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Abstract--The objective of  this paper is to study the performance of  artificial neural network models for  recognition 
o f  objects from poorly resolved, noisy, and transformed (scaled, rotated, translated) images, such as images recon- 
structed from sparse and noisy data in a sensor array imaging context. Noise and sparsity o f  data in the imaging 
context result in degradation o f  quality o f  the reconstructed image as a whole, instead of  affecting it in the form of  
local corruption o f  the image pixel information as in many image processing situations. Hence, ( i ) neighbourhood 
processing methods for  noise cleaning may not be suitable, ( ii ) feature extraction cannot be reliably performed, 
and ( iii ) model-based methods for  classification cannot easily be applied. In this paper, we show that neural network 
models can be used to overcome some o f  the difficulties in dealing with degraded images as obtained in an imaging 
context. 

Keywords Object recognition, Degraded images, Transformation invariance, Sensor array imaging, Sparsity, Image 
reconstruction, Preprocessing, Neural networks. 

1. I N T R O D U C T I O N  

In this paper we address the problem of recognition of 
objects from degraded images obtained through recon- 
struction from sparse and noisy data, as in the case of  
sensor an-ay imaging. The aim of a sensor array im- 
aging (Yegnanarayana, Mariadassou, & Saini, 1990) 
system, such as an underwater acoustic imaging sys- 
tem, is to obtain an image of  an object by transmitting 
acoustic waves and sensing the wave reflected from the 
object using an array of sensors as shown in Figure 1. 
We consider a simulated sensor array imaging context 
to generate array data for imaging the objects. 

Due to sparsity of  the received data and noise, the 
reconstructed images are poorly resolved and noisy. It 
is difficult to recognise an object from these recon- 
structed images due to lack of visual clues required for 
recognition. The task of automatic recognition becomes 
much more complex when the object moves relative to 
the receiver array. In this case recognition is required 
independent of changes in scale, position, and orien- 
tation of the object in the image. As the number of  
expected targets becomes larger, it becomes difficult 
for a human observer to recognise the object from such 
poor quality images. 

Requests for reprints should be sent to Dr. B. Yegnanarayana, 
Department of Computer Science & Engineering, Indian Institute of 
Technology, Madras-600 036, India. E-mail: yegna @ iitm.ernet.in. 

The difficulty in building a recognition system to 
deal with degraded images arises from the fact that 
noise and sparsity of  data in the imaging context result 
in degradation of quality of the reconstructed image as 
a whole instead of affecting it in the form of local cor- 
ruption of the image pixel information. Hence, ( i)  
neighbourhood processing methods for noise cleaning 
may not be applicable, (ii) feature extraction cannot be 
reliably performed, and (iii) model-based methods for 
classification cannot easily be applied. 

To deal with the degraded images, it is desirable that 
the processing mechanism adapts itself to the task do- 
main and to the data being processed. Representation 
and description suitable to the task domain must be 
acquired by learning from examples and not through 
explicit specification. Data must be processed by acti- 
vating the knowledge in a context-sensi t ive manner and 
not in a preprogrammed manner. In this paper, we de- 
scribe how simple artificial neural networks, which ex- 
hibit capabilities for adaptation, even if only to a lim- 
ited extent, can be put to use in a complex pattern 
recognition task. 

The task addressed in this paper is recognition of a 
fixed set of  planar objects. Studies reported here are 
made by simulating noise and sparsity as obtained in a 
simplified model of  a sensor array imaging situation. 
We limit the study to simple metric transformations 
(rigid object transformations in two dimensions), 
namely, scaling, translation, and in-plane rotation. The 
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FIGURE 1. A simplified sensor array imaging setup. 

type and details of the objects in the images are im- 
portant factors that may decide the complexity of the 
recognition task. In this study we consider two sets of  
objects of  varying complexity: (a)  complex s e t - -  
Olympic game symbols, and (b)  simpler se t - -char -  
acters of  the English alphabet. 

