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Abstract—In this paper, we use artificial neural networks
(ANNs) for voice conversion and exploit the mapping abilities
of an ANN model to perform mapping of spectral features of a
source speaker to that of a target speaker. A comparative study
of voice conversion using an ANN model and the state-of-the-art
Gaussian mixture model (GMM) is conducted. The results of voice
conversion, evaluated using subjective and objective measures,
confirm that an ANN-based VC system performs as good as that
of a GMM-based VC system, and the quality of the transformed
speech is intelligible and possesses the characteristics of a target
speaker. In this paper, we also address the issue of dependency of
voice conversion techniques on parallel data between the source
and the target speakers. While there have been efforts to use
nonparallel data and speaker adaptation techniques, it is im-
portant to investigate techniques which capture speaker-specific
characteristics of a target speaker, and avoid any need for source
speaker’s data either for training or for adaptation. In this paper,
we propose a voice conversion approach using an ANN model to
capture speaker-specific characteristics of a target speaker and
demonstrate that such a voice conversion approach can perform
monolingual as well as cross-lingual voice conversion of an arbi-
trary source speaker.

Index Terms—Artificial neural networks (ANNs), cross-lingual,
error correction, speaker-specific characteristics, spectral map-
ping, voice conversion.

I. INTRODUCTION

A voice conversion (VC) system morphs the utterance of a
source speaker so that it is perceived as if spoken by a

specified target speaker. Such a transformation involves map-
ping of spectral, excitation and prosodic features including du-
ration and patterns of a source speaker onto a target speaker’s
acoustic space [1]–[3]. In the area of spectral mapping, several
approaches have been proposed since the first code book-based
spectral transformation was developed by Abe et al. [4]. These
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techniques include mapping code books [4], artificial neural
networks (ANNs) [5]–[7], dynamic frequency warping [8] and
Gaussian mixture model (GMM) [1], [10]–[12]. In the GMM-
based approach, the joint distribution of features extracted from
the speech signals of a source speaker and a target speaker is
modeled. As the number of mixture components increases, the
performance of a GMM-based voice conversion improves [13].
The GMM transformation deals with every feature vector inde-
pendent of its previous and next frames. Thus, it introduces local
patterns in converted spectral trajectory which are different than
that of the target’s natural spectral trajectory. To obtain a better
conversion of spectral trajectory, dynamic features are consid-
ered in the mapping function and such transformation is referred
to as maximum likelihood parameter generation (MLPG) [14].

The relation between the vocal tract shapes of two speakers
is typically nonlinear, and hence an ANN-based approach was
proposed as ANNs can perform nonlinear mapping [6]. Naren-
dranath et al. [6] used ANNs to transform the formants of a
source speaker to that of a target speaker. Results were provided
showing that the formant contour of a target speaker could be
obtained using an ANN model. A formant vocoder was used
to synthesize the transformed speech; however, no objective
or subjective evaluations were provided to show how good the
transformed speech was. The use of radial basis function neural
network for voice transformation was proposed in [5]. The work
in [2] also uses ANNs for spectral and prosodic mapping, but
relies on additional signal processing for automatic extraction
of syllable-like regions using pitch synchronous analysis. Our
work differs from the earlier approaches using ANNs in the fol-
lowing ways.

• The earlier approaches using an ANN employed used
either a carefully prepared training data which involved
manual selection of vowels and syllable regions [5], [6] or
signal processing algorithms to locate syllable like regions
[2]. The proposed approach in this paper needs neither
manual efforts nor signal processing algorithms to locate
syllable like regions. Our approach makes use of a set of
utterances provided from a source and a target speaker
and automatically extracts the relevant training data using
dynamic programming to train a voice conversion model.

• In previous works, there have been no comparative studies
to evaluate how an ANN-based VC system performs in
comparison with a widely used GMM-based VC system. In
this paper, a comparative study between ANN and GMM-
based voice conversion systems is performed and we show
that an ANN-based voice conversion performs as good as
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that of a GMM-based conversion. Subjective and objec-
tive measures are conducted to evaluate the usefulness of
ANNs for voice conversion.

