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Abstract

In this paper we propose a method for enhancement of speech in the presence of additive noise. The objective is to

selectively enhance the high signal-to-noise ratio (SNR) regions in the noisy speech in the temporal and spectral do-

mains, without causing signi®cant distortion in the resulting enhanced speech. This is proposed to be done at three

di�erent levels. (a) At the gross level, by identifying the regions of speech and noise in the temporal domain. (b) At the

®ner level, by identifying the regions of high and low SNR portions in the noisy speech. (c) At the short-time spectrum

level, by enhancing the spectral peaks over spectral valleys. The basis for the proposed approach is to analyze linear

prediction (LP) residual signal in short (1±2 ms) segments to determine whether a segment belongs to a noise region or

speech region. In the speech regions the inverse spectral ¯atness factor is signi®cantly higher than in the noisy regions.

The LP residual signal enables us to deal with short segments of data due to uncorrelatedness of the samples. Processing

of noisy speech for enhancement involves mostly weighting the LP residual signal samples. The weighted residual signal

samples are used to excite the time-varying all-pole ®lter to produce enhanced speech. As the additive noise level in the

speech signal is increased, the quality of the resulting enhanced speech decreases progressively due to loss of speech

information in the low SNR, high noise regions. Thus the degradation in performance of enhancement is graceful as the

overall SNR of the noisy speech is decreased. Ó 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Speech signal collected under normal environ-
mental conditions is usually degraded due to noise
and distortion. Performance of speech systems
depends critically on the e�ect of these environ-
mental conditions on the parameters and features
extracted from the speech signal (Deller et al.,

1993; Rose et al., 1994; Junqua and Haton, 1996).
The quality of the recorded speech is also a�ected
signi®cantly due to noise and distortion. En-
hancement of speech is normally required to re-
duce annoyance due to noise. The focus of study in
this paper is speech enhancement in additive noise.

Several approaches were studied for speech
enhancement in additive noise (Boll, 1979; Gibson
et al., 1991; Cheng and O'Shaughnessy, 1991;
Ephraim, 1992; Ephraim and Van Trees, 1995; Le
Bouquin, 1996; Lee and Shirai, 1996). Many of
these studies have focussed on enhancement based
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on attempts to suppress noise (Boll, 1979; Ephraim
and Van Trees, 1995; Le Bouquin, 1996). In order
to suppress noise the characteristics of noise are
estimated from the regions containing predomi-
nantly noise. Therefore for suppressing noise it is
necessary to identify the noise regions. Subtraction
of noise from noisy speech is usually performed in
the spectral domain. Methods based on spectral
subtraction disturb the spectral balance in speech,
resulting in unpleasant distortion in the enhanced
speech. Speech enhancement has also been ac-
complished by modifying the temporal contours of
the parameters or features, like spectral band en-
ergies (Hermansky and Morgan, 1994; AvendanÄo
et al., 1996). The technique uses data-dependent
®lters that reduce the random ¯uctuations in the
parameter contours caused by noise, and thus
enhances the characteristics of speech. The pa-
rameters of speech are usually related to short-
time spectra. Therefore modi®cation of the tem-
poral variations of the spectral features may
sometimes introduce unnatural spectral changes
which are perceived as distortion in the enhanced
speech.

Methods for speech enhancement have also
been developed based on extraction of parameters
from noisy speech, and synthesizing speech from
these parameters (Yegnanarayana and Ra-
machandran, 1992). All-pole modeling of degrad-
ed speech is one such method (Lim and
Oppenheim, 1978). In the all-pole modeling, if
wrong peaks are extracted, then these peaks may
get enhanced. Temporal sequence of these peaks
also produces discontinuities in the contours of the
spectral peaks when compared with the smooth
contours encountered in natural speech.

Methods of speech enhancement seem to de-
pend generally on modi®cation of the short-time
spectral envelope. If there are errors in extracting
the features of a spectral envelope, or if errors are
introduced in the spectral envelope due to modi-
®cation of the temporal contours of the spectral
features, the resulting speech may produce un-
natural audible distortion.

Methods for speech enhancement have also
been suggested based on the periodicity due to
pitch (Erell and Weintraub, 1994). Noise samples
in successive glottal cycles are uncorrelated. On the

other hand, the characteristics of the vocal tract
system are highly correlated due to slow move-
ment of the articulators. These methods for en-
hancement of speech depend critically on the
estimation of pitch from the noisy speech signal.
Also, synthetic excitation signal is used for pro-
ducing speech in these cases. Hence the quality of
speech will be poor, even though the e�ects of
noise are reduced.

Several suprasegmental parameters such as
pitch contours and syllabic durations are robust
features. But these features are not useful for en-
hancement, since for generating the enhanced
speech signal one needs both the spectral envelope
and excitation for each (short-time) analysis
frame.

