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Abstrtct.  A new method for representation of speech spectra based on a pole-zero decomposition technique is proposed in this 
paper. In this method the parameters of a pole-zero model for the smoothed short-time spectrum of speech are determined by 
adopting a cepstral matching criterion. The cepstral coefficients of the impulse response of the model are equal to the cepstral 
coefficients of the signal up to a specified number which determine the order of the model system. This is analogous to  
autocorrelation matching in linear prediction analysis. It is shown that the model spectrum represents both peaks and valleys of 
the smoothed spectrum equally well, unlike the all pole model of linear prediction analysis where only the peaks are well 
represented. The pole and zero parameters are derived inan identical manner by approximately deconvolving the pole and zero 
contributions in the cepstral domain. The residual from the inverse pole-zero system can be used to obtain information about 
the excitation signal. 

Zmammen[assung. Es wird eine neue Methode zur spektralen Darstellung yon Sprachsignalen vorgeschlagen, die auf der 
Zerlegung der Spektraifunktion in Pole und Nullstellen basiert. Hierbei werden die Parameter eines Pol-Nullstellenmodells fiir 
das geglllttete Kurzzeitspektrum yon Sprache bestimmt, indem ein .~hnlichkeitskriterium im Cepstrum-Bereich aufgestellt 
wird. Bis zu einer bestimmten oberen Grenze, die den Grad des Systems bestimmt, sind die Cepstrum-Koeffizienten der 
Impuisantwort des Modells gleich den Cepstrum-Koeffizienten des Signals. Dies entspricht dem Verhalten der Autokor- 
relationsmethode der linearen Pr/idiktion. Mit der beschriebenen Methode werden die Maxima wie auch die Minima des 
gegl/itteten Spektrums gleichermassen gut dargesteUt; dies im Gegensatz zur linearen Prlldiktion, die lediglich die Maxima gut 
beschreibt. Pole und Nullstellen werden auf gleiche Weise ermittelt, indem ihr Beitrag zur Spektralfunktion im Cepstrum- 
Bereich mit Hilfe der inversen Faltung n~iherungsweise getrennt wird. Das Ausgangssignal des aus den Parametern gebildeten 
inversen Filters vermittelt eine genaue Rekonstruktion des Anregungssignals; iusbesondere ist es m/~glich, daraus den 
Zeitpunkt des Ottnens und Schliessens der Glottis zu bestimmen. 

R6sum6. Une nouveUe m6thode de repr6sentation des spectres de parole, fond6e sur une technique de d6composition en p61es 
et z6ros, est propos6e. Darts cette m6thode, les param6tres d'un mod61e comprenant des p61es et des z6ros, du spectre ~ court 
terme liss6 de la parole sont d6termin6s en utilisant un crit6re d'ajustement "cepstral". Les coefficients "cepstraux" de la 
r6sponse impulsionnelle du mod/.qe sont jusqu'~ un ordre donn6 6gaux aux coefficients "cepstraux" du signal. Cet ordre 
d6termine celui du mod61e. Ceci est analogue/l l 'ajustement des valeurs de l'autocorr61ation en pr6diction lin6aire. On montre 
que le spectre du module repr6sente les pics et les vall6es du spectre liss6 avec la me, me pr6cision alors que ie mod61e 
autor6gressif de la pr6diction lin6aire ne repr6sente bien que les pics. Les param/~tres du num6rateur et du d6nominateur du 
rood/fie sont calcul6s de mani/~re identique en effectuant une d6convolution approximative de la contribution des p61es et des 
z6ros darts le domaine "cepstral". Le r6sidu du filtrage inverse par p61es et z6ros donne une information pr6cise sur le signal 
d'excitation. En particulier, on peut en d6duire la forme ds ondes glottiques avec les i~riodes d'ouverture et de fermeture. 

