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Abstract—This paper describes the use of a neural network
architecture for classifying textured images in an unsupervised
manner using image-specific constraints. The texture features are
extracted by using two-dimensional (2-D) Gabor filters arranged
as a set of wavelet bases. The classification model comprises
feature quantization, partition, and competition processes. The
feature quantization process uses a vector quantizer to quantize
the features into codevectors, where the probability of grouping
the vectors is modeled as Gibbs distribution. A set of label con-
straints for each pixel in the image are provided by the partition
and competition processes. An energy function corresponding to
the a posteriori probability is derived from these processes, and
a neural network is used to represent this energy function. The
state of the network and the codevectors of the vector quantizer
are iteratively adjusted using a deterministic relaxation procedure
until a stable state is reached. The final equilibrium state of the
vector quantizer gives a classification of the textured image. A
cluster validity measure based on modified Hubert index is used
to determine the optimal number of texture classes in the image.

Index Terms—Deterministic relaxation, Gabor filter, Hopfield
model, image analysis, neural networks, remote sensing, texture
classification, unsupervised classification, vector quantization.

I. INTRODUCTION

CLASSIFICATION of textured images in an unsupervised
manner is useful to delineate different regions present

in many natural images. Texture can be formally defined [1]
as follows:A region in an image is a texture if a set of local
statistics or other local properties of the image are constant,
slowly varying, or approximately periodic. The local statistic or
property that is repeated over a textured region can be viewed
as a visual primitive with certain invariant properties. This is
called texture elementor texel, which repeats in each textured
region in a given area.

Classification methods based on supervised classification
assume that the number and types of textures in the image are
knowna priori. This needs a set of training sites in the image
to extract features relevant for each class. On the other hand,
methods that perform unsupervised classification of textures do
not make use of assumption regarding the number of textures
in the image [2]. Unsupervised classification is important in
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the case of natural images, especially in the domain of remote
sensing, because of the difficulty in determining the number
and types of textures in a given image.

In this paper, we describe a method for unsupervised
classification of image textures based on vector quantization
(VQ) [3] and deterministic relaxation techniques. The texture
features are extracted using a set of Gabor filters arranged as
a set of wavelet bases [4]. Gabor filtering is a multiresolution
scheme that provides spatial and spatial frequency representa-
tion of images. We define a feature quantization process that
uses VQ principles to encode the Gabor features in the feature
space. In general, VQ is a process for approximating a set of
input vectors into a finite number of codevectors [3]. It divides
the given feature space into number of groups or clusters, and
computes iteratively the centroids of the clusters (codevectors)
in an unsupervised fashion. The use of VQ in image classi-
fication is well known in the literature [5], [6]. Two other
random processes, namely partition process and competition
process, are used to express a set of label constraints on the
image pixels. Thea posterioriprobability, derived from these
three processes, is expressed as Gibbs distribution, and the
corresponding energy is used to derive a constraint satisfaction
neural network model. A deterministic relaxation strategy is
applied on the network to determine a state corresponding to
the maximuma posteriori probability. The resulting clusters
are interpreted as different texture classes in the image. A
cluster validity measure based on modified Hubert index is
used to decide the number of texture classes in the image. A
similar work was reported in [7], but it was for supervised
texture classification. The work reported in this paper is an
extension of this earlier work to an unsupervised classification
scheme.

Unlike other unsupervised methods [8], which depend only
on the feature vector of each pixel to label it, the proposed
method uses not only the feature-dependent knowledge but
also a number of image-specific constraints as an additional
information. This should help to improve the performance of
the texture classification scheme significantly.

Some notations used in the proposed classification model
are as follows: Let the textured image be designated by a
domain of pixel positions.
A set of -dimensional feature vectors

generated by Gabor filtering, is used to characterize the
textured image Each can be considered to be the
realization of an -dimensional random process We call

1057–7149/97$10.00 1997 IEEE



RAGHU et al.: UNSUPERVISED TEXTURE CLASSIFICATION 1377

this thefeature process, described by thea priori probability
distribution We denote the random variable describing
the texture label of the pixel by We assume that
can take any value from the set of labels
where is the number of texture classes. The label random
process is described by thea priori probability distribution

The paper is organized as follows. The procedure for feature
extraction using Gabor filters is reviewed in Section II. We
present our classification model in Section III, which involves
feature quantization, partition, and competition random pro-
cesses. In Section IV, a neural network representation of the
model is presented. The section also includes a discussion
on the relaxation algorithm and the codevector adjustment.
The cluster validation measure used in our experiments is
described in Section V. Finally, in Section VI, the clas-
sification performance for a number of textured images is
discussed.

