
610 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND  SIGNAL PROCESSING, VOL. ASSP-32, NO. 3, JUNE 1984 

Significance  of  Group  Delay  Functions in 
Signal  Reconstruction  from  Spectral 

Magnitude  or  Phase 
B. YEGNANARAYANA, D. K. SAIKIA, AND T. R. KRISHNAN 

Abstract-In  this  paper we discuss  the  problem of signal reconstruc- 
tion  from  spectral  magnitude  or  phase using group delay  functions. We 
define  two  separate  group  delay  functions  for  a  signal,  one  is  derived 
from  the  magnitude  and  the  other  from  the phase of the  Fourier  trans- 
form  of  the signal. The  group delay functions  offer  insight  into  the 
problem of signal reconstruction  and  suggest  methods  for  reconstruct- 
ing  signals from  partial  information  such as spectral  magnitude  or phase. 
We examine  the  problem of  signal reconstruction  from  spectral  magni- 
tude or phase o n  the basis of these  two  group  delay  functions  and  de- 
rive the  conditions  for signal reconstruction. Based on  existing  iterative 
and  nonilerative  algorithms  for signal reconstruction, we propose  new 
algorithms  for  some special classes of signals. The  algorithms  are illus- 
trated  with  several  examples. Our study shows that  the relative impor- 
tance of spectral  magnitude  and  phase  depends  on  the  nature of signals. 
Speech signals are used to illustrate  the  importance of spectral  magni- 
tude  and  picture signals are  used to illustrate  the  importance  of  phase  in 
signal reconstruction  problems. Using the  group delay  functions, we 
explain  the convergence behavior of the  existing  iterative  algorithms  for 
signal reconstruction. 

I. INTRODUCTION 

I N  general the  Fourier  transform  representation  of  a signal is 
complete  only  when  both  the spectral  magnitude  and  phase 

are  specified.  However,  there  are  certain  conditions under 
which  a signal can  be completely  specified  (to  within  a  time 
shift)  by  the  magnitude  of  its  Fourier  transform,  or  (to within 
a scale factor)  by  the phase of  its  Fourier  transform [l]  , [2] . 
The  objective of this  paper is to illustrate  these  conditions  for 
signal reconstruction  through  group  delay  functions of a sig- 
nal. Viewing the  problem of signal reconstruction  from  this 
angle  suggests algorithms  for  implementing  the  reconstruction 
as well. The  key  ideas  used  in  our  development are i)  the rela- 
tion  between  the  cepstral  coefficients  and  the  group  delay 
functions  of  a signal, ii) group  delay functions derived  sepa- 
rately from  the spectral  magnitude  and  phase of a signal, and 
iii) the  relation  between these group  delay  functions  for  cer- 
tain  types  of signals. 

Iterative  techniques have  been developed  recently for recon- 
struction  of  a signal from  its spectral  magnitude  or phase when 
the signal satisfies certain  conditions [ l ]  , [2].  The  unknown 
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phase (or  magnitude) is retrieved  gradually  by  imposing appro- 
priate  conditions  in  the  time  domain,  and  the  known magni- 
tude (or  phase) in the  frequency  domain  in successive itera- 
tions.  This  technique  has  been extended  to  the  reconstruction 
of a  two-dimensional  picture signal from  its phase [ 11 , [3] . 
The  results  of  these and  other  studies along  these lines have 
been  used to justify  the  importance of phase  information  in 
signals [4] . 

In  the above  studies, the  conditions  for signal reconstruction 
were  derived  in terms of the z transform of the signal. In this 
paper,  these  conditions  are rederived  using group delay func- 
tions  obtained separately  from  spectral  magnitude  and phase 
functions.  The  duality in the  conditions  for signal reconstruc- 
tion  from  spectral  magnitude  and phase  is brought  forth using 
these  group  delay functions which  play  a  unifying role for  the 
two  reconstruction problems. We also  develop noniterative 
algorithms  and  a  combination  of  iterative  and  noniterative 
algorithms for signal reconstruction  under  a  variety of condi- 
tions. We show  that spectral  magnitude  and phase  have differ- 
ent roles to play and  that  their relative importance in signal 
reconstruction  depends  on  the  nature of the signal. For some 
signals it is the  magnitude  that is important for signal recon- 
struction,  and  for some other signals it is the phase that is im- 
portant.  For some special types  of signals we require  partial 
information  about  both  the  magnitude  and  phase,  and  for  a 
general signal, of course, we require both  the spectral magni- 
tude  and phase for  reconstructing  the signal. 

The  organization of the paper is as follows. In Section I1 we 
state  the  problem  of signal reconstruction. With a view to 
make  this  paper  reasonably self contained, we introduce  in  this 
section the necessary terminology in signal processing  relevant 
to this  paper. In Section 111 the  conditions  for signal recon- 
struction  are discussed  in terms of group delay functions.  The 
algorithms for signal reconstruction  are described in Section 
IV. Some  applications of  these algorithms to practical signals 
and  their  consequences are  discussed in Section V. An expla- 
nation  of  the  process of  convergence in the existing  iterative 
reconstruction  algorithms is discussed in  Section VI. 

Throughout  this  paper,  the  terms  “magnitude”  and  “phase” 
refer,  respectively, to  the magnitude  and phase  of the  Fourier 
transform of the signal. Likewise, the  terms  “poles”  and 
“zeros” refer to the  poles and zeros,  respectively, of  the z 
transform of the signal sequence,  and  the  term  “unit  circle” re- 
fers to the  unit circle in the z plane. 
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11. PROBLEM OF SIGNAL  RECONSTRUCTION AND under  which the signal {x(n)} can be reconstructed  and  obtain 
RELATED  TERMINOLOGY algorithms for  reconstructing  the signal. 

A. The Problem of Signal Reconstruction from 
Spectral Magnitude or Phase 

Let {x(n)} be  a  discrete time signal obtained  by sampling a 
continuous  time signal x(t). Further,  let {x(n)} be  of  finite 
duration, i.e., x(n)  = 0 outside  the  interval 0 < n <N - 1. The 
process  of  sampling, truncation,  and  quantization,  performed 
in order to  render the signal amenable for digital  processing, 
involves some loss of  information  about  the signal. 

Let X(z )  be the  z-transform of {x(n)}. Then 

X(z)  = x(n) z - ~ .  
N -  1 

n = O  

Restricting the z transform  of  the sequence {x(n)} to be a 
rational  function  yields  a  compact  representation  with  fewer 
coefficients, but  this results in  further loss of information. We 
can express X(z )  in the  form 

where A is a  real constant, no is an  integer,  and D(z) and N(z) 
are polynomials in z - l .  The  roots  of  the  polynomials D(z) and 
N(z) are  respectively the poles  and  zeros of X(z) .  The  factor 

represents  a  shift of no samples in  the  time  domain  and 
contributes a  linear  phase component  to  the phase function. 
Thus  the  pole  zero  locations  of X ( z )  in the z plane  specify 
{x(.)} to within  a  time  shift  and  a scale factor. 