Keywords. Pole-zero decomposition, minimum phase signal, cepstral coefficients, negative derivative of phase spectrum, 
linear prediction, pole-zero model, ceptral matching, autocorrelation matching, pole-zero spectrum, quefrency. 
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1. Introduction 

An important problem in speech analysis is the 
estimation of the characteristics of the vocal tract 
system and the excitation source from speech 
signal. Due to nonstationary nature of speech the 
analysis is performed by assuming stationarity 
over short durations (20--40 msec) of the signal. 
The analysis is performed by approximating the 
vocal system by a linear system model and esti- 
mating the parameters of the model by adopting an 
error criterion. The excitation information is 
derived by passing the signal through the inverse of 
the model system. The accuracy of analysis 
depends on the accuracy of representation of the 
signal characteristics by the model system. In 
general the model system is derived so as to 
represent the smoothed short-time spectrum of 
speech. The fine structure of the spectrum is used 
to derive the excitation information. 

A linear system model consisting of both poles 
and zeros in its transfer function is required to 
represent the characteristics of peaks and valleys 
in the smoothed short-time spectrum of speech. 
Approximating speech spectra by pole-zero 
models and estimating the parameters of such 
models has recently been the subject of active 
research [1, 2]. We present in this paper a method 
for determining simultaneously the pole and zero 
parameters of a pole-zero model. The model 
parameters are determined by adopting the cri- 
terion of cepstral matching. Cepstral coefficients 
are the Fourier coefficients of the log spectrum of 
speech data. The first few (20--40 at a sampling rate 
of 10kHz) coefficients are normally used to 
represent the smoothed spectral characteristics 
and this is the basis for homomorphic decon- 
volution [3]. Convolution in time domain is 
equivalent to addition in the cepstral domain. If 
the cepstral coefficients correspond to the log 
spectrum of a pole-zero system, then a pole-zero 
deconvolution can be achieved if the coefficients 
are split into pole part and zero part. We show that 
such a splitting can be made approximately by 
using the properties of the derivative of phase 
Signal Processing 

function of a minimum phase signal [4]. It is 
possible to derive a pole-zero model from the 
deconvolved coefficients such that the cepstral 
coefficients of the model match those of the given 
data up to a specified number. The cepstral 
coefficients beyond the specified number are 
uniquely determined by the model system. In this 
respect the model spectrum is different from a 
cepstrally smoothed spectrum where the cepstral 
coefficients beyond the specified number are set to 
zero. We show that the criterion of matching cep- 
stral coefficients for determining a pole-zero 
model is analogous to the criterion of matching 
autocorrelation coefficients for determining an all 
pole model. However, since log magnitude spec- 
trum provides a better representation of spectral 
information than magnitude spectrum itself, due 
to large dynamic range of the spectrum, matching 
cepstral coefficients should give a better spectral 
modelling than matching autocorrelation 
coefficients. 

In Section 2 the problem of pole-zero estimation 
and the underlying principle of the proposed 
technique are discussed. In Section 3 the technique 
for pole-zero decomposition is presented. An 
algorithm for pole-zero decomposition of speech 
spectra is presented in Section 4. Several examples 
of pole-zero decomposition of speech spectra are 
discussed in Section 5. Effects of various analysis 
parameters on the accuracy of the resulting 
pole-zero model are also discussed. Some 
issues presently under investigation are cited in 
Section 6. 

2. Properties of the derivative of phase spectrum 

In this section the problem and the underlying 
principle of the proposed method for solving the 
problem are discussed. 

2.1. The problem 

Let us represent a pole-zero model by 

H(z)  = G N ( z ) / D ( z )  (1) 
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where G is a gain term, 
M 

N(z)  = 1 + Y. a-(k)z  -k 
k=l 

and 

(2) 

M 
D(z)= l + • a÷(k)z -k. (3) 

k = l  

The problem is to determine the parameters of 
H(z)  such that the frequency response of the 
model matches the smoothed spectrum of a seg- 
ment of speech data x(n). For the system H(z)  to 
be stable all the roots of the denominator poly- 
nomial D(z),  called poles, must lie within the unit 
circle in the z-plane. If the roots of the numerator 
polynomial, called zeros, also lie within the unit 
circle in the z-plane, then the impulse response of 
H(z)  is called a minimum phase signal. An 
important property of minimum phase signals is 
that the magnitude and phase responses are 
related through Hilbert transformation [3]. 

