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Design of Recursive  Group-Delay  Filters 
by Autoregressive  Modeling 

Abstract-A new method of  design  of recursive group-delay filters  is 
presented in this paper. The method uses autoregressive modeling to 
derive parameters of the filter. The design  is based on the  following 
line  of argument. The desired  group-delay  characteristics  are to be 
realized through a stable all-pass fiiter. The transfer  function of  an all- 
pass filter is completely  determined by the  coefficients of either  the 
numerator or the  denominator  polynomial. For a stable all-pass filter, 
the denominator  polynomial  must be a minimum phase polynomial. 
For a  minimum  phase  polynomial, the magnitude  function and  the 
groupdelay function are related  through  cepstral  coefficients.  There- 
fore,  from the given group-delay  specification,  the  cepstral  coefficients 
corresponding to the pole part (inverse of the denominator  polynomial) 
of the desired filter are fiist  determined. The magnitude  spectrum 
corresponding to these cepstral  coefficients is approximated using 
autoregressive modeling. A wide variety  of  group-delay  filters can be 
realized by the proposed  method,  depending on the nature of approxi- 
mation used and the  accuracy desired. The design procedure is  illus- 
trated through examples. 

G 
I. INTRODUCTION 

ROUP-delay filters  are used to realize a given phase 
response in linear  systems.  This  paper deals with a new 

method  for design of group-delay  filters. The key idea upon 
which the design is based is the  relation  between cepstral co- 
efficients and  the group-delay  response of a minimum phase 
all-pole filter [1]-[4].  The  procedure involves first obtain- 
ing the cepstral  coefficients corresponding to  the all-pole 
part  of  the given group-delay  response. From  the cepstral 
coefficients,  the  magnitude response of  the all-pole  filter  can 
be  obtained.  The  magnitude response is then  approximated 
by using an autoregressive  model of  appropriate  order.  The 
autoregressive  coefficients determine  the  parameters of both 
numerator  and  denominator polynomials of the group-delay 
filter transfer function, 

Several design procedures exist for realizing a given group- 
delay response [ S I ,  [6].  Most of  these  procedures use an 
iterative computer algorithm to  obtain  the  parameters of the 
filter. These  procedures involve solving a set  of nonlinear 
equations,  and  hence  the  complexity  of  the filter design 
increases with  the  order of the  filter. Simplified  iterative 
design procedures as  given in [6] are too  restricted.  For 
example,  the design in [6] uses  only second-order  sections to 
approximate  the shape of the given group-delay  response. 
This results  in large error at frequencies  where there is an 
abrupt change in the slope of  the group-delay response. 
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Moreover, the design does not permit the use of poles of 
multiple  order. 

The design method  presented in this paper is noniterative 
in the sense that  the parameters of a  filter of specified order 
can  be obtained directly  by solving a  set of  autocorrelation 
normal  equations [7].  In Section 11, characteristics of group- 
delay  filters  are  briefly reviewed. The principle of the  pro- 
posed  filter design is presented in Section 111. The  actual 
steps involved in the design are given in Section IV and  the 
details of implementation  of  the design are discussed in 
Section V. Some examples of the design are discussed in 
Section VI to illustrate the variety of group-delay  filters that 
can  be designed using this  new method. 

11. CHARACTERISTICS OF GROUP-DELAY FILTERS 
A group-delay  filter is a recursive all-pass filter  whose  transfer 

function is  given by 

where 

k= 0 

and 

with A ,  = 1 .  
In  the above equations, N is the  order of the all-pass filter 

and z = eiw where w = 27rf and f is the  frequency (range 0-1) 
normalized to  the sampling  frequencyf,. It  can easily be shown 
that H(z) represents an all-pass filter by verifying that 

IH(eiw ) I = H(eiw ) H(e-iw = 1 . (4) 

For the filter H(z)  to be stable, all the poles, i.e., the  roots 
of the  denominator  polynomial D(z), must lie within the unit 
circle in the z plane. In other words, D(z) should be a  mini- 
mum phase polynomial. 

