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Abstract

In this paper we analyse the mapping behavior of an au-

toassociative neural network (AANN). The mapping in

an AANN is achieved by using a dimension reduction

followed by a dimension expansion. One of the ma-

jor results of the analysis is that, the network performs

better autoassociation as the size increases. This is be-

cause, a network of a given size can deal with only a cer-

tain level of nonlinearity. Performance of autoassocia-

tive mapping is illustrated with 2-D examples. We have

shown the utility of the mapping feature of an AANN

for speaker veri�cation.

1. Introduction

Autoassociative mapping neural networks (AANN) are
basically feedforward neural networks [1{3] with struc-
ture satisfying the requirements for performing re-
stricted autoassociation. General structure of AANN
is shown in Fig.1. It consists of an input layer, an out-
put layer, and one or more hidden layers. Number of
units in the input and output layers are equal. Number
of units in one of the hidden layers is less than the num-
ber of units in the input/output layer. This layer can
be called as dimension compressing hidden layer as this
layer causes the input to go through a dimension reduc-
tion process before appearing at the output. Units in
the input and output layers are linear. Units in the hid-
den layer are either linear or nonlinear. For nonlinear
units, a `tanh' function is used as output function.

In autoassociative mapping, the target output pattern
is identical to the input pattern. Backpropagation al-
gorithm can be applied for AANN to arrive at optimal
parameter values [4]. It has been shown that AANNs
are useful in various recognition tasks such as speech
recognition [5] and image compression [6]. Kramer [7]
used AANNs for suppressing variabilities in chemical
variables for real-time applications.
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Figure 1: General structure of AANN.

An AANN with only linear units will perform linear
autoassociation. A 3-layer linear AANN will perform
PCA [3]. Bourlard and Kamp analysed linear autoas-
sociative networks based on singular value decomposi-
tion [8]. Baldi [9] gave a complete description of the
error landscapes in terms of principal component anal-
ysis for linear AANNs. Bishop analysed AANNs in the
context of dimensionality reduction. He stated that a 5-
layer network with nonlinear units in the hidden layers
can perform better dimensionality reduction than a 3-
layer network [3]. A detailed analysis of autoassociative
mapping is still lacking. In this paper, we analyse in
detail the feature of an autoassociative mapping. The
analysis gives interpretation of the roles of di�erent pa-
rameters of an AANN.

In Section 2, we give the analysis of an AANN. In Sec-
tion 3, we apply the autoassociation feature to the prob-
lem of speaker veri�cation, basically to show that the
analysis is valid for real world problems also. Through-
out the analysis 2-D examples are used to illustrate the
higher dimensional analogies. Data used for such ex-
amples is shown in Fig.2. This data is generated arti�-
cially such that it will have certain number of clusters.
Each cluster is generated such that its variance along
the direction of maximum variance and the orthogonal
direction are 0:6 and 0:2, respectively.
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Figure 2: Arti�cially generated data for 2-D examples.

2. Analysis of AANN

Autoassociative mapping should reproduce an input
vector at the output with least error. For example, for
the case of 2-D data shown in the Fig.2, the outputs
produced by mapping should be as close to the input
as possible. Ideally, the output should be the same as
the input.

AANN learns autoassociative mapping by training it in
the autoassociative mapping mode with training pat-
terns. In the autoassociative mode of training, the in-
put patterns and the target output patterns should be
the same. Let Q = xi; i = 1; 2; :::; N: be the set of
training vectors.

Let F denote the autoassociative mapping learnt by the
network. If fy1;y2; :::;yNg is the set of output vectors
produced by the AANN when the training vector set
fx1;x2; :::;xNg is given as input, then F minimizes the
mean square error given by the equation

E =

NX

i=1

jjxi � yijj
2 =

NX

i=1

jjxi �F(xi)jj
2 (1)

For the network of our interest, the mapping function
F can be separated into F1 and F2, so that

F(:) = F2(F1(:)) (2)

where

F1 is the transformation in the network from the
input layer upto the dimension compressing hidden
layer, and

F2 the transformation from the dimension com-
pressing hidden layer upto the output layer.

Assuming that the number of units in the input layer is
n and the number of units in the dimension compressing
hidden layer is r (where r < n), F1 transforms vectors
in space Rn onto the space Rr. That is,

R
n F1
�! R

r

Likewise, F2 transforms vectors from the lower dimen-
sional space Rr back to the space Rn at the output.

