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Unsupervised Texture Classification
Using Vector Quantization and
Deterministic Relaxation Neural Network

P. P. Raghu, R. Poongodi, and B. Yegnanaray&eajor Member, IEEE

Abstract—This paper describes the use of a neural network the case of natural images, especially in the domain of remote

architecture for classifying textured images in an unsupervised sensing, because of the difficulty in determining the number
manner using |mage-spe0|f|c constraints. The texture features are and types of textures in a given image

extracted by using two-dimensional (2-D) Gabor filters arranged In thi d ib thod f ised
as a set of wavelet bases. The classification model comprises N “'S _paper,. we daescribe a method tor unsupe.rVIS.e
feature quantization, partition, and competition processes. The classification of image textures based on vector quantization

feature quantization process uses a vector quantizer to quantize (VQ) [3] and deterministic relaxation techniques. The texture
the features into codevectors, where the probability of grouping features are extracted using a set of Gabor filters arranged as

the vectors is modeled as Gibbs distribution. A set of label con- o so4 ot \yavelet bases [4]. Gabor filtering is a multiresolution
straints for each pixel in the image are provided by the partition

and competition processes. An energy function corresponding to Scheme that provides spatial and spatial frequency representa-
the a posteriori probability is derived from these processes, and tion of images. We define a feature quantization process that
a neural network is used to represent this energy function. The uses VQ principles to encode the Gabor features in the feature
state of the network and the codevectors of the vector quantizer space. In general, VQ is a process for approximating a set of

are iteratively adjusted using a deterministic relaxation procedure . . - L
until a stable state is reached. The final equilibrium state of the input vectors into a finite number of codevectors [3]. It divides

vector quantizer gives a classification of the textured image. A the given feature space into number of groups or clusters, and
cluster validity measure based on modified Hubert index is used computes iteratively the centroids of the clusters (codevectors)
to determine the optimal number of texture classes in the image. in an unsupervised fashion. The use of VQ in image classi-

Index Terms—Deterministic relaxation, Gabor filter, Hopfield ~ fication is well known in the literature [5], [6]. Two other
model, image analysis, neural networks, remote sensing, texture random processes, namely partition process and competition
classification, unsupervised classification, vector quantization. process, are used to express a set of label constraints on the

image pixels. Thea posterioriprobability, derived from these
three processes, is expressed as Gibbs distribution, and the
. INTRODUCTION corresponding energy is used to derive a constraint satisfaction
LASSIFICATION of textured images in an unsupervisedieural network model. A deterministic relaxation strategy is
manner is useful to delineate different regions preseapplied on the network to determine a state corresponding to
in many natural images. Texture can be formally defined [1fje maximuma posteriori probability. The resulting clusters
as follows:A region in an image is a texture if a set of locakre interpreted as different texture classes in the image. A
statistics or other local properties of the image are constant|uster validity measure based on modified Hubert index is
slowly varying, or approximately periodidhe local statistic or used to decide the number of texture classes in the image. A
property that is repeated over a textured region can be viewsthilar work was reported in [7], but it was for supervised
as a visual primitive with certain invariant properties. This itexture classification. The work reported in this paper is an
calledtexture elemendr texel which repeats in each texturedextension of this earlier work to an unsupervised classification
region in a given area. scheme.

Classification methods based on supervised classificatiorUnlike other unsupervised methods [8], which depend only
assume that the number and types of textures in the image amethe feature vector of each pixel to label it, the proposed
known a priori. This needs a set of training sites in the imagmethod uses not only the feature-dependent knowledge but
to extract features relevant for each class. On the other haaldo a number of image-specific constraints as an additional
methods that perform unsupervised classification of texturesigiformation. This should help to improve the performance of
not make use of assumption regarding the number of textutae texture classification scheme significantly.
in the image [2]. Unsupervised classification is important in Some notations used in the proposed classification model

are as follows: Let the textured imade, be designated by a
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this thefeature processdescribed by the priori probability The width of the Gaussian in the Gabor function is defined
distribution P(G,). We denote the random variable describingy o. The orientation of the span limited sinusoidal grating is
the texture label of the pixe$ by L,. We assume thal, given bytan—!(k,/k.), and its frequency is specified along
can take any value from the set of labgls 1,---, K — 1} thez andy coordinates by:, andk,, respectively.
where K is the number of texture classes. The label random The assumption in texture processing using the Gabor filters
process is described by thee priori probability distribution is that each texture is characterized by a given localized spatial
P(L,). frequency or a narrow range of dominant localized spatial
The paper is organized as follows. The procedure for featdrequencies that differ significantly from the dominant fre-
extraction using Gabor filters is reviewed in Section Il. Wguencies of other textures. The frequency and orientation of the
present our classification model in Section Ill, which involvesomplex sinusoid in the Gabor filter describe the local structure
feature quantization, partition, and competition random prof the texture in that frequency channel, while the Gaussian
cesses. In Section 1V, a neural network representation of thevelope defines the resolution with which the texture structure
model is presented. The section also includes a discussismtharacterized. Thus, a set of properly selected Gabor filters
on the relaxation algorithm and the codevector adjustmentlows us to obtain information regardless of differences in
The cluster validation measure used in our experimentsdeminant sizes, orientations and distributions of the texture
described in Section V. Finally, in Section VI, the claselements.
sification performance for a number of textured images is An important property of the 2-D Gabor filters is their