The  frequency  response X(eiW) of {x(n)] is its z transform 
evaluated on  the  unit circle. That is 

Z-no 

and  it can be represented  by  its  magnitude  and phase as 

X(ejw) = J ~ ( w )  I (4) 

where IX(w)l represents  the  magnitude  of X(eiw) and 6(w) is 
its  argument. In digital processing we deal only  with samples 
of the  frequency  response  specified at discrete  frequencies. 
That is 

X(k )=X(e iW) Iw=2nk ,M,   k=O, I ; . . ,M-  1 .  ( 5 )  

Sampling X(eiw) results  in  some loss of  information  due to 
aliasing in  the  time  domain. 

In the following discussion we assume that sampling  in  the 
time and  frequency  domains is done at  sufficiently close inter- 
vals so that {x(n)} can be accurately  obtained  from {X(k)}  
and vice  versa, i.e., there is no aliasing in either  domain. 
Throughout  this  paper, we  use the  function X ( o )  and X ( e i w )  
interchangeably,  and we  use the  function X(k)  to refer to  the 
sampled version of X(w). Likewise, for  any  other  function  of 
frequency  such  as ~ ( w ) ,  the  notation ~ ( k )  refers to  its sampled 

B. Terminology 
I )  Causulity: A signal {x(n)} is said to be causal if x(n) = 0 

2)  Unwrapped  Phase Function: The  frequency  response  of  a 
for all negative  values of n. 

signal {x(n)} can  be  represented as 
~ ( 0 )  = Ix(w)/ eile(m)+ 2nh(w)J (6)  

where - x  < 6 ( o )  < n, and h(o )  is an  integer  such that [ 6 ( o )  + 
2nh(o)] is a continuous  function of w. Then 6 ( o )  is  called 
the principal  phase value or  the  wrapped phase function  and 
[6(w) + 2nX(o)] is called the unwrapped  phase  function. 

3)  Zero Phase  Signal: The inverse Fourier  transform of 
IX(o)l gives a  zero  phase signal. 

4)  All-Pass  Signal: The inverse Fourier  transform of 
gives an all-pass signal. 

5)  Minimum Phase  Signal: In (2),  if no = 0 and if all the 
roots  of N(z) and D(z) of X(z) are  inside  the unit circle, then 
{x(.)} is  said to be  a  minimum  phase signal. 

6) Maximum Phase  Signal: For a given no in (2) ,  if all the 
poles and  zeros  of X(z )  lie outside  the  unit  circle,  then {x(n)}  
i s  said to be a  maximum  phase signal. 

7) Mixed Phase  Signal: For a given no in (2), if the  poles 
and  zeros  of X(z)  lie both inside and  outside  the  unit  circle, 
then {x(n)} is  said to be a  mixed phase signal. 

8) Minimurn  Phase Equivalent Signals: 
a )  From  Magnitude: For a given IX(w)l of {x(n)}, there 

exists  a  unique  phase function $(w) such  that  the inverse Fou- 
rier transform  of / X ( o ) l  e i @ ( w )  is a  minimum  phase signal, 
say {y(n)}. The signal {y(n)}  is called the  minimum  phase 
equivalent of {x(n)} derived from  the  magnitude.  The  poles 
(zeros) of {xbn)} outside  the  unit circle are  reflected as poles 
(zeros) at conjugate  reciprocal  locations in {y(n)}. 

b) From Phase: Let  6(w).be  the  phase  function  of {x(n)} 
in  which the linear phase component is removed.  Then  there 
exists  a uniq,ue magnitude  function I Y(w)I such  that  the  in- 
verse Fourier  transform of \ Y(o)I eie(w)  is a  minimum  phase 
signal, say {y(n)}.  The signal {y(n)} is  called the  minimum 
phase equivalent of {x(n)}  obtained  from  the  phase.  The 
poles (zeros) of {x(n)} outside  the  unit circle are reflected as 
zeros  (poles) at conjugate  reciprocal  locations in {y(n)}. 

C. Relationship  Between  Spectral  Magnitude and 
Phase of a Minimum  (or  Maximum) Phase  Signal 
Through Cepstral Coefficients 

{u(n)} be represented as 
Let the  Fourier  transform V(w) of a minimum  phase signal 

V(w) = I V ( 4 l  e ie,(w) (7) 

Then we can  show  that [SI 

version. 
The  problem  in signal reconstruction is the following. Given 

the samples  of the  spectral  magnitude IX(k)l or  the samples  of 

m 

In I v (w> I  = c(0)/2 + c(n) cos nw 
n=1 

the phase 6(k) of  a signal, one  must  determine the conditions  and  the  unwrapped phase function 
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m 

e(w) = e&) + 2nX(o) = - c(n) sin n o  (9) 

where {c(n)}  are the cepstral  coefficients. A detailed discus- 
sion on  the cepstrum  and  its  properties  can  be  found  in [6] . 
Taking the derivative of (9) with  respect to o, we get 

n=1 

m 

e'(U) = - nc(n) cos n o .  (10) 

From (8) and (9) we note  that  for a  minimum phase signal, the 
spectral  magnitude  and  phase are related through  the cepstral 
coefficients.  Further,  the  group  delay  function T ( O )  (= -e ' (o) )  
can  be obtained directly from  the cepstral  coefficients using 
(10). For a  maximum  phase signal (8) is still  valid, but (9) and 
(10) are modified as follows: 

n=1  

m 

e(w) = e&) + 2 n ~ ( o )  = c(n) sin n o  (1 1) 
n=1  

#(a) = nc(n) cos n o .  
m 

(1 2) 
n=1  

For  mixed phase signals we do  not have relations  of the  form 
(7)-(10)  involving a single set of cepstral  coefficients. We de- 
fine two sets of cepstral  coefficients {cl(n)} and {c2(n)}  for 
magnitude  and  phase  functions  separately as follows: 

In I x ( o ) ~  =c1(0)/2 + c l (n )  cos n o  (1 3) 
m 

n=1  

and 

B,(o) + 2nX(w) = - c2(n)  sin n o  
m 

(14) 
n=1 

where (cl (n)} and {c2(n)}  are the cepstral  coefficients  of  the 
minimum phase equivalent signals derived from  the  spectral 
magnitude  and  phase,  respectively. 

D. Group Delay Functions 
Using (10) we can define 

m 

T ,  (a) = nc (n )  cos n o  (15) 
n = 1  

as the  group delay function derived from  the  magnitude 
IX(o>l and 

m 

.,(a) = ncz(n) cos n o  (1 6 )  

as the  group delay function derived from  the phase e,(w). It 
may be noted  that T,(o) and ~ ~ ( 0 )  are  same as the  group de- 
lay  functions (in the sense usually  defined  in  literature)  of the 
two  minimum phase equivalent signals, one derived from  the 
magnitude  and  the  other  from  phase, respectively.  Moreover, 
T,(w) is the usual group delay function  of  the original signal. 
For a  minimum phase  signal {x(n)} ,  T,(o) = T,(w), and  for a 
maximum  phase signal, T,(w) = -T,(w). 

i Z = 1  

The  methods to compute T ,  ( k )  and ~ , ( k )  using an  N-point 

Computation of T,(k): 
DFT are summarized  below [7].  

i) Let IX(k) I, k = 0 ,  1 ,  * * N - 1 be the given spectral 

ii) Obtain {c(n)) through  the inverse DFT of  (In I X(k)l}. 
iii) Form  the sequence {g(n)}, where 

magnitude samples. 

g(0) = 0 

g(n> = nc(n>, n = 1 , 2 ; . . , N / 2  

g ( n ) = g ( N - n ) ,  n = N / 2 + l , N / 2 + 2 , . . . , N -  1. 

iv) Obtain { T ,  ( k ) )  through  DFT of {g(n)}. 
Computation of Tp(k): 

i) Obtain  an all-pass sequence {g(n)} from  the given 
phasesamplesB(k),k=O, l , . * - , N -  1. 

ii) Form  the sequence {h(n)}, where 

h(0) = 0 

h(n) = ng(n), n = O , l ; . * , N / 2  

h ( n ) = ( n - N ) g ( n ) ,  n = N / 2 + 1 , N / 2 + 2 ; .  

iii) Let  the  DFT's of {g(n)} and [h(n)] be 
{H(k)}, respectively. 

