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Abstract. This tutorial article deals with the basics of artificial neural 
networks (ANN) and their applications in pattern recognition. ANN can be 
viewed as computing models inspired by the structure and function of the 
biological neural network. These models are expected to deal with 
problem solving in a manner different from conventional computing. A 
distinction is made between pattern and data to emphasize the need for 
developing pattern processing systems to address pattern recognition 
tasks. After introducing the basic principles of ANN, some fundamental 
networks are examined in detail for their ability to solve simple pattern 
recognition tasks. These fundamental networks together with the 
principles of ANN will lead to the development of architectures for complex 
pattern recognition tasks. A few popular architectures are described to 
illustrate the need to develop an architecture specific to a given pattern 
recognition problem. Finally several issues that still need to be addressed 
to solve practical problems using ANN approach are discussed. 

Keywords. Artificial neural network; pattern recognition; biological 
neural network. 

1. Introduction 

Human problem solving is basically a pattern processing problem and not a data 
processing problem. In any pattern recognition task humans perceive patterns in the 
input data and manipulate the pattern directly. In this paper we discuss attempts at 
developing computing models based on artificial neural networks (ANN) to deal with 
various pattern recognition situations in real life. 

Search for new models of computing is motivated by our quest to solve natural 
(intelligent) tasks by exploiting the developments in computer technology (Marcus 
& van Dam 1991). The developments in artificial intelligence (AI) appeared promising 
till a few years ago. But when the AI methods were applied to natural tasks such as 
in speech, vision and natural language processing, the inadequacies of the methods 
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showed up. Like conventional algorithms, AI methods also need a clear specification 
of the problem, and mapping of the problem into a form suitable for the methods 
to be applicable. For example, in order to apply heuristic search methods, one needs 
to map the problem as a search problem. Likewise, to solve a problem using a 
rule-based approach, it is necessary to explicitly state the rules governing it. Scientists 
are hoping that computing models inspired by biological neural networks may provide 
new directions to solving problems arising in natural tasks. In particular, it is hoped 
that neural networks would extract the relevant features from input data and perform r 

the pattern recognition task by learning from examples, without explicitly stating the 
rules for performing the task. 

The objective of this tutorial paper is to present an overview of the current 
approaches based on artificial neural networks for solving various pattern recognition 
tasks. From the overview it will be evident that the current approaches still fall far 
short of our expectations, and there is scope for evolving better models inspired by 
the principles of operation of our biological neural network. This paper is organized 
as follows: In § 2 we discuss the nature of patterns and pattern recognition tasks that 
we encounter in our daily life. We make a distinction between pattern and data, and 
also between understanding and recognition. In this section we also briefly discuss 
methods available for dealing with pattern recognition tasks, and make a case for 
new models of computing based on artificial neural networks. The basics of artificial 
neural networks are presented in 3, including a brief discussion on the operation of 
a biological neural network, models of neuron and the neuronal activation and 
synaptic dynamics. Section 4 deals with the subject matter of this paper, namely, the 
use of principles of artificial neural networks to solve simple pattern recognition tasks. 
This section introduces the fundamental neural networks that laid the foundation I 

for developing new architectures. In 9 5  we discuss a few architectures for complex 
pattern recognition tasks. In the final section we discuss several issues that need to 
be addressed to develop artificial neutral network models for solving practical 
problems. 

2. Patterns and pattern recognition tasks 

2.1 Notion of intelligence 

The current usage of the terms like AI systems, intelligent systems, knowledge-based 
systems, expert systems etc., are intended to show the urge to build machines that 
can demonstrate intelligence similar to human beings in performing some simple 
tasks. In these tasks we look at the performance of a machine and compare it with 
the performance of a person. We attribute intelligence to the machine if the perfor- 
mances match. But the way the tasks are performed by a machine and by a human 
being are basically different; the machine performing the task in a step-by-step I 

sequential manner dictated by an algorithm, modified by some known heuristics. 
The algorithm and the heuristics have to be derived for a given task. Once derived, 

they generally remain fixed. Typically, implementation of these tasks requires large 
number of operations (arithmetic and logical) and also a large amount of memory. 
The trends in computing clearly demonstrate the machine's ability to handle a large 
number of operations (Marcus & van Dam 1991). 
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2.2 Patterns and data 

However, the mere ability of a machine to perform a large amount of symbolic 
processing and logical inferencing (as is being done in AI) does not result in intelligent 
behaviour. The main difference between human and machine intelligence comes from 
the fact that humans perceive everything as a pattern, whereas for a machine all are 
data. Even in routine data consisting of integer numbers (like telephone numbers, 
bank account numbers, car numbers), humans tend to see a pattern. Recalling the 
data is also normally from a stored pattern. If there is no pattern, then it is very 
dificult for a human being to remember and reproduce the data later. Thus storage 
and recall operations in humans and machines are performed by different mechanisms. 
The pattern nature in storage and recall automatically gives robustness and fault 
tolerance for a human system. Moreover, typically far fewer patterns than the 
estimated capacity of human memory systems are stored. 

Functionally also humans and machines differ in the sense that humans understand 
patterns, whereas machines can be said to recognize patterns in data. In other words, 
humans can get the whole object in the data even though there may be no clear 
identification of subpatterns in the data. For example, consider the name of a person 
written in a handwritten cursive script. Even though individual patterns for each 
letter may not be evident, the name is understood due to the visual hints provided 
in the written script. Likewise, speech is understood even though the patterns 
corresponding to individual sounds may be distorted sometimes to unrecognizable 
extents. Another major characteristic of a human being is the ability to continuously 
learn from examples, which is not well understood at all in order to implement it in 
an algorithmic fashion in a machine. 

Human beings are capable of making mental patterns in their biological neural 
network from input data given in the form of numbers, text, pictures, sounds etc., 
using their sensory mechanisms of vision, sound, touch, smell and taste. These mental 
patterns are formed even when the data are noisy, or deformed due to variations such 
as translation, rotation and scaling. The patterns are also formed from a temporal 
sequence of data as in the case of speech and motion pictures. Humans have the 
ability to recall the stored patterns even when the input information is noisy or partial 
(incomplete) or mixed with information pertaining to other patterns. 

2.3 Pattern recognition tasks 

The inherent differences in information handling by human beings and machines in 
the form of patterns and data, and in their functions in the form of understanding 
and recognition have led us to identify and discuss several pattern recognition tasks 
which human beings are able to perform very naturally and effortlessly, whereas we 
have no simple algorithms to implement these tasks on a machine. The identification 
of these tasks below is somewhat influenced by the organization of the artificial neural 
network models which we will be describing later in this paper. 

2.3a Pattern association: Pattern association problem involves storing a set of 
patterns or a set of input-output pattern pairs in such a way that when test data 
are presented, the pattern or pattern pair corresponding to the data is recalled. This 
is purely a memory function to be performed for patterns and pattern pairs. Typically, 
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it is desirable to recall the correct pattern even though the test data are noisy or 
incomplete. The problem of storage and recall of patterns is called autoassociation. 
Since this is a content addressable memory function, the system should display 
accretive behaviour, i.e., should recall the stored pattern closest to the given input. It 
is also necessary to store as many patterns or pattern pairs as possible in a given 
system. 

Printed characters or any set of fixed symbols could be considered as examples of 
patterns for these tasks. Note that the test patterns are the same as the training 
patterns, but with some noise added, or some portions missing. In other words, the 
test data are generated from the same source in an identical manner as the training 
data. 

2.3b Pattern mapping: In pattern mapping, given a set of input patterns and the 
corresponding output pattern or class label, the objective is to capture the implicit 
relationship between the patterns and the output, so that when a test input is given, 
the corresponding output pattern or the class label is retrieved. Note that the system 
should perform some kind of generalization as opposed to memorizing the information. 
This can also be viewed as a pattern classification problem belonging to supervised 
learning category. Typically, in this case the test patterns belonging to a class are 
not the same as the training patterns, although they may originate from the same 
source. Speech spectra of steady vowels generated by a person, or hand-printed 
characters, could be considered as examples of patterns for pattern mapping problems. 
Pattern mapping generally displays interpolative behaviour, whereas pattern 
classification displays accretive behaviour. 

1 

2 . 3 ~  Pattern grouping: In this case, given a set of patterns, the problem is to identify 
the subset of patterns possessing similar distinct features and group them together. 
Since the number of groups and the features of each group are not explicitly stated, 
this problem belongs to the category of unsupervised learning or pattern clustering. 
Note that this is possible only when the features are unambiguous as in the case of 
hand-printed characters or steady vowels. In the pattern mapping problem the 
patterns for each group are given separately, and the implicit, although distinct, 
features have to be captured through the mapping. In pattern grouping on the other 
hand, patterns belonging to several groups are given, and the system has to resolve 
the groups. 

Examples of the patterns for this task could be printed characters or hand-printed 
characters. In the former case, the grouping can be made based on the data themselves. 
Moreover, in that case the test data are also generated from an identical source as the 
training data. For hand-printed characters or steady vowel patterns, the features of 
the patterns in the data are used for grouping. Therefore in this case the test data are 
generated from a similar source as the training data, so that only features are preserved 
and not necessarily the actual data values. I 

2.3d Feature mapping: In several patterns the features are not unambiguous. In 
fact the features vary over a continuum, and hence it is dificult to form groups of 
patterns having some distinct features. In such cases, it is desirable to display the 
feature changes in the patterns directly. This again belongs to the unsupervised 
learning category. In this case what is learnt is the feature map of a pattern and not 
the group or class to which the pattern may belong. This occurs, for example, in the 
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speech spectra for vowels in continuous speech. Due to changes in the vocal tract 
shape for the same vowel occurring in different contexts, the features (formants or 
resonances of the vocal tract in this case) vary over overlapping regions for different 
vowels. 

2.3e Pattern variability: There are many situations when the features in the pattern 
undergo unspecified distortions each time the pattern is generated by the system. 
This can be easily seen in the normal handwritten cursive script. Human beings are 
able to recognize them due to some implicit interrelations among the features, which 
themselves cannot be articulated precisely. Classification of such patterns falls into 
the category of pattern variability task. 

2.3f Temporal patterns: All the tasks discussed so far refer to the features present 
in a given static pattern. Human beings are able to capture effortlessly the dynamic 
features present in a sequence of patterns. This is true, for example, in speech where 
the changes in the resonance characteristics of the vocal tract system (e.g. formant 
contours) capture the significant information about the speech message. This is also 
true in any dynamic scene situation. All such situations require handling sequences 
of static patterns simultaneously, looking for changes in the features in the subpatterns 
in adjacent pattern pairs. 

2.3g Stability-plasticity dilemma: In any pattern recognition task the input patterns 
keep changing. Therefore it is difficult to freeze the categorization task based on a 
set of patterns used in the training set. If it is frozen, then the system cannot learn 
the category that a new pattern may suggest. In other words, the system lacks its 
plasticity. On the other hand, if the system is allowed to change its categorization 
continuously, based on new input patterns, it cannot be used for any application 
such as pattern classification or clustering, as it is not stable. This is called stability- 
plasticity dilemma in pattern recognition. 

2.4 Methods for pattern recognition tasks 

Methods for solving pattern recognition tasks generally assume a sequential model 
for the pattern recognition process, consisting of pattern environment, sensors to 
collect data from the environment, feature extraction from the data and association/ 
storage/classification/clustering using the features. 

The simplest solution to a pattern recognition problem is to use template matching, 
where the data of the test pattern are matched point by point with the corresponding 
data in the reference pattern. Obviously, this can work only for very simple and 
highly restricted pattern recognition tasks. At the next level of complexity, one can 
assume a deterministic model for the pattern generation process, and derive the 
parameters of the model from given data in order to represent the pattern information 
in the data. Matching test and reference patterns are done at the parametric level. This 
works well when the model of the gene;ation process is known with reasonable 
accuracy. One could also assume a stochastic model for the pattern generation process, 
and derive the parameters of the model from a large set of training patterns. Matching 
between test and reference patterns can be performed by several statistical methods 
like likelihood ratio, variance weighted distance, Bayesian classification etc. Other 
approaches for pattern recognition tasks depend on extracting features from 
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parameters or data. These features may be specific for the task. A pattern is described 
in terms of features, and pattern matching is done using descriptions of the features. 
Another method based on descriptions is called syntactic or structural pattern 
recognition in which a pattern in expressed in terms of primitives suitable for the 
classes of pattern under study (Schalkoft 1992). Pattern matching is performed by 
matching the descriptions of the patterns in terms of the primitives. More recently, 
methods based on the knowledge of the sources generating the patterns are being 
explored for pattern recognition tasks. These knowledge-based systems express I 

knowledge in the form of rules for generating and perceiving patterns. 
The main difficulty in each of the pattern recognition techniques alluded to above 

is that of choosing an appropriate model for the pattern generating process and 
estimating the parameters of the model in the case of a model-based approach, or 
extraction of features from datalparameters in the case of feature-based methods, or 
selecting appropriate primitives in the case of syntactic pattern recognition, or deriving 
rules in the case of a knowledge-based approach. It is all the more difficult when the 
test patterns are noisy and distorted versions of the patterns used in the training 
process. The ultimate goal is to impart to a machine the pattern recognition 
capabilities comparable to those of human beings. This goal is difficult to achieve 
using most of the conventional methods, because, as menti,oned earlier, these methods 
assume a sequential model for the pattern recognition process. On the other hand, 
the human pattern recognition process is an integrated process involving the use of 
biological neural processing even from the stage of sensing the environment. Thus 
the neural processing takes place directly on the data for feature extraction and 
pattern matching. Moreover, the large size (in terms of number of neurons and 
interconnections) of the biological neural network and the inherently different r 

mechanism of processing are attributed to our abilities of pattern recognition in spite 
of variability and noise in the data. Moreover, we are able to deal effortlessly with 
temporal patterns and also with the so-called stability-plasticity dilemma as well. 

