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intrinsic-component expansion with  the least-squares trunca- 
tion  property.  The  interpolation  of curves was reduced to the 
simple interpolation of weighting coefficients. The technique 
presented here, therefore, has some advantages from  the  data 
processing standpoint, which are  data compression, reduction 
in processing time, and stability of the  solution. In the ap- 
plication to the  estimation problem of yray response spectra, 
we have shown that the spectral curves  can be represented by 
utilizing only two principal-component patterns. Moreover, 
we have investigated the accuracy of the estimated curves and 
constructed  a library of  the curves. 
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Design of ARMA Digital Filters by 
Pole-Zero  Decomposition 

Abstract-A new technique for design  of  digital filters is presented in 
this paper. The technique exploits the spectral approximation property 
of  autoregressive modeling to reduce ripple at the edges of the transition 
band in the filter response. An autoregressive  model approximates a 
given spectrum better  at the peaks than at the valleys. Spectral infor- 
mation around the transition band is transformed into peaks by splitting 
the given squared-magnitude frequency response into two  component 
spectra. This splitting is accomplished using a pole-zero decomposition 
technique, which in  turn uses the properties of the derivative of phase 
spectrum of minimum phase filters. One  of the component spectra 
corresponds nearly to the response  of an all-pole filter, and the  other 
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component spectrum corresponds nearly to  the response of an all- 
zero Titer. Each  of these component spectra can be represented by a 
small number of coefficients using  autoregressive  modeling. The result- 
ing two sets of  autoregressive coefficients determine poles and zeros of 
the autoregressive  moving  average  (ARMA) digital filter. Ripple charac- 
teristics in the response of the ARMA filter can be controlled by ap- 
propriately choosing the number of poles and zeros. It is shown that 
a wide variety of magnitude frequency response characteristics can be 
approximated by an ARMA filter of low order using this technique. 
The technique does not work well in cases where spectral approximation 
by autoregressive modeling is poor. Such  cases  arise when the com- 
ponent spectra have  very  large dynamic range. 

A 
I. INTRODUCTION 

DIGITAL filter that contains poles and zeros is termed 
an autoregressive and moving  average (ARMA) digital 

filter. This paper is concerned with the design of ARMA 
digital filters to realize a given log magnitude frequency 
response. The basic idea in the design is to  split the given 
response into  two component responses, each of which can be 
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approximated by a small number of parameters. The reason 
for  the success of this  method is that one of the  component 
responses is close to an all-pole spectrum and the  other com- 
ponent response is close to an all-zero spectrum. Since the 
inverse of an all-zero spectrum is an all-pole spectrum, it is 
possible t o  represent each of the  component responses by  a 
small number of parameters through autoregressive modeling 
[ 11 . The splitting of the given response into an all-pole and  an 
all-zero spectra is accomplished using a pole-zero decomposition 
technique [2] , which is based on the properties of the negative 
derivative of minimum phase spectra [3] . 

In  a closely related study, Scharf and Luby suggested statis- 
tical design of ARMA digital filters [4] . The  design procedure 
consists of determining, first,  a higher order all-pole filter ap- 
proximation  for  the given spectrum. The all-pole filter is used 
to generate consistent unit impulse and covariance sequences 
for use in  the Mullis-Roberts algorithm [5] . This algorithm is 
then used to obtain  a low-order ARMA digital filter that  ap- 
proximates the higher order all-pole filter. 

Although the goal in our  study is also to design a digital filter 
with poles and zeros, our method of approximation to obtain 
the filter coefficients is different. In the Scharf and  Luby 
design, the ripple in  the realized response is maximum at  the 
edges of the  transition band. Attempts to control this effect 
with  smooth  functional  transition from passband to stopband 
have been unsuccessful. This  is- because the moving  average 
(all-zero) whitening filter for  the given spectrum tries to  whiten 
a  spectrum  with  zero amplitude in the transition band. The 
corresponding autoregressive (all-pole) filter has excessive ripple 
in the passband. This cannot be avoided because an autoregres- 
sive model approximates peaks in a spectrum better  than valleys 
[l ] . In the  method proposed in this paper, this property of 
autoregressive modeling is exploited to  effectively control  the 
ripple at  the band edges. 

