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Abstract - This paper presents a novel method for rep-
resenting speaker characteristics present in the speech signal,
by the way of deemphasizing the linguistic content of the sig-
nal. Cepstral coefficients that are widely employed as features
for automatic speaker recognition task, contain considerable
speech information in addition to the speaker information,
and hence do not highlight the latter. The proposed method
is based on using the difference between all-pole spectra due
to higher order and lower order of linear prediction analysis.
Distribution of the feature vectors in the multi-dimensional
feature space is captured by employing autoassociative neu-
ral network models. A speaker recognition system is developed
using the proposed method of feature extraction, whose perfor-
mance s evaluated against that of the system based on cepstral
coefficients. The complementary nature of evidence due to the
proposed feature is also examined, so as to improve the overall
system performance.

I. Introduction

The objective of automatic speaker recognition
task is to recognize a person solely based on his/her voice,
by a machine. Speech is a composite signal that pri-
marily carries with it the message to be conveyed and
speaker information. Speech signal conveys the mes-
sage through a sequence of sound units which are pro-
duced by exciting the time varying vocal tract system
with a time varying input. Speaker-specific variations in
speech signal are partly due to the anatomical differences
in speech-producing organs, and partly due to idiosyn-
crasies of the speaker, such as speaking habits and emo-
tional state. Both forms of variation are of importance
to automatic speaker recognition task, which entails the
following three steps in the main, when approached from
a pattern recognition perspective:

1. Representation of speaker-specific properties of
speech signal and their efficient measurement, col-
lectively known as feature extraction

2. Modeling the speaker characteristics represented by
the feature vectors

3. Decision mechanism for verification/identification,
based on the response of the speaker model for fea-
tures in the test utterance

Speaker characteristics are manifested in
both the components of speech production mechanism,
namely, the excitation source and the vocal tract systerm.
Variations in shape of the vocal tract are captured in the
form of resonances, antiresonances and spectral roll-off
characteristics, while the excitation source is character-
ized by voice pitch, glottal vibrations and suprasegmental
features such as intonation, duration, stress and coar-
ticulation. Features extracted from short-time analysis
techniques provide reasonable approximation to both the
components of speech production mechanism and are rel-
atively easy to extract. Hence, they are widely used for
speaker recognition, unlike suprasegmental features that
are difficult to characterize and represent with existing
techniques.

Short-time (10-30 ms) analysis of quasi-
stationary regions of speech is performed to approximate
the spectral response of the vocal tract, either by di-
rectly computing the Discrete Fourier Transform (DFT)
spectrum, or using linear prediction (LP) analysis which
provides an all-pole approximation of the spectral enve-
lope. Cepstral coefficients derived from the DFT spec-
trum or the all-pole LP spectrum are widely used as fea-
tures for speaker recognition [1] [2]. However, these fea-
tures contain information about the speaker as well as the
linguistic message, and hence do not highlight speaker-
dependent properties.

Methods based on speaker-specific mapping of
features have been attempted to capture speaker-specific
information, by mapping a set of features that charac-
terize linguistic content, to a set of features having both
linguistic and speaker-specific information. A mapping
from a low (7) order perceptual linear predictive (PLP)
model to a high (14) order PLP model is discussed in
[3]. Another experiment employed feedforward neural



networks to capture the mapping between cepstrals de-
rived from low (6) order LP analysis, and those derived
from high (12) order LP analysis [4]. The objective of
the present study is to propose a feature that highlights
the speaker-dependent information contained in the sig-
nal by deemphasizing information specific to the speech
sound. The feature is based on the difference between
LP spectra due to higher and lower order analysis.

The paper is organized as follows. Section II
provides an overview of LP analysis of speech, while Sec-
tion IIT proposes a feature for highlighting the speaker
characteristics present in the speech signal. Section IV
describes autoassociative neural network (AANN) mod-
els for capturing the distribution of feature vectors. Sec-
tion V outlines a speaker verification system based on the
proposed feature, while Section VI discusses the perfor-
mance of the system. The study is summarized in Section
VIL

II. Linear Prediction Analysis of Speech

Linear prediction analysis of speech signal pre-
dicts a given speech sample at time n as a linear weighted
sum of the previous p samples,

3(n) = Zaks(n —k)
k=1

where §(n) is the predicted sample at time at time n,
s(n) is the speech sample at time n, and ax,k=1,2,..p
are the predictor coefficients [5].