It is for these reasons attempts are being made to explore new models of computing, 
inspired by the structure and function of the biological neural network. Such models 
for computing are based on artificial neural networks, the basics of which are 
introduced in the next section. 

3. Basics of artificial neural networks 

3.1 Characteristics of biological neural networks 

New models of computing to perform pattern recognition tasks based on our 
biological neural network are not expected to reach anywhere near the performance 
of the biological network for several reasons. Firstly, we do not fully understand the 
operation of a biological neuron and the dynamics of the neural interconnections. 
Secondly, it is nearly impossible to simulate (i) the number of neurons and their I 

interconnections as it exists in a biological network, and (ii) the dynamics of the 
network that determines the operation of the network. 

The features that make the performance of a biological network superior to even 
the most sophisticated AI computer system for pattern recognition tasks are the 
following (Hertz et a1 1991). 

(a) Robustness and fault tolerance - The decay of nerve cells does not seem to affect 
the performance of the network significantly. 
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Figure 1. Schematic drawing of a typical neuron or nerve cell. It includes 
dendrites, the cell body and a single axon. Synapses connect the axons of neurons 
to various parts of other neurons. 

(b) Flexibility - The network automatically adjusts to a new environment without 
using any preprogrammed instruction set. 
(c) Ability to deal with a variety of data situations - The network can deal with 
information that is fuzzy, probabilistic, noisy or inconsistent. 
(d) Collective computation - The network can routinely perform many operations 
in parallel and also a given task in a distributed manner. 

These features are attributed to the structure and function of a biological neural 
network (Muller & Reinhardt 1990). The fundamental unit of the network is called 
a neuron or nerve cell. Figure 1 shows a schematic of the structure of a neuron. It 
consists of a cell body or soma where the cell nucleus is located. Tree-like networks 
of nerve fibres, called dendrites, are connected to the cell body. Extending from the 
cell body is a single long fibre, called the axon, which eventually branches into strands 
and substrands, connecting to many other neurons at the synaptic junctions or 
synapses. The receiving end of these junctions on other cells can be found both on 
the dendrites and on the cell bodies themselves. The axon of a typical neuron makes 
a few thousand synapses with other neurons. 

The transmission of a signalfrom one cell to another at a synapse is a complex 
chemical process, in which specific transmitter substances are released from the 
sending side of the junction. The effect is to raise or lower the electrical potential 
inside the body of the receiving cell. If this potential reaches a threshold, electrical 
activity in the form of short pulses takes place. When this happens, the cell is said 
to have fired. This electrical activity of fixed strength and duration is sent down the 
axon. 

The dendrites serve as receptors for signals from adjacent neurons, whereas the 
axon's purpose is the transmission of the generated neural activity to other nerve 
cells or to muscle fibres. In the first case the term interneuron may be used, whereas 
the neuron in the latter case is called motor neuron. A third type of neuron, which 
receives information from muscles or sensory organs, such as the eye or ear, is called 
a receptor neuron. 
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Although all neurons operate on the same basic principle, there exist several different 
types of neurons, distinguished by the size and degree of branching of their dendritic 
trees, the length of their axons, and other structural details. The complexity of the 
human central nervous system is due to the vast number of neurons and their mutual 
connections. Connectivity is characterized by the complementary properties of 
convergence and divergence. In the human cortex every neuron is estimated to receive 
converging input on the average from about lo4 synapses. On the other hand, each 
cell feeds its output into many hundreds of other neurons. The total number of 
neurons in the human cortex is estimated to be in the vicinity of lo", and are 
distributed in layers over a full depth of cortical tissue at a constant density of about 
150,000 neurons per square millimetre. Combined with the average number of 
synapses per neuron, this yields a total of about 1015 synaptic connections in the 
human brain, the majority of which develop during the first few months after birth. 
The study of the properties of complex systems built of simple, identical units, may 
lead to an understanding of the mode of operation of the brain in its various functions, 
although we are still far from it. 

The simplified schematic and uniform connectionist units offer a surprisingly rich 
structure when assembled in a closely interconnected network. We shall call such a 
network an artificial neural network. Since artificial neural networks are implemented 
on computers, it is worth comparing the processing capabilities of computers with 
that of the biological neural networks (Simpson 1990). 

Neural networks are slow in processing information. The cycle time corresponding 
to execution of one step of a program in a computer is in the range of a few 
nanoseconds, whereas the cycle time corresponding to a neural event prompted by 
an external stimulus, is in the milliseconds range. Thus computers process information 
a million times faster. 

Neural networks perform massively parallel operations. Most programs operate 
in a serial mode, one instruction after another, in a conventional computer, whereas 
the brain operates with massively parallel programs that have comparatively fewer 
steps. 

Neural networks have large numbers of computing elements, and the computing 
is not restricted to within neurons. The conventional computer typically has one 
central processing unit where all the computing takes place. 

Neural networks store information in the strengths of the interconnections. In a 
computer, information is stored in the memory which is addressed by its location. 
New information is added by adjusting the interconnection strengths without 
completely destroying the old information, whereas in a computer the information 
is strictly replaceable. 

Neural networks distribute the encoded information throughout the network, and 
hence they exhibit fault tolerance. In contrast, computers are inherently not fault 
tolerant, in the sense that information corrupted in the memory cannot be retrieved. 

There is no central control in processing information in the brain. Thus there in 
no specific control mechanism external to the computing task. In a computer, on the 
other hand, there is a control unit which monitors all the activities of computing. 

While the superiority of the human information processing system over the 
conventional computer for pattern recognition tasks stems from the basic structure 
and operation of the biological neural network, it is possible to realize some of the 
features of the human system using an artificial neural network consisting of basic 
computing elements. In particular, it is possible to show that such a network exhibits 
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parallel and distributed processing capability. In addition, information can be stored 
in a distributed manner in the connection strengths so as to achieve fault tolerance. 

3.2 Artificial neural networks - terminology 

3.2a Processing unit: We can consider an artificial neural network (ANN) as a highly 
simplified model of the structure of the biological neural network. An ANN consists 
of interconnected processing units. The general model of a processing unit consists 
of a summing part followed by an output part. The summing part receives n input 
values, weighs each value, and performs a weighted sum. The weighted sum is called 
the activation value. The sign of the weight for each input determines whether the 
input is excitatory (positive weight) or inhibitory (negative weight). The inputs could 
be discrete or continuous data values, and likewise the outputs also could be discrete 
or continuous. The input and output may also be viewed as deterministic or stochastic 
or fuzzy, depending on the nature of the problem and its solution. 

3.2b Interconnections: In an artificial neural network several processing units are 
interconnected according to some topology to accomplish a pattern recognition task. 
Therefore the inputs to a processing unit may come from outputs of other processing 
units, and/or from an external source. The output of each unit may be given to several 
units including itself. The amount of the output of one unit received by another unit 
depends on the strength of the connection between the units, and it is reflected in 
the weight value associated with the connecting link. If there are N units in a given 
ANN then at any instant of time each unit will have a unique activation value and a 
unique output value. The set of the N activation values of the network defines the 
activation state of the network at that instant. Likewise, the set of the N output values 
of the network define the output state of the network at that instant. Depending on 
the discrete or continuous nature of the activation and output values, the state of 
the network can be described by a point in a discrete or continuous N-dimensional 
space. 

3 . 2 ~  Operations: In operation, each unit of an ANN receives inputs from other 
connected units and/or from an external source. A weighted sum of the inputs is 
computed at a given instant of time. The resulting activation value determines the 
actual output from the output function unit, i.e., the output state of the unit. The 
output values and other external inputs in turn determine the activation and output 
states of the other units. The activation values of the units (activation state) of the 
network as a function of time are referred to as activation dynamics. The activation 
dynamics also determine the dynamics of the output state of the network. The set 
of all activation states defines the state space of the network. The set of all output 
states defines the output or signal state space of the network. Activation dynamics 
determines the trajectory of the path of the states in the state space of the network. 

For a given network, defined by the units and their interconnections with 
appropriate weights, the activation states refer to the short term memory function of 
the network. Generally the activation dynamics is followed to recall a pattern stored 
in a network. 

In order to store a pattern in a network, it is necessary to adjust the weights of 
the network. The sets of all weight values (corresponding to strengths of all connecting 
links of an ANN) defines the weight space. If the weights are changing, then the set of 
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weight values as a function of time defines the synaptic dynamics of the network. 
Synaptic dynamics is followed to adjust the weights in order to store given patterns 
in the network. The process of adjusting the weights is referred to as learning. Once 
the learning process is completed, the final set of weight values corresponds to the 
long term memory function of the network. The procedure to incrementally update 
each of the weights is called a learning law or learning algorithm. 

3.2d Update: In implementation, there are several options available for both 
activation and synaptic dynamics. In particular, the updating of the output states of 
all units could be performed synchronously. In this case, the activation values of all 
units are computed at the same time assuming a given output state throughout. From 
these activation values the new output state of the network is derived. In an asynchronous 
update, on the other hand, each unit is updated sequentially, taking the current output 
state of the network into account each time. For each unit, the output state can be 
determined from the activation value either deterministically or stochastically. 

In practice, the activation dynamics, including the update, is much more complex 
in a biological neural network. The ANN models along with the equations governing 
the activation and synaptic dynamics are developed according to the complexity of 
the pattern recognition task to be handled. 

3.3 Models of neurons 

In this section we will consider three classical models for an artificial neuron or 
processing unit. 

3.3a McCulloch-Pitts model: In the McCulloch-Pitts (MP) model (figure 2) the 
activation (x) is given by a weighted sum of its n-input signal values {a,) and a bias 
term (8). The activation could have an additional absolute inhibition term, which 
can prevent excitation of the neuron. The output signal (s) is typically a nonlinear 
function of the activation value. Three common nonlinear functions (binary, ramp 
and sigmoid) are shown in figure 3, although the binary function was used in the 
original MP model. The following equations describe the operation of an MP model: 

n 

activation: .x = 1 wiai - 8 - [inhibition], 
i =  1 

output signal: s = f (x). 

inputs weights octivotion output signol 
volue 

0 1  

summing output 
port function 

Figure 2. The McCulloch-Pitts model of a neuron. 



Artijicial neural networks for pattern recognition 199 

Figure 3. Some nonlinear functions. (a) Binary, (b) ramp and (c) sigmoid. 

In this model the weights wi are constant. That means there is no learning. Networks 
consisting of MP neurons with binary (on-off) output signals can be configured to 
perform several logical functions (McCulloch & Pitts 1943). 

3.3b Perceptron: Rosenblatt's perceptron model (figure 4) for an artificial 
neuron consists of outputs from sensory units to a fixed set of association units, the 
outputs of which are fed to an MP neuron (Rosenblatt 1958). The association units 
perform predetermined manipulations on their inputs. The main deviation from the 
MP model is that here learning (i.e., adjustment of weights) is incorporated in the 
operation of the unit. The target output (b) is compared with the actual binary output 
(s) and the error is used to adjust the weights (Rosenblatt 1962). The following 
equations describe the operation of'the perceptron model of a neuron. 

n 

activation: X =  x wiai-6, 
i =  1 

output signal: s = f (4 ,  

error: 6=b-s ,  
dwi 

weight update: -- = $ai, 
dt 

where q is called learning rate parameter. 
There is the perceptron learning law which gives a step-bystep procedure for 

adjusting the weights. Whether the adjustment converges or not depends on the 

input weights 
(adjustable) 

output 
activation signal 

value (Binary) 

sensory association 
input units 

summing output 
unit unit 

Figure 4. Rosenblatt's model of a neuron. 



200 B Yegnanarayana 

nature of the desired input-output pair to be represented by the model. The perceptron 
convergence theorem (Rosenblatt 1962) enables us to determine whether a given 
pattern pair is representable or not. If the weight values converge, then the 
corresponding problem is said to be representable by the perceptron network. 

W2 
0 2  + 
0" + 

3 . 3 ~  Adaline: The main distinction between Rosenblatt's perceptron model and 
Widrow's adaline model (figure 5) is that in the adaline model the analog activation 
value (x) is compared with the target output (b). In other words, the output is a linear 
function of the activation value (x). The equations that describe the operation of an 
adaline are as follows (Widrow & Hoff 1960): 

Figure 5. Widrow's adaline 
model of a neuron. 

n 

activation: x = 1 wiai - 0, 
i =  1 

output signal: s = f (x) = x, 

error: d = b - s = b - x ,  

weight update: dwi/dt = q6ai. 

This rule minimizes the mean squared error d2, averaged over all inputs. Hence it is 
called the least mean squared (LMS) error learning law. The law is derived using the 
negative gradient of the error surface in the weight space. Hence it is also called a 
gradient descent algorithm. 