We consider a simulated sensor array imaging setup 
to generate the sensor array data. By varying the pa- 
rameters of  the source, receiver, and medium charac- 
teristics, it is possible to generate data that will produce 
images over a wide range of degradations in a con- 
trolled manner. 

To demonstrate the effectiveness of  neural network 
models for different cases, the following studies are 
made. Object recognition studies from images with 
degradations due to noise and sparsity alone are dis- 
cussed in Section 2. Studies for the case of degradations 
due to transformations alone are discussed in Section 
3. Finally, studies for the case of  degradations due to 
noise, sparsity, and transformations are discussed in 
Section 4. 

2. DEGRADATION DUE TO NOISE AND 
SPARSITY ALONE 

In this section we consider the situation where the im- 
ages of objects are poorly resolved and corrupted by 

(a) 

noise. In these situations feature extraction is not likely 
to be successful. Because the goal is just classification 
and not generation of a description of the image, a pix- 
elwise template-matching approach may be preferred 
over feature-based methods. We have used a Hamming 
network to learn the templates of the images and to 
match them by correlation (Lippmann, 1987). 

The objective is to test the performance of the Ham- 
ming network under different levels of degradation and 
to identify the limits up to which the network can per- 
form reliably. Sparsity of  samples and noise are used 
to generate images of different levels of degradation. 
The knowledge base in the present studies consists of  
20 Olympic games symbols, five of  which are shown 
in Figure 2a. These symbols were created by first dig- 
itising the printed symbols from a newspaper using a 
scanner and editing the symbols. Each image consists 
of 128 × 128 pixels. Three different recognition ex- 
periments were performed using this data. 

Experiment 1: Effect of Sparsity 

Images were reconstructed from sparse data collected 
using receiver arrays of  different sizes. Data at the sen- 
sor array were simulated assuming array sizes of  64 × 
64, 32 × 32, 16 × 16, and 8 × 8 sensors and using 
data at two frequencies in each case. Images were re- 
constructed using an iterative reconstruction algorithm 
based on the Projection onto Convex Sets (POCS) with 
the constraints of finite support on the object plane and 
the known data on the receiver plane (Yegnanarayana 
et al., 1990). Figure 2b shows the images reconstructed 
from an 8 × 8 array data. Each of these images was 
converted into a binary image and presented to the neu- 
ral network that was already trained to the original 20 
images. The templates of the images are stored using 
the training algorithm for the Hamming network de- 
scribed in Lippmann (1987).  The recognised symbol 
for each reconstructed image is given in the figure. 

The results are summarised in Figure 3a. All the 20 
patterns are correctly classified when the array size is 
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FIGURE 2. Some Olympic game symbols and the co~esponding images reconstructed ~om spa~e data. (a} A subset of O~mpic 
game symbols in the knowledge base (each image has 128 x 128 pixe| points). (b) Images reconstructed from data collected at 
two frequencies from an 8 x 8 army. The decision of the network is given. The undedined one is misc|assified. 
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greater than or equal to 16 × 16. This performance is 
very impressive because it is difficult for us to identify 
visually discriminating features in many of these im- 
ages. 

Experiment 2: Performance With Data at Multiple 
Frequencies 

Images were reconstructed from data collected at mul- 
tiple frequencies of  the incident plane waves in the sim- 
ulated sensor array imaging setup (see Figure 1 ). Sen- 
sor array data were simulated assuming an 8 × 8 array 
with data collected at different frequencies. The images 
reconstructed from one, two, four, and eight different 
frequencies data were presented to the network for rec- 
ognition. Iterative algorithms based on POCS were 
used to reconstruct the images as before (Yegnana- 
rayana et al., 1990). The recognition results are sum- 
marised in Figure 3b. Classification performance im- 
proves even for smaller array sizes like 8 × 8 array, 
when the data are collected at more frequencies. 

