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Abstract

Throat microphones (TM) which are robust to background noise
can be used in environments with high levels of background
noise. Speech collected using TM is perceptually less natural.
The objective of this paper is to map the spectral features (repre-
sented in the form of cepstral features) of TM and close speak-
ing microphone (CSM) speech to improve the former’s percep-
tual quality, and to represent it in an efficient manner for coding.
The spectral mapping of TM and CSM speech is done using a
multilayer feed-forward neural network, which is trained from
features derived from TM and CSM speech. The sequence of
estimated CSM spectral features is quantized and coded as a
sequence of codebook indices using vector quantization. The
sequence of codebook indices, the pitch contour and the energy
contour derived from the TM signal are used to store/transmit
the TM speech information efficiently. At the receiver, the all-
pole system corresponding to the estimated CSM spectral vec-
tors is excited by a synthetic residual to generate the speech
signal.

Index Terms: linear prediction, neural network, spectral map-
ping, speech coding, throat microphone, vector quantization

1. Introduction

In environments with high levels of background noise, the in-
telligibility of speech signals collected through a close speak-
ing microphone (CSM) is poor. In these noisy environments,
transducers such as bone-conducting and throat microphones
which pick up speech conducted as vibrations through the bones
and tissues of the human body are more resilient to background
noise, and are preferred for recording speech signals. A speech
signal collected through a CSM is primarily due to the spectral
shaping of the excitation by the vocal tract system consisting of
the oral and nasal cavities. Unlike a CSM, a throat microphone
(TM), due to its proximity to the larynx, may be less sensitive to
finer articulatory modifications in the oral cavity. The damping
effect of the nasal cavity may also not be reflected in the TM
speech. In the case of unvoiced sounds like fricatives, the TM
captures a signal which is due to the airflow before the constric-
tion in the oral cavity. The effect of the back cavity on the TM
speech is that most of the high frequency components of the
fricatives are filtered out. In the case of voiced stops, the TM
captures the voicing activity during the closure phase as well as
the resonances of the oral cavity before the constriction. These
factors cause the TM speech signal to sound less natural and
muffled compared to the CSM speech.

In spite of this drawback, the resilience of a TM to back-
ground noise makes it a preferred choice in environments where
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CSM speech is not intelligible or buried in high levels of back-
ground noise. TMs are also preferred when operational con-
straints preempt the use of CSM. Typical usage scenarios where
TM is preferred include helicopter or fixed wing aircraft, air-
plane cockpit, armoured vehicles, naval vessels and heavy ma-
chinery.

This paper proposes a technique for encoding TM speech
so that the decoded TM speech is perceptually more natural
than the original TM speech, and also intelligible. Speech is
produced when a time-varying vocal tract (system) is excited
by a time-varying excitation (source). If we assume that the
systems producing the speech signals recorded through the TM
and CSM differ in some aspects (due to the reasons mentioned
previously), the goal is to find a (non-linear) mapping between
the systems producing TM and CSM speech signals. This ap-
proach is proposed in [1], where the spectral features of the TM
and CSM are mapped using a multilayer feed-forward neural
network (MLFFNN). The current work is an improvement on
the technique proposed in [2], where the spectral features of
TM and CSM are both mapped and encoded using joint vector
quantization. In this paper, a MLFFNN is used for mapping the
spectral features of TM and CSM speech. The mapped features
are then converted to line spectral pairs (LSPs) and vector quan-
tized. The code-book indices obtained through vector quantiza-
tion (VQ) are then transmitted along with energy and pitch con-
tours. At the receiver, the codebook indices are used to obtain
the corresponding spectral features from the codebook. A resid-
ual signal is generated using the pitch and energy contours es-
timated from the throat microphone signal. This residual signal
is used along with the decoded spectral features for synthesiz-
ing the speech signal. The paper is organized as follows. Sec-
tion 2 describes the procedure for mapping the spectral features
of CSM and TM speech. In Section 3, we describe the proce-
dure for coding the mapped spectral features. Section 4 de-
scribes the procedure for decoding and synthesizing the speech
signal. In Section 5 we evaluate the use of the proposed method
for mapping and encoding of the TM speech. In Section 6, we
discuss the limitations of this approach and possible ways of
addressing them.