3.4 Topology 

Artificial neural networks are useful only when the processing units are organized in 
a suitable manner to accomplish a given pattern recognition task. This section presents 
a few basic structures which will assist in evolving new architectures. The arrangement 
of the processing units, connections, and pattern input/output is referred to as 
topology (Simpson 1992, pp. 3-24). 

Artificial neural networks are normally organized into layers of processing units. 
Connections can be made either from units of one layer to units of another (interlayer 
connections) or from the units within the layer (intralayer connections) or both inter 
and intralayer connections. Further, the connections among the layers and among 
the units within a layer can be organized either in a feedforward manner or in a 
feedback manner. In a feedback network the same processing unit may be visited 
more than once. 

We will discuss a few basic structures which form building blocks for complex 
neural network architectures. Let us consider two layers F,  and F, with N and M 
processing units, respectively. By providing connections to the jth unit in F, from 
all the units in F , ,  as shown in figures 6a and b, we get two network structures instar 
and outstar, which have fan-in and fan-out geometries, respectively. The units in the 
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Figure 6. Some basic structures of the Artificial Neural Networks. (a) Instar, 
(b) outstar, (c) group of instars, (d) group of outstars, (e) bidirectional associative 
memory, and (f) autoassociative memory. 

F, layer are linear units, so that for each unit i in this layer the input (a,) = activation 
(xi) = output signal (s,). In instar, during learning, the weight vector wj(wjl, wj2,. . . , wjN) 
is adjusted so as to approach the given input vector a at F, layer. Therefore whenever 
the input is given to F,, then the jth unit of F2 will be activated to the maximum extent. 
Thus the operation of the instar can be viewed as content addressing the memory. In 
the case of the outstar, during learning, the weight vector for the connections from the 
jth unit in F2 approaches the activity pattern in F, when input vector a is present 
at F,. During recall, whenever the unit j is activated, the signal pattern (sjwlj, 
sjwIj,. . . sjwNj) will be transmitted to F,, which then produces the original activity 
pattern corresponding to the input vector a, although the input is absent. Thus the 
operation of the outstar can be viewed as memory addressing the contents. 
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When all the connections from units in F ,  and F, are made as in figure 6c, then 
we obtain a heteroassociation network. This network can be viewed as a group of 
instars, if the flow is from F,  to F,. On the other hand, if the flow is from F, to F, ,  
then the network can be viewed as a group of outstars (figure 6d). 

When the flow is bidirectional, and the weights are symmetric wij = wji, then we 
get a bidirectional associative memory (figure 6e), where either of the layers can be 
used as input/output. 

If the two layers F, and F, coincide, then we obtain an autoassociative memory 
in which each unit is connected to every other unit and to itself (figure 6f). 

3.5 Activation and synaptic dynamics 

Artificial neural networks can be considered as trainable nonlinear dynamical systems 
(Kosko 1972). For a network consisting of N processing units, the activation state 
of the network at any given instant corresponds to a point in the N-dimensional 
state space. The dynamics of the neural network traces a trajectory in the state space. 
The trajectory begins with a point in the state space representing a computational 
problem and ends at a point in the state space representing a computational solution. 
Most of the trajectory corresponds to the transient behaviour of computations. The 
trajectory ends at an equilibrium state of the system in the normal course. An 
equilibrium state is one at which small perturbations around it due to neuronal 
dynamics will not perturb the state. 

Neuronal dynamics consists of two parts: one corresponding to the dynamics of 
activation states and the other corresponding to the dynamics of synaptic weights. 
The activation dynamics determines the time evolution of the neuronal activations, 
and it is described by a system of first order differential equations. The equations 
governing the dynamics are described in terms of the first derivative of the activation 
state, i.e., dxi/dt. Likewise synaptic dynamics determines the changes in the synaptic 
weights. The equations governing the dynamics are described in terms of the first 
derivative of the synaptic weights, i.e., dwi,/dt, where wij is the strength of the connecting 
link'from the jth unit to the ith unit. Synaptic weights change gradually, whereas the 
neuronal activations fluctuate rapidly. Therefore, while computing the activation 
dynamics, the synaptic weights are assumed to be constant. The synaptic dynamics 
dictates the learning process. The short term memory (STM) in neural networks is 
modelled by the activation state of the network. The long term memory (LTM) 
corresponds to the encoded pattern information in the synaptic weights due to 
learning. 

3.5a Models of activation dynamics: Different models are proposed for the 
activation dynamics, the most common ones among them are the additive and 
shunting activation models. The additive activation model is given by the equation 
for the rate of change of the activation of the ith unit as (Grossberg 1988; Carpenter 
1989). 

dxi/dt = - xi + 1 [excitatory inputs] - C[inhibitory inputs]. 

In this equation the first term on the right hand side contributes to a passive decay 
term. The net excitatory and inhibitory inputs are contributed by signals from other 
units appropriately weighted by the synaptic strengths and by the externally applied 
inputs. 
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In the steady state there will not be any change in activation. That is dxi/dt = 0. 
In such a case the activation value is given by the net excitatory and inhibitory inputs. 
That is 

xi = 1 [excitatory inputs] - 1 [inhibitory inputs]. 

For a specific case xi can be written as 

The sign of wij determines whether the contribution is excitatory or inhibitory. 0, is 
a fixed bias term for the unit, and it becomes the resting value in the absence of all 
inputs. Ii is the net external input to the unit i. The sign of Ii determines whether it 
is excitatory or inhibitory. 

An important generalization of the additive model is the shunting activation model 
given by the equation (Grossberg 1988), 

dxi/dt = - xi + (A - x i ) l  [excitatory inputs] - (B + x i ) l  [inhibitory inputs], 

where the activity xi remains bounded in the range (- B, A), and it decays to the 
resting level 0 in the absence of all inputs. In this model the excitatory inputs drive 
the activity towards a finite maximum A, and the inhibitory inputs drive the activity 
towards a finite minimum - B. The shunting model represents a special case of 
Hodgkin-Huxley membrane equations to describe the physiology of single nerve cell 
dynamics (Hodgkin & Huxley 1952). 

The activation models considered so far are called deterministic models. In practice, 
the input/output patterns and the activation values can be considered as samples of 
a random process, and the output signal of each unit may be a random function of 
the unit's activation value. In such a case the network activation state can be viewed 
as a vector stochastic process. Each unit in turn behaves as a scalar stochastic process 
(Kosko 1992). 

3.5b Models of synaptic dynamics: Synaptic dynamics is described in terms of 
expressions for the first derivative of the weights. They are called learning equations 
(Kosko 1992). Typical (basic) learning involves adjustment of the weight vector such 
that 

wi(t + 1) = wi(t) + Awi(t), 
where 

'/ = learning rate parameter, 
wi = [wil, wiz.. . wiNIT weight vector with components w,,, 

wij = weight connecting the jth input unit to the ith processing unit, 
a = input vector with components a,, i = 1,2.. . N, 
b = desired output vector with components b,, i = 1,2,. . . M. 

Input units are assumed linear. Hence a = x (unit activation)=s(unit 
output). 
Output units are in general nonlinear. Hence si = f (wi

Ta). 
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The function g may be viewed as a learning function that depends on the type of 
learning adopted. 

Continuous time learning can be expressed 

In discrete time learning, at the kth step the new weight is given by 

w" = w: + qg [w:, ak, bf ] ak. 

There are different methods for implementing the synaptic dynamics. These methods 
are called learning laws. A few common discrete time learning laws are given below 
(Zurada 1992). 

3 . 5 ~  Hebb's law (Hebb 1949): 

Here g(.) = f (wi
Ta), where f is the output function. Therefore 

Awij = d ( w i  Ta)aj 

=qs ia j ,  for j=1 ,2  ... N 

This law requires weight initialization wi x 0 prior to learning. 

3.5d Perceptron learning law (Rosenblatt 1962): 

Here g(.) = b, - si = b, - sgn(w
r
a). Therefore 

Awij = q[bi - sgn(w
T
a)]a j,  for j = 1,2 ... N .  

This rule is applicable for bipolar output function. The weights can be initialized 
to any values prior to learning. 

3.5e Delta learning law: 

Here g(.) = [b, - f (wi Ta)]  f '(wi Ta). This is obtained by setting 

Awi = - qVE 

where - V E  is the negative gradient of the error E = $[bi - f (wi Ta)]2.  Therefore 

Awij = q(bi - s,) f '(wi Ta)aj,  for j = 1,2.. . N 

Here f (.) is a continuous function. The weights may be initialized to any values. 

3.5f Widro-Hoff LMS learning law (Widrow & Hoff 1960): 

Here g (.) = b, - wi Ta. Therefore 

Aw.. = q(bi - wi Ta)aj,  for j = 1,2.. . N. 
V 

This is a special case of the delta learning law where the output function is assumed 
to be linear, i.e., f (wi

Ta) = wi
Ta. The weights may be initialized to any values. 
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3.5g Correlation learning law: 

Awij = qbiaj ,  for j = 1,2.. . N. 

This is applicable for binary output units. This is a special case of Hebbian learning 
with output signal (s ,)  = desired signal (b,) .  The weights are initialized to zero prior to 
learning. 

3.5h Instar (winner-take-all) learning law (Grossberg 1982): 

Awmj = q(aj  - wmj), for j = 1,2,. . . N, 

where w i a  = max(wi 'a). Here the weights are initialized to random values prior to 
I 

learning and their lengths are normalized during learning. 

3.3 Outstar learning law (Grossberg 1982): 

Awkj = q(bk - wkj),  for k = 1,2.. K 

where b is the desired response from the layer of K neurons. The weights are initialized 
to zero before learning. 

There are several learning laws in use, and new laws are being developed to suit 
a given application and architecture. Some of these will be discussed in the appropriate 
sections later. But there are some general categories that these laws fall into, based 
on the characteristics they are expected to possess for different applications. In first 
place, the learning or weight changes could be supervised or unsupervised. In supervised 
learning the weight changes are determined by the difference between the desired 
output and the actual output. Some of the supervised learning laws are: error 
correction learning or delta rule, stochastic learning, and hardwired systems (Simpson 
1992, pp. 3-24). Supervised learning may be used for structural learning or for temporal 
learning. Structural learning is concerned with capturing in the weights the relation- 
ship between a given input-output pattern pair. Temporal learning is concerned with 
capturing in the weights the relationship between neighbouring patterns in a sequence 
of patterns. 

Unsupervised learning discovers features in a given set of patterns and organizes 
the patterns accordingly. There is no externally specified desired output as in the 
case of supervised learning. Examples of unsupervised learning laws are: Hebbian 
learning, differential Hebbian learning, principle component learning and competitive 
learning (Simpson 1992, pp. 3-24). Unsupervised learning uses mostly local information 
to update the weights. The local information consists of signal or activation values 
of the units at either end of the connection for which the weight update is being 
made. 

Learning methods can be grouped into ofl-line and on-line. In off-line learning 
all the given patterns are used, may be several times if needed, to adjust the weights. 
Most error correction learning laws belong to the off-line category. In on-line 
learning each new pattern or set of patterns can be incorporated into the network 
without any loss of the prior stored information. Thus an on-line learning allows the 
neural network to add new information continuously. An off-line learning provides 
superior solutions because information is extracted when all the training patterns are 
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available, whereas an on-line learning updates only the available information of the 
past patterns in the form of weights. 

In practice, the training patterns can be considered as samples of random processes. 
Learning laws could take into account the changes in the random process reflected 
through the samples patterns. Thus one could define stochastic versions of the 
deterministic learning laws described so far. The random learning laws are expressed 
as first order stochastic differential equations. For example, the random signal 
Hebbian learning law relates random processes as (Kosko 1992) 

where the output random process {si) is a result of the signal random process {sj}, 
which in turn may be a result of another activation random process caused by the 
input process. {nij} can be assumed to be a zero-mean Gaussian white noise process. 

In supervised learning one can derive a stochastic approximation to the learning 
law using the following argument: Given a set of L random sample's, each sample 
consisting of the pattern pairs (a,, b,), a supervised learning attempts to minimize an 
unknown error functional E[6,], where 6, is the error between the desired output 
and the actual output signal. The gradient of - E[6,] points in the direction of 
steepest descent on the unknown expected error surface. Since the joint probability 
density function of the input/output pattern pairs is not known, only the error 6, is 
used as an estimate of E[G,]. Since 6, is also a random process, for each iteration in 
a discrete stochastic gradient descent algorithm, the weight update at the (k + 1)th 
iteration is given by (Kosko 1992) 

where 6:, = b,, - sf. Since the given data are sample functions of a random process, 
the corresponding weights at each iteration are also random. 

Synaptic equilibrium in the deterministic signal Hebbian law occurs in the steady 
state when the weights stop changing. That is, 

dwij/dt=O, for all i,j. 

In the stochastic case the synaptic weights reach a stochastic equilibrium when the 
changes in the weights are contributed by only the random noise. That is, at stochastic 
equilibrium, the expectation or ensemble average of the change in weights is given 
by (Kosko 1990) 

where a: is the variance of the noise process nij. 