discussed. ability to represent the image both in spatial and spatial
frequency domains optimally by achieving the theoretical
Il. FEATURE EXTRACTION USING GABOR FILTERS lower bound of joint uncertainty [17], depending upon the

e R hosen metric [18]. This is equivalent to achieving max-
Classification of natural textures is difficult for sever . - Lo .

, . . imum possible joint resolution in the two domains [19],
reasons. In an image containing a number of different textures

. . roviding simultan ral an ial localization. Th
texture elements may have different sizes and shapes, mal{?no ding simultaneous spectral and spatial localizatio c

it difficult to determinea priori the resolution needed for anaI—O(%hzatlon’ in the context of texture segmentation, defines

ysis of the textures. This necessitates the use of muItiresqutltcr)]rel ability of the segmentation strategy to accurately distin-

methods in the extraction of texture features. Also, most §|’J Ish emergent texture frequencies and to accurately mark the

. oundaries separating the textures [20]. Since Gabor filters
the natural textures are nonstationary. They may have space; : -
r%duce the uncertainty to a minimum level, they are able to

varying local properties such as orientation, frequency, an o .
. P gment the textures by discriminating narrow range of spatial
size of the texture elements. Spatial filtering approaches [§ quencies

[10] characterize the spatial frequency content, but they 0One attractive feature of the Gabor filters is their orientation

not capture the variations in the spatial domain. The spatial,~ . . . : . )
. . electivity. This will be clear when the expression (1) is
frequency information alone may not be adequate when the . . .

ritten in polar coordinates as

textures are nonstationary. One has to take into account {ﬁgv
spatial as well as spatial frequency characteristics of the P,y k,0,0) = o—(1/20%) (@ +y?)+jk(x cos 6-+y sin 6)
textured image. T
_Thus,_ It Is necessary to extract appropriate features Whereo = tan~1(k, /k,) is the orientation of the Gabor filter,
differentiate textures of different types in the image for clas- ur ) ] )
sification. For our experiments, we have adapted a feat@@d® = (/K2 + A is the radial frequency. The orientation
extraction method that resembles the mechanism of mugelectivity of the Gabor filters allows us to discriminate
channel representation of the retinal images in the biologidgxtures having different orientations.
vision system [11]. It has been shown that the receptiveFor our experiments, Gabor filters with varying support
fields of simple cells in the early vision system can perforfin spatial as well as spatial frequency domains) were used
space-domain local feature extraction confined to narrof@r feature extraction, in order to detect and localize texture
spatially oriented frequency channels that are quasiindepé@atures at different scales. This leads to the selection of filters
dent in nature [12]. Daugman has shown that these receptfi@ilar to wavelet decomposition where the mother wavelet is
fields can be closely approximated by the 2-D Gabor filtefs 2-D Gabor function. This is expressed as
[13]. The decomposition using Gabor filters closely resem-
bles the mechanism of multichannel representation of thd (z.y,a,k,0,0) = c
retinal images in the biological vision system [14]. When
properly tuned, these filters are useful for extracting th@here a is the wavelet scale factor. A set of filters
texture features [15], [4] and for detecting texture edgds(@,¥.a,k,0,0)}.¢ for a givenk and o forms the Gabor
[16]. wavelet family. This set of filters provides a number of scaled
A 2-D Gabor filter is an oriented complex sinusoidal gratingnd rotated versions of the mother wavelet. Usually, the values
modulated by a two-dimensional (2-D) Gaussian function. T#¥ @ is chosen as = 27, where~ is an integer.
expression for the impulse response of a 2-D Gabor filter is The feature vector at each spatial locat{ery) is specified
given as as

(@)

—(a2/202)(ac2+y2)+jak(a; cos 8+ysin @) (3)

F(@,y, by, by, 0) = ¢~ M2+ i Reathuy). () 96y = 196, (@ k,0,0) ae 4)
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where The states of a VQ describes the set of labels assigned to all
the pixels at a given instance. That#= {01,002, -, 010/},
9ii,5)(a, k. 0,0) whereo; = k, is the label of the pixet andk is any one of