In many of the above mentioned methods, no
attempt has been made to explore the character-
istics of the source signal for enhancement. The
primary reason for this is that, in the source signal
such as the linear prediction (LP) residual signal
the samples are uncorrelated and hence the resid-
ual samples are more like noise than like a signal.
Thus the residual signal is not expected to have
any features useful for speech enhancement. We
show in this paper that features of the residual
error signal can be exploited for enhancement of
speech in the presence of additive noise.

In the next section we discuss the scope of study
in this paper. We also discuss the characteristics of
noisy speech which form the basis for the proposed
approach for speech enhancement. In Section 3,
we develop a method for speech enhancement
based on the characteristics of the LP residual
signal. We propose enhancement at three levels,
each level providing improvement of some feature
of speech in the noisy signal. In Section 4, we
discuss application of the proposed method for
di�erent types of additive noise. We also discuss
the performance and limitations of the proposed
approach.

2. Basis for the proposed method of speech enhance-
ment

Human beings perceive speech by capturing
some features from the high signal-to-noise ratio
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(SNR) regions in the spectral and temporal do-
mains, and then extrapolating the features in the
low SNR regions (Cooper, 1980). Therefore
speech enhancement should primarily aim at
highlighting the high SNR regions relative to the
low SNR regions. Lowering the signal levels in the
low SNR regions relative to the signal levels in the
high SNR regions may help in reducing the an-
noyance due to noise without losing the informa-
tion. The relative emphasis of the features in the
high SNR regions over the features in the low
SNR regions should be accomplished without
causing distortion in speech. Otherwise the en-
hancement may cause annoyance of a type di�er-
ent from that due to additive noise. The objective
in this paper is to study the enhancement produced
due to modi®cation of the characteristics of the
source and system components of speech produc-
tion in the signal.

2.1. E�ects of noise on the speech signal

Before we proceed to discuss our approach, let
us brie¯y review some characteristics of noisy
speech. Speech signal has a large (30±60 dB) dy-
namic range in the temporal and spectral domains.
For example, in the temporal domain some sounds
have low signal energy, especially during the re-
lease of stop sounds and in the steady nasal
sounds. Speech signal energy level is also low prior
to the release of a stop sound and also in some
fricative sounds. Even within a glottal cycle of a
voiced speech signal the energy of the signal is
usually higher only in the vicinity of the major
excitation of the vocal tract system, which is the
instant of glottal closure in each glottal cycle
(Ananthapadmanabha and Yegnanarayana,
1979). This is due to damped sinusoidal nature of
the impulse response of the vocal tract system.
Even in the frequency domain the spectral levels of
large amplitude formants are typically much
higher (20±30 dB) than the low amplitude form-
ants. The spectral envelope also decreases by 12±
18 dB per octave due to glottal roll-o� (Fant,
1993). For a given additive noise, the SNR varies
as a function of frequency in the spectral domain.
Thus the SNR is di�erent in di�erent segments of
speech in both time and frequency domains.

Fig. 1(c) shows the SNR of a speech utterance as a
function of time, where the overall SNR is 10 dB.
The noisy speech signal (Fig. 1(b)) is generated by
adding white Gaussian noise to the clean speech
signal shown in Fig. 1(a). The SNR is computed
for each frame of duration 20 ms with an overlap
of 10 ms.

Typically, the correlation between noise sam-
ples is low, and speech samples are correlated. The
envelope of the speech spectrum will be less ¯at
due to formant structure and glottal roll-o� com-
pared to the noise spectrum. Additive noise in-
creases the spectral ¯atness of speech. The spectral
envelope becomes more ¯at in the low SNR
portions of the spectrum. As the noise level in-
creases, the weaker spectral features and the low
energy signal features will be progressively sub-
merged in the noise. The proposal in this paper is
to identify the high SNR portions in the noisy
speech signal, and enhance those portions relative
to the low SNR portions, without causing signi®-
cant distortion in the enhanced speech. Note that,
from human perception point of view, some
background noise is tolerable, but not the distor-
tion caused by the artifacts of processing.

2.2. Approach for speech enhancement

In this section we present the proposed ap-
proach for speech enhancement. We attempt to
emphasize the residual signal in the regions around
the glottal closure in the voiced speech segments
and reduce the energy levels of the residual signal
in the silence regions. By exciting the time-varying
all-pole ®lter (derived from the noisy speech) with
the modi®ed residual signal, one can produce en-
hanced speech without causing signi®cant distor-
tion.

Let x � �xt; xt�1; . . . ; xt�Nÿ1�T be a frame of N
samples of the signal corrupted by additive ran-
dom noise. The characteristics of the signal are
assumed to be stationary within the frame. We can
write x as

x � s� n; �1�
where

s � �st; st�1; . . . ; st�Nÿ1�T
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is the vector of clean signal samples and

n � �nt; nt�1; . . . ; nt�Nÿ1�T
is the vector of noise samples. Let r be the vector
of residual error samples derived by inverse ®lter-
ing the noisy signal x using a pth order LP anal-
ysis. The linear prediction coe�cients (LPCs) are
denoted by a0; a1; a2; . . . ; ap with a0 � 1. Assuming
the initial conditions to be zero, the residual signal
vector r may be expressed in matrix form as

r � Ax; �2�
where

A �

a0 0 � � � 0
a1 a0 � � � 0

..