3.5j Stability and convergence: So far the activation and synaptic dynamics 
equations are described in terms of first-order differential equations which are 
continuous time equations. Discrete time versions of these equations are convenient 
for implementation of the network dynamics on a digital computer. In discrete time 
implementation the activation state of each unit at each stage is computed in terms 
of the state of the network in the previous stage. The state update at each stage could 
be made asynchronously, i.e. each unit is updated using the new updated state, or 
synchronously, i.e., all the units are updated using the same previous state. 
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The implications of these implementations are on the stability of the equilibrium 
activation states of a feedback neural network, and on the convergence of the synaptic 
weights while minimizing the error between the desired output and the actual output 
during learning. In general, there are no standard methods to determine whether 
network activation dynamics or synaptic dynamics leads to stability or convergence, 
respectively, or not (Kosko 1992; Simpson 1992, pp. 3-24). 

3.5k Neural network recall: During learning, the weights are adjusted to store the 
information in a given pattern or a pattern pair. However, during performance, the 
weight changes are suppressed, and the input to the network determines the output 
activation xj or signal values sj. This operation is called recall of stored information. 
The recall techniques are different for feedforward and feedback networks. 

The simplest feedforward network uses the following equation to compute the 
output signal from the input data vector a to the input layer F,:  

where fi is the output function of the ith unit in the output layer F,. Here the units 
in the input layer F ,  are assumed to be linear. 

A recall equation for a network with feedback connections is given by (Simpson 
1992, pp. 3-24) 

where xi(t + 1) is the activation value of the ith unit in a single layer neural network 
at time (t + l), f j  is the nonlinear output function of the jth unit, a is a positive 
constant that regulates the amount of decay the unit has during the update interval, 
/3 is a positive constant that regulates the amount of feedback the other units provide 
to the ith unit, and ai is the external input to the ith unit. In general, stability is the 
main issue in feedback networks. If the network reaches a stable state in a finite 
number of iterations, then the resulting output signals represent the nearest neighbour 
stored pattern of the system for the approximate input pattern a. 

Cohen & Grossberg (1983) showed that for a wide class of neural networks with 
certain constraints, the network with fixed weights reaches a stable state in a finite 
period of time for any initial condition. Later Kosko showed that a neural network 
could learn and recall at the same time, and yet remain stable (Kosko 1990). 

The response of a network due to recall could be the nearest neighbour or interpolative. 
In the nearest neighbour case, the stored pattern closest to the input pattern is recalled. 
This typically happens in the feedforward pattern classification or feedback pattern 
matching networks. In the interpolative case, the recalled pattern is a combination 
of the outputs corresponding to the input training patterns nearest to the given input 
test pattern. This happens in the feedforward pattern mapping networks. 

4. Functional units of ANN for pattern recognition tasks 

So far we have considered issues in pattern recognition and introduced basics of 
artificial neural networks. In this section we discuss some functional units of artificial 
neural networks that are useful to solve simple pattern recognition tasks. In particular, 
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1. Feedforward ANN 
(a) Pattern association 
(b) Pattern classification 
(c) Pattern mapping/classification 

2. Feedback ANN 
(a) Autoassociation 
(b) Pattern storage (LTM) 
(c) Pattern environment storage (LTM) 

3. Feedforward and Feedback ANN 
(a) Pattern storage (STM) 
(b) Pattern clustering 
(c) Feature map 

Figure 7. Summary of ANN for pattern recognition problems. 

we discuss artificial neural networks for the following pattern recognition problem 
and for various special cases of the problem. 

PROBLEM 

Design a neural network to associate the pattern pairs ( a , ,  b , ) ,  (a, ,  b,), . . . (aL,  b,), 
where a, = (a,,,  a,,, . . . a,,) and b, = (b, ,  , b,,, . . . b,,) are N and M dimensional vectors, 

. 
respectively. 

Figure 7 shows the organization of the networks and the pattern recognition tasks 
to be discussed in this section. We consider three types of ANN: Feedforward, feedback 
and a combination of both. We begin discussion of each network with only a minimal 
structure, and study their capabilities and limitations. To start with, the feedforward 
network consists of two layers of processing units, one layer with linear units for 
receiving the external input, and the other layer for delivering the output. A minimal 
feedback network consists of a set of processing units, each connected to all other 
units. A combination network consists of an input layer of linear units feeding to 
the output layer of units in a feedforward manner, and a feedback connection among 
the units in the output layer, including self feedback. We consider each one of these 
networks in some detail. 

4.1 Pattern recognition tasks by feedforward A N N  Cfigure 8) 

4.la Pattern association: The objective is to design a linear network that can 
capture the association in the pairs of vectors (a, ,  b,), 1 = 1,2.. . L, through a set of 
weights to be determined by a learning or training law. The input data used in training 
are typically generated synthetically, like machine printed characters. The input data 
used for recall may be corrupted by external noise. 

The network consists of a set of weights connecting the two layers of processing 
units, the output function of each unit being linear. Such a network is called a linear 
associator network. Due to linearity of the output function of each unit, the activation 
values and the output signals of the units in the input layer are same as the input 
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Pattern association 
+ Arch: Two layers, linear. processing unit, single set of weights 
+ Learning: Hebb (orthogonal) rule, Delta (linearly independent) rule 
+ Recall: Direct 
+ Limitation: Linear independence, # patterns restricted to dimensionality 
+ To overcome: Nonlinear processing unit, becomes a pattern classification problem 

Pattern classification 
+ Arch: Two layers, nonlinear processing units, geometrical interpretation 
+ Learning: Delta rule 
+ Recall: Direct 
+ Limitation: Linearly separable functions, hard problems 
+ T o  overcome: More layers, hard learning problems 

Pattern mapping/classification 
+ Arch: Multilayer (hidden), nonlinear processing units, geometric interpretation 
+ Learning: Generalized delta rule - backpropagation 
+ Recall: Direct 
+ Limitation: Slow learning 
+ T o  overcome: More complex architectures 

Figure 8. Pattern recognition tasks by feedforward ANN. 

data values. The activation value of the ith unit in the output layer is given by 

The output of the ith unit is the same as its activation value y,, since the output 
function of the unit is linear. The objective is to determine a set of weights wij in 
such a way that the actual output b;, is equal to the desired output bIi for all the L 
pattern pairs. 

If the input L pattern vectors ( a , }  are all orthogonal, then it is possible to use 
Hebb's learning law to determine the optimal weights of the network (Hecht-Nielsen 
1990). Note that a learning law enables updating of weights as patterns are applied 
one by one to the network. The optimality of the weights is determined by minimizing 
the mean squared error between the desired and the actual output values. The optimal 
weights after I pattern pairs are fed to the network are given by 

The final optimal weights for pattern association task are given by 

If the input vectors ( a , }  are only linearly independent, but not necessarily 
orthogonal, then $he optimal weights that minimize the mean squared error can be 
obtained using the LMS learning law (Widrow & Hoff 1960; Hecht-Nielsen 1990). 

Once the network is trained, for any given input pattern a,,  the associated pattern 
b, can be recalled using the equations 

N 
yi = 1 wijaIj  and b,, = y,. 

j =  1 
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When noisy input patterns are used during recall, i.e., {a,,), then the recalled pattern 
{bii) will also be noisy. Since the given set of input pattern {a,), I = 1 . . . L, is assumed 
to be linearly independent, the number of patterns in the input set is limited to the 
dimensionality of the input vector, namely, N. Therefore, it is not possible to store 
more than N pattern pairs in a linear associative network. If the number of input 
pattern are more than its dimension (N), or if the input set (even for L < N) are not 
linearly independent, then the resulting weight vectors are not optimal any more. In 
such a case the recall of the associative pattern for a given input pattern may not be 
correct always. 

Even if the input patterns are linearly independent and optimal weights are used, 
the recall may be in error if a noisy input pattern is presented to recall the associated 
pattern (Murakami & Aibara 1987). 

In practice, linear independence is too severe a restriction to satisfy. Moreover the 
number of input patterns may far exceed the dimensionality of the input pattern 
space. It is possible to overcome these limitations by using nonlinear output functions 
in the processing units of the feedforward ANN. Once the restriction on the number 
of input patterns is removed, then the problem becomes a pattern classification 
problem, which we will discuss in the next section. 

4.lb Pattern classification: In an N-dimensional space if a set of points could be 
considered as input patterns without restriction on their number, and if an output 
pattern, not necessarily distinct, is assigned to each of the input patterns, then the 
number of distinct output patterns can be viewed as distinct classes or class labels 
for the input patterns. Since there is no restriction on the type and number of input 
patterns, the input-output pattern pairs (a,, b,), 1 = 1,2,. . . L in this case can be 
considered as a training set for a pattern classification problem. Typically for pattern 
classification problems the output patterns are points in a discrete (normally binary) 
M-dimensional space. The input patterns are usually from natural sources like speech 
and hand-printed characters. The input patterns may be corrupted by external noise 
at the time of recall. 

A two-layer network with nonlinear (threshold or hardlimiting) output function 
for the units in the output layer, can be used to perform the task of pattern classification. 
This may also be identified as a single layer perceptron network (Rosenblatt 1962). 
The network can be trained (i.e., weights can be adjusted) for the given set of input- 
output patterns using a delta rule. 

The corresponding learning is also called perceptron learning low (Rosenblatt 1962; 
Minsky & Papert 1988). The training patterns are applied several times, if needed, 
until the weights do not change appreciably. But there is no guarantee that the 
weights will converge to some stable values. Convergence of the weights depends on 
whether the problem specified by the input-output pattern pairs is representable or 
not by a network of this type. For all representable problems the learning law 
converges. 

During recall, a pattern generated from one of the same sources is given as input. 
By direct computation of the weighted sum of the input, the network determines the 
pattern class to which the input belongs. The network thus exhibits accretive 
behaviour. Even when the input pattern is noisy, the output class may still be correct, 
provided the noise has not significantly altered the input pattern. 

The unrepresentable problems are called hard problems. Such problems arise if the 
function cp relating the output and input (b, = cp(a,)) is not linearly separable. In 
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Input 

a1 a2 

0 0 

0 0 

1 0  

1 1  

Figure 9. Two 2-class problems to illustrate linear separability -linearly 
separable (a) and unseparable (b) cases. 

geometrical terms linear separability means that the given set of input patterns {a,) 
can be separated into M distinct regions in the N-dimensional pattern space by a 
set of linear hyperplanes. Here M corresponds to the number of distinct output 
patterns or classes. As a simple illustration, we can consider Zdimensional binary 
(0,l) patterns in input pattern space and a 1-dimensional output pattern. Two pattern 
classification problems are shown in figure 9. Note that the number of input patterns 
(4) is more than the number of dimensions (2) of the input pattern space. These are 
two-class problems, as the number of distinct outputs are two. Of the two problems 
in the figure, the first one is linearly separable since a straight line separates the 
patterns into two regions of desired classes. In the second problem the desired region 
cannot be obtained by using a single straight line. Note that a straight line is equivalent 
to a linear hyperplane in a 2-dimensional space. 

The restriction of linear separability is due to the function relating input and output 
patterns. Any arbitrary assignment of an output pattern to a set of input patterns 
need not result in a linearly separable function, and hence cannot be represented by 
the two layer network with nonlinear units in the output layer. Thus, although the 
restriction on the number and type of input patterns (as in the case of pattern 
association problem) is removed due to introduction of nonlinear units, a restriction 
is now placed on the nature of the function relating the input and output patterns. 
To remove this restriction a multilayer feedforward network with nonlinear processing 
units can be used (Minsky & Papert 1988). Such a network can handle a more general 
class of pattern classification problems, namely, pattern mapping problems which will 
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be discussed in the next section. Geometrically, it can be argued that a multilayer 
feedforward neural network can perform classification of patterns with complex 
boundary surfaces separating different classes in an N-dimensional space (Lippmann 
1987; Minsky & Papert 1988). However, training such a network is not straightforward. 
Thus it leaves us with a hard learning problem which can solved using the generalized 
delta rule (Rumelhart & McClelland 1986). 

4.lc Pattern mapping: For a pattern mapping problem the input and output 
patterns are points in the N- and M-dimensional continuous spaces, respectively. The 
objective is to capture the implied functional relationship or mapping function 
between the input and output by training a feedforward neural network. This is also 
called the generalization problem (Deuker et a1 1987). Once the network generalizes 
by capturing the mapping function through its weights, then during recall from an 
input pattern the network produces an output which is an interpolated version of 
the outputs of the training input patterns near the current input pattern. The input 
patterns are generally naturally occurring patterns as in speech and hand-printed 
characters. 

A multilayer feedforward network with at least two intermediate layers in addition 
to the input and output layers can perform a pattern mapping task (Cybenko 1989). 
The number of units in the input and output layers correspond to the dimensions 
of the input and output patterns, respectively. The additional layers are called hidden 
layers, and the number of units in a hidden layer is determined depending on the 
problem, usually by trial and error. The network can be trained (i.e. weights at 
different layers can be adjusted) for a given set of input-output pattern pairs using 
a generalized delta rule or backpropagation law (see figure 10) (Rumelhart & 
McClelland 1986; Hush & Horne 1993). It is derived using the principle of gradient 
descent along the error surface in the weight space. The given patterns are applied 
in some random order one by one, and the weights are adjusted using the backpro- 
pagation law. The pattern pairs may have to be applied several times till the output 
error is reduced to an acceptable value. 