2 the labels in the range zero t§ — 1. |?] is the cardinality

of the set(}, and is equal to the number of pixels in the
_ Lo Lo 2 image. The assumption here is that the next state differs from
= ITali,g) = (i, d, 0.k, 0, 0 (5) the current state in the label for any one pixel chosen at

where “*" denotes a 2-D convolution operator. For a giveﬂandom' Hence, the next state is given by the product of the
k and o, and for a given set of values af and 6, let us probabilities of the current state and the transition probability

assumeM Gabor filters are used for feature extraction. ThEOM the current state to the next state. Assuming that the

M-dimensional vectog; ;, then constitutes the feature vectofransition probabilities are independent of the state of the VQ,

to characterize the pixe{fi 4) in the image the stationary probability distribution of the state of VQ is
For implementation of Gabor filtering, we consider th@Ve€n by the following Gibbs distribution [21]:

following discrete version of the expression in (5):

= H//Tﬂ(xvy)fo_xvj —Ya, kvevo—) dz dy

P(S) = RO 7)

g(i,j)(avkvevo—) e

I-1J-1 where D(S) = Xy Xvzer, d(g, ) iS the average distance
= Z ZTQ(a:,y)f(i —z,j—y,a,k,0,0)||.” (6) andZ, is a normalization constant so th&t,s P(S) = 1.
x=0y=0 It is clear from (7) that the probability of being in a staie

is related to the average distance of the feature vectors of the
b lovi he circul luti ol 4 usi Eixels from the corresponding cluster centers. Smaller average
y employing the circular convolutions implemented USINgjqiance indicates better performance from VQ and, hence, the

forlwaLd and inver;e discrzte F(?tl; rierr] transfﬁrms. gel prfobability of the corresponding state will be high.
n the next section, we describe the stochastic modeling 'of, probability P(g, € Ry) of assigning a labek to a

the feature vectors and the related image-specific constral@tgture vector [23). is given by
for developing a model for unsupervised classification. §

The values ofy; ;)(a, k, 8, o) for all pixels (i, j) are computed

P( R ) e_d(gmﬂk) (8)
gs € fy) = ————

lIl. CLASSIFICATION MODEL Zy

The classification model is defined by tte posteriori whereZ; is the normalization constant given mle—d(gs,/u)'

probability of the Iab(_al of a pixel given the_ f(_aatqre vecto_[t is obtained by setting} (g, € R;) = 1. This probability is
and the label constraints on the pixel. Maximization of thigyivalent to the joint probability of assigning a feature value
probability is used to obtain a classification of the image. WgeS and a labelk for the pixel s. That is, P(g, € Ry) =
have used three random processes to formulate these impggvs = g, L, = k). Let P(G, = g,|L, = k) be the
constraints. Each one is described below. conditional probability that the feature value for the pixel

is gs given that the label fos is k. Then we have
A. Feature Quantization Process

P(gs € Ry,
The feature quantization process describes the division of P(Gs =gs|Ls = k) = Plgs € Bi) 9)

. : . g . P(L, = k)

the M-dimensional feature space into a set of disjoint regions i )
{R,0 < k< K} using principles of VQ. A vector quantizer e” T (10)

is a mapping of the Euclideak/-dimensional spacR™ onto C ZpP(Ly =k)’
a finite setC = {u,0 < k< K} of points inR*. The set
C is called acodebook Each elemeni;, € C is called a

i i in RM
codevectarrepresenting a regiof in R™. The choice of Euclidean distan{ie, —||? for the distance

VQ can be viewed as a multidimensional OIOtimizmiog‘]unctiond( ) makes the expression (8) a Gaussian distri-
problem in which the overall distance between the sourga 9o Kk P

The random process defined by the conditional probability
P(G; = gs|Ls = k) is calledfeature quantizatiomprocess.

vectors and the codevectors should be minimized [21]. ution with unit variance. Hence, the normalization fackgr

distance functiori(gs, ;1) is defined as the cost of associating ecomes independent efand .

the feature vectory, with the region R;. Two necessary .

conditions for optimal VQ are the nearest neighbor conditidh: Partition Process

for the division of the feature space into regions and the A partition processhere refers to the probability of as-
centroid condition for estimation of codevectors [22]. Theigning a label to each pixel, given the labels of pixels
former ensures that each feature vectgris mapped to in a predefined neighborhood of that pixel. Lat” be a
the nearest codevector, thus defining a regiin= {9, € set of displacement vectors corresponding tgth order
RM|d(gs, i) < d(gs, ), Vl # k}. The centroid condition noncausal symmetric neighborhood of the image pixels. The
defines eacly;. as the centroid of the vectors in the regiBp. neighborhood of any pixek is the set of pixelss 4 r for
Hence,j, = (1/|Ri|)Xg.cr, 9s» Where|Ry| is the number Vr € NP. The operator- is defined ass+7 = (i + &, 5 + 1)

of patterns in the regiotky,. for any pixel s = (i,5) € € and for any displacement
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r = (k,l) € NP. The set has a property that’~! C N?. A where the energy functiof.(.) is
neighborhood for does not include the pixel of interest

