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ABSTRACT

To build a speech system like TTS (Text-to-Speech) or ASR
(Automatic Speech Recognition) or an information extraction
system like search engine, it is essential that the text has to
be processed in Indian languages context. The text corpus
or document database has to be in a single standard format.
In this paper we discuss our effort in addressing the issues
related to font-data like font encoding identification and font-
data conversion in Indian languages.

Index Terms: Font, Font-Type, Font-Data, Font Con-
verter, TF-IDF weights

1. INTRODUCTION

There is a chaos as far as the text in Indian languages in elec-
tronic form is concerned. Neither one can exchange the notes
in Indian languages as conveniently as English language, nor
one can perform search on texts in Indian languages available
over web. This is so because the texts are being stored in
ASCII (as apposed to Unicode) based font dependent glyph
codes. Given that there are 25 official languages in India,
the amount of data available in ASCII based font encoding is
much larger (more dynamic also) then the text content avail-
able in ISCII [1] or Unicode [2] formats.

A large collection of such text corpus assumes major role
in building large vocabulary speech recognition, unit selec-
tion based speech synthesis systems and search engine for In-
dian languages. So it becomes unavoidable to process text in
ASCII based font encoding and convert it either to Unicode
format or to a Roman character based transliteration scheme.
Due to availability of more than one font encoding per lan-
guage, the processing of ASCII based fonts needs to be done
in two stages. The first stage involves identification of the un-
derlying encoding and the second stage involves converting it
into the required format.

This paper addresses such issues and provides solutions
and explains it by organizing into three parts. The first part
presents the nature of the Indian language scripts and their
different storage formats. The second part presents a new
TF-IDF sec 3.1 weights based approach to identify the font-
types. The third part explains a generic framework for build-

ing font converters for Indian languages using glyph-map ta-
bles and glyph assimilation process.

2. NATURE OF INDIAN LANGUAGE SCRIPTS

The scripts in Indian languages have originated from the an-
cient Brahmi script. The basic units of the writing system are
referred to as Aksharas. The properties of Aksharas are as
follows: (1) An Akshara is an orthographic representation of
a speech sound in an Indian language; (2) Aksharas are syl-
labic in nature; (3) The typical forms of Akshara are V, CV,
CCV and CCCV, thus have a generalized form of C*V. Here
C denotes consonant and V denotes vowel.

The shape of an Akshara depends on its composition of
consonants and the vowel, and sequence of the consonants. In
defining the shape of an Akshara, one of the consonant sym-
bols acts as pivotal symbol (referred to as semi-full form).
Depending on the context, an Akshara can have a complex
shape with other consonant and vowel symbols being placed
on top, below, before, after or sometimes surrounding the piv-
otal symbol (referred to as half-form).

Thus to render an Akshara, a set of semi-full or half-forms
have to be rendered, which are in turn rendered using a set of
basic shapes referred to as glyphs. Often a semi-full form or
half-form is rendered using two or more glyphs, thus there is
no one-to-one correspondence between glyphs of a font and
semi-full or half-forms.

2.1. Convergence and Divergence

There are 25 official languages of India, and all of them ex-
cept (English and Urdu) share a common phonetic base, i.e.,
they share a common set of speech sounds. While all of these
languages share a common phonetic base, some of the lan-
guages such as Hindi, Marathi and Nepali also share a com-
mon script known as Devanagari. But languages such as Tel-
ugu, Kannada and Tamil have their own scripts.

The property that makes these languages separate can be
attributed to the phonotactics in each of these languages rather
than the scripts and speech sounds. phonotactics is the per-
missible combinations of phones that can co-occur in a lan-
guage.



2.2. Digital Storage of Indian Language Script

Another aspect of diversion of electronic content of Indian
languages is their format of digital storage. Storage formats
like ASCII (American Standard Code for Information Inter-
change) based fonts, ISCII (Indian Standard code for Infor-
mation Interchange) and Unicode are often used to store the
digital text data in Indian languages. The text is rendered us-
ing fonts supporting these formats.