Once the network is trained, it can be used to recall the appropriate pattern (in 
this case some interpolated output pattern) for a new input pattern. The computation 
is straightforward in the sense that the weights and the output functions of the units 
at different layers are used to compute the activation values and output signals. The 
signals from the output layer correspond to the output. 

Note that for the backpropagation law to work (see figure lo), the output function 
of the units in the hidden and output layers must be nonlinear and differentiable. 
Such functions are called semilinear. If they are linear, no advantage is obtained by 
using additional hidden layers. By using a hardlimiting threshold function, it is not 
possible to propagate the error to hidden layer units to adjust the weights in that 
layer. Thus the advantage of complex pattern mapping or pattern classification is 
obtained by a multilayer feedforward network mainly because of the use of the 
semilinear output functions. 

The use of semilinear functions results in a rough error surface in the weight space. 
That is, there will be several local minima, besides a global minimum. The effects of 
local minima can be partially reduced by using a stochastic update of weight values 
(Wasserman 1988). In general the backpropagation learning law needs several 
iterations in order to reach an acceptably low value of error, at which the network 
can be assumed to have captured the implied mapping in the given set of input-output 
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Backpropagation algorithm: Generalized delta rule 
Given a set of input-output patterns a,,  b,, I = 1,2,. . . L 
Ith input vector a,  = (a, ,  , a,, ,  . . . and output vector b, = (b , ,  , b ,,,. - -. . b,N)T 
Assume only one hidden layer and initial setting of weights to be arbitrary 
Assume input layer with only linear units. Then output signal = input activation value 
q is the learning rate parameter 
Activation of unit i in the input layer xli = aIi 

IY 

Activation of unit j in the hidden layer xb = 2 w;~x , ,  + 0; 
i = l  

Output signal from the jth unit in the hidden 5yer, .fj = f f j ( ~ : ~ )  

Activation of unit k in the output layer x: = 2 w,O,sb + 0: 
i= 1 , 

Output signal from unit k in the output layer s i  = f,O(x:) 
Error term for the kth output unit 6: = (b,, - s i )  f : ' ( x i )  
Update the weights on the output layer wfj(t  + 1 )  = wEj(t) + q6P,s:j 

n, 
1" 

Error term for the jth hidden unit 6kj = f)'(x:,) x 6:w,0j 
k =  1 

Update the weights on the hidden layer ~ ; ~ ( t  + 1 )  = ~ ! ~ ( t )  + q6:ja,i 
1 

Calculate the error for the Ith pattern El = - x 6;  
2 k =  1 .. - 

L 

Total error for all patterns E = El 
I =  1 

Apply the given patterns, may be several times, in some random order and update the weights 
until the total error reduces to an acceptable value. 

Figure 10. Generalized delta rule. 

pattern pairs. However, due to the slow rate of convergence of the backpropagation 
learning law, new architectures (like counter propagation, Hecht-Nielsen 1990) are 
being sought for faster learning. 

4.2 Pattern recognition tasks by feedback A N N  

4.2a Autoassociation: In this section we consider pattern recognition tasks that 
can be performed by simple feedback neural networks (figure 11). We begin with the 
autoassociation task discussed earlier when the input and output patterns in each pair 
are the same i.e., a, = b,, 1 = 1,2..  . L. The objective in an autoassociation task is to 
design a network that can recall a stored pattern given a corrupted (noisy or partial) 
version of the pattern. A feedback network with N linear processing units can perform 
the task of autoassociation. Such a network can be trained (i.e., the weights can be 
determined) using either Hebb's law or delta rule (Hecht-Nielsen 1990). Hebb's 
learning law leads to a set of optimal weights when the given patterns are orthogonal. 
Delta rule leads to set of optimal weights when the given patterns are linearly 
independent. 

Pattern recall will be exact when the test pattern is same as one of the stored ones, 
represented by the weights. If the test pattern is a noisy version of the stored pattern, 
the recalled pattern is also a noisy version of the stored pattern. In fact the network 
recalls the input pattern itself, as every vector is associated with itself, thus completely 
eliminating any accretive behaviour (Murakami & Aibara 1987). 
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Auto association (Pattern storage) 
* Arch: Single layer with feedback, linear processing units 
* Learning: Hebb (orthogonal inputs), Delta (linearly independent inputs) 
* Recall: Direct 
* Limitation: Linear independence of patterns, # of patterns limited to dimensionality 
* T o  Overcome: Nonlinear processing units, becomes a pattern storage problem 

Pattern storage 
* Arch: FBNN, nonlinear processing units, states, Hopfield energy analysis 
* Learning: Not important 
* Recall: Activation dynamics until stable states are reached 
* Limitation: False minima, hard problems, limited # patterns 
+ T o  Overcome: Stochastic update, hidden units. 

Pattern environment storage 
* Arch: Boltzmann machine, nonlinear processing units, hidden units, stochastic update 
* Learning: BM learning law, simulated annealing 
* Recall: Activation dynamics, simulated annealing 
* Limitation: Slow learning 
+ T o  Overcome: Different architecture 

Figure 11. Pattern recognition tasks by feedback ANN (FBNN). 

Thus autoassociation by a feedback network with linear units is not going to serve 
any purpose. Moreover, the number of patterns is limited to the dimensionality of 
the pattern. Although there is no simple learning law, it can be shown that the 
weights of such a network can be determined to store any L< N patterns, without 
any error in recall, where N is the dimension of the input pattern space. Discussion 
of autoassociation task by a feedback network with linear units is only of academic 
interest, as any input pattern comes out as itself if it is one of the stored ones, and 
a noise input comes out as a noisy pattern, not as the nearest stored pattern. 

To overcome this limitation due to the absence of accretive behaviour, the linear 
units are replaced with units having nonlinear output functions. The resulting feedback 
network can then perform pattern storage task which will be considered next. 

4.2b Pattern storage: The objective is to store a given set of patterns so that any 
one of the patterns can be recalled exactly when an approximate (corrupted) version 
of the pattern is presented to the network. What is needed is the storage of features 
and their spatial relations in the patterns, and the pattern recall should take place 
even when the features and their spatial relations are slightly modified due to noise 
and distortion. The approximation of pattern refers to the closeness of the features 
and their spatial relations in the pattern when compared to the original stored pattern. 
What is actually stored in practice is the information in the pattern data itself. The 
approximation is measured in terms of some distance, like Hamming distance (in 
case of binary patterns). The distance feature is automatically realized through the 
threshold (binary) feature of the output function of a processing unit. The pattern 
storage is accomplished by a feedback network consisting of nonlinear processing 
units (see figure 12). 

For the simplest case, the weights on the connecting links between units are assumed 
to be symmetric, i.e., w . .  = w j i ,  and that there is no self feedback, i.e., wii = 0. The 
output signals of all unzs at any instant of time define the state of the network at 
that instant. Each state of the network can be assumed to correspond to some energy 
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Hopfield net algorithm - To store and recall a set of bipolar patterns 
Let the network consist of N fully connected units with each unit having hard limiting bipolar 
threshold output function. 

Let {a,), 1 = 1,2..  . L be the vectors to be stored. 
The vectors {a,) are assumed to have bipolar components, i.e., a,i = f 1. 
1. Assign the connection weights 

for 

2. Initialize the network output with the given unknown input pattern a 

where si(0) is the output of the unit i at time t = 0. 

3. Iterate until convergence 

si(t + 1) = sign 1 wijs j ( t )  , i = 1,2. .  . N I 
The process is repeated until the outputs remain unchanged with further iteration. The 

steady outputs of the units represent the stored pattern that best matches the given input. 

Figure 12. Hopfield Net algorithm to store and recall a set of bipolar patterns. 

which is defined in terms of the output state i s i }  and weights [w i j ]  of the network 
as (Hopfield 1982) 

where Ii is an external input and Oi is the threshold of the unit. The energy as a 
function of the output state can be viewed as something like an energy landscape. 
The shape of the landscape is dictated by the network units and their interconnection 
strengths (weights). The feedback and the nonlinear processing units of the network 
create basins of attraction in the energy landscape. The basins tend to be regions of 
equilibrium states. If there is a fixed state (point in the output state space) in each of 
these basins where the energy is minimum, these states corresponds to fixed points 
of equilibrium. There could also be periodic (or oscillating) regions or chaotic regions 
of equilibrium (Kosko 1992). 

It is the existence of the basins of attraction that is exploited to store the desired 
patterns and recall them even with approximate inputs as keys. Each pattern is stored 
at a fixed point of equilibrium of the energy minimum. An erroneous or distorted 
pattern is more likely to be closer to the corresponding true pattern than to the other 
stored patterns. Each input pattern results in a state of the network that may be 
closer to the desired state, in the sense that it may lie near the basin of attraction 
corresponding to the true state. Since an arbitrary state need not correspond to a 
stable state, the activation dynamics of the network may eventually lead to a stable 
state from which the desired pattern may be read or derived. 

If the nonlinear output function of each unit is a binary threshold function (curve A 



Figure 13. (a) A 3-unit feedback network with symmetric weights and binary 
threshold units. Activation dynamics x j  = 1 wjis i  - Bj, s j  = f ( x j ) ;  Energy 

j 

E = - $11 wi j s i s j  + 1 s i e i .  (b) State transition diagram for the 3-unit network 
. . 
c ,  

of figure 13a. Each block represents a state given by sequence s,, s2, SJ. There are 
eight blocks for eight states. The energy for each state is indicated by the bold 
numbers with each block. Note that the state diagram has three stable states 
( 1  11, 100 and 010)  (Aleksander & Morton 1990). 
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in figure 3), then the stable stables of the network would lie at the corners of the binary 
hypercube in the N-dimensional discrete binary space. On the other hand, if the 
output function is a semilinear function (curve C in figure 3), then the points 
corresponding to these states may move closer to each other within the unit hypercube. 
If the output function is a horizontal line, then almost all states remain close to each 
other, and hence there will be only one state for the network. 

Given a network, it is possible to determine the state transition diagram (Aleksander 
& Morton 1990). Figure 13 shows the state transition diagram for a 3-unit network. 
The diagram illustrates the different states of the network and their transition 
probabilities. States which have self transition with probability 1 are stable states. 
For a given number of units, the state transition probabilities and the number or 
stable states are dictated by the connection strengths or weights. 

Since each state is associated with some energy value, the state transition diagram 
shows transitions from a state with higher energy value to a state having lower or 
equal energy value. The energy value of a stable state corresponds to an energy 
minimum in the landscape, as there is no transition from this to the other states. 

The number of basins of attraction in the energy landscape depends only on the 
network, i.e., the number of processing units and their interconnection strengths 
(weights). When the number of patterns to be stored is less than the number of basins 
of attraction, i.e., stable states, then there will be spurious stable states, which do not 
correspond to any desired patterns. In such a case, when the network is presented 
with an approximate pattern for recall, the activation dynamics may eventually lead 
to a stable state which may correspond to one of the spurious states or a false energy 
minimum, or to one of the stable states corresponding to some other pattern. In the 
latter case there will be an undetected error in the recall. The average probability of 
error depends on the energy values of the stable states corresponding to the desired 
patterns, and the relative locations of these states in the state space, measured in 
terms of some distance criterion. 

If the number of desired patterns to be stored is more than the number of basins 
of attraction in the energy landscape, then the problem becomes a hard problem, in 
the sense that the given patterns cannot be stored in the network. 

For a given network it is not normally possible to determine exactly the number 
of basins of attraction as well as their relative spacings and depths in the state space 
of the network. It is possible to estimate the capacity (number of patterns that can 
be stored) of the network and also the average probability of error in recall 
(Abu-Mostafa & St. Jaques 1985; Aleksander & Morton 1990). The probability of 
error in recall can be reduced by adjusting the weights in such a way that the resulting 
energy landscape is matched to the probability distribution of the input patterns. 
This becomes the problem of storing a pattern environment. 

4 . 2 ~  Pattern environment storage: A pattern environment is described by the set 
of desired patterns together with their probability distribution. The objective is to 
store a pattern environment in a network in such a way that the average probability 
of error in recall is minimized. This is achieved if the energy landscape is designed 
in such a way that the desired patterns are stored at the stable states corresponding 
to the lowest minima, with the higher probability patterns at lower energy minima 
points. 

Boltzmann machine architecture together with the Boltzmann learning law can 
achieve an optimal storage of pattern environment (Hinton & Sejnowski 1986; 
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Figure 14. Architecture of the Boltzmann machine. 
Each unit is connected to every other unit, although 
only a few connections are shown in the figure. Some 

0 visible units : 1.2.3 are input u n ~ l s ,  
4.5 are output units 

of the visible units can be identified as input units and 
others as output units if the machine is to be used for 

@ hidden units (4  and 5 )  pattern mapping. 

Aleksander & Morton 1990). The architecture consists of a number of processing 
units with each unit connecting to all the other units (figure 14). The number of units 
is typically larger than the dimension of the input pattern. The additional units are 
called hidden units. Use of hidden units helps in overcoming the limitation of the 
hard problems of pattern storage by a fully connected network. The patterns are 
applied to the so-called visible units, the number of visible units being equal to the 
dimension of the input patterns. 