The partition process’(L;|Lsy,,Vr € N?) can be de- Eo(Ls = k|Ls) = Z (k= 1) (18)
scribed in terms of Gibbs distribution as follows: leLs
¢—Ep(Le|Logr ¥TENT) and Z. = Il,.; Z;, independent ofs and k. The energy
P(Ls|Lsyr,Vr € N?) = 7 (11) function E. is such that it reduces the probability of having
b

another label when the pixel is already labeled. The competi-
where the energy functioft, is defined such that the pixel tion process acts asveinner-take-allmechanism that controls
has high probability of having the label similar to that of théhe labeling of each pixel by shutting off other possible labels
neighborhood pixels. This can be achieved by selecting th&that pixel.
following energy function:
D. Derivation of Classification Model
Ep(Ls|Lsgr,¥r € NP) == > B6(Ls — Loyr)  (12)

i The objective in classification is to determine the label of
™ v

a pixel subjected to the constraints provided by feature quan-
where /5 is a positive constanty(.) is the Kronecker delta tization process, partition process, and competition process.

function defined as This is achieved by maximizing tha posteriori probability
1 ifi=0 that the labell; of the pixels is k, given the feature vector
8l = {0’ othe_rwise (13) of the pixel, the labels of the neighborhood pixels and the

possible labels that can be assigned to the pixeThis a
The normalization constanZ, for the partition process is Posteriori probability is given by the conditional probability
given as P(Ly = k|G = gs,Lsyr,Vr € NP, Lg). Applying Bayes
B (D N theorem [7]
Z, = VEL:@ b : (14) P(L, = k|Gy, Lyy,,¥r € NP, L)
S _ P(GS|LS = k)P(LS|Ls+7‘7VT € NP)P(LS = k|is)
B P(GS)P(LS = k) '

and it is independent of and L,. The importance of the
partition process is that it acts as a mechanism for partitioning (19)
an image into its texture regions. It also provides a smoothing

effect on pixel labels at each step of relaxation. By substituting (10), (11), and (17) in (19), we can write
P(Ly = k|G, Loy,,Vr € NP, L)
e—d(s.1t) o= Ep(Lo|Loyr NPENP) o= Eo(Lo=k|L,)

Z 2y Ze P(GL)P(Ly = k)2

C. Competition Process

The competition process is based on the fact that any given =
pixel in an image can belong to only one class, and its purpose

is to prevent multiple labels for any given pixel in the image. } (20)

It is defined by the conditional probability of assigning a new e [gem) H Ep (Lol Loy VrENT)+ Be (Lo=k| L )] 21

label to an already labeled pixel. o Z$Z,Z:.P(Gs)P(Ls = k)? (21)
Assuming thatl is the label assigned to the pixel let us oMU ) =300y BOR= Lo )+ ad(k=D)]

define the probability of assigning a new lalkdb that pixel as —

B 2y 2,2 P(G,)P(Ls = k)?
e—ab(k=0) 22)
P(Ly = k|Ly = 1) = ——— (15)
! Comparing (22) with the following Gibbs distribution
whereq is a positive constant ang; is a normalization factor.

The functioné is the inverse of Kronecker delta function given P(Ls = k|G, Loyr, Vr € NP, L52
by ¢~ E(Ls=k|Gs,Loy, YreN? L)
= (23)
. 0, ifI1=0 z
o) = {1’ : (16) we get th functi
. otherwise. get the energy function as
- . E(L, = k|Gs = g5, Lsyr,Vr € NP, L,
If L, denotes the set of labels that may be assigned to the ( | g V€ )
pixel 5, then the net conditional probability for all labels in the = d(goy ) = D, B8(k = Loyr)
set is given byll, ; P(Ls; = k|Ls; = I), which we denote | el
by P(L, = k|L,). Therefore + ) ad(k-1) (24)
lel,

P(L, =k|L,) = [] P(Ls =k|L, =1) o
- and normalization constart as Z,Z.P(Gs = g¢;)P(Ls =
_Lj (Lo=k|L) k)2. For any pixels with a feature vectol;, the a priori

_¢c (17) probability P(G; = gs;) can be considered as a constant.
Ze Also, any pixels may be considered to have an eqadadriori
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probability P(Ls; = k) of having any labek. This makesZ function for such a network [24]:
in (23) a constant value independentsoénd k. Honfield L
Assuming that the labeling of the pixels subjected to the £ -T2 Z Z Wigisinnbea i g ki

constraints of feature quantization process, partition process, bk ik
and competition process is independent, the probability of - ZBi7j7kAi7j7k. (27)
the state of VQ is the product of individual conditional i,k

probabilities. Hence, the classification model is given by We describe how to determine the bias and weights of this