. ..
. . .

. ..
.

ap apÿ1 � � � a0 � � � 0

..

. . .
. . .

. ..
.

0 � � � ap � � � a1 a0

2666666664

3777777775
: �3�

An estimate of the clean signal can be obtained by
weighting the derived residual error samples ap-
propriately and exciting the LP all-pole ®lter. The
weighted residual error vector rw can be expressed
as

Fig. 1. (a) Speech signal for the utterance ``any dictionary''. (b) Signal with an average SNR of 10 dB. (c) The SNR as a function of

time. (d) The 12th order LP residual signal derived from the noisy signal in (b). (e) The ratio of energy values between (d) and (b) for

10 dB SNR case for each 2 ms frame. (f) The ratio curve in (e) smoothed using a 17-point Hamming window.
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rw �Wr; �4�
where W � diag �w�0�;w�1�; . . . ;w�N ÿ 1�� is the
diagonal N � N matrix of optimal weights to be
estimated. An estimate of the clean signal is given
by

ŝ � Hrw; �5�
where

H � Aÿ1 �6�
is the matrix of coe�cients of truncated impulse
response of the all-pole ®lter. The truncation ef-
fects are assumed to be negligible. Using Eqs. (2)
and (4),

ŝ � HWAx � HWAs�HWAn: �7�
The error in reconstruction is given by

e � sÿ ŝ � �I ÿHWA�sÿHWAn:

Using Eq. (6) in the above equation we ®nd

e � H I� ÿW�AsÿHWAn: �8�
The energy of the reconstruction error e can be
minimized with respect to the weight matrix W .
But this error criterion does not exploit the
masking properties of the human ear (Mermel-
stein, 1982; Jayant and Noll, 1984; Chen and
Gersho, 1995). Hence, a criterion which would be
more meaningful perceptually would be the energy
of the ®ltered reconstruction error ep. The ®lter
can be the inverse ®lter A�z� � a0 � a1zÿ1 � � � � �
apzÿp of the LP analysis. For an SNR greater than
10 dB it is reasonable to assume that the inverse
®lter A�z� exhibits valleys at approximately the
formant frequencies, although its dynamic range
would be low because of noise in the speech signal.
Minimization of the energy of the ®ltered error
with respect to W would allow more error in the
formant regions and minimizes the error in the
valley regions, which is desirable from a perceptual
viewpoint. From Eq. (8), the ®ltered error ep can
be written as

ep � Ae � AH�I ÿW�Asÿ AHWAn: �9�
Using Eq. (6) in Eq. (9) we obtain

ep � �I ÿW�AsÿWAn: �10�
Let rs � As be the signal obtained by ®ltering the
clean signal s using the ®lter A�z� derived from the

noisy signal x, and let v � An be the ®ltered noise
in the residual signal domain, then

ep � �I ÿW�rs ÿWv: �11�
Assuming that the signal s and noise n are un-
correlated, the cost function

/�W� � Efkepk2g �12�
is minimized to obtain the optimum weights as

wopt�k� � Efr2
s �k�g

Efr2
s �k�g � Efv2�k�g ;

k � 0; 1; . . . ;N ÿ 1;

�13�

where rs�k� and v�k� are the kth components of rs

and v, respectively. If we de®ne the following ratio
as an approximate measure of SNR in the residual
signal domain:

SNR�k� � Efr2
s �k�g

Efv2�k�g ; �14�

then we have

wopt�k� � SNR�k�
1� SNR�k� : �15�

The solution in Eq. (15) is clearly a time domain
analogue of the optimal Wiener ®lter frequency
response (Haykin, 1991). Note that in arriving at
the result in Eq. (15), no restriction is placed on
the noise samples in the vector n. The noise sam-
ples are only assumed to be uncorrelated with the
signal samples in the vector s. Since it is di�cult to
estimate SNR�k� in practice, wopt�k� can only be
approximated as discussed in Section 3. Note that
the optimal weight wopt�k� in Eq. (15) approaches
1 in the limit when SNR�k� � 1 and approaches
SNR�k� itself, when SNR�k� � 1. But in our
method (presented in Section 3) the weight func-
tion used is not exactly same as the optimal weight.
Firstly, it is di�cult to estimate the SNR�k� in
practice. Secondly, allowing the weight to assume
very low values when the SNR�k� is poor produces
distortion in the processed speech. Hence, it is
necessary to restrict the minimum value of the
weight. Assuming that the noise variance in the
residual signal domain is approximately constant,
SNR�k� is proportional to the short-time energy of
the residual signal. Hence, the short-time energy
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values of the residual signal are used to derive the
weight function at the ®ner (1±2 ms) level.