2.2. Basis for pole-zero decomposition 

Since the objective in the present problem is to 
determine a pole-zero model for a signal spectrum, 
it is sufficient to consider the minimum phase 
correspondent of the given signal. The spectra of 
the minimum phase correspondent and the ori- 
ginal signal are identical by definition. Properties 
of minimum phase signals have been extensively 
studied [3, 5]. In particular, all the poles and the 
zeros of a minimum phase signal lie within the unit 
circle in the z-plane. 

Properties of the derivative of phase spectrum 
(DPS) of a stable all-pole system have recently 
been reported by the author [4] in the context of 
formant extraction using linear prediction 
coefficients (LPCs). A stable all-pole system can be 
represented as a cascade of first order sections with 
real poles and second order sections with complex 
conjugate poles. In this paper we consider the 
negative derivative of phase spectra (NDPS) 
throughout, for convenience. The NDPS of a 
typical first order filter (real pole) is given by 

61~ (o9) = y/(o92 + y2) (4) 

where 3' is the corner frequency. The NDPS of a 
typical second order filter (resonator) is given by 

2 a ( a 2 + / 3 2 + t o  2) 

61~ (o9) = (ct2 + f12_ o92)z +4toaa2 (5) 

where a and/3 are the half power bandwidth and 
resonance frequency of the filter, resp. These 
equations are derived in [4]. In general/32>>a2. 
The NDPS of the overall filter, denoted by O'(to), 
is a summation of the terms of the type given in (4) 
and (5). Some important properties of O'(to) are: 

(1) O~(to) is a monotonically decreasing 
function of o9. 

(2) At low frequencies O~ (to) = 1/3,. 
(3) At high frequencies O~ (to) ---- y/o92. 

(4) O~ (to) is approximately proportional to the 
squared magnitude response of the filter around 
the resonance frequency. 

(5) At low frequencies O~ (to) ---- 2ce//3 2, which is 
a small constant quantity. 

(6) At high frequencies O~ (to) = 2a/o9 2. 
It is interesting to note that if the corner 

frequency 3" is large, then O~ (o9) will be small for 
all o9. On the other hand if y is small, then the large 
values of 61 ] (to) are confined to frequencies close 
to the origin. As a result of the properties (1), (2) 
and (3) real poles will have negligible effect on the 
peak structure of 61'(to) caused by resonances. The 
properties (4), (5) and (6) show that in 61'(to) there 
is negligible effect of one resonance peak on the 
other. 

It is easy to visualize a similar behaviour for real 
and complex conjugate zeros in their NDPS plots. 
The only difference is that the NDPS for zeros will 
have a sign opposite to that for poles. Specifically 
61'(o9) will have a positive peak due to a complex 
conjugate pole pair and a negative peak due to a 
complex conjugate zero pair. These simple but 
powerful properties of the derivative of phase 
spectrum are shown to accomplish the pole-zero 
decomposition discussed in the next section. 

In Fig. 1 the NDPS plots for a first order filter 
and a second order pole filter are shown. It is clear 
from the figure that significant values of 61'(oa) are 
confined to frequencies near the origin for real 
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Fig. 1. Negative derivative of phase spectra for typical all pole filters. (a) Solid curve: First order filter [H(z) = 1/(1 -0.85z-1)]. (b) 
Dotted curve: Second order filter [H(z) = 1/(1 - 1.57z-1 + 0.94z-2)]. 

poles and to frequencies near the resonance 
frequency for complex conjugate poles. 

