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Significance of Group Delay Functions in Spectrum
Estimation

B. Yegnanarayana, Senior Member, IEEE, and Hema A. Murthy

Abstract—In this paper we propose a method of spectrum es-
timation using group delay functions. This method exploits the
additive property of the Fourier transform (FT) phase to ex-
tract spectral information of the signal in the presence of noise.
The phase is generally featureless due to random polarity and
wrapping; but the group delay function can be processed to
derive significant information such as peaks in the spectral en-
velope. In the spectral estimates obtained using this method,
the resolution properties of the periodogram estimate are pre-
served while the variance is reduced. Variance caused by the
sidelobe leakage due to windows and additive noise are signif-
icantly reduced even in the spectral estimate obtained using a
single realization of the observation peak. Resolution is pri-
marily dictated by the size of the data window according to the
standard time bandwidth product relation. The method works
even for high noise levels (SNR = 0 dB or less). The results of
this spectrum estimation procedure are demonstrated through
several illustrative examples. In particular, two cases are con-
sidered, namely, 1) estimation of sinusoids in noise and 2) es-
timation of the narrow-band autoregressive process in noise.

I. INTRODUCTION

HE objective of this study is to explore an approach

to spectrum estimation from the Fourier transform
(FT) phase of a signal, rather than conventional spectrum
estimation from the FT magnitude. The method described
is based on the properties of the negative derivative of the
FT phase function, also called group delay function. The
most important properties of the group delay function are
the additive and high resolution properties [1]. Here res-
olution refers to the sharpness of the peaks in the group
delay function, which is due to the squared FT magnitude
function behavior of the group delay functions near the
peaks. The term resolution is used in a slightly different
sense than what is normally used for the frequency re-
solving capability of a given spectrum estimation method.
The key idea behind the new spectrum estimation method
is that the properties of the group delay functions for noise
and an autoregressive process are distinct. The main prop-
erty of noise used in this study is that the noise samples
are uncorrelated. The proposed processing method does
not use the long-term statistical properties of noise. It is
based on reducing the effect of the uncorrelated noise
samples to enhance the correlated signal component in the
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group delay function. The proposed spectrum estimation
method is applicable for both sinusoids in noise as well
as for narrow-band autoregressive processes.

Spectrum analysis of signals is performed to extract in-
formation about the system that generated the signal.
Since the signal available for analysis is usually of short
duration and also noisy, one can only attempt to estimate
a) the spectrum or b) the system characteristics, rather
than compute the true spectrum. The accuracy of the es-
timated spectrum depends on the bias and variance of the
estimate, which in turn depends on the nature of the sig-
nal, its duration, type of windowing, and noise. In most
studies on spectrum estimation two classes of problems
are addressed [2], [3]: 1) estimation of AR parameters or
AR spectrum from finite data, and 2) estimation of com-
ponent sinusoids from finite duration noisy data.

The classical approaches to spectrum estimation are
based on statistical properties of signals and noise. These
approaches have a severe limitation in that they require
large data records. Methods based on the periodogram are
examples of such an approach. Many modern methods in-
volving models and parameter estimation have been pro-
posed in the literature [2], [3] to deal with short data rec-
ords. Performance of the model-based methods depend
critically on the accuracy of representation of the random
process by the model.

The periodogram method has many advantages, such
as high resolution and small bias in the estimated spec-
trum. In fact, even for high noise levels (SNR < —10
dB) one can detect the presence of sinusoids in the com-
puted spectrum. The main difficulty with periodogram is
that the variance of the estimate is as large as the actual
spectral value itself. Reduction of the variance by aver-
aging either increases the bias of the estimate or requires
that many realizations of the same process are available.
The variance caused by additive noise cannot be reduced
by increasing the length of the data. Variance is also
caused by the sidelobes of the data windows. Windows
with small sidelobe leakage have less resolution. The is-
sues in spectrum estimation are therefore [3] a) conflict
between signal detectability and spectrum estimation, (b)
resolution from limited size of data record, and (c) choice
between parameter estimation and spectral estimation. In
this study an attempt is made to retain the advantages of
periodogram without compromising on the resolution.
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We explore a method in which the variance of the esti-
mated power spectrum is reduced. No attempt is made to
obtain higher resolution than is available in the periodo-
gram. Therefore the problem of short data records is not
addressed in this paper.

