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Abstract—In this article, we propose a supervised classification scheme for multispectral image data based on the
spectral as well as textural features. A filter bank consisting of Gabor wavelets is used 10 extract the features from the
multispectral imagery. The classification model consists of three random processes, namely, feature formation, partition
and label competition. The feature formation process models the multispectral texture features from the Gabor filter bank
as a multivariate Gaussian distribution. The partition process and the label competition process represent a set of label
constraints. These constraints are represented on a Hopfield neural network model, and a stochastic relaxation strategy
is used to evolve a global minimum energy state of the nerwork, corresponding to the maximum a posteriori (MAP)
probability. The performance of the scheme is demonstrated on a variety of multispectral multipolar images obtained
from SIR-C/X-SAR. © 1997 Elsevier Science Ltd. All Rights Reserved.
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1. INTRODUCTION

Classification of remotely sensed images is essential for
efficient interpretation of the imagery. While remote sen-
sing procedure significantly reduces the complexity of
the task of actual measurements as compared to the in
situ methods, the extraction of relevant information from
the image data is still an involved procedure.

An important feature of remote sensing is the multi-
spectral nature of the image data. A number of studies
demonstrated the use of multispectral information for
image classification (Jensen, 1986). In our studies, we
have used the synthetic aperture radar (SAR) images
which are characterized by both multispectral and multi-
polar behavior. In the discussions hereafter, the term
multispectral images includes both multispectral and
multipolar images from SAR.

Many land types in a remotely sensed imagery appear
as a distribution of spatial patterns of tonal variation
consisting of repetition or quasi-repetition of some fun-
damental image elements, controlled by parameters such
as surface topology, color and morphology. Thus, each
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land cover type is characterized by an underlying texture-
like pattern which may be different from those of other
land types. Several studies have reported the usefulness
of textures in remote sensing, for example, in the discrimi-
nation of crops using radar imagery (Berger, 1970), in the
terrain classification using aerial photography (Weszka
et al., 1976), and in the analysis and classification of
sea-ice types using SAR data (Holmes et al., 1984).

In computer-based analysis of multispectral images,
classifications based only on multispectral pixel informa-
tion are usually inefficient to discriminate different land-
cover classes. In such situations, one has to use both
spectral and textural information to provide better
accuracy in classification. One attempt which uses spec-
tral as well as textural features was made by Shih and
Schowengerdt (1983) for the classification of arid geo-
morphic surfaces from Landsat MSS data. In a study,
Bischof et al. (1992) showed that the incorporation of
textural information improves the accuracy of multi-
spectral classification of Landsat TM imagery.

Recently, the resurgence of interest in artificial neural
networks has brought into focus the use of such models
for different tasks in pattern recognition and image pro-
cessing. But conventional neural network models may
not perform satisfactorily on the images obtained from
remote sensing. This is due to the specific nature and
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characteristics of the remotely sensed images. The net-
works should be capable of dealing with partial and noisy
information and should efficiently take care of spatial
and spectral characteristics.

In this paper, we describe a neural network approach
for the classification of multi-spectral images based on
the underlying textural and spectral information. Each
spectral image is filtered using the Gabor wavelets and
the resulting feature vectors are concatenated to obtain
the feature vector representing each pixel in the multi-
spectral imagery. The feature extraction using Gabor
filters overcomes some of the issues in texture analysis
of remotely sensed images. The joint probability of the
extracted features is modeled as multivariate Gaussian
distribution using a feature formation process, the para-
meters of which are estimated from the features of pixels
in the training sites. Two other random processes,
namely partition process and label competition process,
define a set of label constraints. The classification model
used in our work is defined by the a posteriori probability
derived from these random processes and is expressed as
a Gibb’s distribution. A Hopfield network is used to
represent the corresponding Gibb’s energy function
as a set of constraints on each pixel. A stochastic
relaxation mechanism for the network finds the global
minimum of the Gibb’s energy. The equilibrium state
of the network yields the optimal classification of the
given imagery.