G(k)=G,(k)+jGz(k) ,  k = 0 ,  l ; . . , N -  1. 

H(k)=H, (k )+jHz(k ) ,  k = 0 ,  1;'. , N -  1. 

Then 

T,(k)=Gl(k)H,(k)+Gz(k)Hz(k) ,  k = O , l , . . . , N -  1. 

E. Characteristics of r,(o) and T,(o) 

In this  section, we discuss the characteristics of T,(w) and 
T,(o) and  their  interrelationships  for  different  types  of sig- 
nals. The  mean value  of T,(LJ) corresponds to the logarithm 
of the  constant scale factor in the  magnitude  function  and  the 
mean value  of T,(w) corresponds to  the slope of the  linear 
phase component  in  the phase function.  In  the following dis- 
cussion  we  assume that  both T ,  (w) and T ~ ( c ~ )  have zero  mean 
values. 

1) Minimum Phase  Signals: In Fig. 1 the  group delay func- 
tions T,(o) and T,(w) for three  different cases of minimum 
phase signals are  shown.  For  these cases T,(w) = T,(w). 

2)  Maximum Phase  Signals: For a  maximum phase signal, 
the  magnitude  and phase functions are  related in  such  a way 
that T,(w) = - ~ ~ ( o ) .  Also, T,(w) for a  maximum phase  sig- 
nal  is the same  as that for  the  corresponding  minimum phase  sig- 
nal. From a  maximum  phase signal, the corresponding  mini- 
mum phase signal can  be  derived by simply shifting the poles 
and  zeros  outside the  unit circle to their  conjugate  reciprocal 
locations inside the circle. Hence, T,(w) for  a  maximum 
phase signal exhibits  the same  behavior as  shown  in Fig. 1. 

3) Mixed Phase  Signals: A mixed  phase signal can  be thought 
of as a  convolution (in the time  domain) of its  minimum  and 
maximum phase components. Since convolution in the time 
domain is equivalent to addition  in  the  group  delay  domain, 
the  group  delay  functions of a  mixed phase signal can  be visu- 
alized as superposition  of  the  group  delay  functions of its  min- 
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t 

Polr 

f 

(b) (C) 

Fig, 1.  Group delay functions T,(w) and T ~ ( w )  for minimum phase 
signals.  (a) Signal has a real zero (or pole) at w = 0. (b) Signal has a 
real zero (or pole) at w = n. (c) Signal  has a complex zero pair (or 
pole pair) at w = wg. 

imum  phase and  maximum  phase  components.  The  character- 
istics of ~ ~ ( 0 )  and rP(w) for  various cases are  shown in Fig. 2. 

111. CONDITIONS FOR SIGNAL RECONSTRUCTION 

The problem of signal reconstruction  from  the  spectral mag- 
nitude  or  phase  can be examined on  the basis of the  character- 
istics  of  the  group  delay  functions r, (0) and rp(w) illustrated 
in Section 11. It  can be observed from Fig. 2 that, using rm(w) 
alone, we cannot  differentiate between  a  pole  (zero) inside the 
unit  circle and  a pole  (zero) at  a conjugate  reciprocal  location 
outside  the unit circle in the z plane.  Likewise, using rP(0 )  
alone, we cannot  differentiate between  a  pole  (zero) inside the 
unit  circle and  a  zero (pole) at conjugate  reciprocal  location 
outside  the unit circle.  These  ambiguities  are resolved when 
we are given both r,(o) and rp(w), which is equivalent to 
saying that  the  spectral magnitude  and  phase  together  specify 
the signal uniquely. 

Since r, (a) and r p ( o )  are  equivalent  representations  of  the 
spectral  magnitude and phase  respectively, the  conditions 
under  which a signal can be reconstructed  from  magnitude  (or 
phase)  can be stated in terms of the  conditions  under  which 
the signal is uniquely  specified  by r, (0) or rp(o).  In  the  fol- 
lowing  discussion we assume that  the signals have no poles or 
zeros on  the unit  circle  in the z plane. Further, we consider 
only  those signals for  which  the  linear  phase component has 
been  removed from  the phase function. Whenever a signal is 
reconstructed  from  phase  it is understood  that  the  reconstruc- 
tion is correct to  within  a scale factor. 

The  conditions  for signal reconstruction  are discussed below 
with  reference to  the  illustrations given in  Table I. 

I )  Minimum Phase Condition: The  condition  that all the 
poles  and  zeros  of  a signal are located inside the  unit circle  en- 
ables  us to  resolve the  ambiguities  discussed  earlier  for rm(w) 
and rp(o) .  Further, 7,(w) specifies r p ( o )  uniquely and vice 
versa since both are equal.  Hence,  a  minimum  phase signal can 
be reconstructed  completely  from  its  spectral  magnitude  or 
phase. 

2) Maximum Phase Condition: The  condition  that all the 
poles and  zeros  of  a signal are  located  outside  the  unit  circle 
enables us to specify the signal uniquely using r,(w) or ~~(0). 
Further, r,(w) specifies T ~ ( w )  uniquely  and vice versa, since 
rp(o)  = -r,(w). Hence, a maximum  phase signal can be re- 
constructed  completely  from  its  spectral  magnitude  or  phase. 
3) Mixed Phase  Signal with Poles Located  Inside  the Unit 

Circle  and Zeros  Located  Outside  the Unit Circle: Since  all  the 
poles  of  the signal are  constrained to be inside  the  unit  circle 
and all its  zeros  outside, rm(w) specifies the signal uniquely, 
provided  there  are no pole  zero  pairs  occurring  at  conjugate  re- 
ciprocal  locations.  This  last  condition is essential  because  a 
complex  conjugate  pole  pair and  a complex  conjugate  zero 
pair at reciprocal  locations  together give  rise to a T,(o) which 
is zero at all frequencies, as seen  in Fig. 2(g). The  conditions 
stated  here  are  the same as  those given in [ 1 ,  Theorem 71 . Sig- 
nals  satisfying  these  conditions cannot be reconstructed  from 
the phase  because rp(o)  cannot  differentiate  between  a  zero 
pair  outside  the unit circle  and  a  pole  pair  inside the  unit cir- 
cle,  occurring at reciprocal  locations. 

4)  Mixed Phase  Signal with Poles Located  Outside the  Unit 
Circle  and Zeros  Located  Inside  the Unit Circle: For  reasons 
analogous to those discussed in 3), this signal can be recon- 
structed  from  its  spectral  magnitude  provided  there are no 
pole  zero  pairs  occurring at conjugate  reciprocal  locations [ 1, 
Theorem 81. 