In all the studies on spectrum estimation so far, the em-
phasis was only on the FT magnitude (since the power
spectrum is square of the FT magnitude). Our research
objective is to show that it is possible to extract infor-
mation about the embedded sinusoids or autoregressive
process in noise by using the FT phase also. In Section
11, the characteristics of FT phase and the negetive deriv-
ative of the phase, i.e., the group delay are discussed.
The relationship between the FT phase and magnitude of
a signal through group delay functions is also zstablished
in Section II. A spectrum estimation methoc. based on
processing the group delay function is discussed in Sec-
tion III. In Section IV the effectiveness of the proposed
method for estimation of sinusoidal components and au-
toregressive process from signals corrupted w.th noise is
illustrated through examples.

II. CHARACTERISTICS OF FT PHASE AND GRCUP DELAY
FuncTions

A. Group Delay Functions: Relation Between FT
Magnitude and FT Phase

Given a discrete-time real signal x (n), the :; transform
is given by

X@) = 2 x(mz ™" (H

We can write X(z) as

X@ =1 X @

where X;(z) is either a first-order or a second-arder poly-
nomial with real coefficients. The roots of X;(z) are either
real or a complex conjugate pair. The Fourie: transform
X(w) of x(n) is obtained by evaluating X(z) on the unit
circle in the z plane. The FT magnitude is a product of
the magnitudes of the individual components, and the FT
phase is a sum of the phases of the individual compo-
nents.

The relation between the FT magnitude end the FT
phase can be seen clearly through the cepstral domain [4].
To establish the relation between the magnitude | X(w)|
and the phase 8(w) of the FT of a signal, we can define
two group delay functions, 7,,(w) and 7,(w) corresponding
to log | X(w)| and 6(w), respectively, as follows: Let

log | X(w)| = 2 ¢,(n) cos wn 3)
B(w) = — 2 cy(n) sin wn @)

T(w) = —df(w) /dw
=2 ne,y(n) cos wn %)

and
7,(w) = 23 ncy(n) sin wn. (6)
Then we can show that
7 (w) = 2 7,(@) @)
and
Tn(@) = 25 T (@) 8)

where 7,(w) and 7,,(w) are the group delay functions for
the component polynomials.

7,(w) is normally referred to as the group delay func-
tion. For simple first-order or second-order polynomials
the shapes of 7,(w) are shown in Fig. 1. Properties of
group delay functions follow from the discussion of the
group delay functions of minimum and maximum phase
signals as described in [5]. In particular, if all the roots
of X(z) lie inside the unit circle in the z plane, then

Tp(w) = T,(w). ®

On the other hand, if all the roots of X(z) lie outside the
unit circle in the z plane, then

(10

If the roots of X(z) are distributed both inside and outside
the unit circle, then the component group delay functions
follow either the relation (9) or the relation (10) depend-
ing on whether the root, is inside or outside the unit cir-
cle, respectively.

7)(@) = —T(@).

B. Distribution of Roots of X(z) for Noise Data

The autocorrelation function of a noise sequence is an
impulse at zero lag and zero at other lags. Such a noise
sequence has its z-transform roots distributed randomly
close to the unit circle in the z plane. The roots may be
both inside and outside the unit circle. Fig. 2(a) shows
typically the distribution of zeros in the z plane for a noise
sequence that is 40 samples in length and Fig. 2(b) shows
the corresponding group delay function 7,(w). The group
delay function for a noise sequence will have large spikes
(both positive and negative) at random locations along the
frequency axis. The values of the group delay function at
frequencies other than the root frequencies are very small.

