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Fig. 1. Simulation  results for (a) “Cronkite” and (b) “Plant.” Curves 1 
and 2: nonuniform  Gaussian  quantizer.  Curves 3 and  4:  pdf-optimized 
quantizer. Curves 1 and 3: rate-distortion  theoretic  approach.  Curves 2 
and 4: computational  approach. 

allocation in  this  case.  As  far  as  the  computational efficiency is 
concerned,  the  proposed  algorithm  requires  less  computations.  For 
N = 6 4 ,  for  an  average 2 bits  per  element  allocated  and  for  up to 
24 bits  maximally  allowed  for  any  element,  Shoham  and  Gersho’s 
algorithm  requires 212 operations  (addition,  multiplication,  and 
computation)  per  element. On the  other  hand,  the proposed algo- 
rithm requires  about 70 operations  per  element  including  overhead 
computations  for  presorting  the  variances. 

The  fast  design  algorithm  described  here  has  been  shown  to  be 
much more efficient than  any  previous  algorithm.  The  factor  of 
saving  in  computation is about Nl7 ,  which  is  rather significant in 
most transform  image  coding.  The effect of non-Shannon quanti- 
zation error is also  incorporated  in  the  computational  approach  and 
mild improvement  in  performance  is  achieved.  The  computational 
complexity of the rate-distortion approach  is  independent of the 
number of  total available  bits.  On  the  other  hand,  the  complexity 
of  the  computational  approach  increases  linearly  with  the  number 
of total  available  bits.  In  low  bit-rate  environment,  the  fast  com- 
putational approach may be  more efficient than  the rate-distortion 
theoretic  approach. 

ACKNOWLEDGMENT 
The  author  thanks  the  reviewers  for  their  valuable  comments. 

He  also  thanks D. Gray  for  careful reading of  the  manuscript  and 
helpful  suggestions. 

REFERENCES 

[l] J. J. Y. Huang  and P. M. Schultheiss, “Block  quantization of cor- 
related  Gaussian  random variables,” IEEE Trans.  Commun. Syst., 
vol.  CS-11,  pp.  289-296,  Sep.  1963. 

[2] C .  E.  Shannon,  “Coding  theorems for a discrete  source with a fidelity 
criterion,” in IRE Nut. Conv.  Rec., pt. 4, 1959, pp.  142-163. 

[3] L. D. Davisson,  “Rate-distortion  theory  and application,” Proc. 

[4] A. Segall, “Bit allocation  and  encoding  for  vector sources,” IEEE 

[5] A. K. Jain, “Image  data  compression: A review,” Proc. IEEE, vol. 

[6]  B. Fox, “Discrete  optimization via  marginal analysis,” Manage. Sci., 

IEEE, V O ~ .  6 0 ,  pp.  800-808,  July  1972. 

Trans. Inform. Theory, vol. IT-22, pp.  162-169,  Mar. 1976. 

69, pp.  349-389,  Mar.  1981. 

V O ~ .  13, pp.  201-216, NOV. 1966. 

[7] R. C. Reininger  and J. D. Gibson, “Distribution of  the two-dimen- 
sional DCT  coefficients for images,” IEEE Trans.  Commun., vol. 
COM-31,  pp.  835-839,  June 1983. 

[8] Y. Shoham  and A. Gersho,  “Efficient  codebook  allocatio for an ar- 
bitrary  set of vector quantization,” in Proc. ICASSP’85, Mar. 1985, 

[9] Y. Linde, A. Buzo,  and  R. M. Gray, “An  algorithm for vector  quan- 
tizer design,” IEEE Trans.  Commun., vol. COM-28,  pp. 84-95, Jan. 
1980. 

[lo] P. A. Wintz,  “Transform  picture coding,” Proc. IEEE, vol. 60, pp. 

pp.  1696-1699. 

809-820,  July 1972. 