Error in pattern recall due to false minima can be reduced significantly if initially 
the desired patterns are stored (by careful training) at the lowest energy minima. The 
remaining error can be reduced by using suitable activation dynamics. Let us assume 
that by training we have achieved a set of weights which will enable the desired 
patterns to be stored at the lowest energy minima. The activation dynamics is modified 
so that the network can also move to a state of higher energy value initially, and 
then to the nearest deep energy minimum. It is possible to realize this by using a 
stochastic update in each unit instead of the deterministic update of the output 
function as in the previous cases. By stochastic update we mean that the activation 
value or the net input to a unit need not decide the next output state of the unit in 
a deterministic manner as in the case of figure 12. The update is expressed in probabilistic 
terms, like the probability of firing the unit being greater than 0.5 if the net input 
exceeds a threshold, and less than 0.5 if the net input is less than the threshold for 
the unit. Note that the output function could still be a threshold logic (hardlimiter), 
but it is applied in a stochastic manner. 

With the new activation dynamics, the state transition diagram shows transitions 
from a lower energy state to a higher energy state as well, the probability of such a 
transition is dictated by the probability function used in determining the firing of a 
unit in the stochastic update (Aleksander & Morton 1990). The probability function 
(figure 15) can in turn be defined in terms of a parameter, called temperature ( T). As 
the temperature is increased, the uncertainty in the update increases, giving the 
network a greater chance to go to a higher energy level state. 

Since eventually we want the activation dynamics to lead the network to a stable 
state corresponding to the pattern closest to the given input pattern, we need to 
provide greater mobility for transition to higher states only initially. The mobility is 
slowly decreased by reducing the temperature, eventually to T = 0. At the lowest 
temperature the network settles down to a fixed point state corresponding to the 
desired pattern. At each temperature the network dynamics is allowed to settle to 
some equilibrium situation, called thermal equilibrium. At thermal equilibrium the 
average probability of visiting the states of the networks will not change further. The 
temperature parameter is reduced in a predetermined manner (called annealing 
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Figure 15. Stochastic update of a unit using probability law. Probability of 
firing P(l/x) = 1/[1 + exp(- x/T)]. (a) Binary output function; (b) probability 
function for stochastic update. 

schedule), making sure that at each temperature the network is allowed to reach 
thermal equilibrium before the next change in temperature is made. This process is 
called simulated annealing (Kirkpatrick et a1 1983) (see figure 16). Note that at each 
temperature the state update dynamics is fixed, as the probability of transition from 
one state to another depends only on the temperature. The update dynamics is 
however altered when the temperature is changed, and it results in a new state 
transition diagram. 

The states at thermal equilibrium at T = 0 represent the stable states of the network 
corresponding to the minima of the energy landscape. The probabilities of these states 
are also related to the actual minimum energy values of the states. The relation 
between the probabilities of stable states and energy suggest that the probability of 
error in the recall of patterns can be further reduced if the probability distribution 
of the desired patterns, i.e., the pattern environment, is known, and is used in 
determining the optimal setting of weights of the network. 

Simulated annealing algorithm - T o  recall a stored pattern with partial input 
Let us assume a Boltzmann machine with some visible units and some hidden units. 
Let the network consist of total N fully connected units, with each unit having a hard 

limiting binary threshold output function. Let us assume that the network was already trained 
to store the given set of input patterns. 

1. Force the outputs of the visible units to the corresponding known components in the 
given partial binary input vector. 

2. Assign for all unknown visible units and all hidden units to random binary output values. 
3. Select a unit k at random, and calculate its activation value x, using weighted sum of its 

inputs. 
1 

4. Assign the output of the unit k t o  1 with probability P, = , where T is 
1 + exp(- x,/T) 

the temperature parameter. 
5. Repeat steps 3 and 4 until all units have had the same probability of being selected for 

update. This number of unit-updates defines a processing cycle. 
6. Repeat step 5 for several processing cycles until thermal equilibrium has been reached at 

the given temperature 'I; i.e, when the probability of visiting different states of the network 
does not change any further. This is usually accomplished only approximately. 

7. Lower the temperature, and repeat steps 3 through 7 until a stable state is reached a t  
which point there will not be any further change in the state of the network. The result of 
recall is the stable output state of the visible units. 

Figure 16. Simulated annealing algorithm. 
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Learning in Boltzmann machine 
The objective is to adjust the weights of a Boltzmann machine so as to store a pattern 
environment described by the set of vectors { Va} and their probabilities of occurrence. These 
vectors should appear as the outputs of the visible units. Define {H,} as the set of vectors 
appearing on the hidden units. 

Let P+(Va) be the probability that the outputs of the visible units will be clamped (indicated 
by " +" superscript) to the vector Va. Then, 

where P+(VaAHb) is the probability of the state of the network when the outputs of the visible 
units are clamped to the vector Va, and the outputs of the hidden units are Hb. 

Likewise the probability that Vd will appear on the visible units when none of the visible 
units are clamped (indicated by " -" superscript) is given by 

Note that P + (  Va) is given by the pattern environment description, and P - (  Va) depends on 
the network dynamics and is given by 

where the total energy of the system in the state VaAHb is given by 

f b  refers to the output of the ith unit in the state VJH,. 
The Boltzmann learning law is derived using the negative gradient descent of the functional 

It can be shown that 

- ac/awij = (IIT)(P; - P,; 1, 
where 

P; = C P+(vaAHb),b.$b, 
0.b 

The weight updates are calculated according to 

The Boltzmann law is implemented using some annealing schedule for the network during 
clamped and unclamped phases of the visible units of the network to determine Pi:. and Pi;, 
respectively. 

Figure 17. Boltzmann learning law. 
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The Boltzmann learning law (see figure 17) allows us to represent a given environ- 
ment by the network (Ackley et a1 1985; Hinton & Sejnowski 1986; Aleksander 
& Morton 1990). The law uses an information theoretic measure to evaluate how 
well the environment is represented in the network. If a perfect representation is 
obtained, then there will be as many energy minima as there are desired patterns. 
But in practice only an approximate representation of the environment is accomplished, 
and hence there will be some spurious stable states which correspocd to the false wells 
in the energy landscape. The Boltzmann learning law uses a simulated annealing 
schedule for implementation, i.e., for determining the weight updates at each stage. 
Recall of stored patterns from an approximate input pattern also uses a simulated 
annealing schedule to overcome the false minima created because of the approximate - representation of the environment by the network. 

In general the Boltzmann learning law converges slowly to the desired weights 
(Geman & Geman 1984; Szu 1986, pp. 420-5). Moreover, there is no simple way to 
determine the optimum number of hidden units for a network to solve the given 
problem of pattern environment storage. The larger the number of hidden units, 
the greater is the chance for more false minima, and hence the greater the probability 
of error in recalling a stored pattern. The smaller the number of hidden units, the 
greater the chance that the given problem becomes hard for the network. New 
architectures are needed to overcome some of these limitations of the Boltzmann 
machine for the problem of pattern environment storage. 

4.3 Pattern recognition tasks by feedforward and feedback ANN 

In this section we discuss some pattern recognition tasks (figure 18) that can be 
performed by a network consisting of two layers of processing units: The first layer 
with linear output units feeds the input pattern to the units in the second layer 
through a set of feedforward connections with appropriate weights. The outputs of 

Pattern storage (STM) 
* Arch: Two layers (input & competitive), linear processing units 
* Learning: N o  learning in FF stage, fixed weights in FB layer 
* Recall: Not relevant 
* Limitation: STM, no application, theoretical interest 
* T o  overcome: Nonlinear output function, learning in FF stage 

Pattern clustering (grouping) 
* Arch: Two layers (input & competitive), nonlinear processing units 
* Learning: Only in FF stage - Competitive learning 
* Recall: Direct, activation dynamics until stable state is reached 
* Limitation: Fixed (rigid) grouping of patterns 
* T o  overcome: Neighbourhood units in competition layer 

Feature map 
* Arch: Self-organization network, 2 layers, nonlinear processing units 
* Learning: Neighbourhood units in competitive layer 

Recall: Apply input, determine winner 
* Limitation: Only visual features, not quantitative 
* T o  overcome: More complex architecture 

Figure 18. Pattern recognition tasks by feedforward (FF) and feedback (FB) ANN. 
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the units in the second layer are fedback to the units in the same layer including 
feedback to the same unit. The self feedback is usually with a positive weight (excitatory 
connection) and the feedback to the other units is usually with a negative weight 
(inhibitory connection). The weights on the feedback connections in the seond layer 
are usually fixed. The first layer of units is called input layer, and the second layer 
is called competitive layer (Rumelhart & Zipser 1986). Different choices of output 
functions and methods of learning lead to networks for different types of competition 
tasks. We discuss three such tasks. Assuming fixed weights in the feedforward connections 
from the input to the competitive layer, and in the feedback connections in the 
competitive layer, we can study the behaviour of the network for different types of 
output functions of the units in the competition layer. 

4.3a Pattern storage (short term memory): First let us assume the output functions 
to be linear. When an input pattern is applied, the units in the competition layer 
settle to a steady activation state which will remain there even after the input pattern 
is removed (Freeman & Skupura 1991). The activation pattern will remain as long 
as the network is not given a different input pattern. Another input pattern will erase 
the previous activation state. Hence this is called short-term memory. The pattern 
is stored only temporarily. 

This pattern storage representation is only of theoretical interest. There is no 
application for such a short-term memory function. However, by using a nonlinear 
output function for the units in the competition layer one could show that the network 
can perform a pattern clustering task. 

4.3b Pattern clustering: Given a set of patterns, the objective is to design a 
competition network which groups the patterns into subgroups of patterns based on 
similarity of features in the patterns. A two layer network with input and competition 
layers, and with nonlinear units in the competition layer can perform the task of 
pattern clustering or grouping (Grossberg 1980). 

If a nonlinear output function of the type f(x) = x2 is used for the units in the 
competitive layer, then it can be shown (Freeman & Skupura 1991) that the activation 
dynamics leads to a steady state situation where the network tends to enhance the 
activity of the unit with the largest activity. When the input pattern is removed, the 
activities of all units except the largest one will decay to zero. Thus only one of the 
units in the competitive layer will win. The weights leading to the winning unit j are 
adjusted to respond more to the input pattern a. This weight adjustment is repeated 
for all the input patterns several times. For input patterns belonging to different 
groups, different units in the competition layer will win. When the weight vector for 
each output unit reaches an average position within the cluster, it will stay generally 
within a small region around that average position. Each unit in the competitive 
layer refers to a different group or category of patterns. 

When an unknown input pattern is given, the activation dynamics leads to a steady 
state situation where only one unit in the competitive layer is active. That unit gives 
the category to which the input pattern belongs. 

Note that in a competitive network the physical location of the units do not reflect 
any relation between categories. But there are many situations where the patterns 
do not fall into fixed categories. There may be a gradual change of features from one 
pattern to another. This change of features can be captured by a selforganisation 
network which performs the task of feature mapping (von der Malsburg 1973; 
Willshaw & von der Malsburg 1976). 
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nelghbourhood r e g i o n  

\ 
O u t ~ u t  l a y e r  

l n ~ u t  l a y e r  Figme 19. A feature mapping architecture. Each input 
unit is connected to  all the units of the output layer. 

4.4b Feature map: Given a set of patterns, the objective is to design a network 
that would organise the patterns in accordance with similarity of features among 
them in such a way that by looking at the output of the network one can visually 
obtain an idea of how different patterns are related. The display of signals from the 
output layer (typically in 2-dimension) of units is called a feature map. 

To accomplish the task of feature mapping, a competitive network is modified into 
one called a selforganising network (Kohonen 1990; Freeman & Skupura 1991) shown 
in figure 19. The modification consists of creating a neighbourhood region around the 
winning unit in the competitive layer, so that during training all the feedforward 
weights leading to the units in this region are adjusted to favour the input pattern. 
The weight adjustment is similar to the case of a competitive network. The neighbour- 
hood region around a winning unit is gradually reduced for each application of the 
given set of patterns (see figure 20). 

Algorithm for self-organizing feature map 
1. Initialize the weights from N inputs to the M output units to small random values. 

Initialize the size of the neighbourhood region R(0).  
2. Present a new input a 
3. Compute the distance di between input and the weight on each output 

unit i: 

di = [ a j ( [ )  - wi j ( t ) l z ,  for i = 1 , 2 . .  . M 
J =  1 

where a j ( t )  is the input to  the jth input unit a t  time t  and wij( t )  is the weight from the jth input 
unit to the ith output unit. 

4. Select the output unit i* with minimum distance 

i* = index of min ( d i )  
[ i  I 

5. Update weight to  node i* and its neighbours 

wij(t + 1 )  = wi j ( t )  + v( t ) (ai ( t )  - w..( t ) ) ,  
f o ; < ~ ~ * ( t ) ,  and i = 1 , 2 . .  . N ,  

where ~ ( t )  is the learning rate parameter ( O < q ( t ) <  1 )  that decreases with time 
R*(t) gives the neighbourhood region around the node i*, a t  time t .  

6. Repeat steps 2 through 5 for all inputs several times. 

Figure 20. An algorithm for self-organizing feature map. 
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For recall, when an unknown input is applied, the activation dynamics determines 
the winning unit whose location would determine its features relative to the features 
represented by the other units in its neighbourhood. 