5)  All-Zero  Mixed Phase Signals: Since from r, (0) we can- 
not  distinguish  between a zero  pair inside and  outside  the  unit 
circle, we cannot  reconstruct an  all-zero mixed phase signal 
from  its  spectral  magnitude  alone.  Such  an  amgibuity  does 
not arise in rp (o ) ,  and hence we can  reconstruct  this signal 
from  its  phase,  provided  there are no  complex conjugate  zeros 
occurring at reciprocal  locations.  The latter  condition  ensures 
that  no cancellation  occurs  in rp(w) as  in  Fig. 2(e) [ l ,  Theo- 
rems 1 , 3 ,  51 . 

6)  All-Pole  Mixed Phase  Signal: For  reasons  similar to those 
discussed in S), these signals cannot be reconstructed  from  the 
spectral  magnitude.  However, if there  are  no complex  conju- 
gate  pole  pairs  occurring at reciprocal  locations, we can  recon- 
struct  these signals from  the phase [ 1, Theorems 2 ,4 ,6]  . 

7) Mixed Phase  Signals with All Poles (Zeros)  at Conjugate 
Reciprocal  Locations: These signals can be reconstructed  from 
the  spectral  magnitude  alone,  making use of the  fact that 
~ ~ ( 0 )  = 0 [Fig. 2(e) and 2(f)] . 

8) Mixed Phase  Signals with Pole Zero Pairs  Occurring at 
Conjugate  Reciprocal Locations: These signals can be recon- 
structed  from  the phase alone,  making use of  the  fact that 
rm(w) = 0 [Fig. 2(g) and  2(h)] . 

Examples of group delay functions  for cases 1)  to 8) are 
shown in Table I. 

In  all the cases .discussed so far, we have considered  only sig- 
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acation  of poles  Group-delay  from 
nd zeros Spectral  magnitude 

z, lo) 

a) Complex  conjugate 
pole pair  inside 
the  unit circlm 

b) Complex  conjugate 
pole pair outside 
the  unit  circle 

~~ 

c)  Complex  conjugate 

the  unit  circle 
zero pair  inside 

d)  Complex  conjugate 

the  unit  circle 
zero pair  outside 

e) Two complex  conjugc 
ate zero pairs at 

reciprocal  location\ T m p ~ z  
f j TWO complex  conjug- 

ate  pole  pairs  at 
reciprocal  locations r,,, 

0 

g) A complex  conjugate 
pole pair  inside  the 
unit circle  and  a 

zero pair at the 
reciprocal  locations 

h) A complex  con’ugate 
zero pair  inside  the 
unit circle and a 
complex  conjugate 
pole pair at the 
reciprocal  locations 

;roup-delay from  phase 

zp (0) 

Fig. 2. Group delay functions -rm(w) and ~ ~ ( w )  for  different types of  signals. 

nals  whose poles or zeros  occur  in  complex  conjugate  pairs. 
However, the arguments  are  equally valid  even for  those signals 
which have zeros (poles) occurring on  the real axis. Further, 
the  conditions  for signal reconstruction are independent of the 
multiplicity of poles  or  zeros at a given location. 

IV. ALGORITHMS FOR SIGNAL RECONSTRUCTION 
A .  Review of Existing  Algorithms 

1) Iterative  Algorithms for Minimum Phase  Signals r2J: 
These algorithms involve repeated  transformation  between 
time and  frequency  domains,  with  the  known  constraints  im- 
posed  in each iteration. 

Let (x(n)}  be the  minimum phase signal to be reconstructed 
from  its magnitude  (phase) function,  and let (x j (n)> be its 
estimate at the i th iteration. In the  frequency  domain  the 
magnitude (phase) function  of ( x j (n ) }  is  replaced  by the given 
magnitude  (phase)  function.  The  causality  condition is im- 
posed in the  time  domain  to  obtain  the ( i  -t 1)th estimate. 
The  causality  condition implies setting  the points  outside  the 
interval 0 < n < N/2 to  zero,  where, N is the  number  of  points 
used for  DFT. Figs. 3 and 4 illustrate the algorithms  for signal 

reconstruction  from  magnitude  and phase  functions,  respec- 
tively. The signal used  at  the start  of  the  iterations is  usually a 
zero phase signal in Fig. 3 and  an all-pass signal in Fig. 4. 

For. nonminimum phase signals, these iterative  algorithms 
build up the. respective minimum phase equivalent signals. 

2) Iterative  Algorithm for Reconstruction of  a Finite Dura- 
tion  Mixed Phase  Signal from Phase Function 111 : This algo- 
rithm is identical to  the one  described in Fig. 4, except  that  in- 
stead  of  imposing the causality  constraint,  the  known  finite 
duration  constraint is imposed.  Thus, in the time  domain, if it 
is known  that  the original signal is confined to  the interval 0 < 
n <M - 1, the  points  outside  this  interval are set to zero as 
illustrated  in Fig. 5. Here the finite  duration  condition implies 
that  the signal can  be represented using  an all-zero  model. 
Thus, it comes  under  the  category of signals described in 5) in 
Section 111. It is interesting to note  that if  we employ  the  cau- 
sality  constraint as shown in Fig. 4 instead of the  known  finite 
duration, we get  the  minimum phase equivalent signal derived 
from  the phase of  the original signal. 

3) Noniterative  Algorithm for Minimum Phase  Signal Re- 
construction [ 71: These algorithms, described  in [7] , are 
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TABLE I 
TYPES OF SIGNALS RECONSTRUCTABLE WITH PARTIAL INFORMATION WITH ILLUSTRATIVE EXAMPLES 

Addftio?l81 Croup-delay from 
information  spectral magnitude 
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seros  outside 
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&d phase: 

pol08 outside 
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I ' \I 

outside  the 
unit c i r c l e  
with no recipro 
c a l  zero p i r s  

F. Mixed ham: 
poles   ins ide  k 
outside  the 
unit c i r c l e  

C .  Mixed phase: 
reciprocal zero 
pairs  & reciprdrm 
cal   pole  pairs 

H .  Mixed phases 

pole-zero  pairs 

_. 1 

Croup-delay from 
phase 
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,conetructi 
Le fram 
fag& Phasc 
tude 

yes yes 

yes yes 

yea no 

yes no 

no yes 

no yes 
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no yes 

Case A: Poles  at 0.8 exp ( t j 6 0 " ) ;  zeros at 0.866 exp (+ j30"). 
Case B: Poles at  1.25  exp ( t j 60" ) ;  zeros  at 1.155  exp (ij30"). 
Case C: Poles  at 0.8 exp ( t j 60" ) ;  zeros  at 1.155 exp (+ j30"). 
Case D: Poles  at 1.155  exp ( l j 3 0 " ) ;  zeros at 0.8 exp (+j6Oo). 
Case E: Zerosat 0.8 exp ( i j 6 0 " )  and 1.155 exp (+ j30° ) .  
Case F: Poles at 0.8 exp (+j60") and 1.155  exp ( t j 30" ) .  
Case G :  Poles at 0.866 exp (tj30") and 1.155  exp ( + j 3 O o )  and  zeros 

Case H :  Poles at 0.866 exp (tj30") and 1.25  exp ( t j 6 0 " )  and  zeros at 
at 0.8 exp (k j60")  and 1.25 exp ( i j 60" ) .  