• In this paper, we also address the issue of dependency of
voice conversion techniques on parallel data between the
source and the target speakers [1], [4], [6], [10], [15], [16].
By parallel data we mean a set of utterances recorded by
both the source and the target speakers. Availability of
such parallel data may not always be feasible. To over-
come this limitation, two different methods have been pro-
posed for voice conversion without using parallel data. In
the first method, a set of nonparallel utterances from the
source and the target speakers are collected and a unit se-
lection approach is employed to find corresponding par-
allel frames [17]–[19]. In the second method, a voice con-
version model is trained on preexisting parallel datasets
and speaker adaptation techniques are used to adapt this
voice conversion model to a particular pair of source and
target speakers for which no parallel data is available [20].
While these methods avoid the need for parallel data, they
still require speech data (nonparallel data) from the source
speakers a priori to build the voice conversion models.
This is a limitation to an application where an arbitrary
user intends to transform his/her speech to a predefined
target speaker without recording anything a priori. Thus,
it is worthwhile to investigate voice conversion approaches
which capture speaker-specific characteristics of a target
speaker and avoid the need for speech data from a source
speaker to train/adapt a voice conversion model. Such ap-
proaches not only allow an arbitrary speaker to transform
his/her voice to a predefined target speaker but also find ap-
plications in cross-lingual voice conversion. In this paper,
we propose a voice conversion approach using an ANN
model to capture speaker-specific characteristics of a target
speaker and completely avoid the need for speech data
from a source speaker to train a voice conversion model.
We demonstrate that such an approach can perform mono-
lingual as well as cross-lingual voice conversion.

The organization of this paper is as follows. The first part of this
paper (Sections II–IV) provides a comparative study between
ANN and GMM-based approaches for voice conversion. In
Section II, we describe the framework for voice conversion
and provide details of ANN and GMM-based approaches. In
Section III, we report the experimental results on ANN and
GMM-based VC systems and provide a comparison between
these approaches using subjective and objective evaluations.
In Section IV, we discuss the enhancements made to improve
the performance of an ANN-based voice conversion using
delta and contextual features. The second part of this paper
(Section V) addresses the issue of building voice conversion
models without parallel data, specifically in the direction of
using no a priori data from a source speaker. In Section V, we
describe the method to capture speaker-specific characteristics
using an ANN model, where the voice conversion model is
built by using a target speaker’s data. Such a model avoids the

need for speech data from a source speaker and hence could
be used to transform an arbitrary speaker including a cross-lin-
gual speaker. A set of transformed utterances corresponding
to results discussed in this work is available for listening at
http://ravi.iiit.ac.in/~speech/uploads/taslp09_sinivas/.

II. FRAMEWORK FOR VOICE CONVERSION

A. Database

Current voice conversion techniques need a parallel database
[1], [11], [13] where the source and the target speakers record
the same set of utterances. The work presented here is carried
out on the CMU ARCTIC database consisting of utterances
recorded by seven speakers. Each speaker has recorded a set of
1132 phonetically balanced utterances [21]. The ARCTIC data-
base includes utterances of SLT (U.S. Female), CLB (U.S. Fe-
male), BDL (U.S. Male), RMS (U.S. Male), JMK (Canadian
Male), AWB (Scottish Male), KSP (Indian Male). It should be
noted that about 30–50 parallel utterances are needed to build
a voice conversion model [11]. Thus, for each speaker we took
around 40 utterances as training data (approximately 2 minutes)
and a separate set of 59 utterances (approximately 3 minutes) as
testing data.

B. Feature Extraction

To extract features from a speech signal, an excitation-filter
model of speech is applied. Mel-cepstral coefficients (MCEPs)
are extracted as filter parameters and fundamental frequency

estimates are derived as excitation features for every 5 ms
[22]. The number of MCEPs extracted for every 5 ms is 25.
Mean and standard deviation statistics of are calculated
and recorded.

C. Alignment of Parallel Utterances

As the durations of the parallel utterances typically differ,
dynamic time warping (or dynamic programming) is used to
align MCEP vectors of the source and the target speakers [10],
[11]. After alignment, let and denote the source and the
target feature vectors at frame , respectively.

D. Process of Training and Testing/Conversion

The training module of a voice conversion system to trans-
form both the excitation and the filter parameters from a source
speaker’s acoustic space to a target speaker’s acoustic space
is as shown in Fig. 1. Fig. 2 shows the block diagram of var-
ious modules involved in a voice conversion testing process. In
testing or conversion, the transformed MCEPs along with
can be used as input to Mel log spectral approximation (MLSA)
[22] filter to synthesize the transformed utterance. For all the ex-
periments done in this work, we have used pulse excitation for
voiced sounds and random noise excitation for unvoiced sounds.

E. Spectral Mapping Using GMM

In GMM-based mapping [13], [14], the learning procedure
aims to fit a GMM model to the augmented source and target
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Fig. 1. Training module in voice conversion framework.

Fig. 2. Testing module in voice conversion framework.

feature vectors. Formally, a GMM allows the probability distri-
bution of a random variable to be modeled as the sum of
Gaussian components, also referred to as mixtures. Its proba-
bility density function can be written as

(1)
where is an augmented feature vector . The nota-
tion denotes transposition of a vector. de-
notes the parameters of a Gaussian distribution, and denotes
the prior probability with which the vector belongs to the

th component. denotes the covariance matrix and
denotes the mean vector of the th component for the joint vec-
tors. These parameters are represented as

(2)

where and are the mean vectors of the th compo-
nent for the source and the target feature vectors, respectively.
The matrices and are the covariance matrices, while

and are the cross-covariance matrices, of the th
component for the source and the target feature vectors, respec-
tively. The covariance matrices , , , and
are assumed to be diagonal in this work. The model parameters

are estimated using expectation–maximization
(EM) algorithm.