2.3. ASCII Format

ASCII is a character encoding based on the English alpha-
bets. Digital computers and operating systems in the early
90s supported only ASCII based encoding and hence many
electronic news papers in Indian languages used ASCII based
fonts to store and render scripts of Indian languages. A font
encoding stored in ASCII format specifies a correspondence
between digital bit patterns and the symbols/glyphs of a writ-
ten language. ASCII is, strictly, an eight bit code so ranges
from 0 to 255.

2.4. Unicode Format

To allow computers to represent any character in any lan-
guage, the international standard ISO 10646 defines the Uni-
versal Character Set (UCS) [2]. UCS contains the characters
to practically represent all known languages in the world. ISO
10646 originally defined a 32-bit character set. Each charac-
ter is assigned a 32 bit code. However, these codes vary only
in the least-significant 16 bits.

UTF: A Universal Transformation Format (UTF) is an al-
gorithmic mapping from every Unicode code point (except
surrogate code points) to a unique byte sequence [3]. Ac-
tual implementations in computer systems represent integers
in specific code units of particular size (8 bit, 16 bit, or 32 bit).
Encoding forms specify how each integer (code point) for a
Unicode character is to be expressed as a sequence of one
or more code units. There are many Unicode Transformation
Formats for encoding Unicode like UTF-8, UTF-16 and UTF-
32. Both UTF-8 and UTF-16 are substantially more compact
than UTF-32, when averaging over the world’s text in com-
puters. With the advent of Unicode, UTF-8 and their sup-
port in operating systems, most of the current electronic doc-
uments are being published in Unicode specifically in UTF-8
formats. Some of the news websites which produce Indian
language content in Unicode format are: BBC news, Yahoo,
MSN and Google.

2.5. ISCII Format

In India since 1970s, different committees of the Department
of Official Languages and the Department of Electronics
(DOE) have been developing different character encodings
schemes, which would cater to all the Indian scripts. In

1983, the DOE announced the 7-bit ISCII-83 code , which
complied with the ISO 8-bit recommendations [1]. ISCII
(Indian Script Code for Information Interchange) is a fixed-
length 8-bit encoding. The lower 128(0-127) code points
are plain ASCII and the upper 95(160-255) code points are
ISCII-specific, which is used for all Indian Script based on
Brahmi script. This makes it possible to use an Indian Script
along with Latin script in an 8-bit environment. This facili-
tates 8-bit bi-lingual representation with Indic Script selection
code. The ISCII code contains the basic alphabet required
by the Indian Scripts. All composite characters are formed
by combining these basic characters. Unicode is based on
ISCII-1988 and incorporates minor revisions of ISCII-1991,
thus conversion between one to another is possible without
loss of information.

2.6. Fonts and Glyphs

People interpret the meaning of a sentence by the shapes
of the characters contained in it. Reduced to the character
level, people consider the information content of a character
inseparable from its printed image. Information technology,
in contrast, makes a distinction between the concepts of a
character’s meaning (the information content) and its shape
(the presentation image). Information technology uses the
term ”character” (or ”coded character”) for the information
content; and the term ”glyph” for the presentation image.
A conflict exists because people consider ”characters” and
”glyphs” equivalent. Moreover, this conflict has led to misun-
derstanding and confusion. The technical report in [4] pro-
vides and expalins a framework for relating ”characters” and
”glyphs” to resolve the conflict because successful processing
and printing of character information on computers requires
an understanding of the appropriate use of ”characters” and
”glyphs”. It defines them as follow:

Character: A member of a set of elements used for the
organization, control, or representation of data.

Coded Character Set: A set of unambiguous rules that
establishes a character set and the relationship between the
characters of the set and their coded representation.

Font: A collection of glyph images having the same basic
design, e.g., Courier Bold Oblique.

Glyph: A recognizable abstract graphic symbol which is
independent of any specific design.

Indian language electronic contents are scripted digitally
using fonts. A font is a set of glyphs (images or shapes) rep-
resenting the characters from a particular character set in a
particular typeface. Glyphs do not correspond one-for-one
with characters. A font is or may be a discrete commodity
with legal restrictions.