We have used a similar concept for segmenting the
natural textures using the Hopfield neural network
model with a deterministic relaxation strategy (Raghu
& Yegnanarayana, 1996). The work reported in this
paper is an extension of the earlier work to classify multi-
spectral textures from remote sensing. In contrast with
the earlier method, the present work makes use of a
multivariate Gaussian distribution as the feature model
in order to capture the interband and intraband correla-
tions of the Gabor wavelet features from the multispec-
tral imagery. It also uses a stochastic relaxation strategy
in order to overcome the local minima problems in the
Hopfield network.

Some of the symbols used in the paper are described
here. Consider the textured multispectral imagery Ty
designated by a domain @ = {(i,/)).0 = i < [,0 =
J << J} of pixel positions. Let the imagery comprise of B
bands of images. the b band image being denoted by
Tyo LetY,,. s € Qbe the random variable correspond-
ing to the gray level value of the pixel s in the »” band
image and can take any integer value in the range
{0.....255}. Assume the gray value of a pixel s to be
¥, as an instantiation of Y,,. A set of M’ dimensional
feature vectors {g, , € RM Vs € Q) generated by Gabor
filtering is used to characterize the image 7. Each pixel
s in the entire imagery T is represented by an M dimen-
sional vector g, = /L:J g».s Where M = BM' and @ denotes
vector concatenation. Each g, can be considered to be the
realization of an M dimensional random process G..

P. P. Raghu and B. Yegnanarayana

The proposed classification scheme assumes that the
imagery T consists of K different number of textures, so
that each pixel s can take any texture label 0 to K—1. The
corresponding texture classes are denoted by Cy,..., Cgx_.
Also, let 2;, a subset of Q, be the training site for the class
C The Gabor features of the training site of a given class
are used to estimate the model parameters for that class.
We use the notation L, to denote the random variable
describing the texture label of the pixel s.

The paper is organized as follows. The next section
deals with some issues in the texture analysis of images
from remote sensing. The discussion leads to the neces-
sity of specific feature extraction methods for such
images. In Section 3, the multiresolution feature extrac-
tion mechanism based on Gabor filters is described. This
includes a discussion on the advantages of Gabor filters
which make them suitable for texture analysis in remote
sensing. The classification model comprising of feature
formation process, partition process and label competi-
tion process is presented in Section 4 and the correspond-
ing neural network representation is described in Section
5. Finally, the performance of the proposed classification
scheme for classifying different images from SIR-C/X-
SAR is discussed in Section 6.

2. ISSUES IN TEXTURE ANALYSIS OF IMAGES
FROM REMOTE SENSING

Remotely sensed images have a number of characteris-
tics which make the subsequent image processing and
analysis unique. As discussed earlier, an important one
is the multispectral nature of imagery. Efficient use of
multispectral information for the interpretation of
imagery is still an active research problem.

Depending upon the spatial resolution of the remote
sensor and the fineness of underlying textures, an image
can have both textured regions and intensity regions. The
image analysis methods should be able to process the
images irrespective of whether the image contains
regions which are textured. nontextured or both.

The images from remote sensing are usually noisy and
sparse due to several atmospheric conditions and sensor
characteristics. This necessitates the features considered
for classification of imagery to be immune to noise.

In an image containing a number of textures, texture
elements may have different sizes and shapes. making it
difficult to determine a priori the resolution for texture
analysis and hence to define the size of analysis window
for feature extraction. The problem of determining
appropriate resolution for texture analysis is referred to
as the cell unit problem (Wechsler, 198()). Conventional
monoresolution methods fail to capture features of vary-
ing sizes.

In an image from remote sensing, the features may be
spatially varying within a textured region. Such textures
are called nonstationary textures (Reed & Wechsler,
1988). Land cover types in remotely sensed images



Multispectral Image Classification Using Gabor Filters

may have textural patterns which are gradually varying
within their region, still remaining in the same land type.
Conventional feature extraction methods assume the
stationarity of texture within the analysis window and
hence may not be useful for the textures from remote
sensing. We need to characterize the textures in spatial
as well as spatial-frequency domains simultaneously by
using joint spatial/spatial frequency (s/sf) representations
(Jacobson & Wechsler, 1988).

In the present work, we specifically address the issues
of resolution, nonstationarity and noisy data with refer-
ence to the images from remote sensing.