Experiment 3: Effect of Noise 

Images were reconstructed from data with various lev- 
els of  noise. Random noise with Gaussian distribution 
was added to the simulated sensor array data collected 
at two frequencies with a 16 × 16 array. The recog- 
nition results obtained are summarised in Figure 3c. It 
appears that degradation effects due to noise are more 
severe than the degradation caused due to sparsity of  
data. However, for the case of 16 × 16 data, the network 
classifies satisfactorily up to a noise level of 0 dB. 

In the above study it was assumed that transforma- 
tion and spatial distortion of objects do not occur, and 
the network used direct pixelwise matching. In prac- 
tice, these conditions are seldom met because objects 
being imaged move relative to the imaging system. 
Therefore, it is difficult to recognise objects in such 
images using the Hamming network. 

3. DEGRADATION DUE TO 
TRANSFORMATIONS ALONE 

If  images are clean and noise free, there exist methods 
for overcoming the effects of  metric transformations. 
In this section we explore this possibility of  transfor- 
mation invariant recognition of objects from noise-free 
images. We have used a transformation-invariant fea- 
ture space based on the theory of geometric moments, 
and a neural network classifier that uses this feature 
space for object recognition. 

3.1. Issues in Transformation-Invariant Recognition 

Neural approaches for transformation-invariant recog- 
nition were actively pursued in the 1980s (Fukushima, 

1983; Giles, Griffin, & Maxwell, 1988; Widrow & 
Winter, 1988). In these approaches, attempts were 
made to obtain invariance either by suitably designing 
the structure or by training the networks. Neither of  
these approaches is realistic from an engineering point 
of view (Barnard & Casasent, 1991 ). Since 1990, hy- 
brid systems that use invariant feature spaces to handle 
transformations, and neural networks for classification 
have been studied (Barnard & Casasent, 1991; Kho- 
tanzad & Lu, 1990). There are two major advantages 
in this approach: 
(i)  The requirements on the classifier are reduced be- 

cause the number of features required is much less 
than the number of  pixels. 

(ii) Invariance for all input objects is ensured. 
The following are the disadvantages of using invariant 
feature spaces: 
( i)  The input image is not directly input to the clas- 

sifier. Preprocessing is required to compute the 
features, which may be computationally expen- 
sive. 

(ii) Not all feature spaces are equally suitable for a 
given problem. Each feature space has its own 
shortcomings. Moment-invariant feature spaces 
have difficulties when noise is present. Feature 
spaces, such as wedge ring samples of  the mag- 
nitude of the Fourier transform and the magnitude 
of the Fourier transform in log-polar coordinates, 
are not invariant to all possible transformations 
(Barnard & Casasent, 1991). 

The invariant feature approach is a global feature- 
matching approach useful only in simplified situations 
where we can assume that the object is segmented (ob- 
ject is separated from its uniform background) and that 
there is no occlusion. This enables us to define invariant 
features computed directly from the image. I f  the object 
and the background are not distinct, local feature ex- 
traction and normalisation have to be done one after 
the other to achieve transformation invariance. 

3.2. A Two-Stage Recognition Approach for 
Transformation-Invariant Recognition 

We describe a two-stage approach for recognition. In 
the first stage, we use invariant feature spaces to handle 
transformation and in the second stage we use a neural 
network for classification. 

Methods based on the theory of geometric moments 
have been used for normalisation and invariant feature 
extraction (Hu, 1962). I f  the object is compact and has 
only a few details, invariant measures stable over a 
wide range of spatial transformations can be designed. 
I f  the transformations are metric, then it is possible to 
design such an invariant feature space. Based on the- 
ories of  invariant algebra that deal with properties of 
algebraic expressions that remain invariant under gen- 
eral linear transformations, Hu (1962) derived corn- 
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FIGURE 3. Number of pattems recognised for different cases: 
(a) with different sparse arrays (64 x 64, 32 x 32, 16 x 16, and 
8 x 8 sensors); (b) when data at different frequencies are 
used with an 8 x 8 sensor array; (c) for different levels of 
noise in the received data with a 16 × 16 array. 

binations of moment values that are invariant with re- 
spect to scale, position, and orientation. The 
effectiveness of  this space for classification purposes 
has been studied over the years (Prokop & Reeves, 
1992). The present implementation closely follows 
Khotanzad and Lu (1990).  