From (l), (2), and (3) ,  we have 

N 
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The  summation in the, numerator is the  complex  conjugate 
of  the  summation in the  denominator.  Therefore,  if O,(w) 
denotes  the phase response of  the  denominator polynomial 
D(z), then  the phase  response (w) of  the  numerator  poly- 
nominal N(z) can be  simply obtained as 

e l  (01 = -NO - e2  (01. (6) 

The phase  response O(w) of  the overall filter H(z) is given by 

e(a) = el  (0) - &(w) 

= -NU - 2 e 2 ( 4 .  

The normalized group delay of the overall filter is given by 

- dO(w) 
T ( 0 )  = - 

dw 

=Nt 2e ' , (4  (8) 

where 

is the negative group delay of the  denominator polynomial. 
Therefore,  the group-delay  response of  the  denominator 
polynomial of  the  fdter can be obtained  from  the  group- 
delay  response of the all-pass filter using the  relation 

It  should be noted  that  the  unnormalized  group delay  as  a 
function of the  actual  frequency can  be obtained by dividing 
the normalized  group-delay function with the sampling  fre- 
quency f,. The  groupdeiay  function T ( W )  has  the following 
property: 

7(0) = 7(- 0)  = T(CJ t 27T). (11) 

111. PKINCIPLE OF THE PROPOSED DESIGN 
A .  Filter Design Problem 

Given the desired  group-delay function 7d(a), the objective 
in the filter design is to  determine  the parameters of  the 
digital filter H(z)  in (1) such that  the resulting  group-delay 
response 

T ( 0 )  T d ( W ) .  (1 2) 

The  parameters to be determinedareNandAk, k = 1,2, * * e ,  N .  

B. Principle 
The principle of the  proposed design is as follows. 
From  the given group-delay function,  determine  the desired 

group-delay  response T ~ ~ ( u )  of  the  denominator polynomial 
of  the filter. This can be obtained using the relation (10). 
That is, 

The value of N ,  which is not known  at the design stage, is 
not necessary for determining  the  parameters of the  filter. 

This is because the  parameters  of  the  denominator  polynomial 
and  hence of the filter can be completely  determined  from  the 
shape of the group-delay function  of  the  denominator poly- 
nomial. Any constant group-delay can easily be incorporated 
by using the  appropriate  number of delay units. 

Let ?d(w) and T2d(a) be the average values of rd(w) and 
~ ~ ~ ( w ) ,  respectively. Then 

L L 

and 

It is convenient to deal with - ( ~ ~ d ( w )  - F2d(u)) for deriving 
the  coefficients of the  denominator  polynomial. 

Hence, we define 

It  should  be  noted tha t  T ~ ( w )  corresponds to the desired 
group-delay response of  the pole part of the all-pass filter. 
For  the all-pass filter to be  stable, T ~ ( o )  should  correspond 
to  the group-delay  response of a minimum  phase filter. Then 
all the coefficients of  the filter can be determined  from T ~ ( w )  

using the  properties of minimum. phase filters. 
For a minimum phase filter,  the  magnitude  and  phase 

responses are related through Hilbert transform [8]. We will 
show  presently  that  the group-delay  response and  the magni- 
tude response of a minimum phase filter  are related  through 
cepstral coefficients. Once the  magnitude response of a  mini- 
mum phase  filter is obtained, it can be approximated  by  auto- 
regressive modeling to determine  the coefficients of the 
filter [7]. The resulting all-pole filter is guaranteed to be 
stable because of  the use of  autocorrelation  normal  equations 
for solving for  the autoregressive coefficients [ 71. 

C. Relation  Among Group  Delay, Cepstral Coefficients, and 
Magnitude  Spectrum 

Let V(w) represent the  frequency response of a minimum 
phase all-pole digital filter. V(w) will be periodic in w with 
period 27~. Since all the poles of a minimum phase filter  lie 
within the unit circle in the z plane,  and since the  cepstrum 
of a minimum phase sequence is a causal sequence [8], In V(w) 
can be  expressed in Fourier series expansion as in (1 7): 