2.3. Nature of LP residual signal

An experiment was conducted to demonstrate
the e�ect of processing the LP residual signal of
speech and reconstructing the speech using only a
part of the residual signal after the instant of
glottal closure. From the clean speech the voiced/
unvoiced/silence segments and the instants of sig-
ni®cant excitation were identi®ed (Smits and
Yegnanarayana, 1995; Yegnanarayana and Teu-
nen, 1994). The LP residual signal of noisy speech
was modi®ed retaining only the 2 ms portions of
the residual signal around the instants of excita-
tion. The modi®ed residual signal was used to ex-
cite the time-varying all-pole ®lter to regenerate
the speech signal. The resulting speech was sig-
ni®cantly enhanced without causing serious dis-
tortion. This is because the high SNR segments of
noisy speech were retained in the reconstructed
speech. Note that the all-pole ®lter derived from
the noisy speech may not represent the spectral
features of the clean speech accurately. The coef-
®cients of the ®lter were used mainly to derive the
noisy residual signal by inverse ®ltering. Retaining
the waveform bells around the glottal closure
produces good quality speech as was demonstrated
in PSOLA based Text-to-Speech system (TTS)
(Hamon et al., 1989).

The LP residual signal (Fig. 1(d)) may be de-
rived for the noisy speech using a frame of 20 ms
duration and a frame rate of about 100 frames per
second. Even in the LP residual signal of noisy
speech, the SNR is a function of time or frequency.
Inverse ®ltering reduces the correlation between
samples existing in the noisy speech signal. Since
the residual signal samples are less correlated, the
SNR as a function of time can be studied using
much smaller windows (1±2 ms) than the windows
(10±30 ms) normally used in the short-time spec-
tral analysis. The truncation e�ects of the analysis
window are signi®cantly reduced in the residual
signal (Yegnanarayana et al., 1998a). For each
small window of the residual signal, the energy
ratio of the noisy speech signal and the corre-
sponding portion of the residual signal gives an

indication of the amount of reduction in the cor-
relation of the signal samples. This also gives an
indication of how much the signal spectrum is
¯attened in the residual signal. If the signal spec-
trum is already ¯at, then the ratio of the energies
of the noisy signal and the residual signal in the
short (1±2 ms) window will be nearly unity. Oth-
erwise, the ratio will be quite large. Note that for
noise-like segments this ratio of the energies will be
nearly unity. Thus the ratio of the energies gives an
indication of the signal and noise regions of the
signal. The ratio of the energy values for a 10 dB
SNR situation computed for each 2 ms frame is
shown in Fig. 1(e). Note that even weak signal
regions are discernible in the ratio plots. The ratio
can be interpreted as the inverse of spectral ¯atness
of the noisy signal, the minimum inverse ¯atness
being one, corresponding to the energy ratio of 0
dB.

Since the correlation between the residual signal
samples is low, these samples can be manipulated
to some extent without producing signi®cant dis-
tortion in the reconstructed speech (Yegnanar-
ayana and Satyanarayana Murthy, 1996). It is this
manipulative capability of the residual signal we
would like to exploit for enhancement of speech.

3. Manipulation of LP residual signal

The basic principle of our approach for speech
enhancement is to identify the low SNR regions in
the LP residual signal, and derive a weight func-
tion for the residual signal which will reduce the
energy in the low SNR regions relative to the high
SNR regions of the noisy signal. The residual
signal samples are multiplied with the weight
function. The modi®ed residual signal is used to
excite the time-varying all-pole ®lter to generate
the enhanced speech. Speech enhancement is car-
ried out at three levels: (a) at gross level, based on
the overall smoothed inverse spectral ¯atness
characteristics; (b) at ®ner level (1±2 ms), based on
the relative energies of the residual signal between
adjacent frames; and (c) at spectral level, to en-
hance the features in the spectrum that could not
be a�ected by the ®ne level operations.
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3.1. Gross temporal level

At the gross level the regions corresponding to
low and high SNR regions are identi®ed from the
characteristics of the LP residual signal. A weight
function for the residual signal samples is derived
based on the smoothed inverse spectral ¯atness
characteristics of the noisy speech signal. The
spectral ¯atness characteristics are derived by
comparing the energy in the residual signal with
the energy in the noisy speech signal in each short
interval of about 2 ms.

