PERGAMON

Neural Networks 15 (2002) 459-469

Neural
Networks

www.elsevier.com/locate/neunet

Contributed article

AANN: an alternative to GMM for pattern recognition

B. Yegnanarayana™, S.P. Kishore

Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India

Received 29 September 2001; revised 4 January 2002; accepted 4 January 2002

Abstract

The objective in any pattern recognition problem is to capture the characteristics common to each class from feature vectors of the training
data. While Gaussian mixture models appear to be general enough to characterize the distribution of the given data, the model is constrained
by the fact that the shape of the components of the distribution is assumed to be Gaussian, and the number of mixtures are fixed a priori. In
this context, we investigate the potential of non-linear models such as autoassociative neural network (AANN) models, which perform
identity mapping of the input space. We show that the training error surface realized by the neural network model in the feature space is
useful to study the characteristics of the distribution of the input data. We also propose a method of obtaining an error surface to match the
distribution of the given data. The distribution capturing ability of AANN models is illustrated in the context of speaker verification. © 2002

Published by Elsevier Science Ltd.

Keywords: Autoassociative neural network models; Training error surface; Annealing gain parameter; Speaker verification

1. Introduction

In a pattern classification problem, given the training
samples in the form of feature vectors for each class, the
objective is to capture the characteristics of the vectors
unique to each class by a classification model. In the context
of speech, speaker recognition, speech recognition and
language identification are some of the problems, which
involve development of pattern classification models from
speech data. The models are typically intended to capture
the characteristic features of each class from the given train-
ing data. The more constrained the model is, the more will
be the deviation of the training data from the data predicted
by the realized model. Within the constraints imposed by
the model, one can interpret the surface formed by the error
with the training data as characterizing the distribution of
the data, and hence that of the class.

Traditionally Gaussian mixture models (GMMs) are used
to represent the complex surface characterizing the distribu-
tion of the data (Redner & Walker, 1984). The simplest case
of GMM is vector quantization (VQ), where the data
distribution is represented by the set of codewords corre-
sponding to the cluster centers (Gray, 1984). In the GMM,

* Corresponding author. Tel.: +91-44-2354591/4458338; fax: +91-44-
4458352.
E-mail addresses: yegna@cs.iitm.ernet.in (B. Yegnanarayana), kishor-
e@speech.cs.iitm.ernet.in (S.P. Kishore).

0893-6080/02/$ - see front matter © 2002 Published by Elsevier Science Ltd.

PII: S0893-6080(02)00019-9

the distribution of the data points around each codeword is
represented by a multivariate Gaussian distribution, and the
relative weights of each of these Gaussian functions deter-
mine the overall surface characterizing the distribution.
While the GMM appears to be general enough to character-
ize the distribution of the given data, the model is
constrained by the fact that the shape of the components
of the distribution is assumed to be Gaussian, and that the
number of mixtures are generally fixed a priori. Parameters
of the GMM are determined using an iterative algorithm like
estimation maximization (EM) (Dempster, Laird, & Rubin,
1977).

Most practical data encountered in speech and other
application areas has complex distribution in the feature
space, and hence cannot adequately be described by a
GMM, which uses only the first and second order statistics
and mixture weights. The surface representing the distribu-
tion may be highly non-linear in the multidimensional
feature space, and hence it is difficult to model the surface
by simplified models. Fig. 1 shows 2D data with different
levels of complexity of distribution. While the distribution
of data in Fig. 1(a) can be represented by clustering using
VQ, and the distribution of data in Fig. 1(b) by GMM, it is
necessary to explore other methods to represent the distri-
butions such as in Fig. 1(c). In this context, it is worthwhile
to investigate the potential of non-linear models such as
artificial neural networks (ANNs) (Yegnanarayana, 1999).