' In ~ ( w )  = c(0)/2 + c(k) e-jkw 

where {c(k)} are called cepstral coefficients. Writing 

m 

(17) 
k =  1 

V(O) = I ~ ( w ) ]  e-h+) > (1 8 )  

we get the real and imaginary parts of In V(w) as 

In 1 V(w)I = c(0)/2 + 2 c(k)  cos kw (real part) (1 9) 
k = l  
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and IV. DESIGN PROCEDURE 

m The  proposed design procedure is illustrated  through  the 
e,(w) + 2Xn = c(k)  sin kw (imaginary part)  (20) following design steps. Actual implementation details of the 

k = l  design are discussed in Section V. 

where X is an integer.  Taking the derivative of 8 ~ ( w ) ,  we get 1) Given the desired group-delay  response T d ( w ) ,  compute 
T, (a) using (1 6). 

e;(o) = kc(k) cos kw. 
m 

k =  1 

2) Obtain the cepstral  coefficients {e@)} from ~ ~ ( 0 )  

(21 using the relation 

O;(w) represents the  group delay of  the  minimum phase all- T o ( w )  = kc(k) cos kw. 
pole filter.  The log magnitude  and  the  group delay are thus k = l  

related through cepstral coefficients. 

D. Derivation of the Filter Coefficients (23) where K is set to 0. 
From  the group-delay function T,(w) given by (16), we  can 

determine  the cepstral  coefficients corresponding to  the pole the relations (24)  and (25). 
part of the filter using the relation  (21). From  the cepstral 
:oefficients, the log magnitude  spectrum,  and  hence  the magni- the ‘Iter coefficients A k ,  = 2 3 .  . * )  

tude spectrum P(w) can be obtained using the relations 

m 

(27) 

3)  Compute  the pole spectrum P(w) using the relation 

4) Obtain the normalized autocorrelation coefficients using 

5 )  Solve the  autocorrelation normal equations  (26) to obtain 

6) The filter is given by 

= K + 2 c(k) COS kw 
ca 

k = l  

and 

P(w) = exp [K t 2 2 c(k) cos kw] 
03 

k =  1 

where K is an arbitrary  constant. 

be obtained using the relation 
The  autocorrelation coefficients corresponding  to P(w) can 

P(w) = R(0) + 2 2 R(k) cos kw. (24) 
k = l  

Let {r(k)) represent the  normalized  autocorrelation  coeffi- 
cients.  Then 

r(k) = R(k)/R(O), for k = 0, 1,  2, . . .. (25) 

The values of {v(k)} are  independent of the value of K in (23), 
and  hence  any value of K can be chosen in (23). 

The coefficients of an Nth-order autoregressive model for 
P(w) can be obtained by solving the N autocorrelation normal 
equations given in (26): 

k=O 

where A ,  = 1 and  M is a fixed  delay which is determined by 
the value of Td(w), the  order of the filter N a n d  the causality 

(23)  constraint on the  filter.  But, in general, the value o fMis  not 
relevant to  the design of the group-delay filter. 

These equations are discussed in [7]. The normal equations 
can be solved using Durbin’s algorithm [7] . 

Once A k ,  k = 1, 2, . - ., N are known, all the parameters of 
the filter H ( z )  are known, In general, the  approxinlation to 
the desired group-delay  characteristics will be better for 
larger values of N .  

V. IMPLEMENTATION OF THE GROUP-DELAY 
FILTER DESIGN 

The design procedure described in Section  IVis  implemented 
as shown in Fig. 1. The desired groupdelay response is 
specified by  giving the group-delay values at sample points 
in the  frequency  domain.  The coefficients {kc(k)} are com- 
puted  from  the given group-delay  response T~ (0) using inverse 
discrete  Fourier transform (IDFT). In P ( o )  is  computed  from 
{c(k)} using discrete  Fourier transform (DFT). In other words, 

the cosine inverse transform  required for  computing {kc(k)} 
and  the cosine transform required  for computing {c(k)] are 
replaced by IDFT  and  DFT  operations, respectively, which 
can be  efficiently implemented using the  FFT algorithm.  The 
second  block  in the figure computes {e@)} from {kc(k)}. 
It  should be noted  that  the division by two in  (16) and  the 
multiplication  of cepstral  coefficients by two in (23)  nullify, 
and  hence these operations can be omitted.  There is also no 
need to  compute  the deviation of Td(w)  from  its average 
value as given  in (16). This is because the cepstral  coefficients 
{c(k)} are computed using the inverse discrete  Fourier  trans- 
form  (IDFT), in which the first coefficient, which gives the 
average value of T d ( w ) ,  is not used in the  computation of the 
normalized autocorrelation coefficients (I.@)} from { ~ ( k ) } .  