Inverse ®ltering the noisy speech signal using
the time-varying LP coe�cients will give the re-
sidual signal. The ratio of the noisy speech signal
energy to the residual signal energy in dB for each
nonoverlapping frame of 2 ms gives an indication
of the inverse spectral ¯atness as a function of
time. The inverse spectral ¯atness plot is smoothed
using a 17-point Hamming window. The smoothed
inverse ¯atness plot shown in Fig. 1(f) clearly in-
dicates the low and high SNR regions. The low
SNR (noisy) regions have an inverse ¯atness close
to unity (0 dB), and the high SNR (signal) regions
have larger inverse ¯atness values. Note that for

noise-like segments the inverse ¯atness will be
close to unity. Unvoiced segments can be distin-
guished from noisy segments by the higher residual
signal energy value for the unvoiced region com-
pared to the energy value in the (noisy) silence
region (see Fig. 1(c)). A weight function is derived
from the smoothed inverse ¯atness characteristics
in such a way that the residual signal samples in
the regions corresponding to low values of the
inverse ¯atness are reduced relative to the residual
signal samples in the regions corresponding to
high values of the inverse ¯atness.

A mapping function of the type shown in Fig. 2
can be used to map the smoothed inverse spectral
¯atness values to the weight values for each short
(2 ms) frame of residual signal. The mapping
function is of the type tanh�x�. The purpose of the
nonlinear mapping function is to enhance the
contrast between the value of the inverse spectral
¯atness in the speech signal regions and its value in
the background noise regions. The weight values
for each frame are further smoothed using a 2 ms
window to compute the running average across
time. Thus we can generate a weight value for each
sample of the residual signal as shown in Fig. 3(a).

Fig. 2. Mapping function to generate the mapped energy ratio values (fm) from the energy ratio values (f). The mapping function

fm � 1
2
�fm

max ÿ fm
min� tanh�ag p�fÿ f0�� � 1

2
�fm

max � fm
min� is shown for ag � 0:75 and f0 � 1:50.
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The residual signal samples are multiplied with this
weight function to generate a modi®ed residual
signal.

The noisy and the enhanced signals along with
their spectrograms are shown in Fig. 4. The ®gure
shows the reduction in the energy in the noisy seg-
ments relative to the speech segments. On listening,
we notice a signi®cant reduction in the annoyance
due to the background noise. However, due to
sudden change from low noise to the noisy speech
regions, the change can be perceived in the
enhanced speech. It is possible to trade between
the annoyance and speech quality by adjusting the
thresholds in the mapping function shown in Fig. 2.
The more the reduction in the noise level in the low
SNR regions relative to the noise in the high SNR
regions, the better will be the speech quality. But
then there will be more annoyance due to sudden
rise in the background noise. Further improvement
can be obtained by manipulating the residual signal
at the ®ner level as discussed in Section 3.2.

3.2. Finer temporal level

From the spectrogram in Fig. 4(f) we notice
that the noise in the enhanced speech regions is

distributed uniformly across frequency in the
spectrum. This causes annoyance due to abrupt
change from low noise to high noise regions in the
time domain. Also the speech formant features are
masked due to noise ®lling up the low amplitude
portions in the frequency domain. Further en-
hancement at ®ner levels in the speech segments,
especially in the voiced regions, may improve the
quality and reduce the annoyance.

For voiced segments, if the SNR is low in some
short (1±2 ms) segments, then the residual signal in
those regions can be given lower weightage com-
pared to the adjacent higher SNR segments. This
is likely to happen for the regions corresponding to
the open glottis portion in each glottal cycle due to
damping of the formants. The ¯uctuations in the
residual signal energy contour for short (2 ms)
segments illustrate the energy di�erences between
adjacent segments. A weight function at the ®ne
level can be derived from the residual signal energy
plot to deemphasize the segments corresponding to
the valleys relative to the segments corresponding
to the peaks. But for noisy speech, the residual
signal is noisy and so the energy of the short seg-
ment of the residual signal may not be reliable for
deriving the weight. Hence, the Frobenius norm

Fig. 3. Weight functions for the LP residual signal. (a) Gross weight function. (b) Fine weight function. (c) Final weight function.
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Fig. 4. Results of enhancement of speech degraded by additive white noise. (a) Clean speech. (c) Speech signal at 10 dB SNR.

(e) Enhanced speech signal obtained using gross level weighting. (b), (d), (f) Spectrograms for the signals in (a), (c), (e), respectively.
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(Leon, 1990) of the Toeplitz prediction matrix (see
Eq. (16)) constructed using the noisy speech sam-
ples in a frame of 2 ms duration is used to repre-
sent the short-time energy of the corresponding
frame of LP residual signal (Satyanarayana Mur-
thy and Yegnanarayana, 1998). This approach has
the advantage of exploiting the envelope infor-
mation in the noisy speech waveform. The Toep-
litz prediction matrix X is given by

X �

xp�1 xp � � � x1

xp�2 xp�1 � � � x2

. .
. ..

.

..

. ..
.

xp�1

..