It is  generally true  that a given magnitude spectrum can be 
realized by  a digital filter of a much lower order when the filter 
contains both poles and zeros than when the filter is purely 
all-pole or all-zero. A lower order digital filter will be of lesser 
complexity  in terms of number of multiplications and additions 
required in  its  implementation. Our method of design results 
in  an ARMA digital filter that is of low order and stable. In 
addition,  the filter has  several useful characteristics. The ripple 
characteristics can be controlled by a suitable choice of the 
number of coefficients used to represent the component 
spectra. 

The emphasis in this paper is on the presentation of the new 
design technique. Issues such as the filter performance relative 
to other techniques and the limitations of the  method are not 
discussed in detail. Throughout the paper the  notation (Ml , 
M2) denotes an ARMA digital filter with M I  poles and M2 
zeros. 

11. THEORY OF POLE-ZERO DECOMPOSITION 
The key idea in  this paper is splitting the given log magnitude 

frequency response into two parts: one corresponding nearly 
to an all-pole filter spectrum and the  other to an all-zero filter 
spectrum. This splitting is called pole-zero decomposition, 

which is  based on the properties of the negative  derivative of 
phase spectra (NDPS) of minimum phase polynomials. 

A. Properties of Minimum P h s e  Filters 

two polynomials as follows: 
A linear digital filter H(z) can be represented as a ratio of 

H(z) = GN(z)/D(z) (1)  

where 
M2 

N(z)  = 1 + a-(k)z-k (2 )  

D(z) = 1 + a+(k)z-k (3 1 

k = l  

MI 

k = l  

and G is a gain term. 
A polynomial is said to be minimum phase if all its  roots lie 

within  the  unit circle in  the z-plane. If  all the poles and zeros 
of H(z) lie within  the  unit circle in  the z-plane, then  the filter 
is  called a minimum phase filter. Properties of minimum phase 
signals  have been studied extensively [6] . Properties of the 
negative derivative of phase spectrum (NDPS) of a minimum 
phase polynomial have been reported [3] in  the  context of 
formant  extraction using linear prediction analysis. 

The NDPS of a minimum phase polynomial 

A(z )  = 1 + 2 a ( k ) ~ - ~  (4) 
k= 1 

is defined as follows. 
Let 

44 = 4 z )  I z =  e jw (5 1 
and 

~"(0) = I i((w) I e-ieA(W). (6)  

Then the NDPS of A(z)  is  given by de, (w)/dw. 
A polynomial of the  type A(z)  can be written as a cascade of 

several first-order polynomials with real roots and second-order 
polynomials with complex conjugate roots. The NDPS plots 
of typical first-order and secondorder all-pole filters are shown 
in Fig. 1. It is interesting to note  that significant values of 
NDPS for  a  first-order real pole filter lie  close to  the origin of 
the frequency scale. For a second-order all-pole filter (resona- 
tor)  the significant values of NDPS are confined to frequencies 
around the resonance frequency. Moreover, the NDPS curve 
near resonance frequency is approximately proportional to the 
squared-magnitude response of the  filter. These properties 
were shown analytically in [3] . 

The NDPS of the overall all-pole filter l/A(z) is a summation 
of the NDPS responses of the individual first and second order 
filters. In the overall response there is  negligible effect of one 
resonance peak on the  other as shown in Fig. 2. 

It is easy to visualize a similar  behavior for real and complex 
conjugate pair zeros in their NDPS plots. The only difference 
is that  the NDPS for zeros will  have a sign opposite to  that  for 
poles. Specifically, the NDPS plot will  have a positive peak 
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Fig. 1. Negative  derivative of phase  spectra for all-pole filters. First- 
order Titer: H(z)  = 1/(1 - 0.852-'). Second-order fiiter: H(z) = 1/ 
(1 - 1 . 5 7 ~ ~ '  + 0 . 9 4 ~ - ~ ) .  
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,Fig. 2. Negative  derivative of phase  spectrum for cascade of several fist- 
order  and  second-order all-pole Titers. 

due to  a  complex  conjugate  pole pair and  a negative  peak  due 
to a  complex  conjugate  zero pair. These  simple but  power- 
ful properties of the derivative of phase spectrum are shown 
to accomplish the pole-zero  decomposition discussed in Sec- 
tion 11-C. 