R
r F2
�! R

n

Since r < n, F1 is basically a dimension reduction pro-
cess and F2 a dimension expansion process. Dimen-
sion reduction is achieved by projecting the vectors in
the input space onto a subspace captured by the set of
weights in the network part for F1. Dimension of the
subspace is equal to the number of units in the dimen-
sion compressing hidden layer. Dimension expansion
is achieved by mapping the lower dimensional vectors
onto a hypersurface in the higher dimensional output
space. Hypersurface is captured by the set of weights
in the network part for F2. Subspace and hypersurface
are in general nonlinear, because of the nonlinear units
in the hidden layers.

Dimension expansion by mapping onto a hypersurface
is obvious because, a set of lower dimensional vectors
can not produce higher dimensional vectors of intrinsic
dimensionality larger than the dimension of the lower
dimensional space. Capturing the nonlinear subspace
by the network part for F1 is explained as follows: Let
us consider a network of structure xiL-x2N-...-xd�1N-
xdL-xd+1N-...-xoL, where L denotes the linear units and
N the nonlinear units. xi, xd, and xo denote the num-
ber of units in the input layer, the dimension compress-
ing hidden layer, and the output layer, respectively.
If xi < xd�1, transformation F

0

1, done in the part of
the network from the input layer upto the output of
the layer just before the dimension compressing hid-
den layer, will map the input space onto a nonlinear
hypersurface in the xd�1-D space. The dimension com-
pressing hidden layer will transform vectors in xd�1-D
space into xd-D space, by projecting the higher dimen-
sional vectors onto a linear subspace. Image of this
subspace in the input space will be nonlinear. This can
be generalized easily for the networks of any structure.

The nonlinearity level of the subspace and hypersur-
face depends on the size of the network. By increasing
the size of the network in the part for F1, level of non-
linearity of the subspace can be increased. Similarly,
by increasing the size of the network in the part for



F2, level of nonlinearity of the hypersurface can be in-
creased.

As a result of dimension reduction and dimension ex-
pansion, autoassociative mapping as a whole is nothing
but the projection of vectors in the input space onto a
hypersurface in the same space. This is illustrated with
the 2-D example as follows: For a network of struc-
ture 2L-1N-2L trained with the 2-D data shown in the
Fig.2, the outputs generated when the training patterns
themselves are given as inputs is shown in Fig.3. In the
�gure, the input patterns are also shown along with the
output patterns. It can be seen from the �gure that,
outputs are on a straight line. This is because, the hy-
persurface is along that straight line for this network.
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Figure 3: Mapping by a 3-layer network.

In order to achieve better autoassociation, the input
vectors and the corresponding projected locations in
the hypersurface must be as close to each other as possi-
ble. This can be achieved only if positional information
about the higher dimensional vectors are retained to
maximum extent during the dimension reduction, and
such information is reproduced back in the higher di-
mensional space during the dimension expansion. (Po-
sitional information here refers to the relative spacing
information, with respect to each other, of the higher
dimensional vectors). For a subspace and hypersurface
of speci�c dimensionality this will happen only when
their spread in the space R

n are such that they are
along the surface of maximum variance. (i.e., when the
variance of the training vector set is maximum along
their surfaces).

Training of the network in autoassociative mapping
mode with the training set will make sure that the sub-
space and hypersurface will be captured along the sur-
face of maximum variance, because, the training error
will be least in such case. During training, the network
will adjust the subspace and hypersurface so that they
will �nally capture the surface of maximum variance.
From the 2-D autoassociation example shown in Fig.3,

it can be seen that the outputs generated are along the
line of maximum variance.

For a given training vector set, the surface of maximum
variance of particular dimensionality di�ers for di�erent
level of nonlinearities. For example,

� If the nonlinearity is nil, i.e., for linear case, the
surface of maximum variance is the principal sub-
space spanned by the principal eigenvectors of the
correlation matrix given by,

C = E [xxT] (3)

where, E represents the expectation operator and
x the training vectors.

� If in�nite nonlinearity is possible then, the surface
of maximum variance is a surface passing through
all the points in the training set.

� If the possible nonlinearity is in between the above
two extreme cases, the surface of maximum vari-
ance will be a surface satisfying the constraints on
its nonlinearity.