ANN models consist of interconnected processing units,



460 B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469

Nomenclature

A gain parameter of the activation function

E; error for the data point i

e(-) exponential function

fi represents exponential weighted error for the
data point i

o temperature parameter

where each unit represents the model of an artificial neuron,
and the interconnection between two units has a weight
associated with it. ANN models with different topologies
perform different pattern recognition tasks (Yegnanarayana,
1999). For example, a feedforward neural network can be
designed to perform the task of pattern classification or
pattern mapping, whereas a feedback network can be devel-
oped to perform the task of pattern storage or pattern envir-
onment storage (Yegnanarayana, 1999). One can interpret
the design problem as loading the characteristics of the
complex distribution of the data into the ANN model. In
the case of a feedforward network, the weights are adjusted
so as to realize the global minimum of the total error for the
training data in the weight space. The weights are adjusted
to reduce the error, and hence the training vectors with large
error will influence the adjustment to a large extent. The
objective in these supervised learning tasks is to achieve
generalization from the training data, so that the classifica-
tion or mapping error for test data is low. For generalization,
the number of patterns should be much larger than the
number of weights of the network. No attempt is made
explicitly to capture the characteristics of the distribution
of the data for each class, although there are attempts to
interpret the results of learning in terms of the distribution
of the data (Haykin, 1999; Lippmann, 1989).

If the probability distribution of the data is given in the
form of pattern vectors and their probability of occurrence,
then one can design a feedback network, like Boltzmann
machine, to capture the pattern environment specified by
the given data (Yegnanarayana, 1999). In this case, the
number of patterns will have to be far less than the number
of weights in the network. The weights are determined to
realize an energy landscape of the network, so that the states
with minimum energy correspond to the patterns with high-

est probabilities. This can be viewed as another supervised
task, where the desired probabilities are specified in terms of
the distribution of the states of the network. Concepts of
simulated annealing and annealing schedule are used to
realize the desired energy surface from the feedback
network. Feedback networks are also used to search for
the global minimum of the energy landscape to determine
a set of values for the variables that optimize an objective
function (Yegnanarayana, 1999). In this case, the energy
surface is fixed by the weights, which in turn are determined
by the constraints of the given optimization problem. Here
the network is used merely as a constraint satisfaction (CS)
model. There is no concept of data and distribution of data
in these CS models.

It is useful to develop an ANN model which can capture
the distribution of the given training data in the feature
space for each class. Then the distribution surfaces may
be used as signatures for the individual classes. Note that
probabilistic neural networks (PNNs) and radial basis func-
tion neural networks (RBFNNs) are expected to capture the
distribution of a given training data (Bishop, 1995; Wasser-
man, 1993). The PNN is an unconstrained model, and the
RBFNN is a severely constrained model. Both may have
limitations in capturing an arbitrary distribution of the train-
ing data. The question is whether it is possible to design a
network to capture the characteristics of the distribution of
the training data. In this context it is interesting to note that
not much importance is given to the error surface of the
training data in the feature space in the design of ANNs
so far. The problem we would like to address here is,
whether it is possible to design a training error surface in
the feature space to match the given data, subjected to the
constraints imposed by the network structure. In other
words, is it possible to design a network that scoops the
error surface in a desired manner? The desired manner
implies that the surface relates to the distribution of the
given data. A suitable architecture for this purpose is a
feedforward network that performs an autoassociation
task. These networks are called autoassociative neural
networks (AANNs) (Ikbal, Misra, & Yegnanarayana,
1999; Yegnanarayana, Kishore, & Anjani, 2000). AANN
models have also been used for several applications
including dimension compression, non-linear principal
component analysis, signal validation, numeral recognition,

1

GMM

0.8

0.6

(c)

Fig. 1. Illustration of data with different levels of complexity of distribution.



B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469 461

Output
Layer

Input

Layer Layer

Fig. 2. An AANN model (only a few connections are shown for illustra-
tion).

etc. (DeMers & Cottrell, 1993; Gori, Lastrucci, & Soda,
1996; Hines, Uhrig, & Wrest, 1997; Kimura, Inoue, Waka-
bayashi, Tsuruoka, & Miyake, 1998; Kramer, 1991; Oja,
1991). In each case the nature of the data used as input
and the interpretation of the results depend on the applica-
tion for which AANN is used. The performance of the
AANN for each of these applications are evaluated in the
literature in comparison with non-neural approaches, espe-
cially signal processing and statistical methods. In this
present case the AANN model, with a dimension compres-
sion layer in the middle, is used primarily for capturing the
distribution of input vectors in the feature space.