II. FEATURE EXTRACTION USING GABOR FILTERS

Classification of natural textures is difficult for several
reasons. In an image containing a number of different textures,
texture elements may have different sizes and shapes, making
it difficult to determinea priori the resolution needed for anal-
ysis of the textures. This necessitates the use of multiresolution
methods in the extraction of texture features. Also, most of
the natural textures are nonstationary. They may have space-
varying local properties such as orientation, frequency, and
size of the texture elements. Spatial filtering approaches [9],
[10] characterize the spatial frequency content, but they do
not capture the variations in the spatial domain. The spatial
frequency information alone may not be adequate when the
textures are nonstationary. One has to take into account the
spatial as well as spatial frequency characteristics of the
textured image.

Thus, it is necessary to extract appropriate features to
differentiate textures of different types in the image for clas-
sification. For our experiments, we have adapted a feature
extraction method that resembles the mechanism of multi-
channel representation of the retinal images in the biological
vision system [11]. It has been shown that the receptive
fields of simple cells in the early vision system can perform
space-domain local feature extraction confined to narrow,
spatially oriented frequency channels that are quasiindepen-
dent in nature [12]. Daugman has shown that these receptive
fields can be closely approximated by the 2-D Gabor filters
[13]. The decomposition using Gabor filters closely resem-
bles the mechanism of multichannel representation of the
retinal images in the biological vision system [14]. When
properly tuned, these filters are useful for extracting the
texture features [15], [4] and for detecting texture edges
[16].

A 2-D Gabor filter is an oriented complex sinusoidal grating
modulated by a two-dimensional (2-D) Gaussian function. The
expression for the impulse response of a 2-D Gabor filter is
given as

(1)

The width of the Gaussian in the Gabor function is defined
by The orientation of the span limited sinusoidal grating is
given by and its frequency is specified along
the and coordinates by and respectively.

The assumption in texture processing using the Gabor filters
is that each texture is characterized by a given localized spatial
frequency or a narrow range of dominant localized spatial
frequencies that differ significantly from the dominant fre-
quencies of other textures. The frequency and orientation of the
complex sinusoid in the Gabor filter describe the local structure
of the texture in that frequency channel, while the Gaussian
envelope defines the resolution with which the texture structure
is characterized. Thus, a set of properly selected Gabor filters
allows us to obtain information regardless of differences in
dominant sizes, orientations and distributions of the texture
elements.

An important property of the 2-D Gabor filters is their
ability to represent the image both in spatial and spatial
frequency domains optimally by achieving the theoretical
lower bound of joint uncertainty [17], depending upon the
chosen metric [18]. This is equivalent to achieving max-
imum possible joint resolution in the two domains [19],
providing simultaneous spectral and spatial localization. The
localization, in the context of texture segmentation, defines
the ability of the segmentation strategy to accurately distin-
guish emergent texture frequencies and to accurately mark the
boundaries separating the textures [20]. Since Gabor filters
reduce the uncertainty to a minimum level, they are able to
segment the textures by discriminating narrow range of spatial
frequencies.

One attractive feature of the Gabor filters is their orientation
selectivity. This will be clear when the expression (1) is
rewritten in polar coordinates as

(2)

where is the orientation of the Gabor filter,

and is the radial frequency. The orientation
selectivity of the Gabor filters allows us to discriminate
textures having different orientations.

For our experiments, Gabor filters with varying support
(in spatial as well as spatial frequency domains) were used
for feature extraction, in order to detect and localize texture
features at different scales. This leads to the selection of filters
similar to wavelet decomposition where the mother wavelet is
a 2-D Gabor function. This is expressed as

(3)

where is the wavelet scale factor. A set of filters
for a given and forms the Gabor

wavelet family. This set of filters provides a number of scaled
and rotated versions of the mother wavelet. Usually, the values
of is chosen as where is an integer.

The feature vector at each spatial location is specified
as

(4)
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where

(5)

where “*” denotes a 2-D convolution operator. For a given
and and for a given set of values of and let us

assume Gabor filters are used for feature extraction. The
-dimensional vector then constitutes the feature vector

to characterize the pixel in the image.
For implementation of Gabor filtering, we consider the

following discrete version of the expression in (5):

(6)

The values of for all pixels are computed
by employing the circular convolutions implemented using
forward and inverse discrete Fourier transforms.