B. Relation  Between Magnitude Spectrum and  NDPS 
Let V(o) represent the frequency response of  a  minimum 

phase digital filter. V(w) will  be periodic in w with  period 2n. 
Since  all the poles and  zeros of the  minimum phase filter lie 
within  the  unit circle in the z-plane, in V ( o )  can be  expressed 
in Fourier series expansion as in (7) below, since the cepstrum 
of  a  minimum phase sequence is a causal sequence [ 6 ] .  

In ~ ( o )  = c(0)/2 t 2 c(k) e-jkw (7) 
k= 1 

where {c (k) }  are called cepstral coefficients. Writing 

we  get the real and imaginary parts of In V(w) as 

In I v(w>I = c(0)/2 t c(k)  cos ko (real part) (9)  
m 

k = l  

and 
m 

Bv (a) + 2Xn = c(k)  sin kw (imaginary part) (10) 
k =  1 

435 

where A is an integer. Taking the derivative of ey(w), we  get 

m 

0; (0) = k c  (k)  cos kw . (1  1) 

e ; (o )  represents the negative  derivative of phase  spectrum 
(NDPS)  of the minimum phase filter. The  log  magnitude spec- 
trum  and  the NDPS  of a  minimum phase filter are thus related 
through the cepstral coefficients. 

C. Pole-zero Decomposition 
Separating the positive and negative parts of 8;(w), we get 

the  approximate NDPS of the pole  and  zero  components of 
the  filter, respectively. 

k =  1 

e; (0) = [e; (all + + [e; (all - (1 2 )  
where 

[e; (a)] + = 0; (w), for €$(a) 2 0 (NDPS of  pole  part) 

= 0, for 8; (w) < 0 (13) 
and 

[e;(w)] -= e;(w), for eb(w) < 0 (NDPS of  zero  part) 

= 0, for e+) 2 0. (14) 

Expressing each of the NDPS  responses separately in  Fourier 
series  yields the cepstral coefficients {c+(k)} and {c-(k)} cor- 
responding to  the pole  and  zero  spectrum, respectively. That 
is 

m 

[e; (w)] + = C t k c+(k) cos ko (15) 
k = l  

and 

[e;(w)] -= - C+ kc-&) cos ko 
m 

(1 6 )  
k= 1 

where C is the average  value,  which does not  contribute to  the 
shape  of the spectrum.  From {c+(k)} and (c-(k)} the pole 
spectrum  and  zero  spectrum can  be computed  through  Fourier 
cosine transform  and  exponentiation. 

111. THEORY OF ARMA FILTER  DESIGN 
A. Filter Design Problem 

Given a  squared-magnitude  frequency  response S(w), the 
objective in filter design  is to determine the parameters of a 
linear digital filter H(z) of the  type given in (l), such that 

Ifi(w) l 2  = IH(eiw) I *  
= S (w). (17) 

B.  Design  Procedure 
The  theory of the ARMA filter design  is illustrated through 

the following  design steps. The actual implementation  of the 
design is discussed in  Section IV. 

1) For  the given squared-magnitude  frequency response 
S(w) determine the cepstral coefficients ( c ( k ) }  using the 
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relation 

In S(w) = c(0) + 2 ~ ( k )  COS k a .  
m 

k =  1 

2) From {c(k)  } compute  the NDPS O;(w) for  the mini- 
mum phase filter corresponding to s ( ~ ) ,  using the relation 

3) Split the NDPS O ;(a) into positive and negative portions 
using the relations (1 3) and (14). 

4) Obtain the cepstral coefficients {c+(k)} and {c-@)}from 
[O;(w)]+ and [O;(o)]-, respectively, using the relations (15) 
and (1 6). 