2.7. Need for Handling Font-Data

In the case of Indian languages, the text which is available
in digital format (on the web) is difficult to use as it is be-



cause they are available in numerous encoding (fonts) based
formats. Applications developed for Indian languages have to
read or process such text. The glyphs are shapes, and when
2 or more glyphs are combined together form a character in
the scripts of Indian languages. To view the websites host-
ing the content in a particular font-type then one requires
these fonts to be installed on local machine. As this was
the technology existed before the era of Unicode and hence
a lot of electronic data in Indian languages were made and
available in that form. The sources for these data are News
websites (mainly), Universities/Institutes and some other or-
ganizations. They are using proprietary fonts to protect their
data. Collection of these text corpora, identifying the type of
encoding or font and conversion to font-data into a phoneti-
cally readable transliteration scheme is essential for building
speech recognition and speech synthesis systems.

A character of English language has the same code irre-
spective of the font being used to display it. However, most
Indian language fonts assign different codes to the same char-
acter. For example ’a’ has the same numerical code ’97’ irre-
spective of the hardware or software platform.

Consider for example the word ”hello” written in the Ro-
man Script and the Devanagari Script.

Fig. 1. Illustration of glyph code mapping for English fonts.

Arial and Times New Roman are used to display (Fig 1)
the same word. The underlying codes for the individual char-
acters, however, are the same and according to the ASCII
standard.

Fig. 2. Illustration of glyph code mapping for Hindi fonts.

The same word displayed (Fig 2) in two different fonts
in Devanagari, Yogesh and Jagran. The underlying codes for
the individual characters are according to the glyphs they are
broken into. Not only the decomposition of glyphs and the
codes assigned to them are both different but even the two
fonts have different codes for the same characters. This leads

to difficulties in processing or exchanging texts in these for-
mats.

Three major reasons which cause this problem are, (i)
There is no standard which defines the number of glyphs per
language hence it differs between fonts of a specific language
itself. (ii) Also there is no standard which defines the map-
ping of a glyph to a number (code value) in a language. (iii)
There is no standard procedure to align the glyphs while ren-
dering. The common glyph alignment order followed is first
left glyph, then pivotal character and then top or right or bot-
tom glyph. Some font based scripting and rendering is violat-
ing this order also.

2.8. A Phonetic Transliteration Scheme for Storage of In-
dian Language Scripts

To handle diversified storage formats of scripts of Indian lan-
guages such as ASCII based fonts, ISCII (Indian Standard
code for Information Interchange) and Unicode etc, it is use-
ful and becomes necessary to use a meta-storage format.

A transliteration scheme [5] [6] maps the Aksharas of
Indian languages onto English alphabets and it could serve as
metastorage format for text-data. Since Aksharas in Indian
languages are orthographic represent of speech sound, and
they have a common phonetic base, it is suggested to have
a phonetic transliteration scheme such as IT3. Thus when the
font-data is converted into IT3, it essentially turns the whole
effort into font-to-Akshara conversion.

3. IDENTIFICATION OF FONT-TYPE

The widespread and increasing availability of textual data in
electronic form in various font encoded form in Indian lan-
guages increases the importance of using automatic methods
to analyze the content of the textual documents. The identi-
fication and classification of the text or text documents based
on their content to a specific encoding type (specially font) are
becoming imperative. Previous works [7] [8] [9] were done
to identify the language and later to identify the encodings
also. These works are based on statistical language modeling
technique.

In this work we propose to use vector space model and
Term Frequency - Inverse Document Frequency (TF-IDF)
based approach for identification of Font-Type. To perform
TF-IDF approach, it is essential to define what a ”term” is
and what a ”document” is.

• Term: It refers to a unit of glyph. In this work we have
experimented with different units such as single glyph
gi (uniglyph), two consecutive glyphsgi−1gi (biglyph),
three consecutive glyphsgi−1gigi+1 (triglyph).

• Document: Document refers the ’font-data (words and
sentences) in a specific font-type’.



3.1. TF-IDF Weights

The TF-IDF weight is a weight often used in information re-
trieval and text mining. This weight is a statistical measure
used to evaluate how important a word is to a document in a
collection or corpus. The importance increases proportionally
to the number of times a word appears in the document.

The term frequency in the given document is simply the
number of times a given term appears in that document. This
count is usually normalized to prevent a bias towards longer
documents (which may have a higher term frequency regard-
less of the actual importance of that term in the document)
to give a measure of the importance of the termti within the
particular document.

tfi =
ni∑
k nk

(1)

with ni being the number of occurrences of the considered
term, and the denominator is the number of occurrences of all
terms.