2. Mapping CSM and TM speech

The source-filter model is commonly used as the basis for
speech production, wherein the excitation and the vocal tract are
considered to be independent of each other. The vocal tract sys-
tem can be modelled as an all-pole (AR) or a pole-zero (ARMA)
model. For the purpose of mapping the TM and CSM speech,
we assume that the vocal tract system is a linear time-invariant
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system whose parameters can be obtained by linear prediction
(LP) analysis. The coefficients for each frame of speech ob-
tained using LP analysis are first converted to LP cepstral coef-
ficients (LPCCs). Given the set of LP coefficients {ay, }, the LP
spectrum for a frame of speech is given by
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where M is the number of spectral values. The inverse discrete
Fourier transform (IDFT) of the logarithm of the LP spectrum
gives the LPCCs {c,, }, which are obtained as follows:
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The first ¢ cepstral coefficients are linearly weighted and are
used to represent the features of the LP spectrum for each frame.
Linear weighting of the LPCCs, by n = 1, 2, ...q, provides less
emphasis on the lower order LPCCs which would otherwise
dominate the error computation in the training of the multilayer
feed-forward neural network (MLFFNN).

2.1. Feature mapping using MLFNN

Earlier studies [3, 4] have proposed techniques for bandwidth
expansion of narrow-band signals. Some of them [5] use neural
networks for bandwidth expansion. Here we use an MLFFNN
to capture the implicit relation between the spectral features of
CSM and TM speech. Once this relationship is captured by the
MLFFNN, given spectral features of a TM as input, it should
be able to provide spectral features that have characteristics of
CSM speech signals. Fig. 1 shows the structure of the MLFFNN
used for mapping. The structure of the MLFFNN in terms of
no. of hidden layers and no. of units in each hidden layer is
not critical, except that there should be enough no. of units in
the hidden layers to achieve nonlinear mapping. The choice
of two hidden layers and 30 units in each layer has been de-
termined empirically. Given a set of input-output pattern pairs
(x1,y1),l = 1,2,... L, where x; = (c{,2¢c3,...,qcl) and
Yy = (clc, 2¢5, ..., chc) corresponding to the wLPCCs of the
TM and CSM respectively for the {*" frame of the speech sig-
nal, the objective is to find a set of weights that capture the rela-
tionship between x; and y;. Once the relationship between the
input-output pattern pairs has been captured, then given some
other x; as input to the MLFFNN, the output ¥; will be an esti-
mate of y;, for/ = 1,2, ... L. The error in the estimate is given
by ||y1 — $:1||? for each I. This is achieved by iteratively deter-
mining a set of weights such that the total mean-squared error
over all the input-output pairs used for training the MLFFNN
is minimized. The total error E over all L input-output pattern
pairs is given by

L
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The estimated error for each presentation of (x;,y;) is back-
propagated from the output units to the hidden units and used to
update the weights of the hidden units.

3. Coding using vector quantization

The estimated CSM spectral features obtained using the
MLFENN is encoded using vector quantization (VQ). The num-

1088

—(

Input layer Output layer

Figure 1: A 4 layer mapping neural network with
15L,30N,30N,15L, where L refers to a linear unit and N refers
to a nonlinear unit.

ber of clusters used for encoding is 28 where B is the number
of bits required to code each frame. The choice of B depends
on the trade-off between perceptual quality and bit-rate. The
weighted cepstral features (n¢,,) estimated for each frame using
an MLFFNN are deweighted to obtain the LPCCs, ¢,,. From the
cepstral coefficients, the power spectrum P (k) is estimated [6].
The LP coefficients are obtained by applying Levinson-Durbin
algorithm on the autocorrelation coefficients computed from
P (k) [6]. Since the LPCs are computed from an autocorrelation
sequence, they correspond to a stable all-pole synthesis filter.
As the LPCs are coefficients of a polynomial, VQ of LPCs may
lead to unstable filters. These LPCs are therefore converted to
line spectral pairs (LSPs) before quantization. LSPs are com-
puted from antisymmetric (P(z)) and symmetric(Q(z)) poly-
nomials, which are related to the LP polynomial A(z) as fol-
lows:

A(z) = 14az "+az > +.. . 4apz? (5
P(z) = A(z) -z "*VAETY, ©)
Q(z) = A(2) 42 PAG™. )

The complex roots () of the P(z) and Q(z) polynomials
alternate in order on the unit circle in the z-plane. Any equiva-
lent set of roots that alternate in this way will represent a stable
LP filter. If 6y, is the set of complex roots, the LSPs (wy) ex-
pressed in radians are given by

where R(.) and 3(.) denote the real and imaginary parts respec-
tively. As the LSPs are roots of a polynomial, they are more
tolerant to quantization errors and do not affect the spectra sub-
stantially, making them better suited for VQ based coding than
the LPCs.