This paper is organized as follows. In Section 2, we
discuss the characteristics of AANN and their distribution
capturing abilities. The design of an AANN for realizing the
desired training error surface involves some form of anneal-
ing using the gain parameter of the activation function of a
processing unit. This issue is discussed in Section 3. Inter-

pretation of the training error surface in terms of probability
distribution is described in Section 4. The results of this
study in the context of speaker recognition are presented
briefly in Section 5.

2. Autoassociative neural network models

An AANN is a feedforward network with the desired
output being same as the input vector (Bishop, 1995).
Therefore, the number of units in the input and output layers
are equal. Fig. 2 shows the structure of a five layer AANN
model with three hidden layers. The number of hidden
layers and the number of units in each hidden layer depend
on the problem. Typically, if the number of units in any
hidden layer is less than the dimension of the input vector,
then there will be a compression of the input vectors to a
lower dimension, like in the principal component analysis
(Diamantaras & Kung, 1996). The processing units in the
first and third hidden layers are non-linear, and the units in
the second hidden (compression) layer can be linear or non-
linear (Kramer, 1991). As the error between the actual and
desired output vectors is minimized, the clusters of points in
the input space determine the shape of the hypersurface
obtained by the projection onto the lower dimension space.

Fig. 3 shows the space spanned by the 1D compression
layer for the input 2D data shown in Fig. 3(a) for two
different network structures. The structures of the two
networks are 2IANIN4N2L and 2L10N1N10ON2L, where L
denotes a linear unit and N denotes a non-linear unit. The
non-linear output function for each unit is tanh(A x), where A
is arbitrarily chosen to be equal to 0.66. The networks were

(b)

(a)

Fig. 3. (a) Atrtificial 2D data. (b) Output of AANN model with the structure 2L4AN1N4N2L. (c) Output of AANN model with the structure 2L10N1N10N2L.



462 B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469

(a)

(b)

Fig. 4. Probability surfaces realized by two different network structures: (a) 2LANINAN2L; (b) 2L10N1N10N2L for the 2D data shown in Fig. 3(a).

trained using backpropagation algorithm (Haykin, 1999;
Yegnanarayana, 1999). The solid lines shown in Fig. 3(b)
and (c) indicates mapping of the given input points due to
the 1D compression layer. The second network having more
hidden units seem to represent the data through the 1D
compression better, as shown in Fig. 3(c) compared to
Fig. 3(b) for the network with fewer units in the hidden
layers. Thus one can say that the AANN captures the distri-
bution of the data points depending on the constraints
imposed by the structure of the network, just as the number
of mixtures and Gaussian functions do in the case of GMMs.

In order to visualize the distribution better, one can plot
the training error for each input data point in the form of
some probability surface as shown in Fig. 4 for the cases in
Fig. 3(b) and (c). The training error E; for data point (7) in the
input space is plotted as f; = e B/ where «a is a constant.
Note that f; is not strictly a probability density function, but
we call the resulting surface as probability surface. The plot

of the probability surface shows larger amplitude for smaller
error E;, indicating better match of the network for that data
point. The justification for this plot is given in Section 4.
The constraints imposed by the network can be seen by the
shape the error surface takes in both the cases. One can use
the probability surface to study the characteristics of the
distribution of the input data captured by the network.
Ideally, one would like to achieve the best probability
surface, best defined in terms of some measure correspond-
ing to low average error.

The aim is to obtain a set of weights of the network
that gives the least average error for the given data
within the constraints of the network. But the average
error will be low if the error is small for the most
frequently occurring input vectors. In order to achieve
the best probability surface, one has to train the network
in such a way that the network does not get stuck in the
local minima of the average training error in the weight

(b)

(c)

Fig. 5. Probability surfaces realized by an AANN model 2L12N1N12N2L in two different training sessions for the 2D data shown in (a).