The document frequency is the number of documents
where the considered term has occurred at least once.

|{d : d 3 ti}| (2)

The inverse document frequency is a measure of the gen-
eral importance of the term (it is the logarithm of the number
of all documents divided by the number of documents con-
taining the term).

idfi = log
|D|

|{d : d 3 ti}| (3)

with |D| total number of documents in the corpus
The effect of ’log’ in this formula is smoothing one.
|{d : d 3 ti}| : Number of documents where the term ti

appears (that isni 6= 0) Then

tfidf = tf.idf (4)

A high weight in TF-IDF is reached by a high term
frequency (in the given document) and a low document fre-
quency of the term in the whole collection of documents; the
weights hence tend to filter out common terms.

3.2. Modeling and Identification

Data Preparation: For training we need sufficiently enough
data of that particular type. Thus we have collected and used
around 0.12 million unique words per font-type. This data has
been collected and prepared manually for 10 different fonts of
4 languages.

Modeling: Generating a statistical model for each font-
type using these TF-IDF weights is known as modeling the
data. For modeling we considered three different types of
terms such as uniglyph, biglyph, triglyph (refer to Section 3).

The procedure for building the models is: First we have
taken all the provided data at once. Also note that we have
considered three different kinds of terms for building mod-
els. (i) First step is to calculate the term frequency Eqn (1)
for the term like the number of times that term has occurred
divided by the total number of terms in that specific type of
data. So it will be stored in a matrix format of N∗ 256 for
uniglyph, N ∗ 256 ∗ 256 for biglyph and N∗ 256 ∗ 256 ∗
256 for triglyph model depending upon the term. Where ’N’
denotes the number of different font types and 256 (0 to 255)
is the maximum number value for a single glyph. (ii) Second
step is to calculate document frequency Eqn (2) like in how
many different data type that specific term has occurred. (iii)
Third step is to calculate inverse document frequency Eqn (3)
like all data types divided by the document frequency. Log-
arithm of inverse document frequency is taken for smooth-
ing purpose. (iv) Fourth step is to compute TF-IDF which is
calculated like term frequency * inverse document frequency
Eqn (4). Finally that matrix will be updated with these val-
ues. The common terms get zero values and other terms get
non-zero values depending upon their term frequency values.
From those values the models for each data type is generated.

Identification: The steps involved in identification of en-
coding type are as follows:

• Extract terms from the input word or sentence

• Create a query vector using these terms

• Compute the distance between query and all the models
of font-type using TF-IDF weights

• The input word is said of be originated from the model
of font-type which gives a maximum TF-IDF value

• Get the TF-IDF weight of each term from the models
of all font-types

3.3. Performance Analysis

Test Data: It is typically observed that TF-IDF weights are
more senstitive to the length of query. The accuracy increases
with the increase in the length of test data. Thus two types of
test data were prepared for testing. One is set of unique words
and the other one is set of sentences.

Testing Criteria: While testing we are identifying the
closest matching models for the given inputs. And we are
evaluating the identification accuracy in (%) as given below.

Accuracy =
Correct

Total
(5)

Where Correct : number of correctly identified test-
inputs andTotal : total number of test-inputs.

Testing: The accuracy of a font encoding identifier de-
pends on various factors: 1) The number of encodings from



Table 1. Performance of Font-Type Identification using
Uniglyph

Identification Identification
Font Name for Sentences for Words
Amarujala (Hindi) 100% 100%
Jagran (Hindi) 100% 100%
Webdunia (Hindi) 100% 0.1%
SHREE-TEL (Telugu) 100% 7.3%
Eenadu (Telugu) 0% 0.2%
Vaarttha (Telugu) 100% 29.1%
Elango Panchali (Tamil) 100% 93%
Amudham (Tamil) 100% 100%
SHREE-TAM (Tamil) 100% 3.7%
English-Text 0% 0%

which the identifier has to select one, 2) The inherent confu-
sion of one font encoding with another and 3) The type of unit
used in modeling.