The behavior of 7,(w) at the root frequencies can be
understood from the results on power spectrum of noise
using the periodogram method (2]. In particular, the
expressions for bias and variance of the power spectrum
estimates can be used to study the bias and variance prop-
erties of the group delay function at the root frequencies.
First, it is interesting to see the shapes of 7,(w) near the
root frequencies for a first-order and a second-order poly-
nomial. The expression for 7,(w) is given by [1]

T(w) = C/P(w), (an

where C is a constant, and P(w) is the power spectrum.
For a signal contributed by an all-zero or an all-pole or a

for w near the root frequency
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Fig. 1. Illustration of the group delay functions for different first- and sec-
ond-order polynomials. The dotted curves correspond to poles in the z plane
at the same locations as the zeros.
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Fig. 2. Behavior of zeros for a noise sequence of length 4C samples. (a)
Distribution of zeros in the z plane and (b) the correspondin group delay
function.

pole-zero filter, the shape of the group delay function near
a root frequency due to individual components (roots of
the polynomials, poles or zeros) is inversely proportional
to the power spectrum value contributed by the root. The
constant of proportionality will have appropriate sign de-
pending on whether the root is inside or outside the unit
circle, and whether the root is a pole or a zero. From the
studies [2], [3] on bias and variance of periodograms es-
timates of power spectrum of noise sequences. we know
that as the number of samples are increased the estimated
spectrum is unbiased, but the variance becomes very
large, almost equal to the value of the spectrum itself.
This implies that the spikes in the group delay function at
the root frequencies are unreliable.

C. Properties of the Group Delay Function of an
All-Pole Model

The group delay function of a stable all-pole system
(1/A(z)) corresponding to an autoregressive process is
contributed by the component polynomials A-(z) of the
system. Since all the roots are away from the unit circle,
the contributions of the individual components are broader
compared to the spikes due to noise components. A typ-
ical plot of the group delay function for an all-pole system
is shown in Fig. 3(a). Note that here also the significant
values are concentrated around the root frequencies. Fig.
3(b) shows the group delay function plot for a noise se-
quence. Note the different scales in Figs. 3(a) and (b).
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Fig. 3. Group delay functions for different signals. (a) Group delay func-
tion corresponding to the impulse response of a stable all-pole system. (b)
Group delay function corresponding to a random noise sequence. (c) Group
delay function corresponding to the response of an all-pole system to ran-
dom noise (note the different vertical scales in each plot).

The combined response shown in Fig. 3(c) is for the syn-
thetic data generated by convolving the all-pole system
response with the noise sequence. Fig. 3(c) highlights the
main difficulty in processing the group delay function. The
characteristics of the all-pole system are completely
masked by the dominant spikes due to noise. Moreover,
the finite duration of the signal and the window effects
will not result in the strict addition of the component group
delay functions. But fortunately the distinct characteris-
tics of the group delay functions of noise and the all-pole
system enable us to separate their effects. In fact, we can
reduce the effect of spikes in Fig. 3(a) to bring out the
features of the system. This forms the basis for the spec-
trum estimation procedure to be described in Section III.
Since the method works well even for additive noise, as
will be shown later with illustrations, it can be adopted
for the general problem of spectrum estimation.

III. SpECTRAL ESTIMATION FROM GROUP DELAY
FuNCTION

As mentioned before, the objective of this paper is to
estimate the spectral features of an autoregressive process
or a sinusoidal process in noise using the properties of
Fourier transform phase, or equivalently using group de-
lay functions. Methods proposed earlier [6]-[8] processed
the FT phase or group delay function indirectly to extract
useful spectral information. In this section a method of
spectrum estimation based on processing the group delay
function directly is proposed. Application of this method
for speech processing is described in [9], [10].