3. Pole-zero analysis 

3.1. Relation between derivative @phase spectrum 
and cepstral coefficients 

Let V(~o) be the Fourier transform of the 
minimum phase correspondent of a given signal. 
For uniformly sampled discrete signals the Fourier 
transform is periodic in to with period 2~-. Since all 
the poles and zeros of V(w) lie within the unit 
circle in the z-plane [3], In V(¢o) can be expressed 
in Fourier series expansion as follows: 

In V(o~)=~c(O)+ ~. c(k) e -jk°" (6) 
k = l  

where {c(k)} are called cepstral coefficients. 
Writing 

V(a,) = I V(~,)le -je'(") (7) 

we get the real and imaginary parts of In V(w) as 

In Iv(~,)l =½c(0)+ ~ c(k)cos k,~ 
k=l  

(real part) (8) 
S i s n a l  P r o c e s s i n g  

and 

Ov(~o)+2alr = ~ c(k)sin k¢o 
k=l 

(imaginary part) (9) 

where a is an integer. Notice that Ov(o~) 
represents the negative phase spectrum of a 
minimum phase signal. Taking the derivative of 
Ov(CO), we get 

O'v(¢o) = ~. kc(k) cos kw. (10) 
k=l 

3.2. Pole-zero decomposition 

O~,(~o) is the negative derivative of phase spec- 
trum of a minimum phase signal whose properties 
were discussed in Section 2. In particular, the 
complex poles of V(w) produce positive peaks in 
O~,(~o) and the complex zeros of V(oJ) produce 
negative peaks in O~, (to). The real poles and zeros 
of V(co) do not significantly affect the peaks in 
O'v(w). Therefore the contributions of poles and 
zeros can be separated by considering the positive 
and negative portions of O~,(co) respectively. Let 

O'v(w)=[O'v(~o)]+ +[O'v(~o)] - (11) 
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where 

and 

O~,(~o) [ 

i o n ( o , ) ]  + = ! 
t0 

for O~,(¢o) ~> 0, 
(12) 

for 0b(oJ) < 0 

[O~,(¢o)]_={0@~,(¢o) for O~,(¢o)<0, 
for O~,(¢o)~>0. (13) 

We can express [O~,(¢o)] + and [O~,(¢o)]- 
separately in terms of the cepstral coefficients for 
poles and zeros as follows: Let 

[O'v(¢o)]+=C+ ~ kc+(k)cosk¢o (14) 
k = l  

and 

[O~,(oJ)] -=-C+ E kc-(k)cosko~, (15) k=l 

where {c+(k)} and {c-(k)} represent the cepstral 
coefficients for pole and zero spectra of V(oJ) 
respectively and C is the average value. Notice 
that c(k)=c+(k)+c-(k), which means that the 
cepstral coefficients are split into two parts, one 
corresponding to poles and the other to zeros. 

Here [O~,(¢o)] + represents the significant 
portion of the NDPS for the poles of V(~o) and 
[O~, (¢o)]- represents the significant portion of the 
NDPS for the zeros of V(oJ). By significant portion 
we mean that the shape of the curve in the positive 
portion of O~,(~o) is mainly due to poles only and 
the shape in the negative portion of O~,(oJ) is 
meainly due to zeros only. It is very important to 
note that the shape information is preserved in 
c+(k) and c-(k) for k = 1, 2 . . . . .  for poles and 
zeros respectively. 

In most cases of signal analysis, the objective is 
to represent the smoothed spectrum of a signal by 
a model. The smoothed spectrum is determined by 
the first few cepstral coefficients in (8), since they 
are the first few Fourier coefficients of the log 
spectrum. If the series are truncated, then the 
resulting spectrum is called cepstrally smoothed 
spectrum. It should be noted that the value of c(0) 
does not affect the shape of the spectrum. Follow- 
ing the same logic, we can obtain cepstrally 
smoothed spectra for poles and zeros separately by 
considering only the first few cepstral coefficients 
in {c+(k)} and {c-(k)} respectively. 

In practice there will be some interaction 
between poles and zeros in the derivative of phase 
spectrum due to discrete time nature of the signals 
being considered. The interaction will be more 
severe of course when the derivative of phase 
spectrum is computed using only a small number of 
cepstral coefficients. But still the shapes of the 
positive and negative portions of the NDPS plot 
are largely due to contributions of peaks and 
valleys of the smoothed spectrum respectively. We 
have found that the interaction between poles and 
zeros in the NDPS does not significantly affect the 
resulting model spectrum if a sufficiently large 
number of cepstral coefficients are considered. 