The LSPs obtained from the estimated CSM spectra are
clustered into 2% clusters using k-means algorithm. The clus-
ter centers are initialized to vectors chosen arbitrarily from the
training set. Clustering is performed by minimizing the sum of
the squares of distances between the feature vectors and clus-
ter centroids. The codebook thus formed is used at both the
decoder as well as the encoder. The block diagrams for the en-
coding and decoding schemes are shown in Fig. 2.
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Figure 2: Block diagram of (a) mapping and encoding scheme
of the spectral features derived from TM speech and (b) decod-
ing and synthesis scheme.

3.1. Encoding source and system features

The cluster index is computed for the output of an MLFFNN for
each frame of the TM speech. Along with the cluster indices,
the energy and pitch contours also need to be transmitted. The
energy contour is obtained from the TM residual for frames of
20 ms duration shifted by 10 ms. The pitch contour is obtained
by autocorrelation analysis of the Hilbert envelope of the LP
residual [7] of TM speech.

4. Decoding and synthesis

At the receiver, the encoded signal is decoded to obtain the se-
quence of cluster indices. The LSP values are obtained for each
index using a codebook. The LSPs are converted back to LPCs,
which are now an approximate representation of the spectra of
CSM speech. Generation of the residual signal is similar to the
approach in [2]. The energy and pitch contours are used to gen-
erate a residual signal. For each frame, a pre-stored residual
signal for a pitch period is obtained from the CSM speech as a
template for generating the synthetic residual. For every pitch
period, the residual template is modified using pitch and energy
contours of the TM speech signal. Increasing or decreasing the
number of samples of the residual template is done by DFT in-
terpolation [8]. The re-sampled residual signal is modulated
with the energy contour to preserve the relative amplitudes of
the sound units. As the duration, pitch and energy of the TM
speech is used for synthesis, the true prosody of the TM speech
is preserved in the synthesized speech signal. Fig. 2(b) shows
the block diagram of the decoding and synthesis scheme de-
scribed here.

5. Experimental studies

Speech data was collected simultaneously for a speaker using
both CSM and TM. The data was collected in a laboratory en-
vironment where the average SNR is about 30dB. For testing,
the TM speech data in principle can be collected in an environ-
ment with higher background noise levels, as the TM data is
not influenced by noise. The alignment of TM and CSM speech
is crucial for the MLFFNN to capture the relationship between
them. Both the TM and CSM speech signals were sampled at
8 kHz. For training the MLFFNN, 5 minutes of speech data
was used. With a frame rate of 100 frames per second, and a
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Figure 3: log magnitude LP Spectra of TM, CSM and the
mapped log magnitude LP spectra for a sequence of frames.
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duration of 20 ms for each frame, 10th order LPCs are obtained
for every frame. A 15 dimensional wLPCCs vector is derived
from the LP spectrum of every frame. The input-output pat-
tern pairs are presented in a batch mode to the neural network
for training. The MLFFNN used for mapping the spectral fea-
tures of the TM and CSM has 2 hidden layers each consisting of
30 non-linear units and input and output layers each consisting
of 15 linear units. The MLFFNN is trained by presenting the
wLPCCs of the TM as its input. The error between the output
of the MLFFNN and the wLPCCs of the corresponding frame
of CSM speech is used to update the weights of the hidden layer
using backpropagation.

For testing, another set of TM and CSM speech data with
a duration of 5 minutes is recorded. The wLPCCs for the
TM from the test data set is provided as input to the trained
MLFENN. For each frame of TM wLPCCs, we obtain a corre-
sponding frame of estimated CSM wLPCCs as output from the
MLFFENN. As in the case of the training data, a frame rate of
100 frames per second and a frame duration of 20 ms is used.