While a feature map produces a more realistic arrangement of patterns, the output 
is useful only for visual observation. Since it is difficult to categorize a feature map, 
it is difficult to use it for applications such as pattern classification. A more complex 
architecture is needed to exploit the advantages of a feature map for pattern 
classification purposes (Huang & Kuh 1992). 

5. Architectures for complex pattern recognition tasks 

So far we have considered simple structures of neural networks and discussed the 
pattern recognition tasks that these structures could accomplish. In practice the 
pattern recognition tasks are much more complex, and each task may require evolving 
a new structure based on the principles discussed in the previous sections. In fact 
designing an architecture for a given task involves developing a suitable structure of 
the neural network and defining appropriate activation and synaptic dynamics. In 
this section we will discuss some general architectures for complex pattern recognition 
tasks. 

5.1 Associative memory: pattern storage - BAM 

Pattern storage is the most obvious pattern recognition task that one would like to 
accomplish by an ANN. This is a memory function, where the network is expected 
to store the pattern information for later recall. The patterns to be stored may be 
spatial or spatiotemporal (pattern sequence). Typically an ANN behaves like an 
associative memory, in which a pattern is associated with another, or with itself. This 
is in contrast with the random access memory which maps an address to a data. An 
ANN can also function as a content addressable memory where data are mapped to 
an address. 

The pattern information is stored in the weight matrix of a feedback neural network. 
The stable states of the network represent the stored patterns, which can be recalled 
by providing an external simulus in the form of partial input. If the weight matrix 
stores the given patterns, then network becomes an autoassociative memory. Several 
architectures are proposed in the literature for realizing an associative memory 
function depending on whether the pattern data is discrete/continuous, or the network 
is operating in discrete time/continuous time, or the learning is taking place off-line/ 
on-line (Simpson 1990). 

We will discuss the discrete bidirectional asso'ciative memory (BAM) in some detail. 
It is a two-layer heteroassociative neural network (figure 21) that encodes arbitrary 
binary spatial patterns using Hebbian learning. It learns on-line and operates in 
discrete time. The BAM weight matrix is given by, 

where a,€{- 1, + 1IN and b , ~ { -  1, + 1IN. The superscript T refers to the transpose 
of the vector. 
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bl1 

Figure 21. Discrete bidirectional as- 
a l l  O12 OIN sociative memory. 

The activation equations are as follows: 

1, if yj>O, N 

bj(t), if yj = 0, where yj = 1 a,(t)wji, 
i =  1 - 1, if yj<O, 

1, if xi > 0, N 

ai(t), if xi = 0, where xi = 1 bj(t)wij. 
j= 1 -1, if xi<O, 

For recall, the given input ai(0), i-- 1,2.. .N is applied and the stable values of b,(m), 
j = 1,2.. .M are 'read out. BAM updates are synchronous in the sense that the units 
in each layer are updated simultaneously. 

BAM can be shown to be unconditionally stable (Kosko 1988). However its storage 
is limited to a small number of binarypipolar patterns. 

5.2 Pattern mapping: Data compression - CPN 

In pattern mapping the objective is to capture the implied functional relationship 
between an input-output vector pair (a,, b,). We have seen earlier that a multilayer 
feedforward network with a semilinear output function can perform generalization, 
but the training process is slow, and the ability to generalize depends on the learning 
rate and the number of units in the hidden layers. Several architectures are proposed 
in literature for realizing a mapping function (Simpson 1990). A practical approach 
for implementing pattern mapping is to use an architecture that learns fast. A counter- 
propagation network (CPN) that uses a combination of instar and outstar topologies 
is proposed (figure 22) for this purpose (Hecht-Nielson 1987). It consists of a three- 
layer feedforward network with the first two layers forming a competitive learning 
system and the second (hidden) and third layers forming an outstar structure. Learning 
takes place in the instar structure of the competitive learning system to code the 
input patterns {a,) and in the outstar structure to represent the output patterns {b,). 
The training of the instar and outstar structures are as follows. 
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u Figure 22. Counter propagation 
Layers 1 2 3 4 5 network. 

Training instars of CPN 

(1) Select an input vector al from the given training set (al, b,), 1 = 1,2,. . . N. 
(2) Normalize the input vector and apply it to the CPN competitive layer. 
(3) Determine the unit that wins the competition by determining the unit m whose 
vector w is closest to the given input. 
(4) Update the winning unit's weight vector as 

(5) Repeat steps 1 through 4 until all input vectors are grouped properly by applying 
the training set several times. 

After successful training the weight vectors leading to each hidden unit represent the 
average of the input vectors corresponding to the group represented by the unit. 

Training outstars of CPN 

(1) After training instars, apply a normalized input vector al to the input layer and 
the corresponding output bl to the output layer. 
(2) Determine the winning unit m in the competitive layer. 
(3) Update the weights on the connections from the winning competitive unit to the 
output units 

(4) Repeat steps 1 through 3 until all the vector pairs in the training set 
are mapped satisfactory. 

After successful training, the outstar weights for each unit in the competitive layer 
represents the average of the subset of the output vectors b, corresponding to the 
input vectors belonging to that unit. 

Depending on the number of nodes in the hidden layer, the network can perform 
any desired mapping function. In the extreme case, if a unit is provided in the hidden 
layer for each input pattern, then any arbitrary mapping (a,, b,) can be realized. But 
in such a case the network fails to generalize. It merely stores the pattern pair. By 
using a small number of units in the hidden layer, the network can accomplish data 
compression. Note also that the network can be trained to capture the inverse mapping 
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as well, i.e., a, = 4-'(b,), provided such a mapping exists and it is unique. The name 
counterpropagation is given due to the network's ability to learn both forward and 
inverse mapping functions. 

5.3 Pattern classification: stability-plasticity dilemma - ART 

Many pattern mapping networks can be transformed to perform pattern classification 
or category learning tasks. However these networks have the disadvantage that during 
learning the weight vectors tend to encode the presently active pattern, thus weakening 
the traces of patterns it had already learnt. Moreover any new pattern that does not 
belong to the categories already learnt, is still forced into one of them, using the best 
match strategy without taking into account how good even the best match is. The 
lack of stability of weights as well as lack of inability to accommodate patterns 
belonging to new categories, led to the proposal of new architectures for pattern 
classification. These architectures are based on adaptive resonance theory (ART) and 
are specially designed to take care of the so called stability-plasticity dilemma in 
pattern classification (Carpenter & Grossberg 1988). 

ART also uses a combination of instar-outstar network as in CPN, but with the 
output layer merged with the input layer, thus forming a two-layer network with 
feedback as shown in figure 23. The minimal ART network includes a bottom-up 
competitive learning system (F, to F , )  combined with a top-down (F, to F , )  outstar 
pattern learning system. The number of units in the F, layer determines the number 
of possible categories of input patterns. When an input pattern a, is presented to the 
F, layer, the system dynamics initially follows the course of competitive learning, 
leading to a winning unit in the competitive F, layer depending on the past learning 
of the adaptive weights of the bottom-up connections from F, to F,. The signals are 
sent back from the winning unit in the F, layer down to F, via a top-down outstar 
network. The activation values produced in the units of F, due to this feedback are 
compared with the activation values due to input. If the two activation patterns 
match well, then the winning unit in the F, layer determines the category of the input 
pattern. If the match between activations due to top-down and input pattern is poor, 
as determined by a vigilance parameter, then the winning unit in F, does not represent 
the proper class for the input pattern a,. That unit is removed from the set of allowable 
winners in the F, layer. The other units in the F, layer are likewise skipped until a 
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Figure 23. Adaptive resonance 
theory (ART) architecture. Two 
major subsystems are the atten- 
tional subsystem and the orienting 
subsystem. Units in each layer are 
fully interconnected to the units in 
the other layer. 
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suitable match is obtained between the activations in the F ,  layer due to top-down 
pattern and the input pattern. When a match is obtained, then both the bottom-up . 
and top-down network weights are adjusted to reinforce the input pattern. If no 
match is obtained then an uncommitted (whose category is not identified during 
training) unit in the F ,  layer is committed to this input pattern, and the corresponding 
weights are adjusted to reinforce the input. 

The above sequence of events conducts a search through the encoded patterns 
associated with each category trying to find a sufficiently close match with the input 
pattern. If no category exits, a new category is made. The search process is controlled 
by two subsystems, namely the orienting subsystem and the attentional subsystem. 
The orienting subsystem uses the dimensionless vigilance parameter that establishes 
the criterion for deciding whether the match is good enough to accept the input 
pattern as an exemplar of the chosen category. The gain control process in the 
attentional subsystem allows the units in F ,  to be engaged only when an input pattern 
is present, and it also actively regulates the learning (Freeman & Skupura 1991). 

Stability is achieved in the ART network due to the dynamic matching and the 
control in learning. Plasticity is achieved in the ART due to its ability to commit an 
uncommitted unit in the F 2  layer for an input pattern belonging to a category different 
from what was already learnt. 

ART gets its name from the particular way in which learning and recall interplay 
in the network. Information in the form of output signals from units reverberate back 
and forth between the two layers. If the proper patterns develop, a stable oscillation 

' ensures, which is the neural network equivalent of resonance. During this resonance 
period learning or adjustment of adaptive weights takes place. Before the network 
has achieved a resonant state, no learning takes place, because the time required for 
changes in the weights is much longer than the time it takes the network to achieve 
resonance. 

 ART^ network was proposed to deal with binary input patterns (Carpenter & 
Grossberg 1988).  ART^ network was developed to selforganize recognition categories 
for analog as well as binary input patterns (Carpenter & Grossberg 1987). 

A minimal ART network can be embedded in a larger system to realize an associate 
memory. A system like CPN or multilayer perceptron directly maps pairs of patterns 
(a,, b,) during learning. If an AR'T system replaces the CPN, the resulting system becomes 
self stabilizing. Two ART systems can be used to pair sequences of the categories 
selforganized by the input sequences as shown in figure 24. The pattern recall can 

Figure 24. Two ART system combined to form an associative memory 
architecture. 
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Figure 25. 
architecture. 

Grossberg's formal avalanche 

occur in either direction during performance as in BAM. This scheme brings to the 
associate memory paradigm the code compression capabilities, as well as the stability 
properties of ART (Carpenter 1989). 

5.4 Spatio-temporal patterns: temporal features - Avalanche 

The ANN architectures described so far are applicable for recognition of patterns on 
the basis of information contained within the pattern itself. Even if a sequence of 
patterns with temporal correlation are presented, the previous or subsequent patterns 
have no effect on the classification of the current input pattern. But there are many 
applications (for example, speech recognition) where it is necessary to encode the 
information relating to the time correlation of spatial patterns, as well as the spatial 
pattern information itself. 

Architectures for classification of spatio-temporal patterns (STP) are based on the 
Grossberg formal avalanche structure (Grossberg 1969). The structure (figure 25) of 
the network resembles the top two layers of the CPN, and both use multiple outstars. 
The avalanche architecture shows how a complex spatio-temporal pattern can be 
learned and recalled. Assume a(t) = (a,(t), a,(t), . . . a,(t)) the spatial pattern required 
at time t. The sequence of a(t) at time intervals of At in the range to < t < t, correspond 
to the desired spatio-temporal pattern. Activate the node labelled to and apply a(to) 
to be learned by the outstar's output units. The second pattern a(t + At) is applied 
while activating the second outstar, labelled to + At. Continue this process by activating 
successive outstars until all the patterns have been learned in sequence. Replay of 
the learned sequence can be initialized by stimulating the to node, while a zero vector 
is applied to the a inputs. The output sequence b(t) x a(t), for to < t < t,, is the learned 
sequence. 

5.5 Pattern variability: recognition of deformed patterns - Neocognitron 

Visual pattern recognition, such as recognition of handwritten characters or 
hand-drawn figures, is done effortlessly by human beings despite variability of features 
in different realizations of the pattern of the same character or figure. The patterns 
considered in the architectures described so far assume that the objects in the training 
and test patterns are identical in size, shape and position, except that in some cases 
there may be some noise added or some portions of the pattern missing. M.6dels.of , 
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associative memory can recover complete patterns from such imperfections, but 
normally cannot work if there is variability or deformation in the patterns of the test 
input. 

Neural network models based on our understanding of human visual pattern 
recognition tend to perform well even for shifted and deformed patterns. In the visual 
area of the cerebrum, neurons respond selectively to local features of a visual pattern 
such as lines and edges. In areas higher than the visual cortex, cells exist that respond 
selectively to certain figures like circles, triangles, squares, human faces etc (Fukushima 
1975). Thus the human visual system seems to have a hierarchical structure in which 
simple features are first extracted from the stimulus pattern, then integrated into more 
complicated ones. A cell at a higher stage generally receives signals from a wider 
area of the retina and is less sensitive to the position of the stimulus. Within the 
hierarchical structure of the visual systems are forward (afferent or bottom-up) and 
backward (efferent or top-down) propagation of signals. This kind of physiological 
evidence suggests a neural network structure for modelling the phenomenon of visual 
pattern recognition. 