The prediction error e(n) is defined as

e(n) = s(n) — §(n).

The mean square of the prediction error over an analysis
frame of N samples is given by

N-1
E= Z e(n)
n=0

Minimizing E with respect to the set of predictor coef-
ficients {ay} results in a set of p normal equations. The
predictor coefficients {a} are obtained by solving this
set of p normal equations.

The vocal tract system can be modeled as an
all-pole filter whose spectral response is described by the
set of predictor coefficients {ay}. The prediction order p
has significant bearing on the ability of the all-pole filter
to closely approximate the short-time spectrum of the
speech segment. For larger values of p, from 16 to 30,
the LP model tries to match spurious spectral peaks of
the speech signal, like the individual pitch harmonics.

An important parameter set that can be derived

from the LP coefficients is the set of cepstral coefficients
[6]. Cepstral coefficients provide a compact representa-
tion of the resonances and the spectral roll-off charac-
teristics of the vocal tract system. The set of cepstral
coefficients {ci} is obtained from the set of predictor co-
efficients {ay}, using the following recursive relation:

C = lo.gEmin
k—1 ]
Ccr = —ak+ZEcjak,j 1<k<p
j=1
k—1 .
cp = %Cjak_j p<k<l
Jj=k—p

where [ is the number of cepstral coefficients, and E,,;,
is minimum mean squared prediction error.

ITI. A Feature Based on the Difference
Spectrum

The short-time spectrum of speech for a voiced
speech sound has two components: harmonic peaks due
to periodicity of voiced speech, and gross envelope of
the spectrum that reflects the vocal tract response and
glottal-pulse shape [7]. The periodicity of voiced speech
is due to the excitation source, that is a characteristic
of the speaker. The spectral envelope is shaped by for-
mants, that reflect the resonances of the vocal tract. For-
mant locations and bandwidths show considerable varia-
tion for different speakers, for a given category of sound
unit [8]. This is due to the varying vocal tract shapes
and lengths for different speakers. This variation may be
more pronounced in the finer fluctutations in the spec-
tral envelope, indicating that speaker-dependent proper-
ties are relatively better manifested in these variations.
Also, a smoothed spectral envelope is still intelligible,
implying that the smoothed spectral envelope is more
representative of linguistic information than the speaker
information.

The order of LP analysis determines how closely
the resultant all-pole spectrum matches the short-time
spectrum of the signal. The all-pole spectrum obtained
by a lower order of LP analysis such as 6, approximates
only the prominent formants, while that due to a higher
order LP analysis such as 12 or 14, matches all the for-
mants and other spectral envelope information. This can
be observed from Fig. 1 which shows the LP log-spectra
for two different orders of LP analysis along with the
short-time spectrum, for a voiced region of speech signal.
A difference of the above two all-pole spectra can be ex-
pected to deemphasize the linguistic information of the
sound unit, and yet preserve the variations that contain
speaker-dependent information.
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Fig. 1. LP log-spectra for two different orders of prediction.
(a) A voiced region of speech. (b) Short-time spectrum
and LP log-spectrum for LP order p = 6. (c) Short-time
spectrum and LP log-spectrum for p = 14.

The weighted difference cepstral coefficients dj can be
expressed as

dr, = k(ch—dc,) 0<k<m

where ¢l are the cepstral coefficients due to a higher or-

der of LP analysis, c} are the coefficients due to a lower
order of LP analysis, and m is the number of cepstral
coefficients.