The utility of  the moment invariants is illustrated 
through the following experiment. Figure 4 shows sev- 
eral Olympic game symbols represented in a two-di- 
mensional feature space formed by the first two mo- 
ment invariants. It must be noted that some of the 
symbols that are very different in image shape are close 
to each other in the feature space. Hence, moment-in- 
variant features may not correspond to visually dis- 
criminating features employed by the human visual 
system. 

To perform classification based on these features, we 
have used a multilayered feedforward neural network, 
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trained using the error back-propagation algorithm 
(Rumelhart, Hinton, & Williams, 1986). In our study, 
we have used a network with six nodes in the input 
layer corresponding to the six moment-invariant fea- 
tures and 20 nodes in the output layer corresponding to 
the 20 objects. The network has one hidden layer. For 
classification, the network was trained using noise-free 
normalised patterns. 

3.3. Experimental Studies 

Eight different images from each of the 20 Olympic 
games symbols are generated, consisting of varying 
scales, orientations, and translations of each image. 
Some of these images (six for each symbol) are shown 
in Figure 5. 

Two images per symbol were used for training and 
the remaining six for testing. Classification accuracy of 
100% was obtained up to a scale reduction that causes 
a 3:1 reduction in the length of the image (i.e., for an 
original image size of 128 x 128 points, 3:1 reduction 
results in an image of approximately 40 x 40 points). 
Beyond this, further reduction causes misclassification 
in many cases due to loss of  object detail in the reduced 
image. Hence, for the set of Olympic games symbols 
this appears to be the level up to which the approach 
can be reliably used. 

To study the effect of details in the image on the 
recognition performance, we have tested the approach 
for classification of 10 characters of the English alpha- 
bet. These character images contain far fewer details 
than the olympic symbols. Therefore, they could be 
scaled down to a much lower value without severe dis- 
tortion. Eight different images from each of these char- 
acters were generated by scaling, rotation, and trans- 
lation. Two of these were used for training and the 
remaining six for testing. Classification accuracy of 
100% was obtained for all the test data up to a scale 
reduction that causes a 12:1 reduction in the length of 
the image (i.e., a reduced image of size 10 x l0 
points). Thus, the moment feature approach works bet- 
ter in the case of  objects with simple shapes. 

The results point out that if normalisation is done 
separately, then the tasks of feature extraction and clas- 
sification are simplified. However, the approach has the 
following limitations: 
(i) This technique is not easily generalised to provide 

invariance against other nonlinear transformations 
of the pattern. For example, this approach may not 
be suitable for hand-printed character recognition, 
where distortions are not necessarily linear trans- 
formations. 

(ii) In situations where the scene consists of multiple 
objects, the system must be capable of paying at- 
tention to the individual objects in a scene, for 
each of which the invariance of perception must 
separately be valid. 
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FIGURE 4. Some Olympic game symbols represented in a two-dimensional feature space formed by the first two moment- 
invariant features, 4,1 and 4,2. Values represent logarithm of the absolute values of the features, normalised to unity. 

Though the approach has these limitations, it seems 
effective in the present context, where we have as- 
sumed no more than one object in the scene at any time. 
The object assumed was planar and rigid, and the prob- 
lem of occlusion was not addressed. 

4. DEGRADATION DUE TO NOISE, 
SPARSITY, AND TRANSFORMATIONS 

4.1. Need for Preprocessing and Noise Suppression 

Noisy and transformed images are difficult to recognise 
using the two-stage approach. This is because during 
the computation of moments, we do not distinguish be- 
tween pixels of  the object and noise. I f  the moment  
features are extracted directly from the noisy image, 
the estimates are not accurate. There is thus a need for 
a preprocessing stage before features can be extracted. 