Representation of Images  Through  Group-Delay 
Functions 

B. YEGNANARAYANA AND ARVIND  RAGHUNATHAN 

Abstract-In this  correspondence we propose a new representation 
for images through the use of group-delay functions. We provide al- 
gorithms for  the computation of the group-delay functions and  for the 
recovery of images from them. We  give several examples to show that 
most of the perceptually significant information of an image is retained 
in  this  representation. We derive  the minimum phase equivalent im- 
ages from the  Fourier  transform (FT) magnitude, as well as from  the 
phase through their respective group-delay functions. We compare 
these images to those obtained  through  iterative  reconstruction  from 
the FT magnitude and phase, respectively. 

I. INTRODUCTION 
The  most  common  way of representing  an  image  is  in  the  spatial 

domain  as a two-dimensional  array of positive  numbers, repre- 
senting gray levels  of  pixels.  An  image  is  also  represented  in  the 
frequency  domain  as  the  Fourier  transform of the  pixels [l]. The 
Fourier  representation  involves  complex  numbers  and,  hence, a 
magnitude  part  and a phase  part.  Most  processing  methods  involve 
manipulating  the  data  in  one of the representations.  For  example, 
in spectral  estimation [2], we  model  the  magnitude  spectrum  using 
autoregressive  (AR),  or  autoregressive  moving  average  (ARMA), 
or  moving  average  (MA)  models.  One  common  feature of  many of 
the  earlier  processing  methods  in  the  frequency  domain  is  that they 
tend to  ignore  the  phase.  It  has  recently been shown [3] that a mul- 
tidimensional  signal  can  be  uniquely specified up  to a scale  factor 
by the  phase of the  Fourier  transform  alone  under  centain restric- 
tions. 

These  studies  illustrate  the  relative  importance of the  FT  mag- 
nitude  and  phase of  a signal  under different situations. But it  is 
difficult to  visualize  how  the significant information is embedded 
in  the FT magnitude  and  phase.  More  importantly, it  is  difficult to 
visualize how the  information  in  these  two  components  are  related, 
because  the  magnitude  and  the  phase  are  not  comparable  quantities. 

The  use of  group-delay functions to represent  signals offers  a 
solution  to  the  problem.  Conventionally,  for  one-dimensional  sig- 
nals, groupAdelay is defined as  the  negative  derivative of the  un- 
wrapped phase  function d(o) [4]. However,  one  can define two 
group-delay functions  for a  signal-one derived  from  the  spectral 
magnitude  and  the  other  from  the phase-as shown  in [ 5 ] .  We  de- 
note  these  as r, and rp, respectively.  The  properties of these  func- 
tions  are  discussed  in [5].  Here  we  state  some  properties of these 
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functions  which offer insight  into  the  problem of image reconstruc- 
tion. 

1) For a minimum  phase  signal, rm(w) = rp(w). 
2) For a maximum  phase  signal, r,(w) = -rp(w). 
3) For a  mixed phase  signal, lrm(w) I # 1~Jw)l. 
A  mixed phase  signal  can  be  thought of as a convolution  (in  the 

time  domain) of its minimum  and  maximum  phase  components. 
This  corresponds  to  addition  in  the  group-delay  domain. 

We  develop  the  group-delay  functions  applicable  for  two-di- 
mensional  signals in Section 11, and  discuss  algorithms  for their 
computation  and  for  the recovery  of images  from  them.  We  give 
several  examples of images  (each  32 X 32 pixels) recovered from 
their  group-delay  functions  to  demonstrate  the validity  of this rep- 
resentation.  In  Section I11 we  derive  the  minimum  phase  equivalent 
images  from  spectral  magnitude  and  from  phase  through  their re- 
spective group-delay functions.  We  compare  these  images  to  those 
obtained through  iterative  reconstruction  from  the  Fourier  trans- 
form  magnitude and phase,  respectively. 