- neural network in order to represent the energy function in
P(s) = HP(LS = k|G, Loy, Vr € NP, L) (25) (26) of the classification model. The first term in the energy
8,k function, which is the contribution of the feature quantization
process, is active only if., =k, that is, ifA; ; ;, = 1 where
s = (4,7). The instantiationt for the label random variable
L, of the pixels = (i, j) denotes the truth valug; ; ; = 1 of
total _ the hypothesigi(i, 7, k). Similarly, the instantiationL,,. =
BT = Z d(gs 1x) = Z P8k = Lovr) k,s+r = (il,jl)(indic;tes that\;, ;, » = 1 for the hypothesis

The energy function foP(S) is

h ren h(iy1,j1,k). So the term§(Ls — Ls1,) in (26) is equivalent

- to the productd; ; xAi, .k, and is active only if(ii, j1) is

+ Z ad(k =D\ (26) " in the pth order r;eighbjorhood ofi, ). The termé(LS —) D)

leL; is one only if L, # [. If L; has an instantiatiok, this term

. . ) s equal to
This energy captures the constraints acting on each pixel
and on the possible labels for the pixel. Estimation of a state S(k—1) = {Ai,j,kAi,j,l if k71 28)
configuration S, which minimizes the energy in (26), will 0, otherwise.

yield a classification result for the textured image. A neur@
network model, which is a modification of Hopfield network,
together with a deterministic relaxation procedure is proposed

o the energy function in (26) is rewritten as

to determine the state with minimum energy. E = 3" V(g g )N
Thus, the overall texture classification scheme is now trans- (i,5),k
formed into designing a vector quantizer that has a distance
gning d - > Bl gy ik

function Etota! defined by (26). In this approach, the quan-
tization and the determination of the codevectors are both
dependent not only on the feature vector of the pixel of interest

V(i—i1,j—j1)ENP

but also on the labels of the neighboring pixels and possible + Z i jrdii] - (29)
labels for the pixel. This is in contrast with the conventional viFk
VQ model given in (7), which encodes the features vectors comparing equations (27) and (29), the bias; , and the
independent of image-specific constraints. Weight W ; i, iy, Can be written as v
IV. NEURAL NETWORK REPRESENTATION

The energy function in (26) can be represented on a c06|11r]d
straint satisfaction neural network of sizex J x K for Wi 5 ksiv ja er
an imagely of size I x J with K number of maximum 23, if (i —i1,7—j1) € NP andk = k,
possible texture classes. Consider a neural network consisting ={ —2a, if (i1, 51) = (4,5) andk # &y
of a three-dimensional (3-D) lattice of nodes. Each node in 0, otherwise.
the network is denoted b, j,k),0< 4,4,k < I, J, K, where 31)

(1,7) = s corresponds to the pixel position akddenotes the
label index for that pixel. Any nodg:, j, k) in the network Initially, each componentr,,s €  in the stateS of
has a biasB; ;. Also, each nodg(, j, k) is connected to VQ is randomized. Correspondingly, the state of network is
any other node(iy, j1, k1) in the lattice with a connection initialized as
weight W ; x.i, 4, % » Which is assumed to be symmetric, i.e.,
Wigasivik = Wi ki

We useA,; ;. € {0,1} for denoting the output of the node
(,4,k). The set{A; ; x, Vi, j, k} is called state of the network.  Also, the initial VQ state is used to compute the codevectors
This has similar meaning as the state of VQ described &s the centroids of initial clusters.
feature quantization process; ; , = 1 at any instant indicates  Note that for a fixedy, the term/3 controls the activities of
that the pixel(¢, 7) has taken a labdl at that instantA; ; ;(n) feature quantization process and partition process on labeling
denotes the output of nodg, j, k) at nth iteration of the the pixels. For small3, the quantization process will be
relaxation algorithm. Hopfield defined the following energprominent, reducing the effect of partition process. The reverse

. 1, if Olig) = k
A jx(0) = {0, otherwise. (32)
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will result for high 8. With a random initial state, a high where ., is the saturation value (at — oco) andr is
[ value forces the network to settle in a random state itself  the time constant.