1.155  exp ( t j 3 0 " )  and 0.8 exp ( t j 60" ) .  

shown in Figs. 6 and 7. The  reconstruction  from  magnitude cients  through ~ ~ ( k )  first,  and  then  the  magnitude  function 
(Fig. 6) involves computation of the cepstral  coefficients  first, from  the even symmetric  sequence of the  cepstral  coefficients. 
and  then  the phase function  from  the  odd  symmetric sequence It is interesting to  note  that the  first part  of  the  algorithm, 
of the cepstral  coefficients.  From  the given magnitude  and re- namely computation  of cepstral  coefficients, suggests a method 
constructed  phase,  the original minimum phase  signal can be of obtaining  unwrapped phase from  the given principal value 
obtained  through  the inverse DFT. The  reconstruction  from of  the phase function [7]. The  unwrapped  phase is obtained 
the phase  (Fig. 7) involves the  computation of cepstral  coeffi- from  the odd symmetric  sequence of the  cepstral  coefficients 
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1:ig. 3. Iterative algorithm to reconstruct minimum  phase signal from 
its spectral  magnitude  function. 
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Fig. 4. iterative algorithm to reconstruct minimum  phase signal from 
its  phase  function. 

through  DFT.  This phase unwrapping  algorithm  does not re- 
cover the linear  and constant phase components.  The algo- 
rithm is  applicable for  mixed phase signals also. 

From  the discussion  of the existing  algorithms  for signal re- 
construction it is clear that noniterative  techniques given in 
[7] can  be effectively  used for  minimum phase signal recon- 
struction,  and  one need not always resort to the  iterative  tech- 
niques given in [2] .  Iterative  techniques are definitely useful 
for  the  reconstruction  of  finite  duration  mixed phase signals 
from  phase. 

E. Reconstruction  Algorilhnzs for Different Types 
of Sigtzals Listed in Table 1 

Here we develop the algorithms  for signal reconstruction for 
the  different  types  of signals given  in Table I in terms of 
known  iterative  and  noniterative  techniques. In all  these  cases 
we assume that  the  number  of  DFT  points ( N )  is sufficiently 
large, so that aliasing effects  are negligible. In our  illustrative 
examples we have  used IV= 256. 

1) Minimum Phase Sigtzal: The noniterative  algorithms given 
in  Figs. 6 and  7 can  be applied for  reconstruction of minimum 
phase signals from  spectral  magnitude and phase,  respectively. 
For  the  example given for case A in Table I ,  reconstructed sig- 
nals  are the same as the original. 

2)  Maximum Phase Signal: The  noniterative  algorithms 
given in Figs. 6 and 7 can  be  used for maximum phase signals 
with the modification that  the sign  of the phase 8,(k) in Fig. 6 
and the sign  of ~ ~ ( k )  in Fig. 7  should be  reversed to obtain  the 
correct  group  delay  relations. Since in practice signals do  not 
have poles  outside the  unit  circle, we consider an all-zero  maxi- 
mum  phase  sequence  (-1.0, 1.1, 3.79, -5.5, 42.05, -39.6, 
43.56) for  illustration.  In  this case also, the signal recon- 
structed  from  magnitude or phase is the same as the original 
signal. 

3) Mixed Phase  Signal with Poles  Inside  and Zeros  Outside 
the Unit Circle: For  a mixed phase signal with  poles inside and 
zeros  outside  the  unit  circle,  the  procedure  for signal recon- 
struction  from  its  spectral  magnitude  function  is as follows 
(Fig. 8): 

i) Using the  noniterative  algorithm of Fig. 6, obtain  the 
phase  of the  minimum phase equivalent of the original signal 
from  the given spectral  magnitude function. 

ii) Using the above  phase function  and  a  finite  duration 
constraint  in  the  iterative  techniques of Fig. 5, obtain  an all- 
zero signal. It  may be noted  that,  for convenience of applying 
the  finite  duration  constraint,  a  linear  phase  function  should 
be added to  the phase function  obtained  in  step i) so that  the 
all-zero signal is confined to the  interval 0 < 17 < M - 1. The 
value of  time  shift no for this  linear phase  is equal  to the  num- 
ber of  poles in the original  signal. The  duration M is equal to 
the  total  number  of poles  and  zeros  in the original signal, plus 
one. 

iii) Using the magnitude function of this  all-zero signal in 
the  noniterative  technique  of Fig. 6, obtain  the phase function 
8(k)  of its minimum phase equivalent. 

iv) The phase of  the original signal is given  by -B(k). This 
can  be proven as follows. 

In the all-zero signal obtained in step ii), the  poles of the 
original signal have been  reflected as zeros at conjugate recip- 
rocal  locations  outside  the  unit circle. Let ~ ~ , ( k )  and ~ ~ ~ ( k )  
be the  group  delay  functions  obtained  from  the  spectral mag- 
nitudes of the original signal and  from  the all-zero signal ob- 
tained  in  step  ii), respectively. Then  the  maximum phase com- 
ponent of ~, , (k )  (corresponding to  zeros of the original 
signal) is  given  as 

[rm I (k)] max phase = (TmL ( k )  Tm2(k))/2 (17) 

and the  minimum  phase  component of r ,  (k )  (corresponding 
to poles of tKe original signal) is  given  as 

[ T m  1 (k)lmin phase = (Tm1 (k) - (1 8) 
Since the original signal is a convolution  of  its  minimum  and 
maximum phase components,  the  group delay from phase  of 
the original signal is given  by 

T p l  ( k )  = [ T p l  (k)lmin phase (k)l max phase 
- 
- [Tm 1 (k)l min phase - [Tm I (k)l  max phase 

- 7, I ( k )  - T m 2  ( k )  T m  I ( k )  -t Tm2 ( k )  - -- -~ 
2 2 

= -Tm2(k).  (1 9) 
This shows that  the phase  of the original signal and  the phase 
of the  minimum phase equivalent of the all-zero signal are 
equal  and  opposite. 
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Fig. 5. Iterative  algorithm to reconstruct a finite  duration mixed  phase signal from  its phase function. 

G i v e n  Magnitude  Function 

I X  ( k ) I  

I n  I 
I n  IX Ikll 

N - P o i n t   I D F T  

c e  ( n l  

Form the Odd Symmetr ic Sequence C I n )  
c o  1 

coin) = 0 , for n = O  
= c,ln), for O c n c Y  
: -c,tn),for n S N - 1  

2 
2 

c o (   n )  

I I 
I I X l k ) l   e j B x ( k )  1 

1 

N  -Point   DFT 

j e x ( k 1  

X ( k l  

N-Point I D F T  

x In1 

Fig. 6. Noniterative  algorithm to reconstruct a  minimum  phase signal 
from its spectral  magnitude function. 

For  the  example given in case C in Table I, the original  sig- 
nal and  the signal reconstructed  from  its  spectral  magnitude 
using the  above  algorithm were found to be identical.  The 
accuracy  of  reconstruction  through  this  algorithm  depends 
upon  the  accuracy of the iterative  algorithm of Fig. 5. In  our 
example, 100 iterations  were used for  the iterative stage of  the 
algorithm. 