In the next section, we describe the stochastic modeling of
the feature vectors and the related image-specific constraints
for developing a model for unsupervised classification.

III. CLASSIFICATION MODEL

The classification model is defined by thea posteriori
probability of the label of a pixel given the feature vector
and the label constraints on the pixel. Maximization of this
probability is used to obtain a classification of the image. We
have used three random processes to formulate these image
constraints. Each one is described below.

A. Feature Quantization Process

The feature quantization process describes the division of
the -dimensional feature space into a set of disjoint regions

using principles of VQ. A vector quantizer
is a mapping of the Euclidean -dimensional space onto
a finite set of points in The set

is called acodebook. Each element is called a
codevector, representing a region in

VQ can be viewed as a multidimensional optimization
problem in which the overall distance between the source
vectors and the codevectors should be minimized [21]. A
distance function is defined as the cost of associating
the feature vector with the region Two necessary
conditions for optimal VQ are the nearest neighbor condition
for the division of the feature space into regions and the
centroid condition for estimation of codevectors [22]. The
former ensures that each feature vector is mapped to
the nearest codevector, thus defining a region

The centroid condition
defines each as the centroid of the vectors in the region
Hence, , where is the number
of patterns in the region

The state of a VQ describes the set of labels assigned to all
the pixels at a given instance. That is,
where is the label of the pixel and is any one of
the labels in the range zero to is the cardinality
of the set and is equal to the number of pixels in the
image. The assumption here is that the next state differs from
the current state in the label for any one pixel chosen at
random. Hence, the next state is given by the product of the
probabilities of the current state and the transition probability
from the current state to the next state. Assuming that the
transition probabilities are independent of the state of the VQ,
the stationary probability distribution of the state of VQ is
given by the following Gibbs distribution [21]:

(7)

where is the average distance
and is a normalization constant so that
It is clear from (7) that the probability of being in a state
is related to the average distance of the feature vectors of the
pixels from the corresponding cluster centers. Smaller average
distance indicates better performance from VQ and, hence, the
probability of the corresponding state will be high.

The probability of assigning a label to a
feature vector [23] is given by

(8)

where is the normalization constant given by
It is obtained by setting This probability is
equivalent to the joint probability of assigning a feature value

and a label for the pixel That is,
Let be the

conditional probability that the feature value for the pixel
is given that the label for is Then we have

(9)

(10)

The random process defined by the conditional probability
is calledfeature quantizationprocess.

The choice of Euclidean distance for the distance
function makes the expression (8) a Gaussian distri-
bution with unit variance. Hence, the normalization factor
becomes independent ofand

B. Partition Process

A partition processhere refers to the probability of as-
signing a label to each pixel, given the labels of pixels
in a predefined neighborhood of that pixel. Let be a
set of displacement vectors corresponding to ath order
noncausal symmetric neighborhood of the image pixels. The
neighborhood of any pixel is the set of pixels for

The operator is defined as
for any pixel and for any displacement
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. The set has a property that A
neighborhood for does not include the pixel of interest

The partition process can be de-
scribed in terms of Gibbs distribution as follows:

(11)

where the energy function is defined such that the pixel
has high probability of having the label similar to that of the
neighborhood pixels. This can be achieved by selecting the
following energy function:

(12)

where is a positive constant. is the Kronecker delta
function defined as

if
otherwise.

(13)

The normalization constant for the partition process is
given as

(14)

and it is independent of and The importance of the
partition process is that it acts as a mechanism for partitioning
an image into its texture regions. It also provides a smoothing
effect on pixel labels at each step of relaxation.

C. Competition Process

The competition process is based on the fact that any given
pixel in an image can belong to only one class, and its purpose
is to prevent multiple labels for any given pixel in the image.
It is defined by the conditional probability of assigning a new
label to an already labeled pixel.

Assuming that is the label assigned to the pixel let us
define the probability of assigning a new labelto that pixel as

(15)

where is a positive constant and is a normalization factor.
The function is the inverse of Kronecker delta function given
by

if
otherwise.