Suppressing noise and segmenting an image into ob- 
ject in the foreground and noise in the background is a 
nontrivial task. In general, this requires physical and 

semantic knowledge about generic class of  objects and 
even the specific object (Grossberg, Mingolla, & To- 
dorovic, 1989). However, if the image can be modelled 
as a single two-dimensional object placed on a uniform 
background, general purpose models may be useful. 
These include models for general classes of  local fea- 
tures such as blobs, edges, etc., as well as models that 
describe how such features can be grouped into aggre- 
gates. Traditional segmentation algorithms are two- 
stage sequential processes: local features are detected 
in the first stage, and they are grouped in the second 
stage. In the presence of noise and data sparsity, such 
a strictly sequential process, where labels are first de- 
termined and processed later, may not work. This is 
because when data is noisy, labels are ambiguous. For 
example, each pixel in a binary image may be inter- 
preted either as an image pixel or as a noise pixel. 
Hence, there is need for an interactive process where 
locally ambiguous interpretations compete to achieve a 
globally less ambiguous interpretation. A neural archi- 
tecture is ideally suited for such a task. 
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FIGURE 5. Examples of rotated, scaled, and translated im- 
ages of Olympic game symbols used to study transforma- 
tion-invariant recognRion of objects. 

4.2. Design of the Noise-Suppression Network 

We propose a multiscale processing approach. In the 
case of a compact rigid object with homogenous sur- 
face, measured surface properties remain the same over 
a range of scales and neighbourhoods, whereas noise 
is specific. In other words, surface features that are sta- 
ble when the scale is varied can be considered as fea-  
tures of the object and those that disappear abruptly 
can be labelled as noise. This generalisation holds good 
for compact objects. 

We propose an analog neural network in which mea- 
surements and hypotheses from differently sized neigh- 
bourhoods are integrated through cooperative and com- 
petitive interactions to perform noise suppression and 
object extraction. The proposed network consists of  
three stages. In the first stage, surface patches are de- 
tected at three different scales by measuring local im- 
age contrast. A surface patch represents a region of the 
object. Due to the presence of noise and the fact that 
the detector windows overlap, the detector outputs are 
ambiguous. Hence, in the second stage, by competitive 
interaction between adjacent detectors of  the same 
scale, the ambiguity is reduced. In the third stage, the 
surface patches at different scales interact to obtain a 
combined output. 

The present network design is inspired by the 
CORT-X filter described in Carpenter, Grossberg, and 
Mehanian (1989) for extracting sharp boundaries from 
noisy binary images. The major differences between 
the CORT-X filter and the present preprocessor arise 
from the fact that the function of the CORT-X filter is 
to extract the boundary and complete it, giving rise to 
a coherent meaningful boundary, whereas the function 
of the proposed network is to suppress noise and seg- 
ment the object. Hence, although the CORT-X filter 
uses oriented contrast detectors to detect object bound- 
aries, the proposed network uses unoriented contrast 
detectors to detect surface patches on the object. 

Stage 1: Unoriented Contrast Detection 

Unoriented contrast detectors exist corresponding to 
every point in the image. Each contrast detector has a 

receptive field with a smaller (inner) square at the cen- 
ter and a larger (outer) area surrounding it. It is sen- 
sitive to the amount and spatial scale of image contrast 
at a given image location. Thus, each detector hypoth- 
esises a surface patch of its scale present in the image. 

Let l ( x , y )  denote the intensity of the input image at 
position ( x , y )  in the lattice. The total excitatory input 
to the detector Es(x , y )  is obtained by integrating the 
total activation in the inner square of its receptive field: 

ff~ .... I (x ,y)  dx dy 

E,(x,y) = ff~ .... dx dy 

where s is the index of the size of  the receptive field. 
Similarly, the total inhibitory input F , ( x , y )  is ob- 

tained by integrating the total activation in the outer 
surrounding area of its receptive field: 

fro .... l (x ,y)  dx dy 

F,(x ,y )  : ffoo,o, ax ay 

The output of  the contrast detector is defined as 

C~(x,y) = max[Es(x,y) - a,F~(x,y) - 13,., 0], 

where as ( > 1 ) is a contrast parameter,/3~ (0 < t3s < 
1 ) is a threshold parameter, and the max operator en- 
sures that the output signal is nonnegative. 