4 )  Mixed Phase  Signal with Poles Outside and Zeros  Inside 
the Unit Circle: Reconstruction  from  spectral  magnitude in 
this case  can  be done  in  exactly  the same manner as in  the  pre- 
vious case, except  that  the phase obtained  in  step iii) itself 
gives the phase  of the original signal. Thus,  the inverse Fourier 
transform of IX(k)l eje@) in Fig. 8 yields the original signal 
{x(n)} .  This is only  a  hypothetical case, since signals with 
poles outside  the  unit circle capnot be  represented  and  han- 
dled  through  DFT. 

5)  Mixed Phase All-Zero Signal: A finite  duration  mixed 
phase signal is an  example  of  this  category.  The signal can be 
reconstructed  from  its phase by the iterative  technique [ l ]  
given in Fig. 5 .  The all-zero signal for case E in  Table I is con- 
sidered  for  illustration.  The  reconstructed signals for  different 
iterations  are  shown  in  Table 11. 

6 )  Mixed Phase All-Pole Signal: Reconstruction of all-pole 
mixed  phase signal from phase can  be done as follows. i) Ob- 
tain  a  new  phase function by changing the sign of  the given 
phase function. ii) Use this phase in  the iterative  algorithm in 
Fig. 5 to obtain  a  spectral  magnitude  function.  The  finite  du- 
ration to be used  in  this case  is the  duration  of  the  convolu- 
tional inverse of  the original signal. iii) The  reciprocal of the 
spectral  magnitude  function gives the  spectral  magnitude  func- 
tion  of  the original signal. 

7) Mixed Phase  Signal with  Conjugate  ReciprocalPole (Zero) 
Pairs: For  this  type  of signal, T ~ ( w )  = 0. Therefore,  the origi- 
nal signal is  the  zero phase signal obtained  from  the given mag- 
nitude  function. 

8)  Mixed Phase  Signal with Conjugate  Reciprocal  Pole-Zero 
Pairs: For  this  type of signal T,(o) = 0. Therefore,  the origi- 
nal signal is the all-pass signal obtained  from  the given phase 
function. 

In  the illustrative  examples for  signal'reconstruction we  have 
considered so far,  the original signal had  poles or zeros  occur- 
ring only in complex  conjugate pairs. However,  the  algorithms 
are applicable even when  the signal has  zeros  or  poles  on  the 
real axis, or if there  are  multiple  poles  or  zeros. Also, the pres- 
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Fig. 8. Algorithm to  reconstruct a  mixed  phase signal (with  poles inside 
and zeros outside  the  unit circle) from  its spectral  magnitude. 

Fig. 7.  Noniterative  algorithm to reconstruct a  minimum  phase signal 
{x(.)} from its phase function. 

ence of more  than  one  pole  or  zero  or  both  at  the same fre- 
quency  does  not impose any  limitation  on  these  algorithms. 
Examples of such signals for which the signal reconstruction 
algorithms were  verified  are  given  below. 

i)  The signal sequence (1, - 1.6, 0.55) is a  mixed  phase 
all-zero sequence  with  two  zeros on the real axis, one  outside 
the  unit circle,  and  one inside the  unit circle, i.e., it  has both 
the  zeros at  the same frequency.  This signal was reconstructed 
from phase  using the iterative  technique given in Fig. 5. 

ii) The signal sequence (1, - 1.6, 1.92, - 1.024,  0.4096) 
which is a  minimum  phase signal having double  zeros at  z = 
0.8 e'i6o" was reconstructed  from  magnitude as well  as from 
phase  using the noniterative  algorithms given in Figs. 6 and 7, 
respectively. 

iii) The signal  having a  pole at z = 0.5 and a  zero  at z = 0.9 
was reconstructed  from  magnitude as well as from phase by 
the  noniterative  algorithms given in  Fig. 6 and 7, respectively. 
This signal has  a  pole and  zero at the  same  frequency. 

V. RECONSTRUCTION OF PRACTICAL SIGNALS 
In the preceding  sections we have  discussed the  theoretical 

basis for signal reconstruction  and  illustrated  the  reconstruc- 
tion  algorithms for some synthetic examples. In this  section 
we consider  application of these  algorithms  for  practical sig- 
nals. In  order to reconstruct  a signal from  magnitude  or  phase, 
one  should have some  knowledge of the  nature of the signal so 
that  appropriate algorithms can  be applied. We consider 
speech signals and  picture signals for  illustration. 

Speech is produced  as  a  result  of  excitation of the vocal tract 
system  by  quasiperiodic  glottal pulses or by  noise excitation or 
a  combination of both.  Therefore it is reasonable to assume 
that speech belongs to  the minimum phase category, i.e., case 
A in  Table I and/or to the mixed phase category, i.e., case C in 
Table I. From a  perceptual  angle,  the  spectral  magnitude  in- 
formation is more important  than  the phase information,  and 
hence  reconstructing  a  speech signal using the  algorithms  cor- 
responding to case A or case C preserves the necessary infor- 
mation  for speech  intelligibility.  Reconstruction  from phase 
alone,  however,  yields  a  magnitude function  that  has peaks at 
the frequencies of zeros  outside  the  unit circle. Thus,  a  zero 
outside  the  unit circle will be represented as a  pole in the mag- 



YEGNANARAYANA et al.: GROUP DELAY IN SIGNAL RECONSTRUCTION 619 

TABLE I1 
ITERATIVE RECONSTRUCTION OF A MIXED PHASE ALL-ZERO SIGNAL 

x ( 0 )  

ORIGINAL SIGNAL 1 .o 

Signal   recons-  
tructed from 

phase a f t e r  

i t e r a t i o n s  -.8537 
0 I 

i t e r a t i o n s  .0227 

i t e r a t i o n s .  5 0 1  .9855 

i t e r a t i o n s  
100 I .9998 

nitude  of  the  reconstructed signal, which is definitely  unaccep- 
table  from  a  perceptual  point  of view.  On the  other  hand,  the 
only  error  that occurs  in  the  reconstruction from spectral mag- 
nitude of a speech signal is that  the phase components corre- 
sponding to the  maximum  phase  zeros  are  changed in sign, 
which may  affect  the  tonal  quality,  but  not  the  intelligibility. 

Fig. 9  shows  cepstrally smoothed log magnitude  and  group 
delay  functions 7,(a) and .,(a) for two consecutive seg- 
ments (each 6.4 ms) of  voiced  speech. It can be seen that  the 
features  of  the  log  magnitude  function  that  exist  in 7, (w) are 
absent  in ~ ~ ( 0 ) .  Specifically, T,(o) has  peaks and valleys 
corresponding to  peaks and valleys of  the log magnitude  func- 
tion, whereas T ~ ( W )  exhibits  peaks  at  some  frequencies  where 
there  are valleys in the log magnitude  function.  Hence,  for 
spectrographic  displays,  which  represent  the log magnitude 
function  in successive time  frames, it is the  magnitude func- 
tion  that is  more important. 

Picture signals with  finite  support  (the two-dimensional 
equivalent  of  finite  duration)  may be included  in the category 
of  all-zero signals, i.e., case E in Table I. We notice  for  this 
case that  there is ambiguity in the  group  delay  function  de- 
rived from the  magnitude  due to presence of zeros  outside and 
inside  the  unit  circle.  This  ambiguity is absent  in the  group de- 
lay function derived from  the phase  function.  This  makes  it 
possible  for  finite  support  picture signals to  be reconstructed 
from  only  the phase  function [3],  [4]. On the  other  hand, 
for  reconstruction  of  such  sequences  from  the  magnitude  func- 
tion, we need  additional  information  such as one  bit of phase 
[3],  [8]  or  the  boundary  conditions of the signal [9]  to re- 
solve the  ambiguity  caused by the  simultaneous  presence  of 
minimum phase and  maximum phase zeros. 