We now describe a method of deriving the 
parameters of a pole-zero model that represents 
the smoothed spectrum of a signal. Let the linear 
system given in (1) represent the pole-zero model 
we are trying to determine. Since the poles and 
zeros of H(z) lie within the unit circle, the 
numerator and the denominator polynomials can 
be considered as two inverse filters of linear pre- 
diction analysis. Consequently {a +(k)} and {a-(k)} 
represent two sets of linear predictor coefficients 
(LPCs). The cepstral coefficients of a finite all-pole 
stable system can be expressed recursively through 
the LPCs as shown in [6]. The reverse recursion 
i.e., LPCs from cepstral coefficients is also possi- 
ble, provided it is known that the cepstral 
coefficients are for a stable all-pole system. By 
splitting the cepstral coefficients of the smoothed 
spectrum into a pole part and a zero part, we 
achieved a decomposition which enables us to use 
the reverse recursion to obtain the coefficients of 
the numerator and denominator polynomials in 
(1). The pole coefficients {a+(k)} and the zero 
coefficients {a-(k)} are given by the following 
relations: 

Pole coe~cients : 

a + ( 1 )  = - c + ( 1 )  

i - 1  

ja+(f)=-jc+(j) - ~ kc+(k)a+(i-k) 
k=l 

for ] = 2, 3 . . . .  M (16) 
Vol. 3, No. 1, January 1981 
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Zero coefficients: 

a - ( l )  = c-(1) 

i - 1  

~a-(/)=]c-(~)+ ~, kc-(k)a-( j -k)  
k=l 

for f = 2, 3 . . . .  M (17) 

Only the first M coefficients of {c+(k)} and {c-(k)} 
are needed to determine completely the 
parameters of the model given in (16). 

3.3. Error criterion 

Conventionally, the parameters of a pole-zero 
model are determined using a minimization of 
mean squared error criterion. Linear prediction 
analysis has been shown to be equivalent to auto- 
correlation matching [2]. That is, if {R(k)} and 
{/~(k)} represent the autocorrelation coefficients 
of a given signal and the impulse response of its 
all-pole model respectively, then for a pth order 
model 

R(k)=l~(k) f o r k = 0 ,  1 . . . .  p, (18) 

minimizes the total error E1 given by 

1 r'~ 
E1 = ~ J_,~ [P(to)//~(a~)] dto (19) 

where 

P(to) = R ( 0 ) + 2  ~ R(k) cos kto 
k = l  

(original spectrum) (20) 

and 

In(G) = 1 ~c(O), then it can be shown that 

c(0)=~(0). (23) 

The proposed method can thus be interpreted as 
pole-zero modeling by cepstral matching, which 
can be stated as follows: For a given order M of the 
pole-zero model, determine the model parameters 
such that the first M + 1 cepstral coefficients of the 
model are equal to the first M + I  cepstral 
coefficients of the signal. The error between the 
original and the model log spectra is given by 

E2 = ~ [In P(co) - In P(to)] dto. (24) 
"tr 

Writing E2 in cepstral coefficients [6], we get 

E2 = [c(0)-~(0)]2+2 ~ [c(k)-e(k)] 2. 
k = l  

(25) 
After matching, the error becomes 

E 2 = 2  ~ [c(k)-~(k)]  2. (26) 
k = M + I  

It should be noted that there is no minimization 
process involved in this method. We have only 
shown that if the cepstral coefficients of the model 
are chosen so as to match the first M + 1 cepstral 
coefficients of the signal, then the resulting mean- 
squared log spectral error is given by (26). In 
practice ~(k) decays as 1/k for large k and there- 
fore the value of E2 is mostly decided by {c(k)} 
alone. 