Let us consider the output x(n) of an autoregressive
process s(n) corrupted with white Gaussian noise u(n).
That is

x(n) = s(n) + u(n). (12)
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For the sake of explanation, we ignore the effects of
truncation of the response of an all-pole syster1 and write
the z transform of s(n) as

GE(@2)
S@) = ——
(2) AQ)
where E(z) is the z transform of the excitation sequence

e(n) and G/A(z) is the z transform of the all-pole system
corresponding to the autoregressive process. Now

(13

_ )

X)) = S(z) + Uix) = 40 (14)
where

W(z) = GE(z) + U(2)A®2). (15)

The group delay function of X(z) in terms o:’ the group
delay functions of V(z) and A(z) is given by

Tx(w) = Tp(w) — T4(w). (16)
The Fourier transform of x (n) is given by
X(w) = GE(w) + A(w) U(w)‘ (17)

A(w)

For low noise levels the first term GE(w) doriinates and
hence the group delay function 7y (w) of X(z) behaves al-
most like the group delay function 75(w) of S(z) (noise
free case). For high noise levels two cases have to be con-
sidered separately: a) Regions (say R) of frequency where
the values of | A(w)| are not small (i.e., not neur zero) and
also the shape of | A(w)| curve is smooth, anc b) regions
(say R) of frequencies where the values of | £(w)| are so
small that the first term in V(z), namely, Gi(z), domi-
nates. In regions R the group delay function 7, (w) cor-
responding to the numerator polynomial of (14) behaves
as it would for any noise sequence. That is, there will be
large positive and negative spikes depending on the roots
of V(2) in the region R. In the regions R the group delay
function 7, (w) still will have large amplitude spikes of
either polarity, but this time they are contribated by the
roots of ¥(z) in the region R, where the first term in V(z)
dominates. Thus, in both the regions R and R the group
delay function behaves as it would for a noise sequence,
but due to different sources. The most important point is
that the spiky nature of the group delay function 7x(w) is
not affected significantly by the presence of A(z) in the
numerator. This is the reason why the first te'm 7y (w) in
7x(w) is distinct from the second term 74(w). The char-
acteristics of the second term can still be estimated by
suppressing the spikes in the overall group delay function
7x(w). That this works even for very low noise levels is
obvious from this argument.

The basis for the new spectrum estimation procedure is
to suppress the large amplitude spikes in 7, (w) due to
7y (w) in order to highlight the desired components 7,(w).
To suppress the spikes due to noise, it is necessary to
identify their locations and then reduce their amplitudes.
The locations and amplitudes of these spikes are not

known. We can take advantage of the behavior of the
spectrum where the noise zeros contribute to sharp nulls.
If we can derive a spectrum with nearly flat spectral en-
velope, then it contains mainly the spectral shape contrib-
uted by the zeros. A cepstrally smoothed spectrum can be
used to obtain an estimate of the zero spectrum (a spec-
trum with flat envelope). The size of the cepstrum win-
dow is not very critical. We have chosen a cepstrum win-
dow size of 10 samples throughout our studies. The group
delay function can be multiplied by the estimated zero
spectrum (or spectrum of signal having approximately flat
envelope) to suppress the noise spikes in 7x(w). The re-
sulting group delay function is an estimate —7(w) of the
group delay spectral component corresponding to the de-
sired autoregressive process. Assuming that —7,(w) cor-
responds to a minimum phase all-pole system, the spec-
trum can be derived using the relation between the group
delay function and the cepstral coefficients [5]. The re-
sulting spectrum is the estimated spectrum from the Fou-
rier transform phase generated by the proposed method.

IV. ILLUSTRATIONS

We consider two types of problems for illustration.
Example 1: Autoregressive process in noise (estimation
of the AR spectrum)

xi(n) = s(n) + u(n) (18)

4

s(n) = —kZ] asn — k) + Ge(n) 19)
where the excitation e(n) is a white Gaussian noise of
variance unity and u(n) is an additive noise with variance
dependent upon the desired signal-to-noise ratio (SNR).
The values of the coefficients are: a;, = —2.760, a, =
3.809, a; = —2.654, and a, = 0.924.

Example 2: Two sinusoids in noise (estimation of fre-
quencies of the sinusoids)

x,(n) = V10 exp [j2m(0.10)n]

+ 20 exp [j27(0.15)n] + u(n) 20)

where u(n) is additive white Gaussian noise with the vari-
ance dependent upon the SNR. These examples are sim-
ilar to the ones used in [2] for discussion of periodogram
estimates.