B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469 463

tanh(\x)

(a)

0.05
0.04f
- 003 A=5
=
=
<
§0.02
= rA=2
0.01 —
o — =05 N
=0
-1 -05 0 05 1
X

Fig. 6. For different values of gain parameter A (a) activation function and (b) its derivative.

space. Fig. 5 shows the probability surfaces for two
different set of weights with practically the same aver-
age error. It may possible to obtain better probability
surface corresponding to a lower overall error. Note that
during training, the weights are adjusted according to
the backpropagation learning, which uses the derivative
of the activation function, besides the error and the
learning rate parameter. The value of the derivative
depends on the gain parameter A of the activation func-
tion f{Ax). The activation function and its derivative are
shown for different values of the gain parameter A in
Fig. 6. If a low value of A is used, then the resulting
probability surface may not represent the distribution
well. If a large value of A is used, the probability
surface will reflect the distribution of the training
error better, provided the weights do not get stuck at
a local minimum of the total or average error. Fig. 7
shows the probability surfaces for two different A’s. In
order to obtain the weights corresponding to the best
probability surface, it is better to use annealing with
the gain parameter A during training, like simulated
annealing in the Boltzmann machine (Yegnanarayana,
1999).

(a)

3. Annealing with gain parameter A

The performance of the network for capturing the distri-
bution of the data through the probability surface is best
when the gain parameter A is large, since there will be
provision for the probability surface to show the dynamic
range of the distribution. But, it is likely that the choice of
large A might result in a local minima problem in the weight
space. The training error is unlikely to get stuck in a local
minima when A is small, since the error itself will be large.
The behavior of the average error for different A as a func-
tion of number of iterations is shown in Fig. 8. The error is
usually large for small values of A.

By using a low value of A during the initial stages, and
then increasing the A in steps may help in realizing a better
probability surface. This is like annealing in the Boltzmann
machine. In order to implement the annealing with the gain
parameter, one needs to have an annealing schedule, i.e. the
change of A at each step. For each A, the weights are
adjusted until some asymptotic error value is reached,
after the transient part of the error dies down. The error
for different iterations is as shown in Fig. 9, where the
annealing schedule consists of five steps for A = 0.26,

(b}

Fig. 7. Probability surfaces for: (a) A = 0.0005; (b) A = 3.0.



464 B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469

Mean Square Error

0 50 100 150
Iterations

Fig. 8. Training error for different values of the gain parameter A.

0.33, 0.41, 0.52, and 0.65. The peak regions correspond to
the transient part.

Once a proper annealing schedule for A is followed, the
resulting probability surface will be nearly the same, irre-
spective of the initial weights. Optimization of the annealing
schedule is not considered in this study. Fig. 10 shows the
probability surface realized for two different trials on the
data. Comparing with the surfaces in Fig. 5, these two
surfaces are more similar, and hence reflect the distribution
of data better.

3

n
o

N

Mean Square Error
—
(6]
>
I}
©
w
w
>
l
o
[6)]
N

—_
"

0.5

0 50 100 150 200

Iterations

Fig. 9. Error as a function of the number of iterations for a given annealing
schedule.

4. Interpretation of optimal error surface

Fig. 11 gives the probability surfaces for two different
distributions, showing the relation between the training
error surface and the data distribution. Having obtained
the error surface to match the distribution of the given
input data, it is preferable to have a measure that gives
directly an idea of the probability distribution. While it is
clear that lower error should correspond to higher probabil-
ity to achieve minimum average error, the nature of the
relation between the error surface and the probability distri-

(b)

(c)

Fig. 10. (a) Artificial 2D data. (b) Probability surface realized by the AANN model for one training session. (c) Probability surface realized by the AANN
model for another training session. In both the training sessions the gain parameter is annealed. The structure of the network is 2L12N1N12N2L.



B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459—-469 465

Fig. 11. Probability surfaces for two different distributions.

bution is not obvious, as in the case of Boltzmann machine,
where the energy surface and the stationary probability
distribution of states follow the Boltzmann—-Gibb’s law
(Yegnanarayana, 1999). However, we will use a similar
relation to plot the probability distribution and see if it

reflects the distribution of the data. That is, we assume
that the probability of a data point (i) is proportional to
e B/ where « is like the temperature parameter in the
Boltzmann—Gibb’s law (Yegnanarayana, 1999). Fig. 12
shows the probability surface using the proposed relation

(b)

(c)

Fig. 12. (a) Artificial 2D data. (b) Probability surface for the data for the temperature parameter o = 10. (c) Probability surface for a = 0.5.