The conversion process (also referred to as testing process)
involves regression, i.e., given an input vector , we need to
predict using GMMs, which is calculated as shown as

(3)

where

(4)

is the posterior probability that a given input vector belongs
to the th component.

In this paper, we have conducted GMM-based VC experi-
ments on the voice conversion setup built in FestVox distribution
[23]. This voice conversion setup is based on the work done in
[14], and supports the conversion considering 1) the correlation
between frames (referred to as MLPG) and 2) the global vari-
ance (GV) of spectral trajectory.

F. Spectral Mapping Using ANN

ANN models consist of interconnected processing nodes,
where each node represents the model of an artificial neuron,
and the interconnection between two nodes has a weight asso-
ciated with it. ANN models with different topologies perform
different pattern recognition tasks. For example, a feed-forward
neural network can be designed to perform the task of pattern
mapping, whereas a feedback network could be designed for
the task of pattern association. A multi-layer feed forward
neural network is used in this work to obtain the mapping
function between the source and the target vectors.

Fig. 3 shows the architecture of a four layer ANN used to
capture the transformation function for mapping the acoustic
features of a source speaker onto the acoustic space of a target
speaker. The ANN is trained to map the MCEPs of a source
speaker to the MCEPs of a target speaker, i.e., if denotes
the ANN mapping of , then the error of mapping is given by

. is defined as

(5)

where

(6)

Here , , represents the weight matrices of first,
second, and third hidden layers of the ANN model, respectively.
The values of the constants and used in tanh function are
1.7159 and 2/3, respectively. A generalized back propagation
learning [6] is used to adjust the weights of the neural network
so as to minimize , i.e., the mean squared error between the de-
sired and the actual output values. Selection of initial weights,
architecture of ANN, learning rate, momentum, and number of
iterations are some of the optimization parameters in training an
ANN [24]. Once the training is complete, we get a weight ma-
trix that represents the mapping function between the spectral
features of a pair of source and target speakers. Such a weight
matrix can be used to transform a feature vector from the source
speaker to a feature vector of the target speaker.

G. Mapping of Excitation Features

Our focus in this paper is to get a better transformation of
spectral features. Hence, we use the traditional approach of
transformation as used in a GMM-based transformation. A loga-
rithm Gaussian normalized transformation [25] is used to trans-
form the of a source speaker to the of a target speaker as
indicated as follows:

(7)
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Fig. 3. Architecture of a four-layered ANN with N input and output nodes and
M nodes in the hidden layers.

where and are the mean and variance of the funda-
mental frequency in logarithm domain for the source speaker,

and are the mean and variance of the fundamental fre-
quency in logarithm domain for the target speaker, is the
pitch of the source speaker, and is the converted pitch
frequency.

H. Evaluation Criteria for Voice Conversion

1) Subjective Evaluation: Subjective evaluation is based on
collecting human opinions as they are directly related to human
perception, which is used to judge the quality of transformed
speech. The popular tests are ABX test, MOS test, and similarity
test.

• ABX Test: For the ABX test, we present the listeners with
a GMM transformed utterance and an ANN transformed
utterance to be compared against X, which will always be
a natural utterance of the target speaker. To ensure that a
listener does not become biased, we shuffle the position of
ANN/GMM transformed utterances i.e., A and B, with X
always constant at the end. The listeners would be asked to
select either A or B, i.e., the one which they perceive to be
closer to the target utterance.

• MOS Test: Mean opinion score (MOS) is another subjective
evaluation where listeners evaluate the speech quality of
the converted voices using a 5-point scale (5: excellent, 4:
good, 3: fair, 2: poor, 1: bad).

• Similarity Test: In the similarity test, we present the lis-
teners with a transformed utterance and a corresponding
natural utterance of the target speaker. The listeners would
be asked to provide a score indicating how similar the
two utterances are in terms of speaker characteristics. The
range of similarity test is also from 1 to 5, where a score
of 5 indicates that both the recordings are from the same
speaker and a score of 1 indicates that the two utterances
are spoken by two different speakers.

2) Objective Evaluation: Mel cepstral distortion (MCD) is
an objective error measure known to have correlation with the
subjective test results [13]. Thus, MCD is used to measure the
quality of voice transformation [11]. MCD is related to filter
characteristics and hence is an important measure to check the
performance of mapping obtained by an ANN/GMM model.
MCD is computed as follows:

(8)

TABLE I
OBJECTIVE EVALUATION OF A GMM-BASED VC SYSTEM FOR VARIOUS

TRAINING PARAMETERS WHERE SET 1: SLT TO BDL TRANSFORMATION;
SET 2: BDL TO SLT TRANSFORMATION

where and denotes the th coefficient of the target and
the transformed MCEPs, respectively.