3. MULTIRESOLUTION FEATURE
EXTRACTION USING GABOR FILTERS

One efficient way to deal with the cell unit problem is by
reorganizing the image into a number of subsampled
approximations of it at different resolutions. This is
called multiresolution analysis (Rosenfeld, 1982). A
method to achieve this is the wavelet representation
(Mallat, 1989). This scheme analyses the coarse image
details first and gradually increases the resolution to
analyse the finer details. The local variations in the
orientation and frequency of texture elements lead to
the nonstationary behavior of remotely sensed tex-
tures. To capture this, we need a joint spatial/spa-
tial-frequency representation which is orientation-
sensitive. In this section, we describe the use of
Gabor filters as bases for the wavelet decomposition
of images to extract texture features. This resembles
the mechanism of multichannel representation of the
retinal images in the biological visual system (Daug-
man, 1980).

A 2 D Gabor filter is an oriented complex sinusoidal
grating modulated by 2 D Gaussian function. The expres-
sion for the 2 D Gabor wavelet is given as,

a
— = D) + juw(xcosh + vsind)
B 2 2
fix,v,a,0,0,0)=¢ 20 (1)

In this expression, 6 and w are the orientation and radial
frequency of the Gabor filter. The bandwidth ¢ of 2 D
Gaussian gives the spatial resolution of the filter. The
parameter a is the wavelet scale factor, which is chosen
as @ = 27 where vy is an integer. A set of filters
{f(x,v,a,0,8,0)} .4 constitute the Gabor wavelet family
consisting of a number of scaled and rotated versions
of the mother wavelet.

The use of Gabor wavelets provides varying support
in spatial as well as spatial frequency domains in
order to detect and localize optimally the texture
features at different scales. A number of studies
have been made on the use of Gabor filters for the
analysis of textures (Bovik et al., 1990). The following
are the advantages of Gabor filters in analyzing textures
from remote sensing:
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1. 2 D Gabor filters represent an image both in spatial
and spatial frequency domains optimally by
achieving the theoretical lower bound of joint
uncertainty (Daugman, 1985). This makes it possible
to extract characteristic features from nonstationary
textures.

2. The orientation selectivity of Gabor (filters
discriminates  textures  possessing  different
orientations.

3. The arrangement of Gabor filters as wavelet bases
provides multiresolution representation and makes it
possible to capture details of different sizes.

4. Gabor filters are able to extract multispectral texture
features in presence of noise (Raghu et al., 1993). This
is useful especially in analysing SAR images which
are characterized by speckle noise.

For the b™ band image T, the feature value at posi-
tion (x, ¥) is given by

g6 ¥) =T o, y) * frlx I’ 3]

for a filter f), (xy) with a given parameter set A =
(a,w,0,0). Here, * denotes 2 D convolution. Assume
that the Gabor wavelet family contains M" Gabor filters
to filter each band of the imagery. For a given pixel point
(x,y) in the " band image, the M’ dimensional vector
8y = [gualx )] for all M” values of A constitutes the
feature vector to characterize the pixel (x,y) of the image.
As mentioned earlier, g, \y = gjgb‘ (v,v) forms the feature
vector to represent a pixel (x,y) of the multispectral
imagery.

4. CLASSIFICATION MODEL

The classification model is a hierarchical one consisting
of three different random processes, namely feature for-
mation process, partition process and label competition
process.

4.1. Feature Formation Process

The feature formation process describes the probability
of assigning a value g, € R to the random process G, of
pixel s given the model parameters of each texture class.
Let us define this conditional probability as the multi-
variate Gaussian distribution given by

PG, =g/lL,=k)= ! e%(!zfuk)T ZkVI(gx_l‘k)
v QmMIZ, |

3

where T is the transpose operation. This can also be
written as

PG, = g.vlLs =k)

e I (e T0)] g

=€
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The model parameters u; and L; for each class C; are
estimated from the training site @, of that class as,

1
Meanuk=s—zgs (5)
kseQ,
Vilk Viok 0 Vimk
. . Vark Vot Vomk
Covariance matrix £, =
PMik VM2 7 VM
(6)

where each component v is the covariance of each ele-
ment g (i) and g (j) of g, and is estimated as,

1
=5 > gD — mDlgs) — (D

SEQ

Sk is the cardinality of set ;. The importance of covar-
iance matrix is that it characterizes the interband correla-
tion as well as the intraband correlation of the Gabor
filtered multispectral imagery.