An example  of  picture signal reconstruction  from  the  phase 
function  can be seen in Fig. 10. Fig. lO(a) shows  the  original 
picture and Fig. 10(b) is the all-pass signal obtained  from 
phase function. Fig. 1O(c) and  10(d)  shows  the  reconstructed 
images after 10 and 50 iterations,  respectively.  The  con- 
straints used in the  spatial  domain  are  i)  finite support and  ii) 
limited  dynamic range (i.e., the  pixel values are  constrained to 
be between  a  minimum  which is generally  zero, and  a maxi- 
mum  which is generally 255  for an 8 bit/pixel  representation). 
The  clarity of the  reconstructed image improves  significantly 
with  iterations. 

x ( l )  x(4) x(3)  x ( 2 )  

-2.8 -8533 -2.3467 3.5733 

-1.. 7543 1.0018 ,3970 3.2337 

-2.9170 -6746 -1.6104 3.8143 

-2.8020 .a433 -2.3416 3.5733 

-2.8000 -8533 -2.3468 3.5733 
-. . 

Fig. 1  l(b) shows  a  blurred image obtained  by  low-pass  filter- 
ing the image in Fig. l l (a)  with  a  linear  phase  filter.  The 
phase  only  reconstruction  of  this image is shown in Fig. 1 l(c). 
With successive iterations  the  reconstructed image does not 
converge to  the image in Fig. 1  l(b).  This is due to  the  fact 
that changes in the  spectral  magnitude  caused  by  the  low-pass 
filtering  do not  affect  the phase and  the  phase  only  reconstruc- 
tion  ignores  the  linear  phase  factor. 

Fig. 12(b)  shows  a  noisy image obtained  by  adding  noise to 
the  picture  in Fig. 12(a). The  phase  only  reconstruction is 
shown in Fig. 12(c). With successive iterations  the  recon- 
structed image converges to the  noisy  image  in Fig. 12(b). 
This is because  additive  noise  affects the phase, and hence  af- 
fects  the image reconstructed  from  phase. 

Fig. 13 illustrates  an attempt  to  reconstruct the image from 
the  spectral  magnitude  function.  The image in Fig. 13(b) is 
constructed  from  the spectral  magnitude  of Fig. 13(a) and 
zero  phase. If we use an  iterative  technique to reconstruct  the 
image from  its spectral  magnitude,  imposing  a  finite  support 
constraint, we obtain  the minimum  phase  equivalent  of the 
original  image, i.e., the  maximum  phase  zeros  of  the  original 
image get  reflected to  the reciprocal  locations  inside  the unit 
circle.  This is equivalent to convolving  the  minimum  phase 
component  of  the original image with  the inverted  version  of 
the  maximum  phase  component  which  yields  a  confusing 
image as shown  in Fig. 13(c). 

VI. CONVERGENCE PROCESS IN ITERATIVE 
RECONSTRUCTION  ALGORITHMS 

Group delay  functions suggest an interesting  explanation  for 
the  process of convergence of the  iterative  algorithms  de- 
scribed  in  Section IV. Consider  a signal having a complex  con- 
jugate  zero  pair  inside  the  unit  circle  at a frequency  location 
A ,  and a complex conjugate  zero pair outside  the  unit  circle at 
a  frequency  location B. The  group  delay  functions ~ ~ ( 0 )  and 
~,(w) for  this signal are  shown  in Fig. 14(a).  The  figure  also 
shows  the  group  delay  functions ~ , ~ i ~ ( a )  and T , ~ ~ ~ ( w )  of 
the  minimum and  maximum  phase  components  of  the signal, 
where 

7, m in (a) = [ ~ r n  (a) + 7p(0)1/2  (20) 

7, m a x ( a )  = [7rn (a) - 7p(0)1/2* (21) 
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Fig. 9. Cepstrally smoothed log spectrum and  group delay functions ~ ~ ( n ( w )  and T ~ ( W )  for  two consecutive  segments (each 
6.4 ms) of voiced  speech. (a) Segment 1. (b) Segment 2. 

(a) (b) (C) (a) (b) CC) 

Fig. 11. Result of iterative,  phase only  reconstruction  of a  blurred Fig. 13.  Reconstruction of an image signal from spectral  magnitude 
image. (a) Original image. (b) Blurred image obtained by low-pass fil- function. (a) Original image. (b) Zero  phase image with the spectral 
tering the image in Fig. l l(a).  (c) Reconstruction from the phase  of magnitude of the image in Fig. 13(a).  (c) Image obtained  after 10 
the blurred image in Fig. 11(b) after 50 iterations. iterations. 
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Fig. 14. Group delay functions illustrating the convergence process of iterative reconstruction algorithms. (a) For a mixed 
phase all-zero signal. (b) For the all-pass  signal of Fig. 14(a). (c) For the  signal after one iteration. (d) For the signal 
after two iterations. 

As expected T,,~~(u) has a negative peak at  w = A  and 
r, max(w) has  a negative peak at  w = B. 

To  start  with, we obtain an all-pass signal using the phase 
function  of  the original signal. The  group  delay  function 
T,(w) of this all-pass signal is  zero,  and  the  group delay func- 
tions T, ,~~(u)  and which  are obtained using (20) 
and (21) are  equal  and  opposite,  as  illustrated  in Fig.  14(b). It 
can be  seen that  apart  from  the  zeros  of  the originxl signal, 
spurious  poles have been  created at  the reciprocal  locations 
corresponding to zeros at o = A  and o = B. Truncation of 
this all-pass signal to the  correct  duration gives an all-zero sig- 
nal  which  has  a r,(o) as  shown  in Fig.  14(c). The frequencies 
of  zeros, i.e., C and D of  this signal, are  slightly  offset from 
those  of  the original signal  (i.e., A and B). 

Combining the  spectral  magnitude of the  truncated all-pass 
signal with  the original  phase, we can obtain  the signal of  the 
second  iteration.  The gray delay functions T , ~ ~ ~ ( W )  and 
~ ~ ~ ~ ~ ( w )  of its  minimum  and  maximum phase components 
are shown  in Fig.  14(c). The  figure  shows that  in T , ~ ~ ~ ( U )  

there is a  zero  pair  at w = D close to  the  spurious pole  pair at  

o = B and,  in rmmaX(u) ,  there is a zero pair at w = C close to 
the  spurious  pole  pair at w = A .  Thus,  spurious  poles have 
been  created  once again, but this time  their  effect is partly 
countered  by  additional  zeros  at  nearby  frequency  locations. 
Truncation of this signal yields an all-zero signal, whose  zeros 
are located at frequencies E and F, which  are closer to those of 
the original signal than C and D. Thus in each  iteration,  trun- 
cation  moves  the  locations  of  zeros  towards  the  correct values, 
and simultaneously they  try to reduce  the  effect  of  the  spuri- 
ous  poles more effectively.  After  a large number  of  iterations, 
T, (w) reaches the  true value  given in Fig. 14(a). 

