scaling factor decides
the relative importance of the two terms in the integrand in (1).

Using a calculus of variations [22], it can be shown that for
to be minimum, the following are necessary conditions:

(2)

(3)

It can be seen that when the Euler equations (2)
and (3) reduce to Laplace equations on and . In other words,

and can be considered as potential fields with their values
forced toward and , respectively, at points where the edge

Fig. 2. GVF fields of images depicting an ideal square and squares with
distortions. Each column shows a 32� 32 pixel image and the corresponding
normalized field. The images are (a) ideal square, (b) square formed of irregular
dots, and (c) square with an overlapping curve.

gradient is nonzero. An iterative method for the computation of
using (2) and (3) is given in [19].

Potential fields have the property of additivity and the ability
to “fill up” spaces. For example, the potential field produced by
discrete charges placed along a curve is similar to the one pro-
duced by a continuous charge along the curve, provided that the
measurement is not very close to the curve. Fig. 2 illustrates
the GVF obtained for images of an ideal square and squares
with distortions. Each column shows the 32 32 pixel image,
and the corresponding GVF. Fig. 2(a) and (b) show the normal-
ized1 GVF for continuous and discontinuous curves. The fields
produced by images in Fig. 2(a) and (b) are similar when ob-
served at some distance from the edges. The potential field at
points situated away from the edges will show gross or aver-
aged features. This makes potential fields robust to edge breaks
and slight deformations.

If there is no interference, like overlap or occlusion, then the
GVF for a figure exhibits valleys corresponding to the medial
axis. For a symmetric curve, the axis of symmetry will coincide
with one of the valleys. However, in the case of overlap and
interference from noise, this property is lost. For example, in
Fig. 2(c), the medial axis of the square is lost due to overlap. One
way of overcoming this problem is to compute local features
of the GVF at various points in the image plane, and then get
the axes of symmetry based on these local features. The GVF
field at a point depends more on points nearby than those at
some distance. Hence, interference near a particular curve from
other curves will be less. This is reflected in the local features,
which predominantly characterize the curve to which they are
the closest.

The local features used in the present work are the coefficients
of the Taylor series expansions of and fields. We
limit ourselves to coefficients up to the first order. The truncated
Taylor expansion represents the actual field reasonably well in
a small neighborhood around the center.

III. CONDITIONS FOR SYMMETRY

Let and be two points in the image plane, and
let the GVF be . Let
and , where . Let

1We normalize the GVFs before plotting them, so as to make the
field clearly visible. Let v (x; y) be the normalized GVF v(x; y), then
v (x; y) = (v(x; y))=( u (x; y) + v (x; y)).
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and . Similarly, we define
, and . If the fields at the two

points are symmetric, then the field at can be obtained
by “flipping” the field at about the axis, and then ro-
tating it anticlockwise by radians.

By comparing the coefficients of the Taylor series expansions
of the fields and at the points and , it
can be shown that, for the fields at the two points to be bilaterally
symmetrical, the following conditions are necessary:

(4)

(5)

(6)

(7)

(8)

(9)

where are the error terms. [see Appendix for details of
(4)–(9)]. For perfectly symmetric fields, the error terms will be
zero. Let

, and , then from (4)–(9), the
necessary, but not sufficient, conditions for perfect symmetry
(i.e., ) are

Unlike (4)–(9), conditions and can be checked in-
dependent of . This fact will be used later in the hashing stage.

Another local feature extracted from GVF is the curvature of
GVF . The curvature captures the bends in the edges
and is invariant under translation and rotation. It is computed as
follows:

(10)

For the two points and to have locally sym-
metric fields, the curvature of GVF at the two points must be
similar, i.e., condition must hold
true. One of the advantages of is that it can be com-
puted independently for each point, irrespective of the pairing
(that is independent of ).

In order to observe the behavior of
, and in the pres-

ence of interference and noise, the functions were computed
for the three images in Fig. 2. The results are presented in
Fig. 3. The plots for the ideal square [column (a)] are used as
reference. We can make the following observations from Fig. 3.

1) In case of edge breaks and discontinuous edges
[Fig. 3(b)], the four functions show the desired sym-
metry as the distance from the edges increases. This is
because the potential field, through superimposability,

Fig. 3. Behavior of V (x; y); h (x; y); h (x; y), and C(x; y) for images in
Fig. 2. Plots are in the same order.

is able to reduce the disruption caused by discontinuous
edges.

2) In the case of overlap [Fig. 3(c)], the functions exhibit
symmetry near the edges of the squares. The reason is
that the edge gradients of the square are able to dominate
in these regions and produce the desired symmetry.

3) The deviation in the conditions depends upon
the level of interference in the image; hence, the tolerance
values for the conditions need to be adjusted according to
the case at hand.