The output wLPCCs are converted to 10th order LPCs and then
to LSPs. The LSPs are vector quantized using k-means clus-
tering. Euclidean distance is used as a distortion measure. The
choice of the number of cluster centers depends on the amount
of data and on the tolerable quantization error. In this paper,
1024 clusters are used for building the codebook. The code-
book is made available to the receiver. During transmission, for
every frame of TM speech, wLPCCs are computed, and using
the trained MLFFNN, the estimated wLPCCs are obtained. The
sequence of the estimated wLPCCs is represented as a sequence
of codebook indices through VQ. The sequence of the codebook
indices can be encoded at 1 kbps (1024 cluster centers, and 100
frames per second). Additionally we also require to transmit
the pitch and energy contours derived from the TM speech sig-
nal. The pitch and energy contours can be encoded with fewer
number of bits by exploiting their slow varying characteristics.
On an average a bit-rate of 1.5 kbps can be realised using this
method.

5.1. Results

Fig. 3 shows a sequence of log magnitude LP spectra for seg-
ments of TM, CSM and mapped speech. It can be visually ob-
served that the MLFFNN is able to restore the high frequency
components missing from the TM spectra, and that the spec-
tra are continuous across the sequence of frames. The mapped
spectra is also visually more similar to the CSM spectra than
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Figure 4: Mapped log magnitude LP spectra of CSM speech for
a sequence of frames and corresponding coded log magnitude
LP spectra.

the TM spectra. Even though they do not match perfectly, some
features of the CSM spectra are brought out through mapping.
At the receiver end, the codebook indices are used to retrieve
the sequence of LSP vector centers. The LPCs derived from
the sequence of LSP vectors represent the mapped spectra of
TM speech signals. A synthesized residual is used to excite the
all-pole model obtained through the LPCs. Fig. 4 shows the se-
quence of LP spectra of the mapped and coded frames. It can
be observed that the quantization does not affect the spectral
characteristics significantly.

To objectively measure the performance of the proposed ap-
proach to mapping and low bit-rate coding, we compute the
Itakura distances [9] between the spectra of the CSM and the
TM speech, the spectra of the CSM and the mapped speech
and the spectra of the CSM and the coded speech. Fig. 5 (a)
shows the Itakura distance computed for 100 frames (1 s) of the
test data set between the CSM spectra and the mapped spec-
tra. Fig. 5 (b) shows the Itakura distance computed between the
CSM spectra and the coded spectra. The Itakura distance be-
tween the spectra of CSM and TM is shown in dashed lines in
these figures. It can be observed that the Itakura distance for
both the mapped and coded spectra is significantly less than for
the TM spectra. Table. 1 shows the average Itakura distance for
5 minutes of the test data for TM, mapped and coded spectra.
It can be seen that the distance between the spectra of the CSM
and the TM is the largest. In the case of mapped spectra this
distance is halved indicating that the MLFFNN indeed captures
the implicit relation between the spectra to some extent. In the
case of the coded spectra, there is an insignificant increase in
the distance due to quantization.

Table 1: Average Itakura distance between the CSM spectra and
the TM spectra, mapped spectra and coded spectra.

TM | Mapped | Coded

1.19 0.58 0.61

CSM

6. Summary and conclusions

In this work, a system is proposed which maps and encodes TM
speech signal at low bit-rates. This method uses an MLFFNN,
trained with pairs of spectral features derived from frames of
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Figure 5: Itakura distance computed between (a) CSM spectra
and mapped spectra and (b) CSM spectra and coded spectra are
shown for 100 frames. The Itakura distance between the CSM
and TM spectra is plotted using thinner lines in both figures.

simultaneously recorded TM and CSM speech, for estimating
CSM-like spectral features from TM speech. This mapping is
speaker-dependent as the MLFFNN is trained with spectral fea-
tures for a particular speaker. The mapped spectral features are
quantized using VQ to achieve low bit-rate coding. Using the
proposed method, bit-rates of about 1.5 kbps can be achieved.
The speech signal reconstructed using spectral features obtained
at such low bit-rates was observed to be of perceptible quality.

The focus of the current work has been on mapping of spec-
tral features (system) of the TM and CSM speech signals. The
primary limitation of the proposed approach is in the synthesis
of the residual signal (source). Since the residual signal is gen-
erated using a single residual template, the synthesized speech,
while intelligible, suffers from the distortion due to discontinu-
ities at the concatenation points. These discontinuities affect the
perceptual quality of the synthesized speech. A future objective
is to focus on alternative techniques of generating a residual
signal that improves the perceptual quality of the synthesized
speech signal.
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