(16)

If denotes the set of labels that may be assigned to the
pixel then the net conditional probability for all labels in the
set is given by which we denote
by Therefore

(17)

where the energy function is

(18)

and independent of and The energy
function is such that it reduces the probability of having
another label when the pixel is already labeled. The competi-
tion process acts as awinner-take-allmechanism that controls
the labeling of each pixel by shutting off other possible labels
of that pixel.

D. Derivation of Classification Model

The objective in classification is to determine the label of
a pixel subjected to the constraints provided by feature quan-
tization process, partition process, and competition process.
This is achieved by maximizing thea posteriori probability
that the label of the pixel is , given the feature vector
of the pixel, the labels of the neighborhood pixels and the
possible labels that can be assigned to the pixelThis a
posteriori probability is given by the conditional probability

Applying Bayes
theorem [7]

(19)

By substituting (10), (11), and (17) in (19), we can write

(20)

(21)

(22)

Comparing (22) with the following Gibbs distribution

(23)

we get the energy function as

(24)

and normalization constant as
For any pixel with a feature vector the a priori

probability can be considered as a constant.
Also, any pixel may be considered to have an equala priori
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probability of having any label This makes
in (23) a constant value independent ofand

Assuming that the labeling of the pixels subjected to the
constraints of feature quantization process, partition process,
and competition process is independent, the probability of
the state of VQ is the product of individual conditional
probabilities. Hence, the classification model is given by

(25)

The energy function for is

(26)

This energy captures the constraints acting on each pixel
and on the possible labels for the pixel. Estimation of a state
configuration , which minimizes the energy in (26), will
yield a classification result for the textured image. A neural
network model, which is a modification of Hopfield network,
together with a deterministic relaxation procedure is proposed
to determine the state with minimum energy.

Thus, the overall texture classification scheme is now trans-
formed into designing a vector quantizer that has a distance
function defined by (26). In this approach, the quan-
tization and the determination of the codevectors are both
dependent not only on the feature vector of the pixel of interest
but also on the labels of the neighboring pixels and possible
labels for the pixel. This is in contrast with the conventional
VQ model given in (7), which encodes the features vectors
independent of image-specific constraints.

IV. NEURAL NETWORK REPRESENTATION

The energy function in (26) can be represented on a con-
straint satisfaction neural network of size for
an image of size with number of maximum
possible texture classes. Consider a neural network consisting
of a three-dimensional (3-D) lattice of nodes. Each node in
the network is denoted by where

corresponds to the pixel position anddenotes the
label index for that pixel. Any node in the network
has a bias Also, each node is connected to
any other node in the lattice with a connection
weight , which is assumed to be symmetric, i.e.,

We use for denoting the output of the node
The set is called state of the network.

This has similar meaning as the state of VQ described in
feature quantization process. at any instant indicates
that the pixel has taken a label at that instant.
denotes the output of node at th iteration of the
relaxation algorithm. Hopfield defined the following energy

function for such a network [24]:

(27)

We describe how to determine the bias and weights of this
neural network in order to represent the energy function in
(26) of the classification model. The first term in the energy
function, which is the contribution of the feature quantization
process, is active only if , that is, if where

The instantiation for the label random variable
of the pixel denotes the truth value of

the hypothesis Similarly, the instantiation
indicates that for the hypothesis

So the term in (26) is equivalent
to the product and is active only if is
in the th order neighborhood of The term
is one only if If has an instantiation this term
is equal to

if
otherwise.

(28)

So the energy function in (26) is rewritten as

(29)

Comparing equations (27) and (29), the bias and the
weight can be written as

(30)

and

if and
if and
otherwise.

(31)

Initially, each component in the state of
VQ is randomized. Correspondingly, the state of network is
initialized as

if
otherwise.

(32)

Also, the initial VQ state is used to compute the codevectors
as the centroids of initial clusters.

Note that for a fixed the term controls the activities of
feature quantization process and partition process on labeling
the pixels. For small the quantization process will be
prominent, reducing the effect of partition process. The reverse
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will result for high With a random initial state, a high
value forces the network to settle in a random state itself

because of the uncorrelated behavior of pixel labels at the
beginning. We avoid this by starting the relaxation with a very
small value of and increasing its value at each iteration. An
exponential rise with a comparatively high time constant is
used for this purpose. However, the shape of this curve and
the value of time constant are not critical in the relaxation
process.

The network state corresponding to the maximuma posteri-
ori probability is arrived at by using a deterministic relaxation
method in which the state of network is updated iteratively
by changing the output of each node. The steps in theth
iteration of the relaxation algorithm are as follows.