.

xM xMÿ1 � � � xMÿp

26666666664

37777777775
; �16�

where x1; x2; . . . ; xM are the noisy speech samples
in a frame of length M samples, which is 16 for
2 ms duration at 8 kHz sampling. The LP order p
is taken as 10. The Frobenius norm is computed
for every sample. The weight function is derived
using the logarithm of the ratio of the Frobenius
norm of the present frame to the Frobenius norm
of the frame 2 ms prior to the present frame. A
mapping function of the type shown in Fig. 2 is
used to map the log ratio values to the weight
values for each sample of the signal. The objective
of the mapping function is to control the relative
emphasis of high SNR segments over low SNR
segments in short (2 ms) intervals. The maximum
change is restricted to the interval 0.2±1.0. The
®ner weight function is shown in Fig. 3(b). The
overall weight function is obtained by multiplying
the gross weight function derived from the
smoothed inverse ¯atness plot with the ®ne weight
function. The ®nal weight function for the resid-
ual signal samples is shown in Fig. 3(c). Enhanced
speech is generated by exciting the time-varying
all-pole ®lter with this weighted residual signal.
Spectrograms of the enhanced speech along with
the spectrograms for noisy speech and the speech
enhanced using only gross level weighting of the
residual signal are shown in Fig. 5. From the
spectrogram in Fig. 5(c) we observe that the
spectrum of the signal is signi®cantly enhanced in
the voiced regions. The quality of speech is sig-

ni®cantly better than in the case of the gross level
modi®cation.

3.3. Spectral level

In the reconstruction of enhanced speech, even
though the LP residual signal is deemphasized in
the low SNR regions, the all-pole ®lters derived
from the 20 ms segments dominate the system
characteristics in the reconstructed speech signal.
To improve the system characteristics at the
spectral level, the LPCs for shorter (1±3 ms) seg-
ments need to be obtained from noisy speech. This
will make the all-pole ®lter for the high SNR
segments closer to the true one. For other seg-
ments the amplitude of the output signal is re-
duced in the reconstruction due to deemphasis of
the corresponding residual signal. But unfortu-
nately, we do not have a good method of esti-
mating the all-pole ®lter for short (1±3 ms)
segments.

One way to achieve spectral manipulation in-
directly is to perform a low order LP analysis on
the preemphasized speech signal. A 7th order LP
analysis is performed using 5 ms Hamming win-
dowed segments overlapped by 2 ms. Due to the
Hamming window, the e�ective duration of the
signal used for analysis is less than 5 ms. The re-
sidual signal is computed by passing the speech
signal through the inverse ®lter. The residual sig-
nal is manipulated as described before. The mod-
i®ed residual signal is used to excite the time±
varying all-pole ®lter, updated every 2 ms, to
generate the enhanced speech. The di�erent steps
in the algorithm are presented in Table 1.

4. Experimental results

Examples are given in this section to demon-
strate the performance of the proposed method for
di�erent types of noises. The degradation is grad-
ual and graceful as the noise level is increased. This
is because the LP analysis tends to be less accurate
as the SNR reduces. It is important to note that
the thresholds for deriving the weight function
could be adjusted so as to obtain an acceptable
trade-o� between reduction in annoyance due to
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noise and degradation in speech quality, based on
perceptual impression of the enhanced speech.
However, once the listener sets the thresholds to
suit his preference, they need not be adjusted
again.

4.1. Studies on di�erent types of noises

The proposed method for speech enhancement
works well even for colored additive noise.
Fig. 6(a) shows the spectrogram of speech cor-
rupted by noise recorded in the cockpit of an F16
aircraft (Website, 1997). The average SNR is ad-
justed to 10 dB. We notice from the spectrograms

that the cockpit noise exhibits both broadband as
well as narrowband (spectral lines at approxi-
mately 3000 and 4500 Hz) characteristics. Fig. 6(b)
shows the spectrogram of enhanced speech. The
enhancement was carried out using the algorithm
proposed in the previous section in three itera-
tions. We found that the enhancement was better
when carried out in smaller steps over two or three
iterations rather than in one step. In each iteration,
mild enhancement can be obtained by using suit-
able values for the thresholds used for the mapping
function in Fig. 2. The thresholds were chosen so
as to achieve mild enhancement in each iteration
and are kept constant in all the iterations.

Fig. 5. (a) Spectrogram for 10 dB SNR speech. (b) Spectrogram for enhanced speech using gross level weighting of the residual signal.

(c) Spectrogram for enhanced speech using gross and ®ne level weighting of the residual signal.
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The method was tested for real signals where
the speech signal and noise were recorded simul-
taneously. Fig. 7(a), (c) and (e) show the clean,
degraded and processed speech signals, respec-
tively. The clean speech and degraded speech were
collected simultaneously by two microphones, one
placed at a distance of 0.1 m from the speaker and
the other placed 1.2 m away. The speech signal
shown in Fig. 7(a) corresponds to the sentence
``She had your dark suit in greasy wash water all
year'' spoken by a male speaker and is taken from
the TIMIT database. It can be seen in Fig. 7(c)
that the degraded speech has small amount of
room reverberation in addition to ambient (air-
conditioner) noise. The ambient noise has lowpass
spectral characteristics and some narrowband

spectral components. In fact there is ambient noise
present even in the clean speech signal in Fig. 7(a).
The speech signal in Fig. 7(c) was preemphasized
before processing. The speech signal processed
using the proposed algorithm and its spectrogram
are shown in Fig. 7(e) and (f), respectively. It can
be seen from the Fig. 7(e) and (f) that the noise
level is signi®cantly attenuated, especially in the
silence regions. It is important to note that the
gross weight function provides mild attenuation of
the reverberation tails. Informal listening con®rms
that there is reduction of the annoyance due to
noise in the processed speech signal, without in-
troducing signi®cant distortion.