466 B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469

between error and probability. This distribution clearly
shows lower probability for larger error, and vice versa.
The shape of the probability surface plots also show that
the constraints of the network, such as dimension reduction,
forces a shape in the lower dimensional space. If the number
of units in the dimension compression layer is changed, then
the shape of the probability distribution also changes. Since
it is difficult to visualize these distributions in a multidimen-
sional data situation, the distribution plots can be observed
in some reduced dimension space, although the effect of
constraints cannot be seen clearly in the reduced dimension
plot (Rumelhart, Smolensky, McClelland, & Hinton, 1986).

5. Application for speaker verification

AANN models can be derived using the feature vectors
extracted from the speech data, one for each speaker. The
model of each speaker captures the distribution of data for
that speaker, which is expected to be unique for each
speaker. That is, the training error surface or the correspond-
ing probability surface is unique for each speaker. Typically
the test feature vectors will be closer to the feature vectors
near the error minima, and hence the probability is high. For
an imposter, the feature vectors will have low probability
with respect to this model. Here AANN is used primarily as
feature extractor for speaker recognition task. The distribu-
tion of the input vectors in the feature space is used as
feature representing each speaker, whereas, most of the
other neural network models such as MLP and RBF are
mainly used as discriminative classifiers. The implementa-
tion of text-independent speaker verification system using
AANN models is explained in Sections 5.1-5.4.

5.1. Description of the speech database

Speech corpus used in this study consists of SWITCH-
BOARD-2 database of National Institute of Standards and
Technology (NIST). These databases are used for the NIST-
99 official text-independent speaker recognition evaluation
(NIST, 1999). The phase-2 SWITCHBOARD-2 database is
used for background modeling (described in the following
Sections 5.2-5.4), and hence referred to as development
data. Performance of the speaker verification system is eval-
uated on the phase-3 database, which is referred to as
evaluation data. The development data consists of 500
speakers (250 male and 250 female), and the evaluation
data consists of 539 speakers (230 male and 309 female).
Data provided for each speaker is conversational telephone
speech sampled at 8000 samples/s. The training data
consists of 2 min of speech data, collected from the same
phone number. The use of the same phone number results in
passing the speech data over the same handset and commu-
nication channel. Two different types of microphones (also
referred as handsets) are used for collecting the speech data.
They are carbon-button and electret.

All the studies reported in this paper are performed on the

male subset of 230 speakers with 1448 male test utterances
of the evaluation data. Each test utterance has 11 claimants
(of the same gender), where the genuine speaker may or
may not be one of the claimants. Thus, 1311 genuine tests
and 14 617 impostor tests are performed to evaluate the
performance of the speaker verification system. The dura-
tion of each test utterance varies between 3 and 60 s. Perfor-
mance of the speaker verification system is studied for the
following three conditions:

(a) Matched condition. The training and testing data are
collected from the same phone number.

(b) Channel mismatch condition. The training and testing
data are collected from different phone numbers, but it is
ensured that the same handset type is used in both the
cases. The use of different phone numbers results in
passing the speech signal over different communication
channels.

(c) Handset mismatch condition. The training and testing
data are collected with different handset types.

5.2. Generation of speaker models

Speech signal provided for each speaker is pre-empha-
sized using a difference operator. The differenced speech
signal is segmented into frames of 27.5ms using a
Hamming window with a shift of 13.75 ms. The silence
frames are removed using an amplitude threshold (Kishore,
2000). A 16th order linear prediction analysis is used to
capture the properties of the signal spectrum (Makhoul,
1975). The recursive relation between the predictor coeffi-
cients and the cepstral coefficients is used to convert the 16
predictor coefficients into 19 cepstral coefficients (Furui,
1981). The cepstral coefficients obtained for each frame
are linearly weighted to emphasize the peaks in the spectral
envelope (Rabiner & Juang, 1993). Linear channel effects
are compensated to some extent by removing the mean of
the time trajectory of each cepstral coefficient (Atal, 1974;
Furui, 1981).

Each speaker model is built by training an AANN model
with the feature vectors extracted from the utterance of the
speaker in the evaluation data. The structure of the AANN
model is 19L38N4N38N19L, where L refers to a linear unit
and N to a non-linear unit. The integer value indicates the
number of units in that particular layer. The number of units
in layers 2 and 4 is chosen empirically to be double that of
the input dimension. The use of four units in the dimension
compression layer is based on the systematic study
conducted by Kishore (2000). The network is trained
using backpropagation learning algorithm in pattern mode.