1) Select a pixel
2) Compute the net input of each node

for all as the weighted sum of inputs to that node.
This is given by

(33)
3) Choose the label as the winner for the pixel

using the following conditions:

(34)

and

(35)

Second condition given in (35) is equivalent to assuming
a threshold function for the output of each node. Corre-
spondingly, there is a loser which was the winner
for the pixel in the previous iteration. That is,

4) Update the output of node as
A penalty is given to the loser by setting

5) Detach the feature vector from the region and
assign it to the region Corresponding component
in the state of VQ is updated as, New
centroid of the region is calculated and assigned to
the corresponding codevector as

(36)

In this expression, denotes the number of patterns
belonging to the region after the pattern is
deleted from the region and added to the region

The change of codevector leads to a change in
the bias of node , which is computed using the
expression (30). It should be noted that steps 4 and 5
are performed only if

6) Repeat steps 1 to 5 for all pixels selected sequentially
from the image.

7) Update according to the schedule

(37)

where is the saturation value (at and is
the time constant.

The above model differs from the conventional Hopfield
network in two aspects. In the first place, the bias and the
connection weights in the network are modified continuously
according to the expressions (36) and (37). Secondly, the
outputs of two nodes—the winner and the loser—are updated
simultaneously in the proposed network, whereas the Hop-
field network updates only one node at a time. Energy in
the Hopfield network is a function of state of the network,
as the weights and bias are assumed constant. But in the
present model, the energy is a function of weights and bias
also. The energy analysis of such a network is much more
complex and is not addressed in this paper. However, we show
experimentally that the energy decreases at each iteration and
gradually settles to a constant value after a sufficient number
of iterations. Fig. 6 illustrates the behavior of the energy for
the four examples discussed in Section VI. Similar behavior of
energy curves can be obtained for different values of number
of clusters.

Define as the energy change at the
th iteration, where and are the energies at the

end of th and th iterations, respectively. The criteria
we have adopted for stopping the relaxation iteration is that

where is an acceptably small positive quantity.
The state of the network at this position gives the equilibrium
state at which thea posterioriprobability in (19) is maximum.
At this point, the label of each pixel is directly obtained
from the corresponding component of the state and
this provides the classification of the given image. For each
choice of number of classes, we obtain a classification result.
The suitable number of classes is chosen based on a cluster
validation index to be described in the next section.

Now, we discuss briefly the significance of the parameters
and the order of neighborhood The values of and

define the relative importance of the constraints represented
by the competition and partition processes with respect to
that of feature quantization process. Thus, a rough estimate of
these parameters can be obtained by comparing the average
contributions of these random processes. After finding the
rough estimates of these parameters, small changes in them
do not affect the performance of the segmentation result.
The order of neighborhood defines the extent of receptive
field of each neuron in a label layer. The higher thethe
higher the smoothing of the regions with same texture. But
at texture boundaries, high smears the boundary. A small

leaves misclassified regions in the output. Also, very high
is meaningless because neighborhood dependency of labels

decreases as increases. It must be noted that the presented
scheme does not describe an efficient method to determine the
optimal value of However, this is an open problem in the
Markov models [25] that lacks a satisfactory solution even in
specific domains.

V. CLUSTER VALIDATION

Cluster validation is important in deciding the correct num-
ber of classes in the case of unsupervised classification of
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(a) (b)

Fig. 1. Unsupervised classification of textures. (a) Original texture. (b) Classification result with four classes.

(a) (b)

Fig. 2. Unsupervised classification of textures. (a) Original texture. (b) Classification of textures. (a) Original texture. (b) Classification result with five classes.

patterns. Several methods have been proposed for determining
optimum number of clusters in a given data [26]. In our
experiments, we have used the modified Hubert (MH) index
proposed by Dubes [27].

For the purpose of using this index, we will redefine a few
symbols as follows: Let us assume that the pixels are denoted
by a single index such that where is the
cardinality of the set of pixel positions. Then, refers to
the feature vector ofth pixel in the image. Let refer to
the cluster to which the pixel is assigned. That is,
where Then is the centroid of the
cluster In terms of the above notation, the MH index for

clusters is defined by [27]

(38)

where

(39)

(40)

(41)

(42)

(43)

Here,
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(a) (b)

Fig. 3. Unsupervised classification of textures. (a) Original texture. (b) Classification result with two classes.