The proposed method was also tested on female
speech. The experimental setup for data collection

Table 1

Algorithm for processing noisy speech for enhancement

Computation of the gross weight function

� Calculate the linear prediction (LP) residual signal using a speech frame of size 20 ms, overlapping by 10 ms, Hamming window

and a 10th order LP analysis by autocorrelation method. The analysis is performed on the preemphasized speech signal.

� Calculate the ratio of the noisy speech signal energy and the LP residual signal energy for each nonoverlapping 2 ms frame. The

ratio gives the inverse spectral ¯atness value for each 2 ms frame.

� Smooth the inverse spectral ¯atness curve using a 17-point Hamming window. The smoothed spectral ¯atness value is denoted by

fk for the kth frame.

� Obtain the output fm
k of the mapping function

fm
k �

fm
max ÿ fm

min

2

� �
tanh ag p fk�

ÿ ÿ f0�
�� fm

max � fm
min

2

� �
from fk (see Fig. 2).

� Obtain the gross weight function by repeating each mapped value fm
k 16 times (2 ms at 8 kHz sampling) and smoothing it with a

2 ms mean smoothing ®lter. This generates a gross weight value wgross
n for every sampling instant n.

Computation of the ®ne weight function

� Compute the Frobenius norm of the Toeplitz prediction matrix constructed using the noisy speech samples in each 2 ms frame, for

every sampling instant n.

� Compute the logarithm of the ratio of Frobenius norms of the current frame at the nth sampling instant to the Frobenius norm of

the frame 2 ms (� 16 sampling instants) prior to the current frame. Normalize the log ratio w.r.t. the maximum value. Obtain the

®ne weight function wfine
n by mapping the normalized log ratio using the function

wfine
n � wfine

max ÿ wfine
min

2

� �
tanh af p yn

ÿ �� wfine
max � wfine

min

2

� �
which is similar to the function shown in Fig. 2. wfine

n is the ®ne weight value at the nth sampling instant, yn is the normalised log

ratio of Frobenius norms at n, wfine
max � � 1� is the maximum mapped value, wfine

min � � 0:6� is the minimum mapped value and af

(� 0.75) is a positive constant.

Linear prediction analysis

� Calculate the linear prediction (LP) residual signal using a speech frame of size 5 ms, overlapping by 2 ms, Hamming window and

a 7th order LP analysis by autocorrelation method. The analysis is performed on the preemphasised speech signal.

Synthesis of enhanced speech

� Multiply the two weight functions wgross
n and wfine

n to generate the overall weight function.

� Multiply the LP residual signal obtained above using 5 ms segments of the speech signal by the overall weight function. The

weighted residual signal is used to excite the time-varying all-pole ®lter updated every 2 ms, to generate enhanced speech.
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was the same as that used for collection of male
speech mentioned above. Fig. 8(a) shows the clean
speech signal corresponding to the sentence ``She
had your dark suit in greasy wash water all year''
taken from the TIMIT database. The spectro-
grams of clean, degraded and processed speech
signals are shown in Fig. 8(b), (d) and (f), respec-
tively. The improvement obtained due to process-
ing can be clearly seen in the spectrogram in
Fig. 8(f). Informal listening con®rms the im-
provement obtained due to processing. It is im-
portant to note that the same thresholds were used
for the mapping functions in all the experiments.

4.2. Performance of the method for di�erent
parameter settings

A comparison of the performance of the pro-
posed method for two di�erent settings of the
parameters of the mapping function is shown in
Fig. 9 for the case of female speech. A comparison
with the performance of the spectral subtraction
method (Boll, 1979) is also given in the same ®gure
(Fig. 9(c)). The speech signal used for this com-
parison is the same as the one shown in Fig. 8(c).
Fig. 9(a) and (b) show the spectrograms of the
processed speech signals for the parameter settings

A and B, respectively, given in Table 2. The pa-
rameter settings for case A are chosen such that a
mild enhancement of the noisy speech signal is
obtained without introducing distortion in the
processed signal. The emphasis of speech regions
with respect to the background noise regions is
relatively more for the parameter settings for case
B compared to that for case A. But in this case
mild distortion is perceived in the processed signal.