For a given ’X’ number of different inputs we identified
the closest models and calculated the accuracy. It is done (re-
peatedly) for various (uniglyph, biglyph and triglyph) cate-
gories. The results are tabulated in Table 1, 2 and 3.

Identification Results: The testing is done for 1000 unique
sentences and words per font-type and evaluation results are
tabulated below. We have added English data as also one of
the testing data set, and is referred to as English-Text. Table
1 shows the performance results for uniglyph (current glyph)
based models. We can observe that the uniglyph as a term
fails to capture enough distinction among font types. Table 2
shows the performance results for biglyph (”current and next”
glyph) based models and Table 3 shows the performance of
triglyph (”previous”, ”current” and ”next”). From Table 1,
2 and 3, it is clear that triglyph seems to be an appropriate
unit for a term in the identification of font-type. It can also be
seen that the performance at word and sentence level is nearly
100% with triglyph.

4. CONVERSION OF FONT-DATA

By font conversion we mean here the conversion of glyph to
grapheme (akshara). So we want to make clear about glyph
and grapheme. A character or grapheme is a unit of text,
whereas a glyph is a graphical unit. In graphonomics, the term
glyph is used for a non-character, i.e: either a sub-character or
multi-character pattern. In typography, a grapheme is the fun-
damental unit in written language. Graphemes include letters,
Chinese characters, Japanese characters, numerals, punctua-
tion marks, and other glyphs.

Font-data conversion can be defined as converting the font
encoded data into required phonetic transliteration scheme
like IT3 based data. Previous works [10] [11] [12] tried

Table 2. Performance of Font-Type Identification using
Biglyph.

Identification Identification
Font Name for Sentences for Words
Amarujala (Hindi) 100% 100%
Jagran (Hindi) 100% 100%
Webdunia (Hindi) 100% 100%
SHREE-TEL (Telugu) 100% 100%
Eenadu (Telugu) 100% 100%
Vaarttha (Telugu) 100% 100%
Elango Panchali (Tamil) 100% 100%
Amudham (Tamil) 100% 100%
SHREE-TAM (Tamil) 100% 100%
English-Text 100% 96.3%

Table 3. Performance of Font-Type Identification using
Triglyph.

Identification Identification
Font Name for Sentences for Words
Amarujala (Hindi) 100% 100%
Jagran (Hindi) 100% 100%
Webdunia (Hindi) 100% 100%
SHREE-TEL (Telugu) 100% 100%
Eenadu (Telugu) 100% 100%
Vaarttha (Telugu) 100% 100%
Elango Panchali (Tamil) 100% 100%
Amudham (Tamil) 100% 100%
SHREE-TAM (Tamil) 100% 100%
English-Text 100% 100%

the same problem in different manner for few languages. As
we already have the notion that the characters are split up into
glyphs in font-data so the solution would be merging up the
glyphs to get back to the valid character.

Problem Statement: The problem of conversion of font-
data could be stated as follows: Given a sequence of glyphs
the objective is to combine them in a fashion so that they form
a valid character.

A generic framework has been designed for building
font converters for Indian languages based on this idea using
glyph assimilation rules. The font conversion process has
two phases, in the first phase we are building the Glyph-Map
table for each font-type and in the second phase defining
and modifying the glyph assimilation rules for a specific
language.



4.1. Exploiting Shape and Place Information

As we have seen already in Sec. 2, the natural shape of a
vowel or consonant gets changed when they become half or
maatra. These symbols get attached in different places (top,
bottom, left and right) around a pivotal consonant while form-
ing an akshara. The novelty of our approach lies in exploiting
positional information of a glyph in Akshara to perform the
conversion. We exploit the positional information of a glyph
in our approach for building the glyph-map table for a font-
type. It is quite possible for a native speaker of the language
by looking at the shape of the glyph to say whether that glyph
occurs in center, top, left, right, bottom position of an Ak-
shara. Thus we followed a simple number system to indicate
the position information of a glyph.

• Glyphs which could be in pivotal (center) position get
a code of 1.

• Glyphs which could be in left position of pivotal sym-
bol get a code of 2.

• Glyphs which could be in right position of pivotal sym-
bol get a code of 3.

• Glyphs which could be in top position of pivotal sym-
bol get a code of 4.