III. EXPERIMENTS AND RESULTS

A. Objective Evaluation of a GMM-Based VC System

To build a GMM-based VC system, we have considered two
cases: 1) transformation of SLT (U.S. female) to BDL (U.S.
male); and 2) transformation of BDL (U.S. male) to SLT (U.S.
female). For both the experiments, the number of training utter-
ances is 40 (approximately 2 minutes) and the testing is done
on the test set of 59 utterances (approximately 3 minutes). The
number of vectors for 40 training utterances in SLT and BDL is
23 679 and 21 820, respectively.

Table I provides the MCD scores computed for SLT-to-BDL
and BDL-to-SLT, respectively, for increasing number of Gaus-
sians. It could be observed that the MCD scores decrease with
the increase in the number of Gaussians; however, it should be
noted that the increase in the number of Gaussians also increases
the number of parameters in the GMM. With the use of diag-
onal covariance matrix, the number of parameters in the GMM
with 64 and 128 Gaussian components is 12 352 and 24 704,
respectively. We can also observe that the GMM-based conver-
sion with MLPG performs better than that of the GMM-based
system without MLPG. However, the GMM-based VC system
with MLPG and without GV produced lesser MCD scores than
the GMM-based VC system with MLPG and with GV. While
GV seemed to improve the quality of transformed speech based
on human listening tests, it is not clear from [14] whether it
also improves the score according to MCD computation. Con-
sidering the number of parameters used in the GMM model, we
have used the GMM-based VC system with 64 Gaussian com-
ponents (with MLPG and without GV) for further comparison
with an ANN-based VC system.

B. Objective Evaluation of an ANN-Based VC System

To build an ANN-based VC system, we have considered two
cases: 1) SLT-to-BDL; and 2) BDL-to-SLT. For both the exper-
iments, the number of training utterances is 40 (approximately
2 minutes) and the testing is done on the test set of 59 utterances
(approximately 3 minutes).

Table II provide MCD scores for SLT-to-BDL and BDL-to-
SLT, respectively, for different architectures of ANN. In this
paper, we have experimented with 3-layer, 4-layer, and 5-layer
ANNs. The architectures are provided with the number of nodes
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TABLE II
MCD OBTAINED ON THE TEST SET FOR DIFFERENT ARCHITECTURES OF AN

ANN MODEL. (NO. OF ITERATIONS: 200, LEARNING RATE: 0.01, MOMENTUM:
0.3) SET 1: SLT TO BDL; SET 2: BDL TO SLT

Fig. 4. MCD scores for ANN, GMM � MLPG, and GMM (without MLPG)-
based VC systems computed as a function of number of utterances used for
training. The results for GMM-based VC systems are obtained using 64 mixture
components.

in each layer and the activation function used for that layer.
For example, an architecture of 25L 75N 25L means that it is
a 3-layer network with 25 input and output nodes and with 75
nodes in the hidden layer. Here, L represents “linear” activa-
tion function and N represents “tangential ” activation
function. From Table II, we see that the four-layered architec-
ture 25L 50N 50N 25L (with 5125 parameters) provides better
results when compared with other architectures. Hence, for all
the remaining experiments reported in this section, the four layer
architecture is used.

In order to determine the effect of number of parallel utter-
ances used for training the voice conversion models, we per-
formed experiments by varying the training data from 10 to 1073
parallel utterances. Please note that the number of test utterances
was always 59. Fig. 4 shows the MCD scores for ANN, GMM
+ MLPG and GMM-based (without MLPG) VC systems com-
puted as a function of number of utterances used for training.
From Fig. 4, we could observe that as the number of training ut-
terances increase, the MCD values obtained by both GMM and
ANN models decrease.

C. Subjective Evaluation of GMM and ANN-Based VC Systems

In this section, we provide subjective evaluations for ANN
and GMM-based voice conversion systems. For these tests, we
have made use of voice conversion models built from 40 par-
allel utterances, as it was shown that this modest set produces
good enough transformation quality in terms of objective mea-
sure. We conducted MOS, ABX, and similarity tests to evaluate
the performance of the ANN-based transformation against the

Fig. 5. (a) MOS scores for 1: ANN, 2: GMM � MLPG, 3: GMM. (b) ABX
results for 4: ANN, GMM�MLPG�M� � F�, 5: ANN, GMM�MLPG�F� �
M�, 6: ANN, GMM�M� � F�, 7: ANN, GMM�F� � M�.