because of the uncorrelated behavior of pixel labels at theThe above model differs from the conventional Hopfield
beginning. We avoid this by starting the relaxation with a veryetwork in two aspects. In the first place, the bias and the
small value ofg and increasing its value at each iteration. Agonnection weights in the network are modified continuously
exponential rise with a comparatively high time constant igccording to the expressions (36) and (37). Secondly, the
used for this purpose. However, the shape of this curve aggtputs of two nodes—the winner and the loser—are updated
the value of time constant are not critical in the relaxatio§imultaneously in the proposed network, whereas the Hop-
process. field network updates only one node at a time. Energy in
The network state corresponding to the maximaposteri- the Hopfield network is a function of state of the network,
ori probability is arrived at by using a deterministic relaxatiogs the weights and bias are assumed constant. But in the
method in which the state of network is updated iterativekyresent model, the energy is a function of Weights and bias
by changing the output of each node. The steps instthe also. The energy analysis of such a network is much more
iteration of the relaxation algorithm are as follows. complex and is not addressed in this paper. However, we show
1) Select a pixeki, j). experimentally that the energy decreases at each iteration and
2) Compute the net input/; ; »y(n) of each nodd, j,k), gradually settles to a constant value after a sufficient number
for all £ as the weighted sum of inputs to that nodeof iterations. Fig. 6 illustrates the behavior of the energy for
This is given by the four examples discussed in Section VI. Similar behavior of
energy curves can be obtained for different values of number
Uijn) = Y Wijiksivudn Nir gk (0) + Bijin of clusters.
i1,J1,k1 (33) DefineAE = FE(n)— E(n—1) as the energy change at the
. . 777 nthiteration, whereE (n) and E(n — 1) are the energies at the
3) Choose the labet™ as the winner for the Pixeli. j)  eng ofnth and(n — 1()tr)1 iterati(()ns, rZaspectiver. T%e criteria
using the following condiitions: we have adopted for stopping the relaxation iteration is that

kt = arg maxU; ; x(n) (34) |AE| < ¢, wheree is an acceptably small positive quantity.
k The state of the network at this position gives the equilibrium
and state at which tha posterioriprobability in (19) is maximum.
At this point, the label of each pixét, j) is directly obtained
Ui jx+(n)>0. (35) from the corresponding componen; ;, of the stateS, and

. ) . . . . this provides the classification of the given image. For each
Second condition given in (35) is equivalent to assuming, ice of number of classes, we obtain a classification result.

a threshold function for the output of each node. Corgyg gyjtable number of classes is chosen based on a cluster
spondingly, there is a losé¢™ which was the winner \ aigation index to be described in the next section.

for the pixel (¢,j) in the previous iteration. That is, Now, we discuss briefly the significance of the parameters
k=(n) = k*(n—1). - «, 3, and the order of neighborhogd The values ofx and 3

4) Update the output of nodgi,j, k™) @s A, jx+(n +  gefine the relative importance of the constraints represented
1) = 1. A penalty is given to the loser by settingy, the competition and partition processes with respect to
Aijr-(n+1) =0. . that of feature quantization process. Thus, a rough estimate of

5) Detach the feature vectgy; ;) from the region/?,- and  yhege parameters can be obtained by comparing the average
assign it to the regior,,. . Corresponding C?rmponemcontributions of these random processes. After finding the
in the state of VQ is updated as(; ;) = k7. New o estimates of these parameters, small changes in them
centroid of the regiorf,.+ is calculated and assigned 10y, 1ot affect the performance of the segmentation result.

the corresponding codevector as The order of neighborhood defines the extent of receptive

1 field of each neuron in a label layer. The higher thethe
Pt = | R+ | Z s- (36) higher the smoothing of the regions with same texture. But
Vs € R+ at texture boundaries, high smears the boundary. A small

In this expression .+ | denotes the number of patternd’ eaves misclassified regions in the output. Also, very high
belonging to the regiorR,.: after the patterry; ;, is p is meaningless because neighborhood dependency of labels

deleted from the regiorR,- and added to the Tregion decreases ag increases. It must be noted that the presented
R,:. The change of codevector leads to a change s¢heme does not describe an efficient method to determine the
the bias of nodi, j, &), which is computed using the optimal value ofp. However, this is an open problem in the

expression (30). It should be noted that steps 4 andMgrkov models [25] that lacks a satisfactory solution even in
are performed only ift(n) # kt(n — 1). specific domains.

6) Repeat steps 1 to 5 for all pixels selected sequentially
from the image. V. CLUSTER VALIDATION

7) Updategs according to the schedule e . -
Cluster validation is important in deciding the correct num-

B(n) = Bao(l — e~ /7)) (37) ber of classes in the case of unsupervised classification of
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Fig. 2. Unsupervised classification of textures. (a) Original texture. (b) Classification of textures. (a) Original texture. (b) Classificktithréige classes.

patterns. Several methods have been proposed for determinirtgre

optimum number of clusters in a given data [26]. In our Co—2 Co—1
experiments, we have used the modified Hubert (MH) index r= Z Z d(gi, 97) dtio;s tier,) (39)
proposed by Dubes [27]. =0 jeitl

For the purpose of using this index, we will redefine a few Co—2Co—1

symbols as follows: Let us assume that the pixels are denoted D
by a single index; such that0 < ¢ < Cq, where Cq, is the

AN DT dlgigy) (40)