Although the spectrogram in Fig. 9(a) does not
show signi®cant improvement when compared to
the spectrogram of noisy speech in Fig. 8(d), the
improvement can be clearly perceived while lis-
tening. The spectrogram in Fig. 9(b) shows a sig-
ni®cant improvement when compared with the
spectrogram of the noisy speech in Fig. 8(d). Note
that the weighting of the residual signal at the ®ne
level (i.e. relative emphasis of the residual signal
samples within a glottal cycle) should be mild to
avoid distortion in the processed speech. In the
voiced regions the spectrogram in Fig. 9(b) ap-
pears cleaner compared to the spectrogram in
Fig. 9(a). For the case of speech processed using
the spectral subtraction method we observe that
weak spectral peaks appear randomly in the
spectrogram in Fig. 9(c). These random spectral
peaks give rise to musical noise.

Fig. 6. (a) Spectrogram for 10 dB SNR speech. The speech is corrupted by aircraft cockpit noise. (b) Spectrogram for enhanced speech

using spectral level manipulation besides gross and ®ne level weighting of the LP residual signal. The speech is enhanced using three

iterations.
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Fig. 7. Results of enhancement of male speech degraded by ambient noise. (a) Clean speech. (b) Spectrogram of clean speech.

(c) Speech degraded by noise. (d) Spectrogram of speech degraded by noise. (e) Speech processed using the proposed algorithm.

(f) Spectrogram of processed speech.
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Fig. 8. Results of enhancement of female speech degraded by ambient noise. (a) Clean speech. (b) Spectrogram of clean speech.

(c) Speech degraded by noise. (d) Spectrogram of speech degraded by noise. (e) Speech processed using the proposed algorithm.

(f) Spectrogram of processed speech.
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5. Summary and conclusions

In this paper we have presented a new approach
for enhancement of speech based on LP residual
signal. The method uses the fact that in noisy
speech the SNR is a function of time and fre-
quency. By enhancing the high SNR regions rela-
tive to the low SNR regions, the annoyance due to
background noise is reduced without signi®cantly
distorting the speech. This is accomplished by
identifying the low and high SNR regions based on
the characteristics of the spectral ¯atness in short
(2 ms) time frames. The spectral ¯atness informa-
tion is derived using the ratio of energies in the LP

residual signal of the speech and the noisy signal.
Inverse spectral ¯atness characteristics are used to
derive a weight function for the residual signal at
gross level, and the Frobenius norm of short (2 ms)
segments of the speech signal is used to derive the
weight function at ®ner level. The two weight
functions are multiplied to get the overall weight
function for the residual signal. The method works
since the residual signal samples are nearly un-
correlated, and hence can be manipulated without
signi®cantly a�ecting the quality of the speech re-
generated from the modi®ed residual signal. Since
no direct manipulation in di�erent frequency
bands is involved, this method does not produce

Fig. 9. Comparison of results of enhancement of the proposed method with spectral subtraction for female speech degraded by

ambient noise. Spectrograms of speech processed using the proposed algorithm for the parameter settings of (a) case A and (b) case B

in Table 2. (c) Spectrogram of speech processed using the spectral subtraction algorithm.

Table 2

Two di�erent settings of the parameters for the mapping functions

fm
max fm

min ag f0 wfine
max wfine

min af

Case A 1.0 0.1 1.0 1.5 1.0 0.25 0.75

Case B 1.0 0.05 2.0 2.0 1.0 0.6 0.75
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the type of distortion which the spectral subtrac-
tion and parameter smoothing methods produce.

The objective in this study is to enhance speech
over background noise, and not noise suppression
or elimination. In fact even a small (3±6 dB) im-
provement in SNR of noisy speech may give relief
to the listener. This study suggests that speech
enhancement methods must aim to bring down the
annoyance due to noise by mild enhancements.

The setting of various thresholds in the pro-
cessing is primarily dictated by the listener's tol-
erance to annoyance due to noise and preference
to speech quality. The various parameter values
used in the processing, such as LP order, analysis
frame size, thresholds of the mapping function
etc., are not critical. The choice of the parameters
depends on listener's preference, as the e�ect of
these parameters on the resulting quality of the
enhanced speech is gradual and not abrupt. An-
other important feature is that the method does
not depend on the pitch of the voice. There is no
direct manipulation of the spectrum. However, a
better estimation of the vocal tract system char-
acteristics is needed to improve the enhancement
at the spectral level.

The proposed method reduces the annoyance
due to additive noise but is not very useful in re-
ducing the annoyance due to reverberation. But an
approach based on emphasizing the high signal en-
ergy regions relative to the low signal energy regions
can be developed for enhancement of reverberant
speech also (Yegnanarayana et al., 1998b).

In our opinion the proposed approach is dif-
ferent from many of the methods available for
processing degraded speech. There is scope for
signi®cant improvement by studying the e�ects of
various parameters on the perceptual quality of
the enhanced speech. Moreover, this approach
may be combined with well known spectrum-based
methods for speech enhancement to obtain a bet-
ter quality of enhanced speech for various types of
degradations.
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