Large-scale filters suppress noisy pixel distributions 
effectively, but localise the image patches poorly due 
to their broader spatial sampling. Small-scale filters, on 
the other hand, are sensitive to noise but are more re- 
liable in localisation. Hence each filter in itself is in- 
sufficient to suppress noise and to extract localised im- 
age patches. We need multiple scale interactions. These 
are described in Stage 3. 

Stage 2: Spatial Competition Within Each Scale 

The aim of this competitive stage, realised by an on- 
center off-surround network, is to reduce ambiguity in 
hypothesis among spatial neighbours and select more 
probable hypotheses. Each detector output excites the 
cell activity at the next layer, which represents the same 
position and scale, while inhibiting cell activities at the 
neighbouring locations. As a result, cells that have high 
activity suppress activities of  nearby cells that have 
lower activity due to noise. Under equilibrium condi- 
tion, the cells that initially had higher activity saturate 
in a winner-take-all fashion, and those with low initial 
activity are cut off. 

The output D , (x ,y )  of  the cell at position (x ,y )  and 
scale s is given by 

C~(x,y) 
D,(x,y) = 

1 + y,, Z, Zy C~(x,y)G,(x,y) 

where C , ( x , y )  is the activity of the detector at the in- 
put, Gs(x ,y )  is the competition kernel realised in the 
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(a) (b) (c) 

FIGURE 6. (a) Transformed images of the Olympic game sym- 
bol for baseball. (b) Corresponding images obtained by re- 
construction from data collected by a sparse 16 x 16 sensor 
array at two different frequencies. (c) Images in (b) after noise 
suppression. 

present implementation by a Laplacian kernel, and 3Is 
is a parameter for controlling the effect of  competition. 

Stage 3: Multiple Scale Interaction 

The responses of  various detectors are combined to re- 
tain evidence that is available at multiple scales and 
remove those unsupported across scales. This is done 
through cooperative interactions: 

M(x,y) 

= D l ( X , y ) [ ~ ,  D 2 ( x , y ) U ( x , y ) ] [ ~ ,  D 3 ( x , y ) U ( x , y ) ]  
xy xy 

where D.(x,y), D2(x,y), and D3(x,y) are the re- 
sponses of  detectors at three different scales in the pres- 
ent implementation, U(x,y) is an unoriented excitatory 
kernel (Carpenter, Grossberg, & Mehanian, 1989), and 
M(x,y) is the combined output. The purpose of the 
kernel is to make the effect of  the larger-scale detectors 
more diffuse spatially owing to their broader receptive 
fields. The noise-suppressed output M(x,y) is analog, 
ranging from 0 to 1, and is thresholded to yield a binary 
image. 

4.3. Experimental Studies in Preprocessing and 
Classification 

A subset of Olympic games symbols consisting of 10 
symbols was chosen for this study. Noisy, incomplete, 
and transformed images of  these were obtained by re- 
construction from simulated sparse data. We have con- 
sidered 32 × 32 array and 16 × 16 array data for pre- 
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FIGURE 7. Transformation-invariant recognition of Olympic 
game symbols from images obtained by reconstruction from 
data collected by (a) 32 x 32 array and (b) 16 x 16 array at 
two frequencies. Graph shows the number (out of a set of 60 
test patterns) of objects (maximum size 128 x 128) correctly 
classified as the size of the image is reduced. 

processing and classification studies. Besides Olympic 
games symbols, images of  alphabet characters were 
also used to test the classification performance for the 
case of  objects with simpler shapes. 