TABLE III
AVERAGE SIMILARITY SCORES BETWEEN TRANSFORMED UTTERANCES AND

THE NATURAL UTTERANCES OF THE TARGET SPEAKERS

GMM-based transformation. It has to be noted that all experi-
ments with GMM use static and delta features but the experi-
ments with ANN use only the static features.

A total of 32 subjects were asked to participate in the four
experiments listed below. Each subject was asked to listen to
ten utterances corresponding to one of the experiments. Fig. 5(a)
provides the MOS scores for 1) ANN, 2) GMM + MLPG, and 3)
GMM-based (without MLPG) VC systems. Fig. 5(b) provides
the results of ABX test for the following cases:

4) BDL to SLT using ANN + (GMM + MLPG);
5) SLT to BDL using ANN + (GMM + MLPG);
6) BDL to SLT using ANN + GMM;
7) SLT to BDL using ANN + GMM.

The MOS scores and ABX tests indicate that the ANN-based
VC system performs as good as that of the GMM-based VC
system. The MOS scores also indicate that the transformed
output from the GMM-based VC system with MLPG was
perceived to be better than that of the GMM-based VC system
without MLPG.

A similarity test is also performed between the output of the
ANN/GMM-based VC system and the target speaker’s natural
utterances. The results of this similarity test are provided in
Table III, which indicate that the ANN-based VC system seems
to perform better or as good as that of the GMM-based VC
system. The significance of difference between the ANN and
the GMM MLPG-based VC systems for MOS and similarity
scores was tested using hypothesis testing based on Student
t-test, and the level of confidence indicating the difference was
found to be greater than 95%.
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Fig. 6. (a) MOS and (b) MCD scores for ANN-based VC systems on ten dif-
ferent pairs of speakers.

D. Experiment on Multiple Speaker Pairs

In order to show that the ANN-based transformation can be
generalized over different databases, we have provided MOS
and MCD scores for voice conversion performed for ten dif-
ferent pairs of speakers as shown in Fig. 6. While MCD values
were obtained over the test set of 59 utterances, the MOS scores
were obtained from 16 subjects, each performing the listening
tests on ten utterances. An analysis drawn from these results
show that inter-gender voice transformation (ex: male to female)
has an average MCD and a MOS score of 5.79 and 3.06, re-
spectively, while the intra-gender (ex: male to male) voice trans-
formation has an average MCD and a MOS score of 5.86 and
3.0, respectively. Another result drawn from the above exper-
iments indicates that the transformation performance between
two speakers with the same accent is better than that when com-
pared with performance on speakers with different accents. For
example, the voice transformation from SLT (US accent) to
BDL (US accent) obtained an MCD value of 5.59 and a MOS
score of 3.17, while the voice transformation from BDL (US ac-
cent) to AWB (Scottish accent) obtained an MCD value of 6.04
and a MOS score of 2.8.

IV. ENHANCEMENTS TO VOICE CONVERSION USING ANN

In order to enhance the performance of spectral mapping by
ANNs, we investigated two different methods. All the experi-
ments in this section are designed based on the use of parallel
training data. The results of these experiments are provided on
the test set of 59 utterances.

A. Appending Deltas

The GMM-based approach explained in Section II-E ap-
pends dynamic features to the static features [13], [15], [16]. In
Section III-B, we have compared the GMM-based system with
deltas with the ANN-based system without deltas and hence
we wanted to find out whether the use of deltas would further
improves the performance of the ANN-based system.

In this context, we performed an experiment on SLT (female)
to BDL (male) transformation, where the model is trained with
deltas and on varying number of parallel training utterances. A
set of three experiments were conducted, and the architectures
of ANN used in these experiments are as follows:

TABLE IV
RESULTS OF APPENDING DELTAS AND DELTA-DELTAS OF MCEPS FOR SLT

(FEMALE) TO BDL (MALE) TRANSFORMATION

1) 25L 50N 50N 25L: static features;
2) 50L 100N 100N 50L: static and delta features;
3) 75L 150N 150N 75L: static, delta and acceleration/delta-

delta features.
The MCD scores obtained for these three experiments are

provided in Table IV and indicate that the ANN transformation
with deltas is better than the ANN-based transformation without
deltas. The results using delta-delta features are also provided
in Table IV. It could be observed that the use of delta-delta fea-
tures further reduces the MCD score for the ANN-based spectral
mapping. The set of 40 training utterances used in this experi-
ment is different than the one used in Section III-B and hence
we find minor differences in the MCD score for static features.

B. Transformation With Use of Contextual Features

The use of deltas and delta-delta coefficients are computed
over a context of three frames, and provide slope and accelera-
tion coefficients of MCEPs [26]. Instead of computing slope and
acceleration coefficients, we wanted to investigate the effect of
augmented feature vectors, i.e., append MCEPs from previous
and next frames to the MCEPs of a current frame, and provide
these augmented features as input to train the ANN model.