Analogously, we can  explain the convergence  mechanism of 
the iterative  technique for  minimum  phase signals, where  the 
causality  constraint is imposed  on  the signal at each  iteration. 

As a  consequence, if we  remove the linear  phase component 
from  the  phase  of  an all-zero mixed phase signal and use it in 
the  iterative  algorithm using the causality constraint, we ob- 
tain the  minimum phase  equivalent  of the original signal. Con- 
versely, if we add  an  appropriate  linear phase term to  the 
phase of  a pole zero  minimum  phase signal and use it in the 
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iterative  technique,  employing  an  appropriate  finite  duration 
constraint,  we  obtain  an  equivalent  finite  duration signal, in 
which the poles  of  the  original signal are  reflected as zeros  at 
the conjugate  reciprocal  locations  outside  the unit circle. 

VII. SUMMARY AND CONCLUSIONS 
In  this  paper, we have attempted  to  unify  the problems  of 

signal reconstruction  from  spectral  magnitude  function  alone 
and  from phase function alone  through  the use of  group  delay 
functions.  The  conditions  obtained  for signal reconstruction 
are  essentially  a  restatement  of the  conditions embodied  in  the 
theorems  in [l]  . However, the  interpretation of  the  theorems 
in the  group  delay  domain  leads to a  better  conceptual  under- 
standing  of the duality  between  spectral  magnitude  and  phase 
information  in signals, and provides the basis for  some  recon- 
struction  algorithms. 

We have reviewed the existing  algorithms for  reconstruction 
from spectral  magnitude or phase  of  a  minimum phase signal 
and the algorithm  for  reconstruction from phase  of  a mixed 
phase  all-zero signal. We have observed that  one need not re- 
sort to  the iterative  techniques  in  the case of  minimum  phase 
signals, since noniterative  techniques  can be used  with  advan- 
tage. Using a  combination  of  iterative  and  noniterative  tech- 
niques, we have developed  an  algorithm  for  reconstruction  of  a 
mixed  phase signal from  its  spectral  magnitude. These ideas 
can be applied  for  pole  zero  decomposition or minimum- 
maximum  phase  decomposition  of  a signal in certain cases. 

Based on  the  conditions  for signal reconstruction, we have 
observed that  the relative importance of spectral  magnitude 
and phase information  in signals depends on  the  nature of the 
signal. We have demonstrated  that phase  information is more 
important  for  a  picture signal, whereas for speech signals the 
short  term  spectral  magnitude  information  is  more  important. 
These  results  show that  one  cannot say that phase  is  more  im- 
portant  than spectral  magnitude  in  all cases [4]. 

To justify  the  importance  of  phase,  it was argued [4] that 
the  number of  bits  required to code the phase  would be more 
than  that required to code the spectral  magnitude  for  a given 
mean-square  error.  This  argument may  not be  valid for  a  gen- 
eral signal due to  the  duality we noticed  between  magnitude 
and phase information,  as seen in the  group delay domain.  The 
shapes  of the  functions .rm(o) and .rp(w) suggest that  both of 
the  functions  may  require  the  same  number  of  bits  for  coding. 

Through  group  delay  functions we have been able to provide 
an  explanation  for  the  convergence  process in the  iterative 
algorithms  for signal reconstruction. 

We have discussed  algorithms for  reconstruction  from  spec- 
tral  magnitude or phase for signals which  satisfy  the  conditions 
stipulated  for  reconstruction.  The  additional  information  re- 
quired to handle  practical data depends on our  knowledge  of 
the signal being reconstructed.  Moreover,  such  knowledge  is 
mainly signal dependent  and  hence  cannot be generalized for 
all  problems.  One effort  in this  direction is the  reconstruction 
of  all-zero  mixed  phase signals from  spectral  magnitude  with 
the  additional  information of  one  bit phase [3] , [8] or the 
boundary values [ 9 ] .  This  additional  information  for images 
resolves the ambiguity in the  magnitude  function  between 

the minimum  phase  and  maximum phase zeros  under  certain 
conditions. 

Other  interesting  topics  for  further  investigation  are  pole- 
zero  decomposition [ 101 and  minimum-maximum  phase  com- 
ponent  decomposition suggested by  the  group  delay  functions. 
This may be eventually  lead to very  effective  algorithms  for  re- 
construction  of signals with  partial  information. 
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High  Quality  Synthesis of Musical Voices in 
Discrete  Time 

Absiruct-A  new  technique for high quality syntheses  of musical 
voices (instruments) is presented. It is a harmonic synthesis method 
based on  weighted  window function-“pulse” sequences. The technique 
eliminates the problem  of aliasing in  its discrete-time  implementation. 
High fidelity emulations  of  “natural”  instruments are achieved at  a 
greatly  reduced  cost in multiplies per sample time. In  addition, param. 
eter  update  rates  can  be as much as an  order  of magnitude lower than 
those  required  by  competing  methods. 

A 
I. INTRODUCTION 

DVANCES in  solid state  circuits have caused  increasing 
attention  to be given to  the application  of  digital  tech- 

niques to  many signal processing  tasks.  Among  these is the 
generation of musical  sounds. Of particular  interest  in  this 
paper are the  real-time  applications that could be made  in elec- 
tronic  organs.  These  machines are sold for  home,  theatre, 
church,  or professional  use, and  occupy  the $500 to $40 000 
price  range. Analog processing methods still  dominate  this  in- 
dustry,  and subtractive  synthesis is the algorithm most com- 
monly used to render the wide range of  complex voices which 
these  machines  are  capable  of  sounding.  Subtractive  synthesis 
within  these  organs  begins  with  the  production  of several 
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harmonically-rich  excitation signals. To simplify the imple- 
mentation, these  excitation signals are  typically  rectangular 
pulse  trains.  The  sole  difference  between  these signals is  their 
respective  frequencies:  each signal renders  a  distinct  octave of 
the desired  fundamental  frequency. Organ engineers  com- 
monly refer to these signals as various  “footages”  of the same 
basic  frequency.  For  example,  four rectangular  pulse  trains 
may be produced:  the 16’, 8’, 4’, and 2‘ versions  are most 
common. If heard  separately,  these  would  sound  at  one,  two, 
four  and  eight  times  the  desired  fundamental  frequency,  re- 
spectively.  These  separate  footage  versions  would then be 
“mixed-down” to a single channel,  with  each  footage being 
independently  weighted  prior to  contributing to  the sum. 
Overall,  this  procedure  applies  a  coarse harmonic weighting 
that is appropriate  to  the  instrument or sound being  emulated. 
After  this, all simultaneously  sounding  frequencies  (notes)  are 
summed  and passed to  a  fixed formant (voicing) filter.  Here, 
emphasis is applied to  the  sound  components solely on  the 
basis of  their  frequencies rather  than  their  harmonic  numbers. 

When considering the  implementation  of  electronic  organs 
in  digital  hardware,  a  first  thought is to transcribe  subtractive 
syntheses into  the digital  world,  and  this is how  our  work in 
this  area  originally began. However, as our initial  thoughts 
were  developed and  extended  to allow increasingly  accurate 
simulations  of  natural  instruments, it became  clear that  our 
approach  had evolved into  a new form of “wavefonn  syn- 
thesis.” This new method is powerful  enough to yield very 
convincing  emulations  of  existing  sounds as well  as to  render 
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