4.2. Partition Process

The label of any pixel in an image depends on the labels
of the pixels in its neighborhood. The partition process
P(L,|L,,¥r € N?) describes probability of the label of
each pixel s given the labels of the pixels in a uniform
p™ order neighborhood Np of s (Raghu & Yegnanar-
ayana, 1996). This can be modeled as a p” order

Markov random field model defined by,

BZV,EN@(L: -1L,)

P(LJL,,Vr ENP)= 8

Z,
where {3 is a positive constant, §(.) is the Kronecker delta

function and Z, is a normalization constant.

4.3. Label Competition Process

The label competition process attempts to reduce the
probability of having another label when the pixel is
already labeled (Raghu & Yegnanarayana, 1996). It is
defined by the conditional probability,

—a» 8(k—1)
e Vi
P(Ls :k'LS = l)v[ = ”‘"T— (9)

where k is the new label for the pixel s, and [ stands for
any label already assigned to s. In this expression, « is a
positive constant, Z. is a normalization constant § is the
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inverse of the Kronecker delta function given by

_ 0, if =0
()= { v (10)

1, otherwise

4.4. Formulation of a Posteriori Probability

The classification model is defined by the a posteriori
probability, P(L,=k|G,,L,, ¥ r &N, L,=1)y,. This
describes the labeling L, of the pixel s given the feature
measurement of s, the labels of the neighborhood pixels
and the possible labels previously assigned to s. This can
be written using Bayes theorem as

P(L,=kIG,,L,,Nr € N, L, = )y,

_ P(GILy=k)P(L,=kIL,,Vr € N))P(L, =kIL, =)y,
B P(G)P(L; =k)

(1)
We express the a posteriori probability as a Gibbs dis-
tribution given by
P(L,=klG,,L,,Vr € N°, L, =)y,
e~ E(L; = klIG,,L, NreN? L, =Dy,

= = (12)

where, by substituting egns (4), (8) and (9) in eqn (11),
we get the Gibb’s energy as

E(L,=kIG,,L,.Vr € Nf,L;=1)y,

1
= ~[(gs ~ m) " Ei '(gs — m) + In(@mMIL, )]
2

— > BSk~L)+ > adk—D) (13

Yren? v

and the normalization constant Z is Z,Z P(G; = g P(L,
= k). Assuming any pixel s has constant a priori prob-
abilities of having a feature vector g, and any label &, Z
can be considered as constant irrespective of s and k.

The energy function in eqn (13) summed over all
pixels and all possible labels will give the total energy
E" of the classification model.

1
Eloral _ Z E[(gs . l‘k)T T, l(gs —w)+1n ((ZW)MIEkl)]
s,k

— D Bok—L)+ D adlk—1) (14)
vi

Yren?

Estimation of a state configuration L, for all pixels s
which minimizes the Gibb’s energy in eqn (14) will
yield an optimal classification of the multispectral
imagery. This is equivalent to maximizing the a poster-
iori probability given in eqn (11). A neural network
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model based on the Hopfield network is proposed for this
purpose. A stochastic optimization procedure based on
simulated annealing is used to find a global (or near-
global) minimum energy state.

5. CLASSIFICATION USING A STOCHASTIC
RELAXATION NEURAL NETWORK

The energy function in eqn (14) can be represented on a
Hopfield network with nodes arranged in a 3 dimensional
lattice of size I X J X K. For any node (i,j,k), the pixel
position and the corresponding label index are denoted by
(&.j) and £, respectively. The connection weight between
any two nodes (ijk) and (ijj.k;) is denoted by
Wi ki.j.k and is assumed to be symmetric, i.e.

i kinik = Wi k.ij.k- Each node (i,j,k) in the net-
work can have an external bias B,j;. Assume A;; €
{0,1} to be the output of node (ijk). The set
k= {A;; Vi, j, k} is called the state of network. At any
instant, A;;; = 1 indicates that the pixel (i,j) has a label k
at that instant. We use the notation A;;x(n) to denote the
output of the node at n™ iteration of relaxation algorithm.