4. Pole-zero decomposition of speech spectra 

/~(to) = /~(0)+2  ~ /~(k) cos kto 
kff i l  

(model spectrum). (21) 

Analogously, if the linear system model is derived 
from the cepstral coefficients using the relations 
(16) and (17), then 

c(k) = ~(k) for k -- 1, 2 . . . .  p. (22) 

If the gain term G in H(z) is chosen such that 
Signal Processing 

So far the general theoretical basis for pole-zero 
decomposition of any given signal has been dis- 
cussed. In this section we present an algorithm for 
computing the parameters c~ the model with 
specific reference to speech signals. 

Speech is the putput of a nonstationary vocal 
tract system, excited either by quasiperiodic glottal 
pulses or turbulent noise or both. Thus the signal is 
a convolution of the excitation signal and the 
impulse response of vocal tract system. Since both 
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the system and the excitation are nonstationary, 
only short segments (10-40 ms) of speech signal 
are considered for analysis. During an analysis 
interval the system and the excitation are assumed 
to be stationary. The objective in speech analysis is 
to separate the smoothed spectrum corresponding 
to the vocal tract system and the fine structure 
corresponding to the excitation. 

In this paper we consider speech signals sampled 
at 10 kHz. The data is multiplied with a Hamming 
window before computing the spectrum. The 
detailed steps of the algorithm for pole-zero 
decomposition are given in Fig. 2. The derivative 
of phase spectrum is computed from the first M 
cepstral coefficients. The choice of M depends on 
the accuracy of representation required for the 

spectrum, the accuracy being specified in terms of 
the number of cepstral coefficients to be matched. 
The effect of these parameters on the resulting 
smoothed spectrum is discussed in Section 5. All 
the DFTs in the algorithm are computed using a 
512-point FFT. 

5. Results and discussion 

In this section we consider several examples of 
speech spectra to illustrate the application of the 
proposed method. Our aim here is to show the 
effectiveness of the method in deriving a pole-zero 
system that represents the smoothed speech spec- 
t rum.  Data for these examples was obtained from a 

Speech 
data J s ' ~ , , =  200 

-[ sam~es 

I , . ,  IMuztj.pzy 
L " '  ' J , ,~ th  H.~I)~G 

J lg9 /  

s~w~J DR 

s(k) 

] I -15" 
- iSelect flrst~------~ 

I I 

~tk )  

~0~+/2~ IDFT Inc+~rlO/2 [Divide by I [c+(n,} 

s,1,~t s,pa~,t~ / I '. I I~0 ~ ~ "  
* r e  and  - v e  I l ,  ,, 

] . " "  ] _1 L I  ' ,Div, 0 l ) ~!n/2 to 
I I 

w 

--[ I ~(1"1'}, j n=O, l , . . j l : ~c° t r  um z(k) ] ,ro spectrum in dB 

Fig. 2. Block diagram showing computational steps for pole zero decomposition. 
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spoken utterance, bandpass filtered (80-4500 Hz) 
and sampled at 10 kHz. A segment of 20 msec 
(200 samples) was used in the analysis. The 
sepctrum was computed as described in Section 4. 

The value of M determines the width of the 
window in the cepstral domain used for compu- 
tation of the derivative of phase spectrum. It is 
clear that a larger value of M produces a derivative 
of phase spectrum with increased resolution for 
peaks and valleys in the smoothed spectrum. The 
NDPS for a voiced segment for three different 
values of MOO, 20, 30) are shown in Fig. 3. The 
NDPS was obtained by computing the expression 

M 

O'(co) = ~, kc(k) cos kco. (27) 
kffil  

The dotted horizontal line in the figure indicates 
the dividing line between poles and zeros. The 
short-time spectrum of the segment is also plotted 
in the Fig. 3. It can be observed that positive peaks 
in the NDPS plot correspond to peaks in the 
smoothed short-time spectrum. Similarly negative 
peaks in the NDPS correspond to dips in the 
smoothed spectrum. The improvement in resolu- 
tion for higher values of M is also evident from Fig. 
3. The pole spectrum P(co), the zero spectrum 

Z(~o) and the pole-zero spectrum P(~o)Z(~o) for 
M =  20 are shown in Fig. 4. The various log 
spectra in dB are computed as follows: 

Pole spectrum: 

10 log P(ca) 

,0,o,  [,/I, 
Zero spectrum: 

10 logZ( to)=  10 log [11 

+ ~ a+(k) e-i "k 
k - 1  

+ Y. a - ( k )  e - j 'k  
kf f i l  

(28) 

(29) 

Pole-zero spectrum: 

10 loglH(oo)l 2 = 10 log P(~o) + 10 log Z(oo). 