• Glyphs which could be in bottom position of pivotal
symbol get a code of 5.

Following figures depict a few examples in Hindi and Tel-
ugu about the position number assignment to glyphs. Figure
(Fig 3) shows the position number assignment for glyphs in
Hindi. In the top portion of the figure it shows the word con-
sidered here and right below it distinguishes different posi-
tions pictorially.

Fig. 3. Assigning position numbers for Hindi glyphs.

The second figure (Fig 4) shows the position number as-
signment for glyphs of Telugu language.

Independent vowels are assigned ’0’ or nothing as posi-
tion number. All the dependent vowels known as ”Maatras”

Fig. 4. Assigning position numbers for Telugu glyphs.

occur at left or right or top or bottom side of a pivotal charac-
ter (vowel). So they get attached a positional numbers like 2
(left), 3 (right), 4 (top) and 5 (bottom) always. This is com-
mon across all Indian languages. Most of the consonants will
be either full or half and occur at center. So accordingly they
are assigned 0 or 1 as positional number. Some of the half
consonants also occur rarely at the left, right, top and bottom
of a full character. They are all assigned a positional number
like 2 (left), 3 (right), 4 (top) and 5 (bottom) according to their
place.

4.2. Building Glyph-Map Table

Glyph-Map table is a map table which gives a mapping be-
tween the glyph code (0 to 255) to a phonetic notation. This
table gives us the basic mapping between the glyph coding of
the font-type to a notation of a transliteration scheme. As a
novelty in our approach we have attached some number along
with the phonetic notation to indicate the place of occurrence
of that glyph in that akshara. The way the position numbers
are assigned is ’0’ or nothing for a full character (ex: e, ka),
’1’ for a half consonants (ex: k1, p1), ’2’ for glyphs occur at
left hand side of a pivotal character (ex: i2, r2), ’3’ for glyphs
occur at right hand side of a pivotal character (ex: au3, y3),
’4’ for glyphs occur at top of a pivotal character (ex: ai4, r4)
and ’5’ for glyphs occur at bottom of a pivotal character (ex:
u5, t5).

The position numbers along with the phonetic notation
help us to form well distinguished glyph assimilation rules,
because when similar glyphs get attached in different posi-
tions form different characters. For each and every font in
a language the glyph-map table has to be prepared like that.
That means the glyph-map table converts different font en-
coding to a meta data which is in a phonetic notation. It is
observed that when we do such glyph-mapping for three dif-
ferent fonts of a language we have covered almost 96% of



possible glyphs in a language.

4.3. Glyph Assimilation Process

Glyph Assimilation is defined as the process of merging two
or more glyphs and forming a single valid character. In this
way the split up parts of a character get merged to reveal the
original character again. This happens in many levels like
consonant assimilation, maatra assimilation, vowel assimila-
tion and consonant clustering and in an ordered way.

The identification of different levels and ordering them
are the another important thing we have done here. Broadly
they can be classified into four levels. They are language
preprocessing, consonant assimilation, vowel assimilation
and schwa deletion. Under language preprocessing level,
language specific modifications like halant and nukta modi-
fications are carried out first. Because here afterwards there
should not be any more symbols but only valid character
glyphs are allowed. The next step is to reconstruct the pivotal
consonant in an akshara if there is. This can be done under
three sublevels like consonant assimilation, consonant and
vowel assimilation and consonants clustering. Then we can
form the vowels from the left out glyphs. Finally we have to
do the schwa deletion because when a consonant and maatra
merge up the inherent vowel (schwa) has to be removed.

This assimilation process has been observed across many
Indian languages and found that they follow certain order.
The order is: (i) Modifier Modification, (ii) Language Pre-
processing, (iii) Consonant Assimilation, (iv) Consonant-
Vowel Assimilation, (v) Consonants Clustering, (vi) Maa-
tra Assimilation, (vii) Vowel-Maatra Assimilation and (viii)
Schwa Deletion. The concept is, revealing out the pivotal
consonant in an akshara first then the vowels.

The first figure (Fig 5) shows how the font conversion is
happening in Hindi with an example word. First phase gives
the output in meta notation and the second phase re-orders,
modifies and assimilates the glyphs based on rules. Finally
the positional numbers get removed to reveal the converted
word in a phonetic transliteration form.