5 )  Compute the pole spectrum P ( o )  and the zero spectrum 
Z(O) from {cf(k)) and {c-(k)}, respectively, as follows: 

(1 1). 

P(w) = exp  c(0)/2 + 2 c'(k) cos kw [ 1 
[ I 

m 

(19) 
k =  1 

and 

Z(o) = exp  c(0)/2 + 2 c-(k) cos kw . 
m 

(20) 
k = l  

Note that cf(k) t c-(k) = c(k)  and,  hence, P(o) Z(w) = S(w). 
6) Obtain the  autocorrelation coefficients {R+(k)} and 

{R-(k)} from P(w) and l/Z(o) using the relations 

P(w) =R+(O) 2 R+(k) cos kw 
m 

k =  1 

and 

l/Z(w) =R-(O) + 2 2 R-(k) cos ko. (22) 
k =  1 

7) Solve for  the autoregressive coefficients {a+@)) and 
{a-(k)) from {R+(k)} and {R-(k)},  respectively, using Dur- 
bin's algorithm for solving the  autocorrelation normal equa- 
tion [l] . The equations are 

MI 
u+(k)R+(li- kl)=-R+(i),  i =  1,2;-- ,M1,  (23) 

k =  1 

and 

M ,  1 a-(k)R-(li-kl)=-R-(i) ,  i = 1 , 2 ; - - , M 2 .  (24) 
k =  1 

8) Compute the filter gain G as 

G = exp [c(O)/2] . (25) 

9) The squared-magnitude frequency response of the overall 

Ii&o) 1' =P^(w)z^(o) G 2  (26) 

where P (̂o) and z^(w) are approximations to P(o) and Z(w), 
respectively, and are given by 

filter is  given by 

and 

M2 2(u) = 1 t a-(k)e-ikw (28) 
~ k = l  

IV. IMPLEMENTATION OF THE ARMA FILTER DESIGN 
The design procedure described in Section I11 can be imple- 

mented as shown in Fig. 3. The desired filter response is speci- 
fied by giving the log spectral values at sample points in the 
frequency domain. The input and output  data for each DFT 
and IDFT block is  real and symmetric. Small  values of the 
imaginary part,  that may occur as a result of finite precision 
arithmetic  in FFT computation, are set to zero. The  design 
examples discussed in the  next section were implemented on 
a DEC KLlO machine (word length 36 bits). 

V. DESIGN  EXAMPLES 
A low-pass filter with  the following specifications is consid- 

Let 
ered for illustrating the above  design procedure. 

Q ( O = S ( ~ ) l w = z m ~ / 5 1 2 ,  

A = amplitude and M = number of transition samples. 
A sampling frequency of 10 kHz  is arbitrarily assumed in the 

discussion  of  design examples. In the examples 5 12 samples 
correspond to 10 kHz. 

Specifications: 

In Q ( E )  =In (A), E = 0,1 , .  *, 99 

= [l - (1 - 99)/(M t l)]  In (A) ,  

E =  1 0 0 , 1 0 1 , ~  . * )  100 + M  

= O ,  Z = 1 0 0 + M t l ,   1 0 0 + M + 2 ; - - , 2 5 6  

In Q(E) = In Q(512 - Z), E = 257,258, * . *, 51 1. 

In the above specification the value  of A determines the 
passband-to-stopband level. For example, if A = lo6,  then 

the passband-to-stopband level  is 60 dB. The  value  of M 
determines the number of transition samples.  The  case  of 
M = 0 corresponds to no sample in  the  transition band. The 
filter design  was carried out using 5 12 point FFT  for computing 
DFT and IDFT. 