=0 j=i41
cardinality of the sef? of pixel positions. Theng; refers to Co—2 Co—1
the feature vector ofth pixel in the image. Let; refer to Q=AY " dlio o)) (41)
the cluster to which the pixel is assigned. That isy; = k i=0 j—it1
wherek = 0,1,---, K — 1. Thenu,, is the centroid of the [(Co—2 Co—1
clusters;. In terms of the above notation, the MH index for 2 _ 2 2
v ' vi=A d“(g;,g;) — and 42
K clusters is defined by [27] ! ; jzzi;_l (91:9:) d (*2)
[ca—2 Ca—1
ve=Al Y Y B ne,) - 92 (43)
r— ‘I)f‘l)c L =0 j=i+1

MH(K) =
Vile Here, A = 2/Cq(Cq — 1).
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4

(b)

Fig. 4. Unsupervised classification of textures. (a) Original texture. (b) Classification result with four classes.

Thus, the MH index can be defined as a point serial correumber of texture classes and the spatial extent of each
lation coefficient between the matrix of Euclidean distances wxture are visually interpretable. The second set [Figs. 3(a)
the patterns and a matrix containing the Euclidean distancesd 4(a)] contains remote sensed images from the Spaceborne
between the cluster centers to which any two patterns belomgaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-
Assuming that the actual number of clusters is less th@nR) of NASA/Jet Propulsion Laboratory [28]. Undefined
Konax, MH(k) for k = 1--+ Ky is plotted againsk. The texture boundaries and unknown texture models make the
MH index first increases witlk and then becomes a constant|assification of these images difficult and, hence, a cluster
The number of clusters corresponding to the significant knggiidity measure is necessary to decide number of classes in
in the MH index denotes the actual number of clusters in thge image. The results in each case show the original image
data. A detailed description and analysis of MH index can Bgq the classified image (with the optimal number of class
found in [8] and [27]. determined by the MH index) using the proposed method. A

graph showing the variation of MH index with the number of
VI. RESULTS AND DISCUSSION clusters is also provided for each image from which the correct

We have used a number of textured images to study tAgmber of texture classes for that image is selected. The
performance of the proposed classification scheme. The imagégph showing the variation of network energy with respect to
are categorized in increasing order of difficulty for classifinumber of iterations is also given for each case.
cation. Images containing texture tiles comprise the first setFig. 1(a) shows an image of size 256256 pixels consisting
of images [Figs. 1(a) and 2(a)]. In these images, the corraxt tiles of four different textures; two of them are nearly
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Fig. 5. Variation of MH index with number of clusters for the image in (a) Fig. 1; (b) Fig. 2; (c) Fig. 3; (d) Fig. 4.

deterministic (dots and diamonds) and the other two areAn image with size 256x 256 pixels, consisting of five
stochastic in nature (sand and pebbles). The mother Gabmttures from Brodatz album, is shown in Fig. 2(a). Tiles
wavelet used to characterize this texture has parameters of paper (left upper), beans (right upper), brick wall D95
25 andk = 0.1. We have used two scalés = 4 and 5) and (left bottom), raffia D84 (right bottom), and cork (middle)
four orientationg# = 0°, 45°, 9¢°, and 135) for this mother are used to generate the image. In this case, we have used
wavelet, constituting an eight-dimensional feature vector fowo different Gabor wavelet sets, one with= 50,k = 0.1
each pixel in the image. Fig. 1(b) shows the classificatiand another witho = 100,k = 0.1, respectively. Each of
result using the proposed scheme for an optimal number (4)tbése mother wavelets are scaled wijth= 4, 5 and rotated
classes. This is determined from the graph of MH index versusth 8§ = 0,° 45°, 9(°, and 135. This yields a total of 16
number of clusters given in Fig. 5(a). The result in Fig. 1(bfzabor filters and leads to a 16-dimensional (16-D) feature
when compared with the original image, clearly shows thesctor for each pixel. The final classification obtained using
performance of the proposed scheme in correctly classifyitfie proposed scheme is shown in Fig. 2(c) for five classes,
the texture regions and in accurately locating the textuvehich is justified using the validity graph shown in Fig. 5(b)
boundaries. Here, we have used a ninth-order neighborhaeith a significant knee in the graph faer= 5. A comparison
system for the partition process with@&, value of 0.8 and of the original image and the classification result shows that
a 7 of 100. the proposed method has classified the given image well,
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Fig. 6. Variation of energy with number of iterations in classifying the image in (a) Fig. 1; (b) Fig. 2; (c) Fig. 3; (d) Fig. 4.