Comparing eqn (14) with the energy function of the
Hopfield network (Hopfield, 1982), the bias B, ;, and the
weight Wi jk:i,j,k; can be determined in a manner
similar to Raghu and Yegnanarayana (1996) and
Chellappa et al. (1992) as

1
Bijv=— 5[(& —m) T g — )+ ln((ZW)Mlzki)]

(15)
Wi ki ik
28, if (1, ENG, and k=k
=4{ —2a, if (,j)=0j) and k#k
0, otherwise
(16)

Initially, each component in the state of the network is
randomized with a value in {0,1}.

The state corresponding to the maximum a posteriori
probability is attained by using the simulated annealing
procedure (Kirkpatrick et al., 1983). The probability of
the network being in a state « is assumed obeying the
Boltzmann—Gibbs distribution, i.e. P(k) x e~ 5™ where
E(k) is the energy of network at the state «. T is pseudo-
temperature which controls updation of states during the
relaxation procedure. The probability of transition from a
state k; to k, is derived as

1
1

1+eT

P(k; — k)= 17)

K]~
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AE, _.., = E(xy) — E(x;) is the change of energy when
the state changes from «, to «,.

The temperature term T introduces uncertainty in evol-
ving a stable state in the network. A high temperature
means a high noise to the system which helps it to escape
from local minima and also prevents it from settling any-
where. At lower temperatures, convergence becomes
slower, making finer discrimination among different
energy states. At zero temperature, the network behaves
exactly like the Hopfield network. The simulated anneal-
ing procedure starts the state updation at high tempera-
ture and gradually decreases the temperature to a
minimum value. This ensures that the system has the
best chance of ending in a state corresponding to the
lowest energy minimum with respect to a given network,
no matter what state it was started in. It is because this
method, unlike the deterministic state updation in
Hopfield network (Hopfield, 1982), allows with non-
zero probability to temporarily change the state towards
a higher energy state, thus leading to an escape from a
local minimum.

The simulated annealing procedure sequentially
updates each node selected at random. Let x; and «, be
the states of the network before and after updating the
output A;;; (n) of a node (ijk) at n™ iteration. The
AE, _.,, can be derived from the Hopfield energy func-
tion as Kung (1993), chapter 2,

AE, ., = — U (mAA; ; (n+1) (18)

where, U;;(n) is the net input of node (i,j,k) at n™ itera-
tion given by
: o Js k(n) - Z
inji,k
and A A, (n+1)= A4 (n + 1) — Ay, (n), the change
in the output of that node. The probability of changing
the output A;;, (n) of node (i,j,k) is,

Lj ki "1 i kl(n)+Bljk (19)

1

P(k; — k)= (20)

-1
1+ —T_Ui,j,k(")AAi.j,k("+ 1)
€

The output of the selected node is updated according to
the probability of state transition given in eqn (20). The
temperature is initialized to a high temperature 7. At
each temperature, the network state is updated until ther-
mal equilibrium occurs at that temperature. Subse-
quently, the temperature is reduced using an annealing
schedule and the state update is continued in that tem-
perature. For our experiments, the exponential decay,

T=Toe "™ @1

is used as the annealing schedule to get a new tempera-
ture. Here, 7 is the decay time constant. The annealing
and subsequent state updates are continued until the tem-
perature is reduced to a small value. At that instant, the
classification is interpreted from the label of each pixel
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FIGURE 1. Classification of textures. (a) Image containing texture tiles (five classes). (b) Classification using the proposed
scheme. (c) Classification using the red channel image. (d) Classification using the green channel image. (e) Classification
using the blue channel image. (f) Classification using the raw imagery.
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FIGURE 2. Classification of textures. (a) Image of a region from Mount Pinatubo, Philippines (two classes). (b) Classification
using the proposed scheme. (c) Classification using the red channel image. (d) Classification using the green channel image.
(e) Classification using the blue channel image. (f) Classification using the raw imagery.
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FIGURE 3. Classification of textures. (a) Image of a region from Fievoland, Netherlands (four classes). (b) Classification using the
proposed scheme. (¢) Classification using the red channel image. (d) Classification using the green channel image. (e) Classi-
fication using the blue channel image. (f) Classification using the raw imagery.
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FIGURE 4. Classification of textures: (a) Image of a region from the site of the lost city of Ubar, South Oman (four classes).
(b) Classification using the proposed scheme. (c) Classification using the red channel image. (d) Classification using the green
channel image. (e) Classification using the blue channel image. (f) Classification using the raw imagery.
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given as

Label of the pixel (i, )= max Uik (22)

where U, is the net input of the node (i,j,k) correspond-
ing to the final state of the network.