IV. VOTING FOR AXES OF SYMMETRY

In order to ensure that the detection of axes of symmetry is
robust to overlap, occlusion, etc., only local GVF features are
checked for symmetry. As the extracted features give only local
knowledge, we need to employ a voting scheme to compute
globally consistent information about the axes of symmetry.
Voting schemes have been extensively studied and employed
in image processing [23]–[25]. For the present problem, during
the voting process, points are taken in pairs and their mutual
symmetry is quantified. This is then used as a weightage factor
for the vote each pair casts for its probable axis of symmetry.
But, the number of votes for an image will be ,
which is highly inefficient, as most of the pairs are asymmetric
and hence their votes are redundant.

One way of increasing the efficiency of voting is to employ
a hashing technique to eliminate pairs of points which are
too asymmetric. In the present case, we map the points in the
image plane into a hash space such that points mapped to the
same bin in the hash space might be symmetric and, hence,
are allowed to vote. Those falling into different bins are too
asymmetric for their vote to count and, hence, are not allowed
to vote (pruned). For the hashing operation, only those features
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are useful which can be independently computed for each
point in the image plane (i.e., independent of ). The functions

and meet this criterion. Let
denote the pair of points and . The pair
will be allowed to vote for its axis of symmetry only if

the condition is true, where is defined as

and

Here, set the granularity of the bins (tolerance values
for the deviations) and, thus, control the degree of pruning to be
carried out.

The fields and are predominantly smoothly
varying, except near the edges. Consequently, and

, which are linear combinations of the partial deriva-
tives of and , have very low variation compared to
that of and . Therefore, and
perform the major portion of the hashing operation,
and being used for fine tuning the hashing.

Once the hashing operation has been carried out, pairs of
points which have a good chance of having symmetric fields
are obtained. The next step is to make each of these pairs vote
for its axis of symmetry with some confidence value. Let
be one of the pairs of points obtained after hashing. It will vote
for a line denoted by , where the line is defined as

(11)

where is an independent parameter

and
if
if

For calculating the weight factor for the vote, the field
at is predicted using the field at and the
angle . The degree of asymmetry is given by the devi-
ation of the actual field from the predicted field. We use
relations (4)–(9) to predict the field and obtain the errors

. For a pair , let and
, where gives

the average error in predicting and , and
gives the average error in predicting the partial derivatives. The
weight factor for the pair ’s vote is given by

(12)

where and are positive. The first factor is an inverse expo-
nential of the errors, and its sensitivity to deviations from sym-
metry is adjusted using the s. The second factor gives more

Fig. 4. Axis histogram obtained from the ideal square in Fig. 2(a). � varies
from 0 to 180 ; � varies from � 45 to 45. The four peaks are numbered
corresponding to the four axes of symmetry present in the square.

weight to votes with higher gradient flow magnitude. Images
with sparse edge maps have large regions with very low gradient
flow magnitudes. In the absence of the second factor, these re-
gions would dominate the voting process and obscure the actual
axes of symmetry.

The votes cast by the pairs obtained after hashing are
accumulated in an axis of symmetry histogram (called axis
histogram in short), which has and as its basis. The his-
togram is an matrix of bins which quantize the
space. The range of values taken by for an image is

units and by is radians. In
our implementation, the bins are of uniform size, with their
width along being 1 unit and along being .05 radians .
Thus, for an image, we obtain an histogram,
where and . Fig. 4 shows the axis
histogram obtained from the image in Fig. 2(a) (ideal square),
after 0% pruning, i.e., all possible pairs are allowed to vote.

Usually, when distortions are introduced into an image de-
picting a symmetric figure, the symmetry of the figure is re-
duced. As a result, the axis histogram for a distorted image will
have less distinct peaks. Ideally, the degradation in the axis his-
togram due to distortions in the image should be graceful. When
the amount of pruning is increased (i.e., s are made more
stringent), then the amount of information available to compute
the histogram is reduced. Ideally, the method should be robust to
pruning, and the degradation in the histograms with increasing
levels of pruning should be gradual and smooth.

As part of the first experiment, we observed the behavior of
the proposed method in the presence of different distortions in
images for different levels of pruning. Fig. 5 shows axis his-
tograms computed for each of the three images in Fig. 2 for two
levels of pruning: 0% and 99% (percentage of pairs of points
which were not allowed to vote). We can make the following
observations from the results.

1) The peaks in the histograms for the square formed from
dots [row (b)] are least distinct. This is because the field
becomes symmetrical only after some distance from the
dots, but, by then, the magnitude of the GVF becomes
very low. As a result, the weight factors for the votes are
low.