especially in the interior portions of each texture tile. However, The next data used for experiments consists of SIR-C/X-
there are certain misclassified regions at the boundariesSAR image of the area around Mount Pinatubo in Philippines,
textures. This is mainly due to the fact that the nearlsnd is given in Fig. 3(a). This image shows the regions affected
texture classes affect the feature vectors of boundary pixelgh rough ash deposits during volcano eruptions. The image
in each texture when convolved with the Gabor filters havirig of size 256x 256. For this image, the features are extracted
comparatively high bandwidth. The parameters of the partitidny using 16 Gabor filters as the scaled = 2, 3, 4 and 5)
process used for this image are same as those in the previand rotatedd = 0°, 45°, 90°, and 135) versions of a mother
experiment. wavelet withe = 50 and k& = 0.1, giving a 16-D vector for
The next two images, which are from SIR-C/X-SAR, ara pixel in the image. A sixth-order neighborhood was used in
characterized with unknown texture boundaries. So, in ordiis experiment to characterize the partition process. Values
to take into account the lack @f priori knowledge regarding for 3., and 7 are 0.8 and 200. For an optimal number of
the spatial extent of each texture present in the image, wlasses of two, the final classification result is shown in Fig.
have used a comparatively small order of neighborhood f8¢b). The MH index vs number of clusters graph is shown
partition process. Also, a higher value foris used to make in Fig. 5(c) for this image. From this graph, it can be seen
the effect of feature quantization process much more proming¢nat the MH index has a constant value from the beginning
compared to the effect of the neighborhood pixel labels forad the graph, and this suggests a value two for the optimal
considerably large number of iterations. number of classes. The classification result clearly brings out



1386 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 10, OCTOBER 1997

the areas that are affected by volcano ash (the upper left gaattition process and competition process. These different
of the image) irrespective of certain artifacts present in thmwnstraints were expressed as anposteriori probability,
original image. and they were represented on a constraint satisfaction neural
Finally, a 256 x 256 pixel SIR-C/X-SAR image of network. A deterministic relaxation algorithm was used to find
Flevoland, The Netherlands, shown in Fig. 4(a), is used #ee minimum energy, corresponding to maximarosteriori
data for the classification experiment. For this image, we hapeobability, leading to the optimal classification of the textured
used 16 Gabor filters with four scalings = 2, 3, 4 and 5) image.
and and four rotation& = 0°, 45°, 9, and 135 degrees) of  The influence of the labels of the neighboring pixels on
a mother wavelet having parametérs- 0.1 ando = 25. The the label of each pixel was gradually increased as iteration
neighborhood of order six was used for the partition proceggoceeds by adjusting the parameters of the partition process.
For the experiment, we have used the values 0.8 and 200 Aar iteration proceeds, each codevector learns the centroids of
the parametergl.,, and 7, respectively. Fig. 4(b) shows thethe corresponding class. Unlike the conventional VQ methods,
final classification for four classes. A clear bend in the Mihich encode the feature vectors independent of other feature
index graph in Fig. 5(d) shows that the optimal number ofectors, the proposed method computes the codevectors de-

classes is four for this image. In fact, the description suppligetndent on the feature vector of the pixel of interest as well
along with this image provides the category of these classas. the labels of the neighboring pixels. The validity of the
They are urban region (upper right part of the image), forestimber of texture classes was examined by using a measure
area (upper left part of the image), water body (middle regidmown as modified Hubert index.

in the image), and bare soil in the agricultural fields (lower
part of the image). Visual comparison of the original image
and the classification result indicates that the result in Fig.
4(b) provides an acceptable classification of the given imag(—h]
demonstrating the performance of the proposed scheme on
such complicated natural images. However, the spurious spd&
in the classification result (especially, in the lower parts of the
figure) are due to insignificant changes in the principal landg]
type with similar properties as that of the forest and urbarrf4
classes. To obtain a finer classification of these regions, o é
may have to incorporate multispectral features also along with
the textural information. [5]

In general, it is necessary to use many Gabor filters rep-
resenting possible ranges of spatial extent, orientation, ariél
frequency of texture elements. Thus, it is safe to use a wide
range of values fog, £ and~ that determine the set of Gabor [7]
filters to be used to represent the features for unsupervised
classification. We obtain similar results by using= 25, 50, g
100,k = 0.1, andy = 2, 3, 4, 5 for the Gabor filters in all the
experiments reported in this paper. However, after looking df!
the results of the preliminary studies with large set of Gabeio;
filters, we have selectively chosen a set of values for these
parameters suitable for each experiment separately. This is jys
to reduce the overall computation. Thus, the specific choice of
the parameters for each experiment does not limit the utilit}?]
of the proposed method. It is always possible to obtain the
same result using a much larger set of Gabor filters. For &ib]
experiments, we have used a constant value of 0.1 for tﬁg]
parametera.

[15]

VII. CONCLUSION [16]

In this paper, we have proposed an unsupervised tex-
ture classification scheme based on a neural network moge|
working with a deterministic relaxation strategy. The textural
features are extracted using a set of Gabor wavelets. [1%]
vector quantizer encodes these feature vectors into a set
of codevectors. The VQ, expressed as Gibbs distributio[q
works as a feature quantization random process. A set o?]
spatial as well as label constraints were provided by the
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