11. THEORY OF GROUP-DELAY  FUNCTIONS 
An  image is  a two-dimensional  signal represented as a two-di- 

mensional  sequence  or  numbers x ( n l ,  n,), nl = 0,1,2, . . , 
N ,  - 1,  and n2 = 0, 1 ,  2, . * . , N2 - 1. The  Fourier  transform of 
{x(nl, n2)} is  given by 

N I - 1  N 2 - 1  

where O(w, ,  w2) is the  principal  value of phase  and h ( q ,  w2) is an 
integer  such  that  the  overall  phase  becomes a continuous  function 
of w1 and w,. The  function 

4 ( w I ,  w2) = e(w,, w2) +  NU,, w2) (2) 
is called  the  unwrapped  phase  function. It is  assumed  that IX(wl, 
w2)I # 0 for  all w1 and w,. Consequences of  this assumption will 
be  discussed  later. 

Since  there  are  two  freqeuncy  variables w ,  and w 2 ,  we define 
two  group-delay functions  from  phase  as  follows: 

Although minimum  phase  function in two  dimensions is  not  well 
understood,  we  use  the  term  analogous  to  the one-dimensional case. 
In  particular,  we  call  the  phase  function derived from  the  FT  mag- 
nitude as the  minimum phase  function,  and  the signal  obtained  from 
the  FT  magnitude and the  minimum  phase  function  as  the  minimum 
phase  equivalent signal from  spectral  magnitude.  Let + m i n ( ~ I ,  w2)  
be  the  unique  minimum  phase  function  corresponding  to I X ( w l ,  
w 2 ) I ,  then we define two group-delay functions  from + m i n ( ~ l ,  w 2 )  
as  follows: 

The  term  “unique  minimum  phase  function”  is used here in the 
sense that the cepstral  coefficients { c ( n l ,  n2)} derived from  lnjX(wl, 
w2)  I determine  the  magnitude  and  phase  functions  completely.  We 
now describe  algorithms  to  compute  the  two-dimensional  group- 
delay functions.  The  algorithms  are based on  the  computation of 
the  cepstral coefficients  used  in [6] and [7]. The  algorithm  for the 
computation of rml and rm2 thus  consists of the  following  steps. 

1)  Compute X(w, ,  w2), the  Fourier  transform of (x(nl, n2)>. 
2)  Take  the  inverse  Fourier  transform of lnlX(ol, wz) l  to obtain 

{c(n l ,  n 2 ) } ,  the  cepstral coefficients. Note  that  whenever I X ( w l ,  
w2)1 5 E ,  then IX(wl ,  02)1 is set  equal  to E ,  where E is a small 
positive  quantity. 

3) Form  the  two-dimensional  sequences (nlc(nl, n2)} and 
(n2c(nl ,  n,)} and  make  them  even  symmetric  about  the  origin. 

(a) (b) 
Fig. 1. Image  reconstruction  from  group-delay  functions:  example 1 .  (a) 

Original (32 X 32). (b) Signal  reconstructed  from  group-delay  func- 
tions. 

4) Compute  the  Fourier  transforms of  these two  sequences  to 
obtain r,, and rm2, respectively. 

To  recover  the  spectral  magnitude  from rml and rm2, we  combine 
the  two  sets of cepstral coefficients [7] derived  from r,, and T , ~ ,  
respectively,  and  then  compute  the  Fourier transform  which yields 
the  log  magnitude.  The  steps involved  in the computation  of the 
spectral  magnitude  from rml and rm2 are  as  follows. 

1) Compute {nlcl(nl, n,)} and {n2c2(nl, n,)}, the  inverse  Fou- 
rier  transform of r,] and rm2, respectively. 

2)  Form  the  sequences (cl(nl ,  nz)] and { c2 (n l ,  n2)} and  make 
them  even  symmetric. 

3) Compute the cepstral coefficients as  follows. 
a)  The first  row  of  cepstral  coefficients consists of  those  de- 

rived from rm2 in  steps l)  and 2 ) .  
b) The first column of cepstral coefficients consists of those 

derived from r,, is steps 1) and  2). 
c)  The rest  of the  two-dimensional  array is computed  as  the 

average of the  two  sets of cepstral coefficients. 
4) Take  the  inverse  Fourier  transform of the  cepstral coefficients 

to  get  the  log  magnitude.  Exponentiate it to  obtain  the spectral 
magnitude. 