The second figure (Fig 5) shows how the font conversion
is happening in Telugu with an example word. First phase
gives the output in meta notation and the second phase re-
orders, modifies and assimilates the glyphs based on rules.
Finally the positional numbers get removed to reveal the con-
verted word in a phonetic transliteration form.

4.4. Rules for Glyph Assimilation

Glyph assimilation rules are defined by observing how the
characters are being rendered by the rendering engine. Each
rule takes a combination of two or more glyphs in a certain
order and produces a valid character. Such way we have de-
fined a set of rules for each level and for every language sep-
arately. Since they are written in the phonetic transliteration

Fig. 5. Glyph Assimilation Process for Hindi.

scheme (IT3) it is easily to understand by anybody. There
may be some common rules across many languages and some
specific rules for a language also. The different rules under
each and every category are explained with some examples
below. These rules can be modified or redefined whenever it
is required.

(i) Modifier Modificationis the process where the characters
get modified because of the language modifiers like vi-
rama and nukta. Ex:

(a) ta + halant = t1 (Fig 7)

(b) d’a + nuk = d-a (Hindi) (Fig 8)

(c) n: + halant = r1 (Telugu) (Fig 9)

(ii) Language Preprocessingsteps deal with some language
specific processing like Ex:

(a) aa3 + i3 = ri (Tamil) (Fig 10)

(b) r4 (REF) moves in front of the previous first full
consonant (Hindi) (Fig 11)

(c) r3 moves in front of the previous first full conso-
nant (Kannada) (Fig 12)

(iii) Consonant Assimilationis known as getting merged two
or more consonant glyphs and forms a valid single con-
sonant like Ex:

(a) d1 + h5 + a4 = dha (Telugu) (Fig 13)

(v) Consonant-Vowel Assimilationis known as getting merged
two or more consonant and vowel glyphs and forms a
valid single consonant like Ex:



Fig. 6. Glyph Assimilation Process for Telugu.

(a) va + uu3 = maa (Telugu) (Fig 14)

(b) kshh1 + aa3 = kshha (Gujarati) (Fig 15)

(c) y1 + u3 = ya (Kannada) (Fig 16)

(iv) Maatra Assimilationis known as getting merged two or
more maatra glyphs and forms a valid single maatra like
Ex:

(a) aa3 + e4 = o3 (Hindi) (Fig 17)

(b) e4 + ai5 = ai3 (Telugu) (Fig 18)

(c) e2 + e2 = ai3 (Malayalam) (Fig 19)

(vi) Vowel-Maatra Assimilationis known as getting merged
two or more vowel and maatra glyphs and forms a valid
single vowel like Ex:

(a) a + aa3 = aa (Hindi) (Fig 20)

(b) e2 + e = ai (Malayalam) (Fig 21)

(vii) Consonant Clusteringin known as merging the half
consonant which usually occurs at the bottom of a full
consonant to that full consonant like Ex:

(a) ma + b5 = mba (Bengali) (Fig 22)

(b) r2 + tii = trii (Telugu) (Fig 23)

(c) ma + y3 = mya (Malayalam) (Fig 24)

(viii) The Schwa Deletionis deleting the inherent vowel ’a’
from a full consonant in necessary places like Ex:

(a) ka + o3 = ko

5. PERFORMANCE ANALYSIS

Data Preparation: In the phase of training, ’K’ different sets
of words were prepared for each iteration. For testing 500
unique words were prepared.

Training: At first we build a simple converter with min-
imal rules. Then we pass the first set of words and get the
output. Then we will ask the native speaker (or a linguist) to
evaluate the output. He/she will provide the evaluation be-
sides the correction for the wrongly converted words. Based
on that we will define new rules or modify the existing rules.
Then we will pass the next set of words and we will collect
the feedback and modify the rules. This process will be con-
tinued for many iterations until we reach less or 0 conversion
errors. Then the whole process is repeated for a new font of
that language. At least we need to do this training for three
different fonts of a language. At end of this training process
we will be having the converter for that language.

Testing: We pass a set of 500 words from a new font of
that language to the already built font converter. Again we
ask the linguist to evaluate the output. We considered this is
what the performance accuracy of that font converter.