5.3. Verification procedure

During testing phase the feature vectors extracted from
the test utterance (as described in Section 5.2) are given to
the claimant model to obtain the claimant score. The score



B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469 467

Table 1
Performance comparison of speaker verification system for different values
of @ measured in terms of EER

Table 2
Performance of one of the GMM-based speaker verification systems
reported by NIST (1999)

Environment EER (%)
between training
and testing

a=001 =005 a=01 a=02 a=5
Matched 19.73 8.74 6.73 6.40 6.91
Channel mismatch ~ 29.65 17.31 15.32 15.26 15.33

Handset mismatch ~ 33.97 21.89 20.51 19.72 21.54

of a model is defined as

1 ie—D,-/a’ D; = b _)2’1'”2 ,
i=1 e

&

where x; is the input vector given to the model, y;, the output
given by the model, «, the temperature parameter and £ is
the number of feature vectors of the test utterance. Since, the
score of the claimant model is sensitive to the linguistic
content of the utterance and to the variations of the speak-
er’s voice, normalization of background model is used
(Reynolds, 1997). Two approaches to represent the back-
ground model for AANN-based speaker verification system
are compared by Kishore and Yegnanarayana (2000). The
two approaches are universal background model and
individual background model (IBM). The approach of
IBM is used for AANN-based speaker verification system
because of its simplicity in choosing the parameters and
effectiveness in performance (Kishore, 2000; Kishore &
Yegnanarayana, 2000).

The approach of IBM involves generation of pseudo-
claimant models (also called as IBMs). To generate
pseudo-claimant models, a set of 92 speakers is selected
from the development data. Each pseudo-claimant model
is derived by training an AANN with the feature vectors
extracted from the utterance of a speaker in the chosen
set. This subset of 92 speakers belong to male set of the
development data. The utterances of 46 speakers are from an
electret handset, and the utterances of remaining 46 speak-
ers are from a carbon-button handset. These speakers are
picked arbitrarily without any selection criteria such as
cohorts (Finan, Sapeluk, & Damper, 1997). In the testing
phase, the feature vectors of the test utterance are given to
the claimant model and to the set of 46 IBMs whose utter-
ances are from the same handset type as that of the claimant
(Kishore, 2000). The position (R) of the claimant model
score in the descending list of the scores from IBMs is
used for accepting/rejecting the speaker.

Before obtaining the value of R, the scores of the claimant
and pseudo-claimant models are normalized with the score
obtained by their respective models for a set of impostor
data (Kishore, 2000). If S; denotes the score obtained by a
speaker model ¢ for a given test utterance, then the normal-
ized score Ny = /I, where I; is the mean of the scores

Environment EER (%)
between training

and testing

Matched 5.61
Channel mismatch 10.00
Handset mismatch 21.00

obtained by the same model ¢ for a set of impostor data. The
normalized score indicates the closeness of Sy to / ¢ In
mismatch condition, the value of S; may be large enough
to reject the genuine speaker. But the value of S; in these
cases may not be too close to ] ¢ obtained by the same model,
and hence the value of N; may be a better measure to accept
or reject the claim. Using a set of 25 speakers’ utterances of
NIST-97 database (the duration of each utterance is half-
minute), this normalization procedure is applied to the
scores of the claimant and pseudo-claimant models. The
set of 25 speakers data used for normalization is randomly
selected from the NIST-97 database. The use of NIST-97
database ensures that these utterances do not belong to any
one of the claimant or pseudo-claimant models.

5.4. Results

False acceptance (FA) and false rejection (FR) are the
two errors that are used in evaluating a speaker verification
system. The tradeoff between FA and FR is a function of the
decision threshold. Equal error rate (EER) is the value for
which the error rates of FA and FR are equal (Oglesby,
1995). Performance of the AANN-based speaker verifica-
tion system measured in terms of EER for 230 speakers of
NIST-99 data is shown in Table 1. It can be observed that
performance of the speaker verification system degrades for
the mismatch conditions due to the channel and handset
effects.