In this context, we performed an experiment on SLT (female)
to BDL (male) transformation, where the model is trained on
varying context size and varying number of parallel training
utterances. A context size of one indicates that the MCEPs
from one left and one right frame are appended to MCEPs of
the current frame. The results of SLT to BDL transformation
are provided in Fig. 7, where a plot showing the MCD score
with increasing number of training utterances and context size
is provided.

Fig. 7 shows that the MCD score decreases with the increase
in context size from 0 to 3 (i.e., 3 left and 3 right frames). The
MCD score at the context size of 0 in Fig. 7 indicates the base
line performance as explained in Section III-B. The ANN archi-
tectures used for context size of 1, 2, and 3 are 75L 225N 225N
75L, 125L 375N 375N 125L, and 175L 525N 525N 175L, re-
spectively. From Fig. 7, it could also be observed that an in-
crease in the number of training utterances from 40 to 200 leads
to a decrease in MCD scores and thus improves the performance
of the ANN-based spectral mapping.

From the experiments conducted in Sections IV-A and IV-B,
we could observe that the use of deltas, acceleration coeffi-
cients, and contextual features improves the performance of an
ANN-based VC system. However, an increase in the dimension-
ality of feature vectors also increases the size of an ANN archi-
tecture and the computational load in training and testing of a
VC system.
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Fig. 7. Graph of MCD as a function of context size for varying number of
training utterances for SLT (female) to BDL (male) transformation. Context 0
indicates the baseline performance.

V. MODELS CAPTURING SPEAKER-SPECIFIC CHARACTERISTICS

So far we have discussed VC approaches which rely on ex-
istence of parallel data from the source and the target speakers.
There have been approaches proposed in [17]–[20], which
avoid the need for parallel data, however still require speech
data (though nonparallel) from source speakers a priori to build
a voice conversion model. Such approaches cannot be applied in
situations, where an arbitrary user intends to have his/her voice
transformed to a predefined target speaker, without recording
anything a priori. In this section, we propose a voice conversion
approach using an ANN model which captures speaker-specific
characteristics of a target speaker. Such an approach does not
require speech data from a source speaker and hence could be
used to transform an arbitrary speaker including a cross-lingual
speaker.

The idea behind capturing the speaker-specific characteristics
using an ANN model is as follows. Let and be two dif-
ferent representations of a speech signal from a target speaker
. A mapping function could be built to transform to
. Such a function would be specific to the speaker and could

be considered as capturing the essential speaker-specific charac-
teristics. The choice of representation of and plays an im-
portant role in building such mapping networks and in their in-
terpretation. If we assume that represents linguistic informa-
tion, and represents linguistic and speaker information, then
a mapping function from to should capture speaker-spe-
cific information in the process. The interpretation of order of
linear prediction (LP) could be applied in deriving and . A
lower order ( 6) LP spectrum captures the first few formants
and mostly characterizes the message (or linguistic) part of the
signal, while a higher order ( 12) LP spectrum captures more
details in the spectrum and hence captures message and speaker
characteristics [27]. Thus, represented by a lower order LP
spectrum or first few formants could be interpreted as speaker
independent representation of the speech signal, and repre-
sented by the MCEPs could be interpreted as carrying message
and speaker information. An ANN model could be trained to
minimize the error , where .

Fig. 8. Block diagram of an error correction network.

In this paper, is represented by six formants, their band-
widths, and delta features. The formants, bandwidths, , and
probability of voicing are extracted using the ESPS toolkit [28].
The formants also undergo a normalization technique such as
vocal tract length normalization as explained in Section V-A.
is represented by traditional MCEP features as it would allow
us to synthesize using the MLSA synthesis technique. The
MLSA synthesis technique generates a speech waveform from
the transformed MCEPs and F0 values using pulse excitation
or random noise excitation [22].

An ANN model is trained to map to using the backprop-
agation learning algorithm. Once the model is trained, it could
be used to convert to , where could be from any arbitrary
speaker .

A. Vocal Tract Length Normalization (VTLN)

VTLN is a speaker normalization technique that tries to com-
pensate for the effect of speaker-dependent vocal tract lengths
by warping the frequency axis of the magnitude spectrum. Apart
from use in speech recognition, VTLN has also been used in
voice conversion [17]–[19].

Following the work in [29], we estimate the warp factors
using pitch information and modify both formants and band-
widths. A piece-wise linear warping function as described in
[29] is used in this work. The features representing undergo a
VTLN, to normalize the speaker effect on the message (or lin-
guistic) part of the speech signal.