Computation  of rpl, and 7 is similar  to the  one-dimensional case, 
the  algorithm  for which  is glven in [ 5 ] .  The  algorithm is  based on 
the  following  relations. 

p? 

where Y,  is the  Fourier  transform  on { n l x ( n l ,  n,)] and Y2 is the 
Fourier  transform  of {n2n(nl,  n,)}. The  subscript R stands  for  the 
real part of the  Fourier  transform  and  the  subscript I stands  for  the 
imaginary  part  of the  Fourier  trasnform.  The  average values of the 
group-delays rpl and rp2 give the linear  phase  components in the 
unwrapped phase  function 4(wI, w 2 )  along  the  axes w 1  and w,, re- 
spectively. 

Recovery of phase  from T~~ and rp2 is similar  to  the  algorithm 
given  above  for recovering the  log  magnitude,  with  the difference 
that we make  the  cepstral coefficients derived  from  the group-delay 
functions odd symmetric  about  the  origin.  Linear  phase  terms  have 
to  be  added  along  the  two  axes to recover  the  phase  from  the  group- 
delay functions. 

Fig.  l(a)  shows a picture,  and  Fig.  l(b)  shows  the image  recon- 
structed  from  the group-delay functions  derived  from  the original 
picture.  We notice that  the  reconstructed  image looks almost  like 
the  original.  Figs. 2 and 3 show  the original and  the reconstructed 
images  for  two  other  pictures.  These  examples  demonstrate  that  the 
group-delay  representation  is adequate  for a wide variety of pic- 
tures,  despite  the  problems in computing  the group-delay functions 
for real signals  due  to very  small values of 1x1 at some frequency 
points. 

111. MINIMUM  PHASE  EQUIVALENT IMAGES 
We  propose in this section noniterative  algorithms  for  the recon- 

struction of the  minimum  phase  equivalent  images from spectral 
magnitude  or  phase. 
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(a) (b) 

Fig. 2. Image  reconstruction  from  group-delay  functions:  example 2. (a) 
Original (32 X 32). (b) Signal  reconstructed  from  group-delay  func- 
tions. 

(a) (h) 
Fig. 3 .  Image  reconstruction  from  group-delay  functions:  example 3. (a) 

Original (32 X 32). (b) Signal  reconstructed  from  group-delay  func- 
tions. 

(a) (h) (c) 

Fig. 4.  Image  reconstruction  from  FT  magnitude. (a) Original. (h) Mini- 
mum  phase equivalent  image  from FT magnitude. (b) Iterative image 
reconstruction  from FT magnitude. 

The  proposed  algorithm is as  follows. 
1) Compute  the  group-delay  functions  from  the  spectral  mag- 

nitude or  phase  as  the  case may be. 
2) Set  the  group-delay  functions  from  phase  and  magnitude 

equal.  That  is, r,, = rpl and rm2 = TP2.  

3) Recover  the  phase  and  spectral  magnitude by the  algorithm 
described in the  previous  section. 

4) Perform  an  inverse  Fourier  transform  operation  to  recon- 
struct  the  image. 

In Fig. 4(a)  we  show a picture,  and  in  Fig. 4(b) the  minimum 
phase  equivalent  image  reconstructed  from  the  spectral  magnitude 
along  for  this  picture. A confusing  picture  is  obtained,  demonstrat- 
ing that  the  minimum  phase  equivalent  signal  derived  from  the 
spectral magnitude  alone  does  not  contain sufficient information of 
the  picture.  Similar  conclusion  can  be  drawn  from  the  image re- 
constructed  iteratively from  the spectral magnitude  as  shown  in  Fig. 
4(c)  [3].  In  Fig.  5(a)  we  show  another  picture  which  approximates 
a'minimum  phase  signal,  and in Fig. 5(b) we  show  the  image re- 