Fig. 4 illustrates the principle of the proposed filter design. 
Fig. 4(a) shows the log magnitude response of the desired low- 
pass filter for A = 1 O6 , M = 2 1. The NDPS of the filter is shown 
in Fig. 4(b). The positive and negative portions of the NDPS 
are separated and the corresponding spectra are computed. The 
resulting pole and zero spectra are shown in Fig. 4(c). If these 
log spectra are added, we get the desired filter response exactly 
as shown in Fig. 4(d). On the  other  hand, if the pole spectrum 
and the inverse of the zero spectrum are approximated by auto- 
regressive models, each with 8 coefficients, the overall  response 
of the resulting filter is  as shown in Fig. 4(e).  In this case, the 
peak-to-peak amplitude of the ripple is  less than 3 percent in 
passband and stopband. An interesting observation is that  the 
amplitude of the ripple depends mainly on the rate of  fall 
during transition rather than  the transition width itself. This 
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Fig. 3. Block diagram showing implementation details of the ARMA fiiter design. 
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Fig. 4. Design of low-pass fiiter with a transition width of 21 samples 
(256 samples correspond to 5 kHz). 

is illustrated in Fig. 5, where the  different curves of Fig. 4 are 
obtained  for A = 1 O3 , M = 1 1 .  The ripple amplitude in this 
case is  less than  6  percent. 

That the  amplitude of the ripple can be traded  with either 
the  width  of  the  transition band or the  complexity (order) of 
the filter is illustrated in Fig. 6  forA = lo3.  The filter responses 
for four different orders of the filter and three  different transi- 
tion widths are given in  the figures. For a  (16, 16) filter,  for 
example, the ripple amplitude reduces from 11 percent  for 
M = 1 to 4 percent for M = 1 1. This tradeoff characteristic of 
the ripple amplitude  with  transition  width makes this design 

FREOUENCY IN KHz. FREQUENCY IN  KHz 

( 0 )  DESIRE0  LP  FILTER RESPONSE (b) NEGATIVE  DERIVATIVE OF PHASE 
SPECTRUM OF (a)  

E 4 5 t  I t  : t  
z t  

40k 2 20 

= o  

3 t . . . . .  
0 1 2 3 4 5  

FREOUENCY IN KHz. 
LC) COMPONENT YECTRA (d) SUM OF COMWNENT SPECTRA (e)  ARMA( 6 .6 )  

FREQUENCY IN KHz. FREPUENCY IN KHz. 

OF ( e )  FILTER. 

Fig. 5. Desi@ of'low-pass filter with a transition width of 11 samples 
(256 samples  correspond to 5 kHz). 

, I  

superior to the statistical design of ARMA digital filters re- 
ported in [4] . : 

The effect of  varying the number of zeros keeping the  num- 
ber of poles fixed is shown in Fig. 7 for A = 1 06, M = 21. The 
passband Characteristics  are not significantly affected  by chang- 
ing the  number of zero coefficients except when the number is 
too small."Similarly, we observed that  the  stopband character- 
istics are not .significantly affected by changing the number of 
pole coefficients. This  will provide the flexibility to design a 
filter with desired passband and  stopband characteristics. 

The number of points ( N )  for FFT computation depends 
upon  the frequency sampling rate used in  the specification. 
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Fig. 9. Design of bandpass filter with a transition  width of  21 samples 
(256 samples  correspond to 5 kHz). 

The effect of different sampling rates for a fixed transition 
width  in Hz is shown in Fig. 8. The number of samples in  the 
transition  width  are M = 4, 9,  and  19  for N = 128,256, and 
5 12, respectively. The corresponding frequency sampling rates 
are128samples/lO kHz, 256 samples/lO kHz, and 512 samples/ 
10 kHz, respectively. It is  clear that  there is  very little effect 
of sampling rate on  the realized response, at least for the 
transition  width and sampling rates shown in  the figure. 

Finally, the design of a bandpass filter is illustrated in Fig. 9. 
This shows that any  arbitrary filter characteristics can be 
realized using the technique presented in this paper. 

VI. CONCLUDING REMARKS 

We have shown that  the pole-zero decomposition technique 
provides an effective method for designing ARMA digital filters. 
The complexity of the filter can be traded with  the  width of 
the  transition band. By varying the number of  poles and zeros 
independently, a wide variety of filter characteristics can be 
achieved. Since the  roots of the resulting numerator and de- 
nominator polynomials lie within the  unit circle in  the z-plane, 
the filter and  its inverse both are guaranteed to be stable. There- 
fore, if H(z) represents a low-pass filter,  then I/H(z) represents 
a high-pass filter. Similar reasoning applies for bandpass and 
band elimination filters also. 