(a) (b)

Fig. 4. Unsupervised classification of textures. (a) Original texture. (b) Classification result with four classes.

Thus, the MH index can be defined as a point serial corre-
lation coefficient between the matrix of Euclidean distances of
the patterns and a matrix containing the Euclidean distances
between the cluster centers to which any two patterns belong.
Assuming that the actual number of clusters is less than

for is plotted against The
MH index first increases with and then becomes a constant.
The number of clusters corresponding to the significant knee
in the MH index denotes the actual number of clusters in the
data. A detailed description and analysis of MH index can be
found in [8] and [27].

VI. RESULTS AND DISCUSSION

We have used a number of textured images to study the
performance of the proposed classification scheme. The images
are categorized in increasing order of difficulty for classifi-
cation. Images containing texture tiles comprise the first set
of images [Figs. 1(a) and 2(a)]. In these images, the correct

number of texture classes and the spatial extent of each
texture are visually interpretable. The second set [Figs. 3(a)
and 4(a)] contains remote sensed images from the Spaceborne
Imaging Radar-C and X-Synthetic Aperture Radar (SIR-C/X-
SAR) of NASA/Jet Propulsion Laboratory [28]. Undefined
texture boundaries and unknown texture models make the
classification of these images difficult and, hence, a cluster
validity measure is necessary to decide number of classes in
the image. The results in each case show the original image
and the classified image (with the optimal number of class
determined by the MH index) using the proposed method. A
graph showing the variation of MH index with the number of
clusters is also provided for each image from which the correct
number of texture classes for that image is selected. The
graph showing the variation of network energy with respect to
number of iterations is also given for each case.

Fig. 1(a) shows an image of size 256256 pixels consisting
of tiles of four different textures; two of them are nearly
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(a) (b)

(c) (d)

Fig. 5. Variation of MH index with number of clusters for the image in (a) Fig. 1; (b) Fig. 2; (c) Fig. 3; (d) Fig. 4.

deterministic (dots and diamonds) and the other two are
stochastic in nature (sand and pebbles). The mother Gabor
wavelet used to characterize this texture has parameters

and We have used two scales and 5) and
four orientations 0 , 45 , 90 , and 135) for this mother
wavelet, constituting an eight-dimensional feature vector for
each pixel in the image. Fig. 1(b) shows the classification
result using the proposed scheme for an optimal number (4) of
classes. This is determined from the graph of MH index versus
number of clusters given in Fig. 5(a). The result in Fig. 1(b),
when compared with the original image, clearly shows the
performance of the proposed scheme in correctly classifying
the texture regions and in accurately locating the texture
boundaries. Here, we have used a ninth-order neighborhood
system for the partition process with a value of 0.8 and
a of 100.

An image with size 256 256 pixels, consisting of five
textures from Brodatz album, is shown in Fig. 2(a). Tiles
of paper (left upper), beans (right upper), brick wall D95
(left bottom), raffia D84 (right bottom), and cork (middle)
are used to generate the image. In this case, we have used
two different Gabor wavelet sets, one with
and another with , respectively. Each of
these mother wavelets are scaled with 4, 5 and rotated
with 0, 45 , 90 , and 135. This yields a total of 16
Gabor filters and leads to a 16-dimensional (16-D) feature
vector for each pixel. The final classification obtained using
the proposed scheme is shown in Fig. 2(c) for five classes,
which is justified using the validity graph shown in Fig. 5(b)
with a significant knee in the graph for A comparison
of the original image and the classification result shows that
the proposed method has classified the given image well,
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(a) (b)

(c) (d)

Fig. 6. Variation of energy with number of iterations in classifying the image in (a) Fig. 1; (b) Fig. 2; (c) Fig. 3; (d) Fig. 4.

especially in the interior portions of each texture tile. However,
there are certain misclassified regions at the boundaries of
textures. This is mainly due to the fact that the nearby
texture classes affect the feature vectors of boundary pixels
in each texture when convolved with the Gabor filters having
comparatively high bandwidth. The parameters of the partition
process used for this image are same as those in the previous
experiment.

The next two images, which are from SIR-C/X-SAR, are
characterized with unknown texture boundaries. So, in order
to take into account the lack ofa priori knowledge regarding
the spatial extent of each texture present in the image, we
have used a comparatively small order of neighborhood for
partition process. Also, a higher value foris used to make
the effect of feature quantization process much more prominent
compared to the effect of the neighborhood pixel labels for a
considerably large number of iterations.