2) The method is able to handle overlap [row (c)], as well.
3) For all the three images, as the pruning is increased from

0% to 99%, the degradation in the histograms is smooth,
i.e., except for an overall decrease in magnitude, the his-
tograms retain their character. Thus, the method is not
very sensitive to pruning.
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Fig. 5. Axis of symmetry histograms for the images in Fig. 2 for two prune
levels. Each row shows the two axis histograms for each of the three images.
Order of images is same as that in Fig. 2. The first column is for 0% pruning
and the second column is for for 99% pruning. Note that the z-axis scale for
histograms at 0% pruning is from 0 to 10, and for those at 99% pruning, the
scale is from 0 to 2.

V. ENHANCING THE AXIS HISTOGRAMS

In order to minimize the influence of an image’s boundaries
on its axis histogram, we need to set appropriate boundary con-
ditions for the fields and . In our implementation, this
was done by forcing a whirlpool-like field along the border of
the images.

As only local features are considered for quantifying
symmetry, the axis histogram might show false peaks, corre-
sponding to symmetries that are not visually significant. A few
(even two or three) perfectly symmetrical voters are enough to
cause a significant peak, even though the other voters may not
be making any significant contribution. Such peaks are unde-
sirable and should be suppressed. This can be achieved to some
extent by preventing perfectly symmetrical pairs from voting.
For visually dominant symmetries, a large number of voters
will be present, and there will be a continuum in the voter’s
confidence values. Therefore, peaks corresponding to visually
dominant symmetries are not much affected by the elimination
of perfectly symmetrical voters. We define such that all
voting pairs with are
not allowed to vote. Too high a value of will be ineffective,
whereas too low a value will lead to excessive degradation of
the histograms. Its value was experimentally fixed at 0.7, which
is the value used in this paper. Fig. 6 shows a test image, its edge
map, original axis histogram, and the axis histogram obtained
after eliminating perfectly symmetrical voters. The level of
pruning is 99.92%. It can be seen that the peak corresponding
to the visually dominant symmetry becomes more prominent
in the second histogram [Fig. 6(d)].

False peaks in the axis histogram can be further suppressed
by verifying whether the underlying edge map is symmetrical.

Fig. 6. Example of axis histogram obtained after elimination of perfectly
symmetrical voting pairs. (a) Image. (b) Edge map. (c) Original histogram.
(d) Histogram obtained after the elimination.

This verification is done for only those peaks whose magnitude
is greater than quarter of the histogram’s maximum peak value.
Let be the original histogram2 and let be the thresholded
histogram, then

otherwise
(13)

We can summarize the post-processing as follows. For each
nonzero bin in , do the following.

1) Get the voting pairs in its 3 3 neighborhood.
2) Let denote the line segment joining the points

of the pair . Arrange the collected voting pairs in
increasing order of the perpendicular distances of s
from the origin.

3) Generate two sequences and of values by
going in straight lines from one voting point to another
along the two sides of the axis of symmetry.

4) If the underlying edge map is symmetrical, then the two
sequences would be identical or nearly so. Let be the
averaged difference in the sequences, be their length,
and be the number of voters

(14)

5) Scale the peak of the bin under consideration using the
error . Let be the histogram thus obtained. Then

(15)

Fig. 7 shows the enhanced histogram obtained from the
histogram in Fig. 6(d). It can be seen that a number of false
peaks are suppressed, making the peak for the visually dominant
symmetry relatively more prominent.

VI. EXPERIMENTAL RESULTS

Henceforth, by axis histograms, we mean the enhanced axis
histograms obtained after the above-discussed processing. The

2From here onward, the histograms are the ones with the perfectly symmet-
rical voters eliminated.
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Fig. 7. Enhanced histogram obtained for the image in Fig. 6 after taking into
account the underlying edge map.

proposed method was tested with several images from CalTech
Image database, BioID database, and SAMPL Image database.
In order to analyze its behavior for a given figure, a prominent
peak in the obtained histogram was chosen, and pairs of points
voting for the corresponding bins were plotted with the GVF
overlayed. This plot is called the Voting-Pair plot. Each pair of
points in the Voting-Pair plot is designated by a line segment
whose ends are located at the corresponding points in the image
plane. In our implementation the pairs plotted in the Voting-
Pair plot are chosen as follows. Upon selecting a particular peak
in the histogram, bins in the 3 3 neighborhood of the peak’s
maxima are taken, and all pairs of points voting for one of these
bins are plotted in the Voting-Pair plot.

The Voting-Pair plot helps in observing the following:

1) how the pairs are chosen for voting, i.e., which pairs are
rejected, and which are allowed to vote;

2) how the axis of symmetry histogram aids in clustering
together pairs of points which have the same/similar axis
of symmetry.