(3o) 

The figure shows the complementary nature of 
pole and zero spectra. The pole spectrum has 
narrow peaks and broad valleys whereas the zero 
spectrum has broad peaks and narrow valleys. In 
this way the pole-zero spectrum provides a uni- 
formly accurate representation of the overall 
smoothed spectrum. In Fig. 5 ~he pole-zero spec- 
trum is superimposed on the short time spectrum 

"6o 

"E 

-80 

Z 

L C.. 

• - . . . . . . . . .  ( o )  M = I O  

. . . .  - -  i ., M=2q 

A A 
) M=30  

l I I I I 
0 1 2 3 4 5 

F requency  ( k H z )  

Fig. 3. Negative derivative of phase spectra for a segment of voiced speech for different values of M. The short-time spectrum of the 
s e g m e n t  is a lso  s h o w n  in the figure by a d o u e d  curve.  (a) M = I0 ,  (b) M = 20 ,  (c) M = 30.  
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( a )  Zero spec t rum 
(b)  P o l e - z e r o  spec t rum 

100 --  (c) ~le =p~=tr~ 
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c- 
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Fig. 4. Component spectra of a pole-zero model (M = 20) for a segment of voiced speech. The pole-zero spectrum is obtained by 
adding the pole and zero spectra on dB scale. (a) Zero spectrum, (b) pole-zero spectrum, (c) pole spectrum. 

of speech to illustrate the nature of fit of the model  

spectrum. 
The  value of M determines the resolution in the 

smoothed spectrum. Fig. 6 shows the pole-zero 
spectra for different values of M. Although some 
improvement  in resolution is noticed for higher 

values of M, the shape of model  spectrum remains 
essentially the same for all values of M. 

Compar ison of our pole-zero analysis with 
linear prediction analysis is made in the derivative 
of phase spectral domain.  For this purpose the 

NDPS for the original data, pole-zero model  and 

100 -- (a) pole-zero mpectrum 
(b)  s h o r t - t i ~  spec t rum 
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Fig. 5. Pole-zero spectrum for M = 20 superimposed on the short-time spectrum of the voiced segment of speech. 
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Fig. 6. Pole-zero model spectra for different values of M for a segment of voiced speech. (a) M = 14, (b) M = 20, (c) M = 30. 

all pole model are plotted in Fig. 7. To maintain 
the same resolution, a 20th order all pole filter is 
compared with a 20th order (20 poles and 20 
zeros) pole-zero model. The NDPS of the original 
spectrum is approximated well by the pole-zero 

model because the first M Fourier coefficients of 
the two plots are exactly equal. The sharper peaks 
and valleys in the NDPS plot for the pole-zero 
model are due to extrapolation of the cepstral 
coefficients beyond M = 20. On the other hand, 

0 -.=..~-"-.-...~-'~.==..~"''~. ~-'-:--..~'~,-4 .....-i (c) 
I " "  ............. ' '  " ...................... a11-pole 

i_ 
I I 1 1 1 1 
0 I 2 3 4 5 

Frequency ( kHz ) 
Fig. 7. Comparison of pole-zero model and all pole model in the NDPS domain. (a) Original data, (b) pole-zero model (M = 20), (c) all 

pole model (M-- 20). 
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only peaks are significant in the NDPS plot for the 
all pole filter and the peaks are much sharper than 
for the pole-zero model. 

