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Significance of Initial Interpolation in Band-Limited 
Signal Interpolation 

B. YEGNANARAYANA, S. TANVEER FATHIMA, 
B. T. K.  R. NEHRU, A N D B .  VENKATARAMANAN 

Abstract-In this correspondence, we present an improved version 
of the Papoulis algorithm for band-limited signal interpolation. This 
algorithm uses the concept of initial interpolation. The justification for 
initial interpolation is developed only through experimental studies. 
We show that the performance of the interpolation scheme depends on 
the number and distribution of the known data samples. 

I. INTRODUCTION 
The problem of estimating the values of the missing samples of 

a signal from partial data arises in several practical situations. An 
algorithm for interpolation which takes the spectral information into 
account was presented by Naidu and Paramasiviah [ l ] .  This algo- 
rithm, however, did not converge fast in many cases because of 
the assumption that the initial estimates for the missing data values 
are set to zero. In this correspondence, we first show the need for 
initial interpolation of data, and then we present an initial inter- 
polation scheme. We also investigate the performance of our al- 
gorithm with and without initial interpolation for different data dis- 
tributions. 

11. INITIAL INTERPOLATION 
In the band-limited interpolation problem, the general tendency 

appears to be to set all the missing samples to zero. It is not obvious 
why zero should be an automatic choice. Ideally we would like an 
estimate which is not only consistent with all the available infor- 
mation, but which is also maximally noncommittal with regard to 
the unavailable information. We develop an empirical approach to 
initial interpolation based on some heuristic arguments. We pro- 
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pose that the interpolated value be made of two components-one 
dependent on the given data, and the other a noise component, that 
is added to increase the uncertainty. 

A. Data-Dependent Component 
We have examined some of the standard (linear and polynomial) 

interpolation techniques and also a relaxation procedure which was 
proposed as a constraint propagation algorithm [2]. We found that 
the relaxation procedure performs better compared to the standard 
interpolation techniques. This procedure is described by the equa- 
tion 

1 - c, 
.q(n) = c , x ; - , ( n )  + - [ x i ( ,  - I )  + n i - l (n  + I ) ]  ( 1 )  2 

where 

x i ( n )  = interpolated value of the nth instant at the end of the 
ith iteration; wherever appropriate, known values are 
used forxi(n - 1 )  a n d x j _ , ( n  + I ) ;  

Ci = i/N = confidence factor; 
N = number of iterations for the initial interpolation. 

The relaxation procedure exploits the constraints supplied by the 
known sample values by propagating these to even farther away 
unknown samples. Thus, the available information is more effec- 
tively used through this procedure than by the standard interpola- 
tion techniques. 

B. Noise Component 
The “dependency” relation between samples of a signal be- 

comes weak when the known samples are far apart. A noise com- 
ponent y ( n )  was chosen to add a randomizing feature to the un- 
known sample values. 

where 

n ,  and nz are the instants of the two consecutive known samples 

j = a random number uniformly distributed between 
maximum and minimum values of the known sam- 
ples. 

y ( n )  = noise value at the sample instant n 

The two components are combined to given the initially inter- 
polated signal as 

z ( n )  = C l x ( n )  + C2y(n)  (3) 

where C1 and C ,  are usually set to I .  But for a given data, some 
optimal values for CI and C2 can be obtained experimentally. 

C .  An Example 

simulated examples. We consider a signal of the type 
We illustrate our iterative signal interpolation method through 

s ( n )  = a ,  sin (27rfinTs + e , )  + a2 sin (27rfnTs + 0,) (4 )  

where T, = 1/256, a ,  = 1.25, a? = 1.50, el = ~ / 3 ,  Bz = 7r/2. 
The data were generated by multiplying the complete signal s (n) 

with a random sequence of ones and zeros. Fig. l(a) shows the 
signal forfi = 10 andf2 = 12, and Fig. l(b) shows its spectrum 
(log magnitude). Fig. l(c) shows a data distribution obtained by 
selecting 10 percent of the signal samples. Fig. I(e) shows the in- 
terpolated values. In this, 20 iterations of the relaxation procedure 
were used. The spectra of the data distribution and that of the in- 
terpolated sequence are shown in Fig. l(d) and (f), respectively. 
We notice that the signal peaks stand out much better in Fig. l ( f )  
than in Fig. l(d). The contribution of the noise component is to 
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Fig. 1. Illustration of the proposed algorithm for interpolation of a low- 

frequency signal. (a) Original time domain signal. (b) Spectrum of the 
original signal. (c) Partial data consisting of 10 percent of the original 
signal. (d) Spectrum of the partial data. (e) Initial interpolated signal 
using relaxation and noise. (f) Spectrum of the initial interpolated signal. 
(g) The reconstructed signal. (h) Spectrum of the reconstructed signal. 
(i) Mean square error with (dotted curve) and without initial interpola- 
tion. 
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Fig. 2.  Illustration of the performance of the initial interpolation method 
for different percentages of known samples in  the data. The ratio ( rm,e)  
of mean-square errors with and without initial interpolation after 5 in- 
terations is plotted for this illustration; (a) for a low-frequency signal; 
(b) for a high-frequency signal. 

it with cos won.  This demodulation translates the data spectrum to 
a low-frequency band. Now the relaxation technique can be ap- 
plied. The original spectral band can then be recovered through 
remodulation by multiplying the interpolated data with cos won.  

To these initially interpolated data, the Papoulis algorithm as 
given in [ 11 is applied. In order to evaluate the performance of our 
iterative procedure, we adopt the mean-square error of the recon- 
structed samples from the original samples as the error criterion. 
The convergence performance can be seen by the error curves of 
Fig. l(i), where the mean-square errors with and without the initial 
interpolation procedure are plotted against the number of itera- 
tions. For a given number of iterations, it can be seen that the error 
is significantly smaller with initial interpolation than without. 

111. PERFORMANCE EVALUATION 
A .  Effect of Sample Distribution on Reconstruction 

A study was conducted to investigate whether the way in which 
the data samples are distributed affects the reconstruction. Assum- 
ing 10 percent for the known signal samples, tht error curves for 
different sample distributions were obtained. In most cases, the 
asymptotic value of the error is lower with initial interpolation than 
without. In the extreme case of a cluster of known samples, the 
proposed initial interpolation does not work, as this corresponds to 
extrapolation. 

The performance for different percentages of samples in the data 
is illustrated in Fig. 2 .  It shows the plot of the ratio of the mean- 
square error with and without initial interpolation versus the per- 
centage of randomly distributed samples in the data. Two curves 
are shown, one for a low-frequency signal ( fi = l0.h = 12), and 
the other for a high-frequency (f, = 140, fi = 150) signal. The 
curves show that the performance is best when the percentage of 
known samples is within a certain range. When the percentage of 
the known samples is too low ( < 5  percent) or too high ( >50 
percent), the effect of initial interpolation is not significant. This 
is understandable because, in the former case, the known samples 
are too few for any interpolation scheme to work properly. In the 
latter case, the known samples are sufficient to indicate the spectral 
peaks clearly, and hence no further spectral peak enhancement 
would be truly necessary. 

reduce the effect of low-frequency bias produced by the relaxation 
procedure. 

To extend the interpolation scheme to handle high-frequency 
signals as well, we can modify the procedure as follows. Given the 
knowledge of the band location, we can find the Center fmlUenCY 
fo. The data can then be used to demodulate the data by multiplying 
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