B. Error Correction Network

We introduce a concept of an error correction network which
is essentially an additional ANN network, used to map the pre-
dicted MCEPs to the target MCEPs so that the final output ob-
tained features represent the target speaker in a better way. The
block diagram for an error correction network is shown in Fig. 8.
Once are obtained, they are given as input to the second ANN
model and it is trained to reduced the error . Such a
network acts as an error correction mechanism to correct any er-
rors made by the first ANN model. Let denote the output from
the error correction network. It is observed that while the MCD
values of and do not vary much, the speech synthesized
from was found to be smoother than that of speech synthe-
sized from . To train the error correction network, we use 2-D
features i.e., feature vectors from three left frames, and three
right frames are added as context to the current frame. Thus,
the ANN model is trained with 175 dimensional vector (25 di-
mension MCEPs ). The architecture of this error
correction network is 175L 525N 525N 175L.

C. Experiments With Parallel Data

As an initial experiment, we used parallel data of BDL and
SLT. Features representing were extracted from the BDL



DESAI et al.: SPECTRAL MAPPING USING ANNs FOR VC 961

TABLE V
RESULTS OF SOURCE SPEAKER (SLT-FEMALE) TO TARGET SPEAKER (BDL-MALE) TRANSFORMATION WITH TRAINING ON 40 UTTERANCES OF SOURCE

FORMANTS TO TARGET MCEPS ON A PARALLEL DATABASE. HERE � REPRESENTS FORMANTS, � REPRESENTS BANDWIDTHS, � AND �� REPRESENTS

DELTA AND DELTA-DELTA FEATURES COMPUTED ON ���� FEATURES, RESPECTIVELY.��� REPRESENTS UNIT VARIANCE NORMALIZATION

speaker and were mapped onto the of SLT. This experimen-
tation was done to obtain a benchmark performance for the ex-
periments which map to (as explained in Section V-D).

The features representing undergo a VTLN (as discussed
in Section V-A), to normalize the speaker effect on the mes-
sage (or linguistic) part of the signal. However, in this experi-
ment, the mapping is done between BDLs to SLTs . The
process of training such a voice conversion model is similar to
the process explained in Section III-B. In Section III-B, the fea-
tures of BDL speaker were represented by MCEPs, where as in
this experiment, the formants and bandwidths are used. The re-
sults obtained in this section could also be compared with the
results obtained in Section III-B. Hence, VTLN was not per-
formed on the features representing in this experiment.

Training was done to map BDL formants to SLT MCEPs with
only 40 utterances. Testing was done on a set of 59 utterances.
Table V shows the different representations of and their effect
on MCD values. These different representations include combi-
nation of different number of formants and their bandwidths,
delta and acceleration coefficients of formants and bandwidths,
pitch and probability of voicing. From the results provided in
Table V, we can observe that experiment 9 (which uses six for-
mants, six bandwidths, probability of voicing, pitch along with
their delta and acceleration coefficients) employing an error cor-
rection network provided better results in terms of MCD values.
These results are comparable with the results of voice conver-
sion with BDL MCEPs to SLT MCEPs mapping as found in
Section III-B.

D. Experiments Using Target Speaker’s Data

In this experiment, we built an ANN model which maps
features of SLT onto features of SLT. Here, extracted from
SLT utterances is represented by six formants, six bandwidths,

, probability of voicing and their delta and acceleration co-
efficients as shown in feature set for experiment 9 in Table V.
The formants and bandwidths representing undergo VTLN to
normalize the speaker effects. is represented by MCEPs ex-
tracted from SLT utterances. We use the concept of error correc-
tion network to improve the smoothness of the converted voice.

Fig. 9 provides the results for mapping (where BDL,
RMS, CLB, JMK voices) onto the acoustic space of SLT. To per-
form this mapping, the voice conversion model is built to map

to (where ) is used. To perform VTLN, we have
used the mean pitch value of SLT. Hence, all the formants of

Fig. 9. Plot of MCD scores obtained between multiple speaker pairs with SLT
or BDL as the target speaker. The models are built from a training data of 24
minutes and tested on 59 utterances (approximately 3 min).

TABLE VI
SUBJECTIVE EVALUATION OF VOICE CONVERSION MODELS BUILT BY

CAPTURING SPEAKER-SPECIFIC CHARACTERISTICS

source speaker are normalized with VTLN using mean of SLT
and then are given to ANN to predict the 25-dimensional

MCEPS. Similar results where the voice conversion model is
built by capturing BDL speaker-specific features are also pro-
vided in Fig. 9.

We have also performed listening tests whose results are pro-
vided in Table VI for MOS scores and similarity tests. For the
listening tests, we chose three utterances randomly from each of
the transformation pairs. Table VI provides a combined output
of all speakers transformed to the target speaker (SLT or BDL).
There were ten listeners who participated in the evaluations
tests. The MOS scores and similarity test results are averaged
over ten listeners.