Evaluation: We have taken 500 unique words per font-
type and generated the conversion output. The evaluations
results (table 4) show that the font converter performs con-
sistently even for a new font-type. So it is only sufficient to
provide the Glyph-Map table for a new font-type to get a good
conversion results. In the case of Telugu, the number of dif-
ferent glyphs and their possible combinations are huge than
other languages. Also it is common that the pivotal charac-
ter glyph comes first and other supporting glyphs come next
in the script. Whereas in Telugu some times the supporting
glyphs come before the pivotal glyph which creates ambigu-
ity in forming assimilation rules. Hence the converter per-
formed lower than other converters. The conversion results
are tabulated below.

6. RAPID FASHION OF BUILDING FONT
CONVERTERS

The actual aim of this research is to find a method to build font
converters rapidly for Indian languages. We have achieved
this by following glyph assimilation process to build a single
font converter per language. We want to make it clear that we
developed converter per language and not per font. These font
converters are basically working based on some set of glyph
assimilation rules. And these rules are written on a meta nota-
tion known as positional phonetic notations. So the converters
are independent of font but the glyph mapping tables are de-
pended on fonts. If the user wants to convert a new font data
then all he wants to do is prepare the glyph mapping table
and pass that table and input text. For building the glyph map
table for a native speaker hardly it takes one hour.



Table 4. Font conversion Performance.

Training/
Language Font Name Testing Performance
Hindi Amarujala Training 99.2%

Jagran Training 99.4%
Naidunia Training 99.8%
Webdunia Training 99.4%
Chanakya Testing 99.8%

Marathi Shree Pudhari Training 100%
Shree Dev Training 99.8%
TTYogesh Training 99.6%
Shusha Testing 99.6%

Telugu Eenadu Training 93%
Vaarttha Training 92%
Hemalatha Training 93%
TeluguFont Testing 94%

Tamil Elango Valluvan Training 100%
Shree Tam Training 99.6%
Elango Panchali Training 99.8%
Tboomis Testing 100%

Kannada Shree Kan Training 99.8%
TTNandi Training 99.4%
BRH Kannada Training 99.6%
BRH Vijay Testing 99.6%

Malayalam Revathi Training 100%
Karthika Training 99.4%
Thoolika Training 99.8%
Shree Mal Testing 99.6%

Gujarati Krishna Training 99.6%
Krishnaweb Training 99.4%
Gopika Training 99.2%
Divaya Testing 99.4%

Punjabi DrChatrikWeb Training 99.8%
Satluj Training 100%

99.9%

Bengali ShreeBan Training 97.5%
hPrPfPO1 Training 98%
Aajkaal Training 96.5%

Oriya Dharitri Training 95%
Sambad Training 97%
AkrutiOri2 Training 96%

7. CONCLUSION

This paper explained the nature and difficulties associated
with font-data processing in Indian languages. We have dis-
cussed the new TF-IDF weights based approach for font iden-
tification. We have explained a framework to build font con-
verters for font-data conversion from glyph-to-grapheme us-
ing glyph assimilation process. We have also studied the per-
formance of the font identification for various cases. We have
also demonstrated the effectiveness of our approach for font-
data conversion to be as high as 99% on 10 Indian languages
and for 37 different font-types.
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Fig. 7. Halant based Schwa Deletion.

Fig. 8. Nukta based Modification.

Fig. 9. Halant based Modification.

Fig. 10. Tamil r,ri,rii Modifications.

Fig. 11. Hindi REF movement.

Fig. 12. Kannada arkkaa votthu movement.

Fig. 13. Telugu da + ha assimilate to dha.

Fig. 14. Telugu consonant + maatra assimilation.

Fig. 15. Gujarati consonant + maatra assimilation.

Fig. 16. Kannada consonant + maatra assimilation.

Fig. 17. Hindi maatra assimilation.

Fig. 18. Telugu maatra assimilation.



Fig. 19. Malayalam maatra assimilation.

Fig. 20. Hindi vowel assimilation.

Fig. 21. Malayalam vowel assimilation.

Fig. 22. Bengali b5 clustering.

Fig. 23. Telugu r2 clustering.

Fig. 24. Malayalam y3 clustering.