The differencing of the cepstra also reduces the
influence of the transmission channel characteristics on
the speech signal. This obviates the need for cepstral
mean subtraction, that is normally employed to remove
the mean of the time trajectory of each cepstral coeffi-
cient [1] [2]. However, the comparable range of ampli-
tudes of the cepstral coefficients of the two spectra in-
creases noise content in the difference cepstrum. Hence,
the weighted difference cepstral coefficients dj, are aver-
aged over a window of w contiguous frames of a region
of voiced speech, as follows:

it+3

Czk,j = %Z di,i

i=j— 5

O0<k<l,

where cik,j are the averaged weighted difference cepstral
coefficients for segment j of the region of voiced speech,
and dy,; are the weighted difference cepstral coefficients
for frame 1.

IV. AANN Models for Capturing the
Distribution of Feature Vectors

Autoassociative neural network models are
feedforward neural networks that perform an identity
mapping of the input space [9]. The desired output for
AANNs is same as the input vector, and hence the in-
put and output layers have the same number of units.
The number of hidden layers and the number of units
in each hidden layer depend on the problem. Typically,
any hidden layer with number of input units less than
the dimension of the input vector results in compression
of the input vector to a lower dimension. For instance,
a three-layer AANN model with linear units can capture
the principal components of a feature set in the feature
space. For such a network, it can be shown that the
mean square of the error between the input and output
patterns is minimized by choosing those weights that cor-
respond to principal vectors of covariance matrix of the
input data [9].

Fig. 2 shows a five-layer AANN model that performs
nonlinear principal component analysis.

Input Layer Layer Output Layer

Fig. 2. A five-layer AANN Model.

The second and the fourth layer have nonlinear ele-
ments, and these layers have more elements than the first
and the fifth layer. The third layer, with P units, serves
as the compression layer. The first three layers form a
mapping network, that projects the input space RM on
to a subspace RP, where M is the dimension of the input
vector, and P < M. The mapping is nonlinear, and a
nonlinear subspace is formed at the third layer. The last
three layers form a demapping network that projects the
nonlinear subspace RY back on to the input space RM.
The nonlinear subspaces captured by the network remain
similar for different training sessions [10].

The ability of AANN models to capture non-
linear subspaces has been demonstrated in [10]. The au-
thors examine the possibility of designing an AANN to



capture the characteristics of distribution of the data.
They study the importance of error surface of the train-
ing data in the feature space. It was observed that the
average error was lower for the most frequently occurring
input vectors than for the less frequently occurring ones.
It was demonstrated experimentally that a network can
be designed such that the training error surface relates to
the distribution of the given data, depending on the con-
straints imposed by the structure of the network. When
the surface representing the distribution of features is
highly non-linear in the multi-dimensional space, AANN
models have a distinct advantage over Gaussian mixture
models (GMMs), which are constrained by the fact that
the shape of the components of the distribution is as-
sumed to be Gaussian, and that the number of mixtures
are generally fixed a priori.

V. A Speaker Verification System Based on the
Difference Cepstrum

The verification system involves extraction of
features from training and testing data, building AANN
models for speakers and testing each utterance against a
certain number of claimant models to detect the iden-
tity of the speaker of that utterance from among the
claimants.

Speech corpus used in this study is a subset of the
cellular database of NIST 2002 speaker recognition evalu-
ation [11]. There are 139 male speakers, and the duration
of training data for each speaker is about 2 minutes. The
present study uses 300 test utterances, each having a du-
ration of about half a minute. Each test utterance has 11
claimants, where the genuine speaker may or may not be
one of the claimants. All speech was sampled at 8 kHz.

Speech signal is pre-emphasized using a differ-
ence operator. Hamming window is applied on frames
of 20 ms of differenced speech, with a shift of 5 ms. An
amplitude threshold is used to mark silence frames. LP
analysis is performed on the non-silence frames, using
lower and higher orders of analysis. Weighted difference
cepstral coefficients are then obtained and smoothed over
5 consecutive frames within the given non-silence region.

For each speaker, two sets of AANN models are
trained, one using difference cepstrals, and another using
weighted LP cepstrals. Difference cepstrals of three dif-
ferent dimensions, namely, 10, 14 and 19 are used to train
three AANN models, whose structures are, 10L 20N 3N
20N 10L, 14L 30N 4N 30N 1/L and 19L 38N 4N 38N
19L, respectively. Here L refers to a linear unit, and N
refers to a nonlinear unit. The second set of AANN mod-
els is trained on 19-dimensional weighted LP cepstrals,
derived from LP analysis of orders 12 and 14. The struc-
ture of these AANN models is 19L 38N 4N 38N 19L. The

choice of above network structures is based on a system-
atic study reported in [12]. Error backpropagation algo-
rithm is used to update the weights of the network [13].