Fig. 8 shows one of the test images used in the second ex-
periment, its edge map, the enhanced axis of symmetry his-
togram, and the Voting-Pair plot for one of the peaks. The pa-
rameters used were: and

. An additional constraint imposed upon on
the voters was that only points with were al-
lowed to vote. This was done to reduce the computation. The
level of pruning was 99.96% (i.e., 13 958 pairs out of the pos-
sible 39 139 128 were allowed to vote).

From the histogram in Fig. 8, we can see that the peak cor-
responding to the axis of symmetry of the male’s face (peak 2)
is not prominent. This is because of the pronounced skew in the
posture. On the other hand, the peak corresponding to the axis of
symmetry of the female’s face (peak 1) is prominent, as the skew
in this case is very small. The most prominent peak corresponds
to the symmetry of the right eye of the female. Since the method
was designed to accommodate slight deviations from ideal sym-
metry, it is robust to small skews exhibited by three-dimensional
(3-D) objects. However, it does not handle cases where the skew
is significant. Fig. 9(a) and (b) show the axis histograms for two
other test cases: (a) when there is a large amount of overlap and
interference and (b) highly broken and irregular edges.

We can see that, for a given image, although, perceptually, we
may see only one axis of symmetry, the axis histogram shows up
several symmetries (in the form of peaks). This is because of two
reasons: 1) the method uses only local features and 2) humans

Fig. 8. Axis of symmetry histogram for a real-world image. (a) Cropped
image taken from “Friends” photograph. (b) Corresponding edge map. (c) Axis
histogram. (d) Voting-Pair plot for peak 1.

eliminate a number of possible symmetries by using semantic
knowledge. Another possible reason for spurious peaks is that
the proposed method uses only edge gradient information. The
edge map is almost an outline image. The use of color/grayscale
values might help in eliminating some of the possible symme-
tries highlighted by the axis histogram, but this would be sen-
sitive to changes in illumination. If the illumination is asym-
metric, then the grayscale information can no longer be directly
used for quantifying symmetry.

The axis histogram can be used to detect clusters of pairs of
points with similar axes of bilateral symmetry, which can, in
turn, be used to aid perceptual grouping. The presence of mul-
tiple peaks in the axis histograms makes a completely objec-
tive evaluation of the method difficult. We tested the method
with a number of images (more than 50) and found that, in al-
most all cases, for pruning levels of the order of 99.9%, the re-
quired symmetry was present as a prominent peak in the axis
histograms. When the fraction of point pairs disqualified from
voting is very high (above 99.99%), then the axis histograms are
so degraded that the expected peaks are no longer prominent in
the histograms. Fig. 10 shows a plot illustrating this trend for
the axis histograms obtained for the image shown in Fig. 6(a),
for different levels of pruning.
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Fig. 9. (a) Example of overlapping figures and clutter: The vertical symmetry
of the house suffers interference from the door and windows. (b) Example of
highly broken edges: Frontal photograph of a tiger.

Fig. 10. Plot showing typical peak height variation with increasing levels of
pruning. The y axis is the ratio of the height of the peak corresponding to the
desired symmetry to that of the other tallest peak present in the axis histogram.
Note that the x axis has been drawn with nonuniform scaling.

VII. CONCLUSION

A method for detecting axes of bilateral symmetry in im-
ages was proposed. The method does not address the problem of
skew symmetry. The results indicate that the proposed method
is fairly robust to distortions in the image and is able to detect
symmetries, even when the pruning at the hashing stage is high.
For real-world images, the method is able to detect symmetry,
even when only 0.05% of the pairs of points are allowed to vote.

The method can be used in applications requiring fast detec-
tion of symmetries (e.g., aiding face detection), for perceptual
grouping and object tracking.

There are three major directions for future work.

1) Make the method iterative, i.e., start off with a very high
level of pruning (99.9%) and get the approximate axes
of symmetry. Use this as a priori knowledge in a more
detailed search.

2) Incorporate allowances for skew symmetries. This will
enable the method to handle cases where 3-D objects in
the image have undergone skew transformations.

3) Use the symmetry information obtained from the axis
histogram to modify the GVF, and then recompute the
axis histogram. By repeating this a number of times, we
can highlight features in the GVF which show symmetry
along a particular axis, which, in turn, can be used to en-
hance the corresponding regions in the image.

APPENDIX

Let and be the two points under consideration
for symmetry. First, consider the case where , where is
as defined in Section III. Let be a point in the
neighborhood of . For the field in the neighborhood of
the two points and to be symmetric, we require
that

(16)

Now, if we extend the above case by including the possibility
for to be nonzero, then we require

(17)

where

(18)

(19)

and and are independent parameters. We compare the coef-
ficients of the Taylor series expansions of fields and
up to the first order. By eliminating sine and cosine terms on the
L.H.S.s, and appending the error terms, we get (4)–(9).
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