The objective is to synthesize a neural network model for pattern recognition for 
shifted and deformed patterns. The network model learns with a teacher (supervised 
learning) for reinforcement of the adaptive weights. The network model is called 
neocognitron. It is a hierarchical network (figure 26) consisting of many layers of cells, 
and has variable connections between cells in adjoining layers. It can be trained to 
recognize any set of patterns. After training, pattern recognition is performed on the 
basis of similarity in shape between patterns, and the recognition is not affected by 
deformation, or changes in size, or shifts in the positions of the input patterns 
(Fukushima 1988). 

Figure 26. A hierarchical network 3pucture of neocognitron (Fukushima 1991) 
for recognition of alphanumeric character recognition. The lowest stage of the 
network consists of a 2-dimensional array of receptor cells. Each succeeding 
stage has a layers consisting of S cells and C cells alternatively. Each layer is 
organized into groups of these cells, each group responding to a particular 
geometrical position. The numbers show the total numbers of S and C cells in 
individual layers of the network. S cells are feature extracting cells. The C cells 
are inserted to allow for positional errors in the feature. 
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In the hierarchical network of the neocognitron, local features of the input pattern 
are extracted by the cells of the lower stage, and they are gradually integrated into 
more global features. Finally, each cell of the highest stage integrates all the 
information of the input pattern, and responds only to one specific pattern. During 
the process of extracting and integrating features, errors in the relative positions of 
the local features are gradually tolerated. The operation of tolerating positional error 
a little at a time at each stage, rather than all in one step, plays an important role 
in endowing the network with the ability to recognize even distorted patterns 
(Fukushima 1991). 

Neocognitron also provides backward connections which will enable it to realize 
the selective attention feature of the visual pattern recognition. The selective attention 
feature relates to two or more patterns simultaneously present in the data, and our 
ability to focus on the desired one. 

Neocognitron was developed for recognition of handwritten characters, although 
the ideas used in the architecture may be extended to other situations of pattern 
variability (Fukushima 1991). 

6. Applications 

In this section of the paper we briefly discuss the application potential of neural 
network models and some research issues that are being currently addressed in this 
field. In applications we consider two different situations, one where the existing 
neural network concepts can be directly applied, and the other where there is potential 
for applying the neural network ideas but it is not yet clear how to formulate the 
real world problems to evolve a suitable neural network architecture. We will also 
list a few cases where neural network principles are being used in practice. 

6.1 Direct application 

In applications such as associative memories, optimization, vector quantization and 
pattern classification the principles of neural networks are directly applicable. In these 
applications it is assumed that the problem can be presented to the network directly, 
and what is being sought is the solution to the problem using the dynamics of the 
network. Many real world problems were formulated into one of these, and were 
solved successfully (Lisboa 1992). 

6.la Associative memories (Bienenstock & von der Malsburg 1987; Hassoun 1989; 
Desai 1990; Kamp & Hasler 1990; Michel & Farrell 1990): As discussed earlier, the 
objective of associative memory is to store a pattern or data for later recall with 
partial or noisy version of the pattern as input, or to store association between two 
patterns for later recall of one of the patterns given the other. B , ~ t h  feedback and 
feedforward topologies of neural networks are directly used for r'hese applications. 
Associative memory, if used in a feedback structure of the Hopfield type, can function 
as a content addressable memory as well. The stable states of the network, which 
represent the energy minima or basins of attraction, are used to store the pattern 
information. In a feedforward network the mapping function corresponding to the 
input-output pattern pairs is stored in the weights of the network. 

Applications of these networks for associative memory is direct, if the patterns are 
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available in the form of one or two dimensional array of values. Associative memories 
as content addressable memories are quite powerful. For example, if information 
about individuals is stored in a network, then it is possible to retrieve the complete 
data by providing partial or even noisy clues. Other common applications for an 
associative memory are recognition of images, and retrieval of bibliography 
information from partial references such as from incomplete title of a paper. 

6.lb Optimization: One of the most successful applications of neural network 
principles is in solving optimization problems (Hopfield & Tank 1985; Kennedy & 
Chua 1988; Rauch & Winarske 1988; Tagliarini & Page 1988, pp. 775-82, Maa et a1 
1990, pp. 482-5). There are many situations where the problem can be formulated 
as minimization or maximization of a cost function or object function subjected to 
certain constraints. It is possible to map such a problem onto a feedback network, 
where the units and connection strengths are identified by comparing the cost function 
of the problem with the energy function of the network expressed in terms of the 
unit state values and the strengths of the connections. The solution to the problem 
lies in determining the state of the network at the global minimum of the energy 
function. In this process it is necessary to overcome the local minima of the energy 
function. This is accomplished by adopting a simulated annealing schedule for 
implementing the search for global minimum. 

Probably the most studied problem in the context of optimization using principles 
of neural networks is the travelling salesman problem, where the objective is to find 
the shortest route connecting all cities to be visited by a salesman. Other optimization 
problems that are attempted include the weighted matching problem, where a number 
of points must be pairwise connected such that the sum of lengths of all connections 
is as short as possible, and stereo vision matching in optical image processing (Hertz 
et a1 1991). The method of simulated annealing has also been successfully employed 
to find the optimal arrangement of integrated electronic circuits on semiconductor 
chips (Kirkpatrick et a1 1983). 

6.lc Vector quantization: Vector quantization (vQ) typically encodes a large set of 
training data vectors into a small set of representative points, thus achieving a 
significant compression in the representation of data. Vector quamization has been 
shown to be useful in compressing data that arises in image processing, speech 
processing, facsimile transmission, and weather satellites (Kohonen 1988; Nasrabadi 
& King 1988; Naylor & Li 1988). 

Formally, vector quantization maps arbitrary data vectors to a binary representation 
or a symbol. The mapping is from an N-dimensional vector space to a finite set of 
symbols M .  Associated with each symbol m e M  is a reproduction vector S,. The 
encoding of the data vector x to the symbol m is the mapping in VQ. The collection 
of all possible reproduction vectors is called the codebook. 

The design of a codebook is called training, and it can be implemented using neural 
network models. The learning vector quantization (LVQ) structure is one such network 
model. Several other models have been proposed, for example, Kohonen's self- 
organising feature maps, to construct VQ codebooks for speech applications, and for 
image coding (Kohonen 1989; Ahalt et a1 1990). 

6.ld Pattern classification: Pattern classification is the most direct among all 
applications of neural networks. In fact neural networks became very popular because 
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of the ability of a multilayer feedforward neural network to form complex decision 
regions in the pattern space for classification (Gorman & Sejnowski 1988; Lippmann 
1989). Many pattern recognition problems, especially character or other symbol 
recognition and vowel recognition, have been successfully implemented using multi- 
layered networks (LeCun et a1 1989; Pal & Mitra 1992). Note however that these 
networks are not directly applicable for situations where the patterns are deformed 
or modified due to transformations such as translation, rotation and scale change 
(Dotsenko 1988; Seibert & Waxman 1989). 

6.2 Application areas 

Neural network concepts and principles appear to have great potential for solving 
problems arising in practice. For most practical problems the solution by neural 
networks is not obvious. This is because the problems cannot be mapped directly 
onto an existing neural network architecture. In fact there are no principles guiding 
us to this mapping. There are many pattern recognition tasks in speech and vision 
which we seem to perform effortlessly, but we do not understand how we do so. For 
example, in speech, our auditory mechanism processes the signal directly in a manner 
suitable for later neural processing. On the other hand, to prepare input to an artificial 
neural network, the speech signal is normally processed in fixed frames of 10-20 ms 
to extract a fixed number of spectral or related parameters. In this process the temporal 
and spectral features with proper resolution needed for recognition may not have 
been captured. Moreover, there is as yet no neural network architecture which could 
perform the speech pattern recognition with the same effectiveness as human beings 
do. Similar comments apply to problems in visual pattern recognition also. Some of 
the other areas where human performance cannot be matched by existing neural 
architectures are in motor control and decision making. 

Despite realization of these issues, there are several cases where neural principles 
have been used successfully. A few of them are listed below in different areas for 
illustration (Lisboa 1992). 

6.2a Speech processing: Recognition of isolated utterances of characters in a 
speaker-independent mode over a telephone line has been demonstrated for directory 
enquiring application (Lang et a1 1990; Cole et a1 1992). 

Medium-size (about 50 words) vocabulary speaker independent isolated word 
recognition using a partially connected network has been demonstrated to give equal 
or better performance compared to the conventional methods based on dynamic time 
warping (Bottou et a1 1990). 

Reliable discrimination of some stop consonants was demonstrated using time 
delay neural network architectures, and these ideas were extended to derive network 
architectures for syllable recognition (Waibel 1989). 

Text-to-speech conversion with limited capabilities for English was demonstrated 
using multilayered feedforward neural networks (Sejnowski & Rosenberg 1987). 

6.2b Computer vision: Recognition of hand-printed digits has been one of the most 
successful applications of neural networks (Krzyzak et a1 1990). Satellite image data 
cpmpression and enhancement of noisy images are some of the other useful 
applications (Hertz et a1 1991; Raghu et a1 1993). 

Transformation invariant object recognition is one of the most difficult tasks, 
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It is possible to view research in ANN along the following directions: 

(i) Problem level: Involves issues in mapping the real world problems as pattern 
processors. This may require good understanding of human information processing 
both from the psychological and the biological angle. 
(ii) Basic level: It is necessary to evolve better models of neurons as processing 
elements, their interconnections, dynamics (activation and synaptic), learning laws 
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although some impressive demonstration of neural network architectures are available 
for handwritten characters (Fukushima & Miyake 1982). 

6 . 2 ~  Robotics and control: Artificial vision for autonomous navigation, path 
planning with obstacle avoidance, and parallel computation of inverse dynamics are 
some of the applications of neural networks in robotics (Kung & Hwang 1989; 
Handleman et a1 1990; Kuperstein & Wang 1990). 

Operation guidance in blast furnace control and modelling nonlinearities in 
chemical process control are some of the applications of neural networks in control 
areas (Bhat & McAvoy 1989; Konishi et a1 1990). 

6.2d Automated inspection and monitoring: Explosive-detection in aircraft luggage, 
industrial quality control through visual inspection, forecasting for the utility 
industries, sonar signal identification and fault diagnosis for sensor failure in industrial 
plants are examples of the application of neural networks in inspection and monitoring 
situations (Shea & Lin 1989; Naidu et a1 1990). 

6.2e Medical applications: Medical diagnosis, noise filters for cardiac signals, image 
processing of ultrasonograms, and discrimination of signals for patient monitoring, 
have all been successfully implemented using networks (Reggia & Suttonn 1988; 
Scalia et a1 1988). 

6.2f Business and finance: Scheduling and inventory control application, bond 
rating and asset forecasting in the stock market, exchange-rate forecasting, credit 
scoring, and mortgage underwriting have all demonstrated the successful use of neural 
network principles in business and finance (Collins et a1 1988; Dutta & Shekkar 1988; 
White 1988). 

7. Summary and Trends 

In this tutorial article we have discussed the need for exploring new computing models 
for pattern recognition tasks. The importance of distinction between pattern 
processing and data processing has been discussed. The promise of the architectures 
inspired by the functions of biological neural networks has been shown by tracing the 
significant developments in artificial neural networks over the past decade. We have 
discussed the basics of artificial neural networks in terms of models of neurons, 
learning laws, and topology. We have also discussed the types of pattern recognition 
problems that can be solved by simple architectures based on the principles of artificial 
neural networks. Complex pattern recognition tasks require specialized architectures. 
Some general architectures were discussed for tasks requiring to resolve 
stability-plasticity dilemma and for tasks involving pattern variability and temporal 
patterns. 

The most important issue for solving practical problems using the principles of ANN 

is still in evolving a suitable architecture to solve a problem. This continues to 
dominate this research area. ANN research may have to expand its scope to take into 
account the fuzzy nature of real world data and reasoning, and the complex (unknown) 
processing performed by the human perceptual mechanism through biological neural 
networks. 
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It is possible to view research in ANN along the following directions: 

(i) Problem level: Involves issues in mapping the real world problems as pattern 
processors. This may require good understanding of human information processing 
both from the psychological and the biological angle. 
(ii) Basic level: It is necessary to evolve better models of neurons as processing 
elements, their interconnections, dynamics (activation and synaptic), learning laws 
and recall procedures. 
(iii) Functional level: Involves development of basic structures which can solve a 
class of pattern recognition problems. These form building blocks for development 
of new architectures. 
(iv) Architecture level: This requires ideas to evolve new architectures from known 
principles, components and structures to solve complex pattern recognition problems. 
It is possible that the problems may be tailored somewhat to suit the architectures. 
(v) Application level: The objective is to solve a given practical problem using 
generally the principles of ANN but with ideas from other areas also like physics, 
signal processing etc. 

This paper is mostly a consolidation of work reported by several researchers in the 
literature, some of which is cited in the references. The author has borrowed several 
ideas and illustrations from the references quoted in this paper. 

The author would like to thank Mr M Babu for his assistance in preparing this 
paper and Dr  H M Chouhan for his critical comments. The author also thanks the 
members of the Speech and Vision Laboratory for their interaction in the seminars 
on topics related to neural networks. Finally, this paper would not have come to this 
stage but for the initiative and interest shown by Prof. N Viswanadham of the Indian 
Institute of Science, Bangalore. The author is grateful to him for his encouragement. 
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