Features extracted from each test utterance are
fed to the corresponding 11 claimant models. The confi-
dence score of a model is defined as

N
1 .
€= 5 2 (=D, Ds = x; = yill

where x; is the input vector to the model, y; is the
output of the model, and NNV is the number of feature vec-
tors of the test utterance. Speaker model normalization
(ZNorm) and test utterance normalization (TNorm) are
performed on the raw confidence scores. For TNorm, 20
speakers are chosen for developing background models
from NIST 2001 cellular development data set.

VI. Results and Discussion

The performance of speaker recognition sys-
tems is commonly evaluated in terms of equal error rate
(EER), which can be measured from the Detection Error
Trade-off (DET) curves [11]. Fig. 3 compares the perfor-
mance of speaker recognition systems based on cepstrals
with that of systems based on difference cepstrals. The
EER of systems based on difference cepstrals is 19.1%
and 19.5%, for the cases (12,6) and (14,6) respectively,
as compared to 15.1% and 15.9% of the systems based
on cepstrals derived from LP orders of 14 and 12, respec-
tively. Here, the ordered pair indicates the high and low
orders of LP analysis used to obtain the difference cep-
strals. The lower performance of the difference cepstrals
can be attributed to their high noise content resulting
from differencing. The performance was also analyzed
by examining whether the highest scorer (winner) among
the 11 claimants for each test utterance was indeed the
actual speaker (genuine winner) of that test utterance.
The analysis was done on two systems: systeml based
on weighted cepstrals derived from the LP analysis of
order 14, and system2, based the on difference cepstrals
for the case (14,6). Of the 300 test utterances, the ac-
tual speaker is one of the claimants in only 251 cases. It
was observed that 139 genuine winners were common to
both the systems, while 28 genuine winners were specific
to systeml, and 30 to system2. This clearly indicates
some complementary evidence represented by the differ-
ence cepstrals, an observation that is not evident from
the DET curves of Fig. 3.

Fig. 4 shows the DET curves for systems based
on difference cepstrals, for the cases (14,6), (14,8) and
(14,10). As the lower order of LP analysis increases, more
speaker characteristics are captured by the cepstrals of
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Fig. 3. DET curves to compare systems based on cep-

strals and difference cepstrals. pi1, p2 denote higher
and lower orders of LP analysis, respectively.

lower LP order in addition to speech information, leading
to a decline in the performance of difference cepstrals.
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Fig. 4. DET curves for difference cepstrals for varying
lower LP orders and a fixed higher LP order of 14.

The DET curves for a system based on differ-
ence cepstrals for the case (14,6) are plotted in Fig. 5,
for varying dimensions of the feature vector. The 14 and
10 dimensional feature vectors are obtained by truncat-
ing the 19 dimensional feature vectors. Evidently, the
decline in performance is marginal even when only 10
dimensions of the difference cepstrals are used. This re-
sult is important from a dimension reduction perspective,
that simplifies the structure of the AANN model, and
effectively reduces the number of parameters for charac-
terizing a speaker.
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Fig. 5. DET curves for difference cepstrals for varying
dimension m of the feature vector, for the case (14,6).

VII. Conclusions

This paper proposes a feature based on the dif-
ference between higher order and lower order LP spec-
tra, with the objective of deemphasizing speech infor-
mation, and thereby highlighting speaker-dependent in-
formation. The difference cepstrals represent speaker-
information that may provide some complementary in-
formation to that represented by the weighted cepstrals.
Thus the evidences may be combined to enhance the sys-
tem performance. Also, a reduction in the dimension of
the input vectors is possible without significantly affect-
ing the recognition performance of the system. Better
scoring techniques for decision making and algorithms
for combining evidences need to be explored.
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