The results shown in Fig. 9 and Table VI indicate that voice
conversion models built by capturing speaker-specific charac-
teristics using ANN models are useful. As this approach does
not need any utterances from a source speaker to train a voice
conversion model, we can use this type of model to perform



962 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 18, NO. 5, JULY 2010

Fig. 10. Plot of MCD versus data size for different speaker pairs, with SLT or
BDL as the target speaker.

TABLE VII
PERFORMANCE OF VOICE CONVERSION MODELS BUILT BY CAPTURING

SPEAKER-SPECIFIC FEATURES ARE PROVIDED WITH MCD SCORES. ENTRIES

IN THE FIRST COLUMN REPRESENT SOURCE SPEAKERS AND THE ENTRIES IN

THE FIRST ROW REPRESENT TARGET SPEAKERS. ALL THE EXPERIMENTS ARE

TRAINED ON 6 MINUTES OF SPEECH AND TESTED ON 59 UTTERANCES OR

APPROXIMATELY 3 MINUTES OF SPEECH

cross-lingual voice conversion. Fig. 10 shows the effect of
amount of training data in building the ANN models capturing
speaker-specific characteristics. It could be observed that the
MCD scores tend to decrease with the increase in the amount
of training data.

E. Experiments on Multiple Speakers Database

To test the validity of the proposed method, we conducted
experiments on other databases from the ARCTIC set, such as
RMS, CLB, JMK, AWB, and KSP. The training for all these ex-
periments was conducted on 6 minutes of speech data. However,
the testing was done on the standard set of 59 utterances. The
MCD scores provided in Table VII indicate that the method-
ology of training an ANN model to capture speaker-specific
characteristics for voice conversion could be generalized over
different datasets.

F. Application to Cross-Lingual Voice Conversion

Cross-lingual voice conversion is a task where the language
of the source and the target speakers is different. In the case
of a speech-to-speech translation system, a source speaker may
not know the target language. Hence, to convey information in
his/her voice in the target language, cross-lingual voice conver-
sion assumes importance. The availability of parallel data is dif-
ficult for cross-lingual voice conversion. One solution is to per-
form a unit selection approach [17]–[19] to find units in the ut-
terances of the target speaker that are close to the source speaker

TABLE VIII
SUBJECTIVE RESULTS OF CROSS-LINGUAL TRANSFORMATION DONE

USING CONVERSION MODEL BUILT BY CAPTURING SPEAKER-SPECIFIC

CHARACTERISTICS. TEN UTTERANCES FROM EACH OF TELUGU (NK),
HINDI (PRA), AND KANNADA (LV) SPEAKERS ARE TRANSFORMED

INTO BDL MALE SPEAKER’S VOICE

or use utterances recorded by a bilingual speaker [20]. Our so-
lution to cross-lingual voice conversion is to employ the ANN
model which captures speaker-specific characteristics.

In this context, we performed an experiment to transform
three female speakers (NK, PRA, LV) speaking Telugu, Hindi,
and Kannada, respectively, into a male voice speaking Eng-
lish (U.S. male-BDL). Our goal here is to transform NK, PRA,
and LV voices to BDL voice and hence the output will be as
if BDL were speaking in Telugu, Hindi, and Kannada, respec-
tively. We make use of BDL models built in Section V-D to cap-
ture speaker-specific characteristics. Ten utterances from NK,
PRA, LV voices were transformed into BDL voice and we per-
formed MOS test and similarity test to evaluate the performance
of this transformation. Table VIII provides the MOS and simi-
larity test results averaged over all listeners. There were ten na-
tive listeners of Telugu, Hindi, and Kannada who participated in
the evaluations tests. The MOS scores in Table VIII indicate that
the transformed voice was intelligible. The similarity tests indi-
cate that cross-lingual transformation could be achieved using
ANN models, and the output is intelligible and possesses the
characteristics of BDL voice.

VI. CONCLUSION

In this paper, we have exploited the mapping abilities of ANN
and have shown that ANN can be used for spectral transforma-
tion in the voice conversion framework on a continuous speech
signal. The usefulness of ANN has been demonstrated on dif-
ferent pairs of speakers. Comparison between ANN and GMM-
based transformations has shown that the ANN-based spectral
transformation yields results which are as good as that of a
GMM-based transformation. The use of contextual features was
shown to improve the performance of an ANN-based trans-
formation. We have also shown that it is possible to build a
voice conversion model by capturing speaker-specific character-
istics of a speaker. We have used an ANN model to capture the
speaker-specific characteristics. Such a model does not require
any speech data from source speakers and hence could be con-
sidered as independent of a source speaker. We have also shown
that the ANN model capturing speaker-specific characteristics
could be applied for monolingual as well as for cross-lingual
voice conversion.
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