To compare the performance of the proposed method
which classifies the multispectral images using textural
and spectral information, we have conducted the experi-
ments to classify the given imagery in terms of textural
information only (by using a single band image) as well
as spectral information only (by using the raw multispec-
tral image without Gabor filtering). In the first case,
{gp.5»V¥s} is used as the feature vector set when a
single band, say b, is used for classification. The B
dimensional feature vector y, = {y,.,0 = b < B} is
used as feature for each pixel s in the second case, which
is a pixel-based multispectral classification approach.

6. EXPERIMENTAL RESULTS

The Spaceborne Imaging Radar-C and X-Synthetic
Aperture Radar (SIR-C/X-SAR) (Jordan et al., 1991)
of NASA/Jet Propulsion Laboratory acquires images in
three microwave bands, namely, L-band (24 cm), C-band
(6 cm) and X-band (3 cm) with four linear polarization
states, namely, horizontal transmit horizontal receive
(HH), horizontal transmit vertical receive (HV), vertical
transmit horizontal receive (VH) and vertical transmit
vertical receive (VV).

A number of images from SIR-C/X-SAR were con-
sidered, to study the performance of the proposed classi-
fication scheme. The first image (Fig. 1a) is created by
concatenating different multispectral texture tiles. The
other images (Fig. 2a, Fig. 3a and Fig. 4a) are char-
acterized undefined texture boundaries and unknown
texture models. The results in each case show the original
image, the classification result by using the proposed
classification scheme, the results when each single
band data is used for classification (without multispectral
information), and the result when classification is per-
formed using the raw image (without textural features).

Fig. la shows the image of a three channel image with
size 256 X 256 pixels consisting of five multispectral
texture tiles. To extract texture features from each of the
spectral images, a filter bank consisting of eight Gabor
filters was used. The filters were derived from a mother
wavelet of 0 = 25 and w = 0.2 by using two scales
(v = 3 and 4, with wavelengths of 1.257 and 0.6257
pixels/cycle) and four orientations (8 = 0, 45, 90, and
135 degrees). The concatenation results in a 24 dimen-
sional feature vector to characterize each pixel in the
three-band imagery. Fig. 1b shows the classification
using the proposed scheme. The results of using only
single band information are given in Fig. 1c, d and e,
with the red, green and blue channels, respectively, of
a false color image. The result when the image is
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classified by using only multispectral information is
shown in Fig. 1f. The classification result in Fig. 1b
shows the performance of the proposed scheme on the
image containing multispectral texture tiles. It indicates
the ability of the scheme in correctly classifying the class
regions and in locating the class boundaries with a fairly
good accuracy. In contrast, the schemes which use either
textural information alone (Fig. lc—e) or multispectral
information alone (Fig. 1f) are not able to capture the
behavior of each class. There are many misclassified
regions in these results.

The next data used for experiments consists of the
imagery of a region extracted from the area around
Mount Pinatubo in Philippines. The image shown in
Fig. 2a gives the regions affected with ash deposit during
volcano eruptions. For supervised classification, we have
identified two texture classes in the imagery — the ash
area and the underlying rock regions. Fig. 2b shows mul-
tispectral textural classification using the proposed
scheme. The Gabor filters used for this imagery are
same as those of the previous experiment. Single band
texture classification results are shown in Fig. 2c—e with
red, green and blue channels. Fig. 2f shows the multi-
spectral classification without textural features. It can be
seen from the result given in Fig. 2b that the proposed
scheme which uses both multispectral and textural
features clearly brings out the two different classes pre-
sent in the image.