When there is noise or channel effects, then there will be a
shift of the probability surface for the test data from the
distribution of the training data. Due to deep minima in
the error surfaces, there will be differences in the probability
surfaces for training and test data, and hence the probability
is low even for slight changes in the feature vectors. In such
a case, the temperature parameter a can be increased to
make the probability surface flatter. Performance of the
AANN-based speaker verification system for different
values of « is shown in Table 1. Improvement in the perfor-
mance of the speaker verification system can be seen when
« is large. But the discrimination among speakers is reduced
due to flattening of the probability surfaces and hence there
is an increase in EER for o = 5. The EER results obtained
from the standard GMM are given in Table 2 (NIST, 1999).
The results of AANN are comparable with GMM, although
the performance of GMM is slightly better. We feel that this



468 B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469

Table 3
Performance of the AANN-based speaker verification system with the gain
parameter A being annealed in the training phase

Environment EER (%)
between training

and testing

Matched 6.92
Channel mismatch 14.43
Handset mismatch 20.54

is primarily in the way the fine tuning is done at the scoring
level in the GMM case (NIST, 1999, 2000). The fine-tuning
in done at fixing the threshold, compensating the channel
and handset effects, etc. The objective of the present study is
to show that AANN models can be used for capturing the
distribution of the feature vectors for speaker verification.
Using AANN models, the number of parameters can be as
few as 1847 (weights + bias of the network) to capture the
distribution of the feature vectors of a speaker, as opposed to
9728 parameters (256 mixture components using diagonal
covariance matrix of 38D feature vectors) used by the
GMM-based approach.

We also studied the effect of annealing the gain parameter
on the performance of the AANN-based speaker verification
system. The annealing schedule consists of three steps for
A =0.2,0.5, and 0.8 at the epoch intervals of 1, 10, and 20,
respectively. The performance of the AANN-based speaker
verification system for annealing the gain parameter is
shown in Table 3. The value of temperature parameter o =
0.2 is used in the verification procedure. From Tables 1 and
3, we can observe that there is slight improvement in the
performance of the speaker verification system for channel
mismatch condition. However, further studies need to be
conducted to exploit the full potential of the annealing
approach in the case of speaker verification.

6. Conclusion

We have proposed a method to exploit the training error
surface to derive the characteristics of the distribution of the
given data. This will enable us to design an AANN model
for each class which captures the distribution of data for that
class. The gain parameter may be effectively used to derive
a network that yields the best probability surface, best
defined in terms of average error. If there are fewer training
samples, then the probability surface may have to be derived
for the compressed data (dimension reduction layer).

The concept of annealing the gain parameter is described,
which enables the learning process to avoid the local
minima problem. The significance of the annealing schedule
is to be explored for different problems. Also, faster anneal-
ing procedures need to be developed along the lines of mean
field annealing in Boltzmann machine (Haykin, 1999;
Yegnanarayana, 1999). The error surface can be interpreted

in terms of probability distribution by transforming the
surface suitably. Here the idea is similar to the Boltzmann—
Gibb’s law. That is, the probability is proportional to e "=
This helps us to derive a probability distribution which
represents the distribution of the data, subject to the
constraints imposed by the network in terms of number of
units and the gain parameter. The probability distribution
derived from the error surfaces has been used for speaker
verification studies. The dependence of the probability
surface on the temperature parameter « needs to be
exploited to compensate for the mismatched channel condi-
tions between the test and training data.

References

Atal, B. S. (1974). Effectiveness of linear prediction characteristics of the
speech wave for automatic speaker identification and verification.
Journal of Acoustical Society of America, 55, 1304—1312.

Bishop, C. M. (1995). Neural networks for pattern recognition, New York:
Oxford University Press.

DeMers, D., & Cottrell, G. (1993C). Nonlinear dimensionality reduction. In
S. Hanson, J. Cowan & C. Giles, Advances in neural information
processing systems 5 (pp. 580-587). California: Morgan Kaufmann.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. Journal of Royal Statistical
Society Series B (Methodological), 39, 1-38.

Diamantaras, K. I., & Kung, S. Y. (1996). Principal component neural
networks: Theory and applications, New York: Wiley.