The  input  and  output data  for the first IDFT  block are real 
and  symmetric. The realized group-delay response of the 
filter is computed from the coefficients { A k }  using the 
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Desired Groupdelay 

leA(l)eA(2),..*A(N)~ 
o,oe. . . 0 * DFT 

* Compute ’ the * -TP‘J1 Compute the 
Derivative of 

Realised  Group-delay 
Groupdelay of 

m s e  Spectrum the Filter - * 
N-(512/~) TpCJ) response of H(z) 

( 512 points 

Fig. 1. Block  diagram  showing the implementation details of  the design  of  group-delay fiters  by autoregressive  modeling. 
(a)  Computation  of  filter coefficients for a  specified order N of the filter H(z) .  (b)  Computation of the  group delay 
response of the realized filter H(z).  

algorithm given in [9] for  computation of phase spectrum 
derivatives. 

The design examples discussed in the  next section were 
implemented on an IBM 37011 55 system (word length, 32 bits). 

VI. DESIGN EXAMPLES 
The  procedure described in Fig. 1 is illustrated with  some 

design examples in this section.  The normalized frequency 
range (0-1) is represented by 512 equally  spaced points. All 
DFT  and  IDFT  computations are performed using a 5  12-point 
FFT  algorithm. 

Group-delay  characteristics are  specified  by giving samples 
of  the desired  response T&J). Let 

7 D U )  = Td(4 Iw=27r( j -1 ) /512 

and 

~ g ( j )  = ~ ~ ( 5 1 4  - j ) ,  j = 1, 2, - a ,  257. 

Then ~ g ( j )  forms  the  input to the design algorithm  described 
in Fig. 1. The  true values of  the realized  group-delay  response 
are obtained by multiplying  the derivative of phase  spectrum 
with  a scale factor 5 1 2 / 2 ~   t o  take into  account  the  effect of 
sampling in the  frequency  domain. 

Example 1 
The first  example is the design of a group-delay filter to 

realize linear  group-delay characteristics given by 

T ~ ( w )  = 2.50, 0 < w < R.  

Then 

5n( j -  1) 
d j ) =  512 > j =  1 , 2 , * . . , 2 5 7  

= ~ ~ ( 5 1 4  - j ) ,  j = 258,259, - * ., 512. 

Fig. 2 shows the group-delay  response of  the realized filter for 
N =  10 and N =  20.  The desired group-delay  characteristics 
are shown by  dotted lines. It is clear that  amplitude  of ripple 
is reduced for larger values of N. A l s o ,  the  error shown in 
Fig. 3(a) and (b) is nearly uniformly  distributed  throughout 

NORMALIZED FREQUENCY 

(a) 

(b) 
Fig. 2. Realized  responses for linear  group-delay  characteristics. The 

desired  responses are  shown  by dotted lines. (a) N = 10. (b) N = 20. 

0.50r 

0.25- N =  20 

0: 8 0 L.;r‘”.c ......-_...-.., .L.-w. . - .... ...---q 

w-0.25. I 
0 0.1 0.2 0.3 0.4 0.5 

(b) 
NORMALIZED FREQUENCY 

Fig. 3. Difference  between realized and desired  responses for linear 
group-delay filters. (a) N = 10.  (b) N = 20. 
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01: I 1 I 1 I 
0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 

(a) 

1 O r  

0 0.1 0.2 0.3 0.1 0.5 
NORMALIZED FREQUENCY 

co) 

10 

W 
n 

a 4  

i 
'0 \ 0 1 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 

(C) 
Fig. 4. (a) Realized  response for N = 10 for  quadratic group-delay 

characteristics. The desired response is shown by  the  dotted curve. 
(b) Realized response for N = 20 for  quadratic group-delay character- 
istics. The desired response is shown by the  dotted curve. (c) Realized 
response for N = 40 for quadratic group-delay characteristics. The 
desired response is shown  by  the dotted curve. 

the  frequency, unlike in Bernhardt's design [6] where the 
error is largely near f =  0 and f =  0.5. 