We assume a sampling frequency of 10 kHz and num-
ber of samples N = 256 for example 1, and N = 100 for
example 2. Different realizations of x(n) and x,(n) are
obtained by using a different noise sequence each time.
The group delay function 7x () is computed using the fol-
lowing formula [11]:

d(log X(w))
m dw
_ Xal(@) Yal(@) + Yi(@)Xi(w)
| X(w)|*

1x(w) = =1

@n
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1. Let x(n) be the given M-pt causal sequerce.
Compute y(n) = nx(n).
2. Compute the N-pt (N >> M) discrete Fourier

transform (DFT) X(k) and Y(k) of the sequences x(n) anc
y(n) respectively, k = 0,1,... ,N-1.

3. Compute spectrum  S(k) of’
[X() |

4. Compute the zero spectrum Z(x) by dividing |X(k)\i‘
by S(k).

§. Compute the modified group delay function -ro(k) as

cepstrally smoothed

Xn(k]vn(k) + Xl(k)Y‘(k) ~

T (k) = 2 .2(k),k=0,1,...,N-1.
° |X(k) |
where R and I denote the real and imaginary parts
respectively. J
@

1. Compute the estimate of the weighted cepstrum from
1T (k) as follows. Compute N-pt IDFT of to(k)
o N

c(n) = IDFTl‘to(k)] ,n=0,1,...,N°1,
2. Form the sequence clln)
01(0) = 0
cl(n) = c(n)}/n
L 1<n<N/2.

cl(N—ml) =c_ (n)

3. Compute the N-pt DFT of ci(n)

Xl(k) = DFT[C‘(n)], k=0,1,...,N-1
4. Compute
In|X_(k)| = ReallX (k)).
s 1

2*1n|Xs(k)| is the
obtained from the modified group delay.

estimated smoothed spectrun as

(b)

Fig. 4. (a) Algorithm for computing the modified group deiay function.
(b) Algorithm for computing the smoothed spectrum from the modified
group delay function.

where the subscripts R and I denote the real and imaginary
parts of the Fourier transform. X(w) and ¥(«w) are the Fou-
rier transforms of the sequences x (1) and y(n) = nx(n),
respectively. The procedure for computing the modified
group delay function and the estimated spectrum for a
given sequence of samples x (n) is given in Fig 4.

Figs. 5-7 give the periodogram, group delay function
and the new spectrum estimates of the autoregressive pro-
cess from the noisy signal (SNR = 20 dB) of example 1.
Figs. 5(a), 6(a), and 7(a) show the plots for a single re-
alization of clean data. Figs. 5(b), 6(b), and 7(b) show
the plots for 50 realizations of noisy data. Figs. 3(c), 6(c),
and 7(c) show the averaged plots. It is to be noted, as
expected, that the periodogram estimate has large vari-
ance (Fig. 5(b)). Reduction of variance by averaging sev-
eral periodograms introduces large bias [2]. The variance
is significantly reduced in the spectrum estimated by group
delay method as can be seen from Figs. 5(b) and 7(b).
The reduction in variance and bias due to the proposed
method of spectrum estimation can be seen clearly from
Figs. 7(b) and (c). The averaging reduces the dynamic
range in periodogram (Figs. 5(a) and (c)) whereas aver-
aging the estimated spectrum from group delay does not
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Fig. 5. Periodogram estimation of spectrum for an autoregressive process

in noise (N = 256, SNR = 20 dB). (a) Single realization (clean signal).
(b) Fifty overlaid realizations. (c) Average of realizations.
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Fig. 6. Estimated group delay function for an autoregressive process in
noise (N = 256, SNR = 20 dB). (a) Single realization (clean signal). (b)
Fifty overlaid realizations. (c) Average of realizations.

seem to significantly affect the dynamic range (Figs. 7(a)
and (c)).