The method  is useful as a filter design procedure because it 
reduces the ripple at  the bandedge by exploiting the  property 
of spectral approximation by autoregressive modeling. An auto- 
regressive model approximates a spectrum  better  at  the peaks 
than at the valleys. The bandedge information is transformed 
into peaks in  the component spectra using the pole-zero de- 
composition technique. Since both peaks and valleys  of the 
given spectrum  are represented equally well by  the model, the 
method can be used to realize  an arbitrary magnitude response 
by  an ARMA filter of low order. 

Computation  of the component spectra P ( o )  and Z(o) 
through  exponentiation as in (19) and (20) assures that P ( o )  
and Z ( o )  are positive spectra (i.e., P(w) > O,Z(w) > 0. This, 
in  turn, assures that  the autocorrelation coefficients {R+(k)} 
and {R-(k)} , obtained  through inverse Fourier transform of 
P(o) and  I/Z(w),respectively, are positive definite [7] . Hence, 
the solutions of the normal equations (23) and (24) give coef- 
ficients {a+@)} and {u-(k)}, which guarantee that all the 
roots of D(z) and N(z) in (1) lie inside the  unit circle in z-plane 
[l] . This results in  stableH(z) and l/H(z). The  positive defi- 
niteness of the  autocorrelation coefficients can be lost if one 
uses  small word lengths to  represent the coefficients in a com- 
puter. Also, the  round-off errors can  cause theautocorrelation 
matrix  in normal equations t o  become ill conditioned [ 1 ] . 
Therefore, it is often necessary to  check for  the stability of the 
filter, especially while  using a small word length machine and/ 
or while  designing a high-order ARMA digital filter. 

Since the design mainly involves computations using FFT 
algorithms, it will be convenient to  implement it  on a dedi- 
cated signal  processing system consisting of Fourier analysis. 
In  fact,  the design  was implemented successfully on an HP 
545 1-B Fourier Analyzer System, which uses a 16-bit HP 
2100s minicomputer as the main processor. The total  compu- 
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tation time for the design of  an ARMA filter is slightly more 
than the  computation  time  for eight DFT operations. 

The number  of  DFT  computations  can be reduced to  six if 
we  use the relation S(o) = P ( o )  Z(o). In such  a case,  once 
P(o) is computed  from [O;(w)] +, Z(o) can be obtained as 
S(o)/P(o), instead of computing it through [O;(o)] -. 

Our method is based on the spectral approximation  property 
of  autoregressive  modeling, the accuracy of  which depends  on 
the spectral dynamic range.  The dynamic ranges  of the com- 
ponent spectra depend  on the width  of  the transition band. 
The  component spectral dynamic range is larger for smaller 
widths.  Spectral  approximation  by autoregressive  modeling  of 
large dynamic range spectra will be  generally poor, especially 
at low values of the spectrum. This, together  with the finite 
word  length  computation, limit the  type  of ARMA filters 
that can  be designed  using our  method. 
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Tracking  Properties of Adaptive Sgnal  Processing 
Algorithms 

Absstract-Adaptive  signal  processing algorithms are often used in 
order to “track” an unknown time-varying parameter vector. This 
work develops an upper bound on  the mean of the norm-squared error 
between the unknown parameter vectdr being tracked and the value 
obtained by  the algorithm. The results require very  mild  covariance 
decay rate conditions on  the training data and a bounded algorithm. 
The upper bound illustrates the relationship between the algorithm 
step size and the maximum rate of variation in the parameter vector 
being tracked. 
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M 
I. INTRODUCTION 

ANY of the algorithms  proposed for use in adaptive 
signal  processing  (see, e.g., [l] -[6]) can be cast in  the 

following  form: 

where W1 E % p  is arbitrary, {P,} and IFk} are sequences of 
real p X 1 and p X p matrices, respectively, and &} is a 
sequence  of positive constants. We use % * to denote  the real 
Euclidean  p-space  and  treat X €  %P as a  column vector. 
Algorithm (1) can be interpreted as a  general  member of a 
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