constructed from  the  spectral  magnitude  alone.  It  looks  almost  like 
the  original,  showing  that,  for  minimum  phase  signals  (Le.,  when 
most of the signal energy  is  concentrated  near  the  origin),  the  spec- 
tral magnitude  contains  most of the significant information.  Fig. 6 
shows  the  original  picture,  the  minimum  phase  equivalent  image 
reconstructed from  phase  alone,  and  the  image  reconstructed  iter- 
atively from  phase  alone by the  algorithm  described in [3].  Note 
that  the  latter  two  are  not  identical  as  discussed in [5] for  the  one- 
dimensional  case.  Fig.  6(b)  and  Fig.  4(b)  also  show  that  for  some 
pictures  important  features of the  original  picture  are retained  in 
the  minimum  phase  equivalent  image  derived  from  phase, but  not 
in  the  image derived from  the  spectral  magnitude. 

IV. CONCLUSIONS 
In  this  correspondence  we  have  proposed a new  representation 

for  images  through  group-delay  functions.  This  representation  does 
not involve  loss of significant information.  Our  results  also  show 
the  importance of phase in images.  There  are  several  computational 
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(a) (b) 
Fig. 5 .  Image  reconstruction  from FT magnitude:  approximate  minimum 

phase  signal.  (a)  Original.  (b)  Minimum  phase  equivalent  image  from 
FT magnitude. 

(a) (b) (C) 

Fig.  6.  Image  reconstruction  from  FT  phase. (a) Original. (b) Minimum 
phase  equivalent  image  from  FT  phase. (c) Iterative  image  reconstruc- 
tion  from  FT  phase. 

issues which have not  been specifically addressed  here.  In partic- 
ular,  we  do not have a good method  of handling  the  cases  where 
the signal spectrum is  nearly zero  at  some  frequencies. 

The  advantage of the group-delay representation is  that it  allows 
manipulation  of the information contained in phase.  We  are  cur- 
rently exploring  the  possibility of using  this method of phase  pro- 
cessing for image  reconstruction,  enhancement,  and  restoration. 

REFERENCES 

111 A.  Rosenfeld  and A. C. Kak, Digital  Picture  Processing, vol. 1. New 

[2] S .  M. Kay  and S .  D. Maple ,  “Spectrum  analysis-A  modern  perspec- 
York:  Academic,  1982. 

tive,”  Proc. IEEE, vol. 69,  pp.  1380-1418, Nov. 1981. 

[3] M. H.  Hayes,  “The  reconstruction  of  a  multidimensional  sequence 
from  phase or  magnitude  of  its  Fourier  transform,” IEEE  Trans. 
Acoust.,  Speech,  Signal  Processing, vol.  ASSP-30,  pp.  140-154, 
Apr.  1982. 

[4] A. V. Oppenheim  and R. W. Schafer, Digital  Signul  Process- 
ing. Englewood-Cliffs,  NJ:  Prentice-Hall,  1975,  ch. 10. 

[SI B. Yegnanarayana, D. K.  Saikia,  and T.  R.  Krishnan,  “Significance 
of group-delay  functions in signal  reconstruction  from  spectral  mag- 
nitude or  phase,” IEEE  Trans.  Acoust.,  Speech,  Signal  Processing, 
vol. ASSP-32,  pp.  610-623,  June  1984. 

[6] B. Bhanu,  “Computation of two-dimensional  complex  cepstrum,” in 
Proc.  IEEE  Int. ConJ Acoust.,  Speech,  Signal  Processing, vol. 3, 
1982,pp. 140-143. 

[7]  D. E. Dugeon,  “The  computation  of  two-dimensional  cepstrum,” 
IEEE  Trans.  Acoust.,  Speech,  Signal  Processing, vol.  ASSP-25,  pp. 
476-484,  Dec.  1977. 