Although we have not discussed the theory, we have
applied our method for estimating sinusoids in noise. The
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results are shown in the plots given in Figs. 8- 10 for SNR
= 20 dB. The proposed method works well even for es-
timating sinusoids in the presence of noise. The same
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Fig. 9. Estimated group delay function for sinusoids in noise (N = 100,
SNR = 20 dB). (a) Single realization (clean signal). (b) Fifty overlaid
realizations. (c) Average of realizations.
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Fig. 10. Estimated spectrum from group delay function for sinusoids in
noise (N = 100, SNR = 20 dB). (a) Single realization (clean signal). (b)
Fifty overlaid realizations. (b) Average of realizations.

general conclusions as for the autoregressive process hold
good for sinusoidal process.

Note that the finite data window also produces large
spikes in the group delay function. But multiplication by
the estimated zero spectrum suppresses the sidelobe ef-
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fects of the window also. This way the estimated spec-
trum from the group delay function is less dependent on
the type of window. However, the resolution of the spec-
tral peaks is dependent on the size of the window. The
effective window size is reflected in the width of the spikes
in the group delay function, the width is smallest for the
rectangular window and largest for the Nuttall window.
The windows chosen for this study are the Hamming,
Hanning, Nuttal, and rectangular windows. For a detailed
discussion of these windows refer to [3].

Figs. 11 and 12 show the results of the estimated spec-
tra for different noise levels (SNR = 10 dB, SNR = 0
dB, SNR = —10 dB). Figs. 11(b)-(d) show the averaged
plots for 50 realizations (256 samples in each realization)
of an AR process in noise. The plots show that our method
restores significant features and the dynamic range, up to
SNR = 0 dB, although there are some spurious peaks
(though less significant) at higher noise levels. Figs.
12(b)-(d) show the averaged plots for 50 realizations (100
samples in each realization) of sinusoids in noise. The
conclusions are similar to the case of the AR process in
noise. These results show that the proposed method works
even at high noise levels.

Note that model-based AR spectrum estimation will not
work for noisy data [2]. Fig. 13 gives a comparison of the

performance of our method of spectrum estimation with
Burg’s method [2]. The data consists of 256 samples of
AR process in noise (single realization). Burg’s method
uses an eighth-order model. Note that the group delay
function method preserves the resolution properties of the
periodogram, with much less variance, even for low SNR.
Unlike the periodogram method, the group delay method
restores the dynamic range of the AR process even at high
noise levels. Model-based techniques fail to resolve the
peaks at high noise levels (SNR < 5 dB). If the order of
the model is increased, more spurious peaks will be gen-
erated. It is interesting to note that even for a single re-
alization, the dynamic range is almost restored and the
fluctuation due to noise and data windows are almost ab-
sent in the estimated spectrum using the group delay
method.

V. CONCLUSIONS

In summary, we have proposed a method of spectrum
estimation that a) reduces fluctuations caused by the vari-
ance of noise and sidelobes due to window, b) has less
effect on the bias since no averaging is involved to reduce
the variance, c) restores the dynamic range and preserves
the resolution of a periodogram estimate, d) works even
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for high noise levels, e) performs better than model-based
methods for noisy data, because resolution does not de-
pend on factors like model order, and f) spuricus peaks
are nearly absent even at high noise levels. However,
comparison with model-based methods for short data rec-
ords is not apt, because knowledge of the model definitely
gives a better resolution than the periodogram estimate.
Thus, the proposed technique in its present form is not
suitable for very short data record analysis.

We have given the theoretical basis only for the case of
spectrum estimation using group delay function for an au-
toregressive process in noise, although we have demon-
strated that the proposed method works equally well for
sinusoids in noise. We have not addressed the problem of
resolution of spectral peaks obtained by this method. We
have also not derived expressions for bias and variance of
the estimates. Only qualitative discussion through exam-
ples has been given.

In our opinion, for the first time an attempt has been
made to process the FT phase for spectrum estimation.
Studies in this paper show the potential of using FT phase
for various applications [9], [10].
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