Finan, R. A., Sapeluk, A. T., & Damper, R. I. (1997). Imposter cohort
selection for score normalization in speaker verification. Pattern
Recognition Letters, 18, 881—888.

Furui, S. (1981). Cepstral analysis technique for automatic speaker verifi-
cation. IEEE Transactions on Acoustics, Speech and Signal Processing,
29 (2), 254-272.

Gori, M., Lastrucci, L., & Soda, G. (1996). Autoassociator-based models
for speaker verification. Pattern Recognition Letters, 17, 241-250.
Gray, R. M. (1984). Vector quantization. IEEE Acoustics, Speech and

Signal Processing Magazine, 4-29.

Haykin, S. (1999). Neural networks: A comprehensive foundation, New
Jersey: Prentice-Hall.

Hines, J. W., Uhrig, R. E., & Wrest, D. J. (1997). Use of autoassociative
neural networks for signal validation. Proceedings of NEURAP 97
Neural Network Applications.

Ikbal, M. S., Misra, H., & Yegnanarayana, B. (1999). Analysis of autoas-
sociative mapping neural networks. Proceedings of the International
Joint Conference of Neural Networks, Washington, DC.

Kimura, F., Inoue, S., Wakabayashi, T., Tsuruoka, S., & Miyake, Y. (1998).
Handwritten numerical recognition using autoassociative neural
networks. Proceedings of the International Conference on Pattern
Recognition.

Kishore, S. P. (2000). Speaker verification using autoassociative neural
network models. MS Dissertation, Department of Computer Science
and Engineering, Indian Institute of Technology, Madras.

Kishore, S. P., & Yegnanarayana, B. (2000). Speaker verification: Mini-
mizing the channel effect using autoassociative neural networks
models. Proceedings of the IEEE International Conference on Acous-
tics, Speech, and Signal Processing, Istanbul.

Kramer, M. A. (1991). Nonlinear principal component analysis using auto-
associative neural networks. AIChE Journal, 37 (2), 233-243.

Lippmann, R. P. (1989). An introduction to computing with neural nets.
IEEE Acoustics, Speech and Signal Processing Magazine, 4, 4-22.

Makhoul, J. (1975). Linear prediction: A tutorial review. Proceedings of
IEEE, 63 (4), 561-580.



B. Yegnanarayana, S.P. Kishore / Neural Networks 15 (2002) 459-469 469

NIST (1999). Speaker recognition workshop notebook. Proceedings of
NIST 1999 Speaker Recognition Workshop. USA: University of
Maryland.

NIST (2000). Speaker recognition workshop notebook. Proceedings of
NIST 2000 Speaker Recognition Workshop. USA: University of
Maryland.

Oglesby, J. (1995). What’s in a number? Moving beyond the equal error
rate. Speech Communication, 17, 193-208.

Oja, E. (1991). Data compression, feature extraction and autoassociation in
feedforward neural networks. In T. Kohonen, K. MaK kisara, O. Simula
& J. Kangas, Artificial neural networks (pp. 737-745). Amsterdam:
Elsevier.

Rabiner, L. R., & Juang, B. H. (1993). Fundamentals of speech recognition,
New Jersey: Prentice-Hall.

Redner, R. A., & Walker, H. F. (1984). Mixture densities, maximum
likelihood and the EM algorithm. SIAM Review, 26, 195-239.

Reynolds, D. A. (1997). Comparison of background normalization methods
for text-independent speaker verification. Proceedings of EURO-
SPEECH, Greece.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. E. (1986).
Schemata and sequential thought processes in PDP models. In PDP
Research Group, J. L. McClelland & D. E. Rumelhart, Parallel distrib-
uted processing: Explorations in the microstructure of cognition
Cambridge: MIT Press, Chapter 14.

Wasserman, P. D. (1993). Advanced methods in neural computing, New
York: Van Nostrand Reinhold.

Yegnanarayana, B. (1999). Artificial neural networks, New Delhi: Prentice-
Hall.

Yegnanarayana, B., Kishore, S. P., & Anjani, A. V. N. S. (2000). Neural
networks models for capturing probability distribution of training data.
Proceedings of the International Conference on Cognitive and Neural
Systems, Boston.