Three-frequency imagery of Flevoland, The Nether-
lands, is used as the third set of data for the classification
experiments. The image is shown in Fig. 3a. The number
of classes selected in the image is four, with forest region
(upper right part of the image), urban area (upper left),
water body (middle area), and bare soil in the agricultural
land (lower part of the image). We used two Gabor filters
perband (witho = 1.5,w = 3.2,y = O0andf = 0,90
degrees), constituting 6 dimensional feature vector for
each pixel in the imagery. The classification using pro-
posed scheme is provided in Fig. 3b. Classification
results using red, green and blue channels of a false
color image are shown in Fig. 3c, d and e, respectively,
and multispectral pixel classification is shown in Fig. 3f.
The results shown in Fig. 3c—f break the imagery into too
many smaller regions, which indicates the inadequacy of
multispectral or textural information alone in describing
the land cover types. In contrast with this, the result in
Fig. 3b, which combines this information, gives a fairly
acceptable classification of the given imagery.

Fig. 4a shows the radar image of the region around the
site of the lost city of Ubar in Southern Oman. The
imagery is assumed to have four classes. We detail
these classes as follows. The region in the lower part of
image is a region of large sand dunes. The area in the
upper right part of the image is rough lime stone rock and
the upper left region is a dry stream bed (wadi). The
sandy area which lies inbetween the lime stone rocks
and the sand dunes has similar spectral properties as
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TABLE 1
Different Parameters used for the Classification Experiments

Image in Figure « B T p
1a 1.0 0.060 10000 3.5 6
2a 1.0 0.220 10000 6.0 2
3a 1.0 0.075 10000 3.0 4
4a 1.0 0.080 10000 5.0 9
that of sand dunes, but different textural properties. The REFERENCES

transition from this sandy area to sand dune region is not
clearly defined and this makes the segmentation difficult
for these two classes. For this imagery, we used 8 Gabor
filters per band, having the same parameters as those for
the first imagery. Fig. 4b shows the classification based
on multispectral-textural information. Fig. 4c—f shows
the results using red channel, green channel, blue channel
and raw imagery respectively of a false color image.
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posed scheme, the result of which is shown in Fig. 4b, has
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NOMENCLATURE

a Wavelet scaling factor chosen as
a=2" where v is an integer

B Number of bands in the multi-
spectral imagery

B Bias of the node (ij,k) in the 3 D
Hopfield network

Cy k™ texture class, k € {0....K — 1}

EE,E, Energy functions of feature

formation, partition and label
competition processes

fx,y.a,0.0,0) Gabor wavelet with radial fre-
quency w, bandwidth ¢, orientation 8
and wavelet scaling factor a

G, M D random process which denotes
the Gabor feature vector at pixel s €

gs Instantiation of G,

LJ Size of each spectral image T,,Q

K Number of texture classes

L, Random variable denoting label of
pixel s; L, e {0,....K — 1}

M Dimension of the Gabor feature
space of the multispectral imagery;
M = BM

M Number of Gabor functions used
to filter each spectral band image

MAP Maximum a posteriori

MD M dimensional

N} Set of displacement vectors

corresponding to a p, order sym-
metric neighborhood of image pixels

p Order of the neighborhood used in
the partition process

RM
SAR
SIR-C/X-SAR

T
Ty

T,.Q
Ty

Uijn)
W,

ijokiy gy ky

Yb,s

Yos
-2, 283

Ajj(n)

P. P. Raghu and B. Yegnanarayana

M D space of real numbers
Synthetic Aperture Radar
Spaceborne Imaging Radar-C and
X-Synthetic Aperture Radar
Transpose operation of a matrix
Initial temperature in the simulated
annealing

b™ band image in the multispectral
imagery

Multispectral imagery containing B
number of spectral bands

Net input of the node (i,j,k) in the
3 D Hopfield network at n™ iteration
of the relaxation

Connection weight from a node
(i,j,k) to (i1, .k1) of the 3 D Hopfield
network

Random variable corresponding

to the intensity value of a pixel s
in the b™ band image T,Q; Yy, €
{0,...,255}

Instantiation of Y,

Connection weights of the 3 D
Hopfield network

An integer used in the wavelet
scaling factor a

Orientation of the Gabor filter
Output of the node (i,j,k) in the 3 D
Hopfield network at n™ iteration of
the relaxation

Bandwidth of the Gabor filter
Decay time constant used in the
annealing schedule

Domain of pixel positions; € =
()0 =i <10 = j < J}
Training site for the class Cy;

Q, C Q

Radial frequency of Gabor filter