Results of analysis for a segment of voiced 
fricative are shown in Fig. 8. A 20-pole spectrum 
obtained by linear prediction analysis is also shown 
along with the pole-zero spectrum for comparison. 
The first spectral peak in the all pole model spec- 
trum corresponds to the fundamental frequency. 
Such a peak is absent in the pole-zero model 
spectrum. In general, a peak in the smoothed 
spectrum can also occur due to two closely spaced 
zeros, and hence cannot always be considered that 
all peaks correspond to resonances only. This 
point is illustrated in the figure where the closely 
spaced zeros near 2.3 kHz and 2.7 kI-lz produced a 
sharp peak at 2.5 kHz. The approximation of the 
zeros by the pole-zero model is clearly demon- 
strated. 

Spectral fit improves as the order of M is 
increased, but as M is made very large, the original 
spectrum inclusive of the fine structure due to 
source also appears. Since the cepstral coefficients 
for large quefrencies have negligible components 
due to vocal tract system, by considering only the 
high quefrency portion of the cepstrum, the exci- 

tation information can be obtained. The NDPS for 
this purpose is computed using the formula 

255 

@'(to)= ~ k c ( k )  cos kto. (33) 
k =21 

The plot of @'(to) for a vowel segment is given in 
Fig. 9. The figure illustrates the ability of the 
derivative of phase spectrum in resolving even the 
fine structure of the spectrum. We are currently 
exploring the possibility of using this property for 
reliable pitch estimation [7]. 

6 .  C o n c l u s i o n s  

A new technique for representing the smoothed 
spectrum of speech by pole-zero models has been 
presented. For each specified match in the cepstral 
domain a pole-zero model is obtained in a straight 
forward manner. The elegance of the method lies 
in determining the parameters of the model 
uniquely by matching a specified number of cep- 
stral coefficients of a given signal. This technique 
can be called "cepstral matching" analogous to 
autocorrelation matching in all pole modeling [2]. 

100 

8 O  

E 
o ~ 4(3 

2O 

( a ) p o l e - z e r o  s p e c t r u m  
( b ) a l l - p o l e  s p e c t r u m  
( c ) s h o r t - t  Ame s p e c t r u m  
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Fig. 8. Comparison of pole-zero spectrum with the all pole spectrum of LP analysis for a segment of voiced fricative. The short- 
time spectrum of the segment is also shown in the figure. (a) Pole-zero spectrum (M = 20), (b) all-pole spectrum (M = 20), 

(c) short-time spectrum. 
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Fig. 9. NDPS for a segment of voiced speech computed from equation (33). The short-time spectrum of the segment is also shown in 
the figure to demonstrate the resolution of spectral peaks and valleys in the NDPS. 

The method of obtaining the smoothed spectrum is 
different from the conventional cepstral smooth- 
ing [3] where the cepstral coefficients are trun- 
cated. In the present method the cepstral 
coefficients beyond the specified order are 
uniquely extrapolated to improve the frequency 
resolution. 

For purposes of speech compression it is pos- 
sible to represent each of the component spectra 
i.e., the pole spectrum and the zero spectrum by a 
smaller number of coefficients than M poles and M 
zeros. Since the pole spectrum will usually have 3 
to 5 significant peaks, it is possible to represent the 
spectrum with 8 to 12 coefficients. These 
coefficients can be derived from all pole modeling 
of the pole spectrum. Similarly, the inverse of the 
zero spectrum will usually have 2 to 3 significant 
peaks, and it is possible to represent it with 6 to 8 
coefficients using all pole modeling. Thus the short 
time spectrum can be represented effectively by 
about 14 to 20 coefficients. 

An extremely useful property of the pole part of 
the derivative of phase spectrum is that it is non- 
zero in the frequency regions corresponding to 
Signal Processing 

peaks of the smoothed spectrum. Normally, 
regions around peaks in the smoothed spectrum 
can be used to represent high signal to noise 
portions of the spectrum. The NDPS represen- 
tation of the smoothed spectrum provides a 
method of determining such regions automati- 
cally. 

There appears to be good potential in the 
approach for solving a variety of problems 
encountered in the field of digital signal process- 
ing, like for example, the design of digital filters, 
decomposition of composite signals, decon- 
volution of convolved signals. Presently some of 
these applications are being studied. 
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