Example 2 

ratic group-delay  characteristics given by 
The  second  example i s  the design of a filter to realize quad- 

T d ( W )  = (low - 3W2) ,  0 < 0 < 71. 
Then 

j = 1, 2 , .  . *, 257. 

= ~ ~ ( 5 1 4 -  j ) ,  j=258,259; . - ,512.  

1.25 

0.50 

-0.75 

-1.00 
(a) 

N: 40 

4 1  t 
2- 

0 I I I 1 I 
0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 

Fig. 6 .  Realized response for N = 40 for stepped group-delay character- 
istics. The desired  response  is shown by the dotted curve. 

Fig. 4 shows the group-delay  response of  the realized filter 
for N =  10, N =  20, and N =  40. The desired group-delay 
characteristics  are also shown  by dotted curves in each figure. 
The  error curves for  this  example are shown in Fig. 5(a), (b), 
and (c). It appears that  our design method yields nearly 
equiripple response whose amplitude can be reduced by in- 
creasing the  order of the  filter. 

Example 3 
In the  next example, the  performance of our design method 

is studied  for  stepped group-delay  characteristics given  by 

7 D ( j ) = 8 ,  j =  1 , 2 , * " , 6 5  

=6 ,   j=66 ,67 ;* . , 129  

= 4, j =  130,131,. * *, 193 

= 2, j = 194,  195,. . ., 257 

=~,](514 - j ) ,  i =  258,259.- * *. 512. 
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The realized  group-delay  response for N = 40 is shown in Fig. 
6 .  The  amplitude  of ripple  can be significantly  reduced if 
the  transition  at each step is made  more gradual, i.e., if  the 
transition  width is increased. 

These examples illustrate that  the  proposed design method 
can be used to realize a  wide  variety of group-delay character- 
istics. 

VII. CONCLUSIONS 
We have presented a  new method  of designing recursive 

group-delay filters. The  method  can be used to design filters 
of very high order  without  additional  complexity. This is in 
contrast to the  presently available methods which involve 
solutions consisting of a set  of  nonlinear  equations  that arise 
as  a  result of minimizing  some error  criterion. Usually the 
solution  of  the  nonlinear  equations uses an iterative  algorithm 
which is computationally  complex  and time-consuming for 
the design of high order ( N >  10) filters.  Our method yields 
better results than  the design of high-order filters  proposed by 
Bernhardt in [6] because we do  not  make  any simplified 
assumptions  on  the group-delay function. Moreover, the 
restriction  of  second-order  sections in Bernhardt’s design is 
not  present in our design. In  other words, the realized filter 
in  our design can  have real poles and also poles of multiple 
order. This is the reason for  our  getting a smaller error, even 
near f = 0 and f = 0.5 , compared to Bernhardt’s  results. 

It is possible to design a wide variety of group-delay filters, 
depending  on  how  the desired group-delay function is handled. 
Since summation  of  group delays is equivalent to cascading 
the  corresponding  filters,  the given group-delay  characteristics 
can be split appropriately  to  obtain a  filter  in the desired 
fashion. For  example, finite  word-length effects of high-order 
filters  can  be  reduced  by splitting  the given group-delay  into 
some  convenient  components  and realizing each component 
independently. This would also place  a less severe restriction 
on  the accuracy of the  normalized  autocorrelation  coefficients 
for high-order  filters,  which might  otherwise result in  unstable 
filters. 

Although we have proposed  an effective method  for realiz- 
ing a given group-delay characteristic, specific design curves 
have not been obtained to determine  the  order of the filter 
for a given error tolerance. Such design curves for  the group- 
delay  filters of this  paper and  for  magnitude response filters 
of [ 2 ]  enable us to design filters for given magnitude  and 
phase  characteristics. 
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