Figure 6 illustrates the effect of  the preprocessing 
stage. Figure 6a shows the transformed images of  the 
Olympic games symbol for baseball, used as objects in 
imaging simulation. Corresponding images recon- 
structed from data collected by a 16 × 16 array are 
shown in Figure 6b and the preprocesser outputs are 
shown in Figure 6c. Even to the human observer, the 
preprocessed images in Figure 6c are clearer than those 
in Figure 6b. This is because many unnecessary details 
have been removed by preprocessing, reducing the 
strain on the observer who can now concentrate his 
attention on the discriminating features. It is still dif- 
ficult for us to recognise the objects from the prepro- 
cessed images due to poor resolution and missing fea- 
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FIGURE 8, Transformation-invariant recognition of alphabet 
characters from images obtained by reconstruction from 
data collected by (a) 32 x 32 array and (b) 16 x 16 array at 
two frequencies. Graph shows the number (out of a set of 60 
test patterns) of objects (maximum size 128 x 128) correctly 
classified as Ule size of the image is reduced. 
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tures. However, given the preprocessed image along 
with the list of  the original symbols, the task of the 
human observer is simplified. Even though it may not 
be possible to rely on the system for stand-alone rec- 
ognition performance, it should still be possible to use 
the output as an aid to human decision making. 

Transformation-invariant features were extracted 
from the preprocessed images and are given as input to 
the neural network classifier for recognition. Figure 7 
shows the results for 32 x 32 and 16 x 16 array data 
cases. We observe that 100% recognition is obtained 
for 32 x 32 array data case (Figure 7a) up to a scale 
reduction that causes 2:1 reduction in the length of the 
image (i.e., when the reduced image is of  size 50 x 50 
pixels). This is to be compared with the recognition 
performance in the case of  noise-free images where 
100% accuracy was obtained up to a scale reduction 
that causes 3:1 reduction in the length of the image. 
Hence, with increased image degradation, the amount 
of distortion that can be tolerated is reduced. 

For 16 x 16 array data case (Figure 7b),  we observe 
that for a scale reduction that causes a 2:1 reduction in 
the length of the image, the classification accuracy is 
only about 65%. Although this classification perfor- 
mance is quite impressive because the corresponding 
images are extremely poor in quality, this percentage 
is too low to be reliable in a practical system. More- 
over, this falls very rapidly to nearly zero when the 
scale reduction in length is as low as 4:1. 

To test the recognition performance with a set of  
objects with simpler shapes, experiments were con- 
ducted on the alphabet data. Results are shown in Fig- 
ure 8. For 32 X 32 array case (Figure 8a), 100% clas- 
sification accuracy was obtained up to a scale reduction 
that causes a 3: I reduction in length of the image (when 
size of  the reduced image is 40 x 40 points), which is 
better than for the Olympic games symbols. 

For 16 x 16 array case (Figure 8b) near 100% clas- 
sification accuracy was obtained only up to a scale re- 
duction that causes a 2:1 reduction in length of the im- 
age, which is better than for Olympic games symbols 
case using 16 x 16 array data, but worse than the al- 
phabet case using 32 x 32 array data. 

5. CONCLUSION 

In this paper, we have studied the performance of ar- 
tificial neural network models that can be trained to 
identify objects from poorly resolved, noisy, and trans- 

formed images, such as images reconstructed from 
sparse and noisy data. 

We have made a systematic study of the object rec- 
ognition problem by identifying aspects of  complexity, 
namely, types and levels of  image degradation, trans- 
formational variability, nature of  symbol set, etc., and 
performing the study in steps of  increasing complexity. 
This enables us to identify the limits up to which the 
systems and approaches can be useful. 

The systematic study has revealed a desirable char- 
acteristic of  neural network models, namely, graceful 
degradation of performance with increasing complex- 
ity. In situations where complexity is less, these neural 
network-based methods can be used as stand-alone ob- 
ject recognition schemes. As the complexity of  the rec- 
ognition task increases due to increased detail in the 
image, and/or due to degradations in imaging, the out- 
put of the system can still be used as an aid to human 
decision making. 
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