The next data used for experiments consists of SIR-C/X-
SAR image of the area around Mount Pinatubo in Philippines,
and is given in Fig. 3(a). This image shows the regions affected
with rough ash deposits during volcano eruptions. The image
is of size 256 256. For this image, the features are extracted
by using 16 Gabor filters as the scaled 2, 3, 4 and 5)
and rotated 0 , 45 , 90 , and 135) versions of a mother
wavelet with and giving a 16-D vector for
a pixel in the image. A sixth-order neighborhood was used in
this experiment to characterize the partition process. Values
for and are 0.8 and 200. For an optimal number of
classes of two, the final classification result is shown in Fig.
3(b). The MH index vs number of clusters graph is shown
in Fig. 5(c) for this image. From this graph, it can be seen
that the MH index has a constant value from the beginning
of the graph, and this suggests a value two for the optimal
number of classes. The classification result clearly brings out
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the areas that are affected by volcano ash (the upper left part
of the image) irrespective of certain artifacts present in the
original image.

Finally, a 256 256 pixel SIR-C/X-SAR image of
Flevoland, The Netherlands, shown in Fig. 4(a), is used as
data for the classification experiment. For this image, we have
used 16 Gabor filters with four scalings 2, 3, 4 and 5)
and and four rotations 0 , 45 , 90 , and 135 degrees) of
a mother wavelet having parameters and The
neighborhood of order six was used for the partition process.
For the experiment, we have used the values 0.8 and 200 for
the parameters and respectively. Fig. 4(b) shows the
final classification for four classes. A clear bend in the MH
index graph in Fig. 5(d) shows that the optimal number of
classes is four for this image. In fact, the description supplied
along with this image provides the category of these classes.
They are urban region (upper right part of the image), forest
area (upper left part of the image), water body (middle region
in the image), and bare soil in the agricultural fields (lower
part of the image). Visual comparison of the original image
and the classification result indicates that the result in Fig.
4(b) provides an acceptable classification of the given image,
demonstrating the performance of the proposed scheme on
such complicated natural images. However, the spurious spots
in the classification result (especially, in the lower parts of the
figure) are due to insignificant changes in the principal land
type with similar properties as that of the forest and urban
classes. To obtain a finer classification of these regions, one
may have to incorporate multispectral features also along with
the textural information.

In general, it is necessary to use many Gabor filters rep-
resenting possible ranges of spatial extent, orientation, and
frequency of texture elements. Thus, it is safe to use a wide
range of values for and that determine the set of Gabor
filters to be used to represent the features for unsupervised
classification. We obtain similar results by using 25, 50,
100, and 2, 3, 4, 5 for the Gabor filters in all the
experiments reported in this paper. However, after looking at
the results of the preliminary studies with large set of Gabor
filters, we have selectively chosen a set of values for these
parameters suitable for each experiment separately. This is just
to reduce the overall computation. Thus, the specific choice of
the parameters for each experiment does not limit the utility
of the proposed method. It is always possible to obtain the
same result using a much larger set of Gabor filters. For all
experiments, we have used a constant value of 0.1 for the
parameter

VII. CONCLUSION

In this paper, we have proposed an unsupervised tex-
ture classification scheme based on a neural network model
working with a deterministic relaxation strategy. The textural
features are extracted using a set of Gabor wavelets. A
vector quantizer encodes these feature vectors into a set
of codevectors. The VQ, expressed as Gibbs distribution,
works as a feature quantization random process. A set of
spatial as well as label constraints were provided by the

partition process and competition process. These different
constraints were expressed as ana posteriori probability,
and they were represented on a constraint satisfaction neural
network. A deterministic relaxation algorithm was used to find
the minimum energy, corresponding to maximuma posteriori
probability, leading to the optimal classification of the textured
image.

The influence of the labels of the neighboring pixels on
the label of each pixel was gradually increased as iteration
proceeds by adjusting the parameters of the partition process.
As iteration proceeds, each codevector learns the centroids of
the corresponding class. Unlike the conventional VQ methods,
which encode the feature vectors independent of other feature
vectors, the proposed method computes the codevectors de-
pendent on the feature vector of the pixel of interest as well
as the labels of the neighboring pixels. The validity of the
number of texture classes was examined by using a measure
known as modified Hubert index.
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