Variance of the training vector set along the surface of
maximum variance increases with increase in the level
of nonlinearity. Variance along the principal subspace,
which corresponds to the surface of maximum variance
for zero nonlinearity, is the least. Variance along the
surface passing through all the points, which corre-
sponds to the surface of maximum variance for in�nite
nonlinearity, is the largest. Since the variance gives
a measure of positional information, positional infor-
mation along the surface of maximum variance will in-
crease if the nonlinearity is increased. Hence, dimension
reduction will be able to retain more positional infor-
mation if the level of nonlinearity of the subspace is in-
creased. Similarly, dimension expansion will be able to
reproduce information back to the higher dimensional
space e�ectively if nonlinearity in the hypersurface is
increased. We have seen earlier that, nonlinearities in
the subspace and hypersurface can be increased by in-
creasing the sizes of the network, respectively in the
parts for F1 and F2. Hence, the performance of au-
toassociation should improve with increase in the size
of the network.

As we have seen already, the autoassociative mapping
performed by a 3-layer network of structure 2L-1N-2L
is linear because, there is no hidden layer between the
dimension compressing hidden layer and the output
layer. Fig.4 shows the results of the autoassociation
performed by a 5-layer network of structure 2L-5N-1N-
5N-2L. Since sizes of the network in the parts for F1 and



F2 are large for this network than the 3-layer network,
subspace and hypersurface can be nonlinear. Hence,
this network performs better autoassociation than the
3-layer network. It can be seen from the �gure that, the
outputs are brought closer to the corresponding inputs
than in the previous case. Fig.5 shows the results of au-
toassociation performed by a 9-layer network of struc-
ture 2L-5N-5N-5N-1N-5N-5N-5N-2L. Since sizes of the
network in the parts for F1 and F2 are large here than
in the 5-layer network, the level of nonlinearity in the
subspace and hypersurface can be large. As a result,
it can be seen from the �gure that, the inputs and the
corresponding outputs are brought further close.
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Figure 4: Mapping by a 5-layer network.
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Figure 5: Mapping by a 9-layer network.

Mean square errors of di�erent networks performing au-
toassociative mapping are given in Table 1. It can be
seen from the table that, as the network size increases,
the mean square error decreases, and hence the perfor-
mance of the autoassociative mapping improves.

3. Speaker veri�cation using
AANN

Speaker veri�cation is a process of accepting or reject-
ing the identity claim made by a speaker, based on the

Table 1: Mean square errors of 2-D AANNs of dif-
ferent sizes.

Network con�guration Mean square
error

2L-1N-2L 4.058
2L-5N-1N-2L 3.942
2L-1N-5N-2L 2.798

2L-5N-1N-5N-2L 1.301
2L-5N-1N-5N-5N-2L 1.056

2L-5N-5N-1N-5N-5N-2L 0.699
2L-5N-5N-1N-3N-5N-5N-2L 0.692

2L-5N-5N-5N-1N-5N-5N-5N-2L 0.670

voice information in the speech signal. Uniqueness in
the voice characteristics due to the uniqueness in the
anatomical structure of the vocal tract for speakers is
utilized for discriminating speakers. Generally, feature
vectors representing the acoustic characteristics of the
vocal tract are used for speaker veri�cation because
acoustic characteristics will be di�erent for di�erent
shapes of the vocal tract.

AANN trained with feature vectors derived from speech
signal of a single speaker will capture subspace and hy-
persurface along the surface of maximum variance of
the feature vectors. Since the acoustic characteristics
are unique, the surface of maximum variance will be
unique, and hence the subspace and hypersurface cap-
tured will also be unique. If a test feature vector is given
to the network, it will give small error if the speaker of
the test utterance is same as the speaker used for train-
ing (genuine testing). Otherwise (imposter testing) test
error will be large. By �xing a threshold for test error,
we can discriminate genuine speaker from the impos-
tors.

A speaker veri�cation system using AANN can be de-
veloped as follows: A separate network (AANN) is as-
signed for every speaker enrolled. These networks are
trained in autoassociative mapping mode with the fea-
ture vectors derived from the training utterances. Dur-
ing the testing phase, feature vectors derived from test
utterance will be tested against the model of the target
speaker. The test error will be compared with a preset
threshold to accept or reject the speaker. The speaker
is accepted if the error is less than the preset threshold.

Performance of the speaker veri�cation system is given
by a measure called equal-error-rate (EER). EER is the
value of the false rejection / false acceptance rates at
a particular value of threshold for errors, where they
become equal. False rejection is the case where the



genuine speaker is rejected and false acceptance is the
case where imposter is accepted.

We have seen from the analysis that, the performance
of autoassociative mapping will improve as the sizes
of the network in the parts for F1 and F2 are in-
creased. Hence, the performance of speaker veri�cation
also should improve with the size of the network used
for the speaker model. This is because, as the non-
linearity of the surface of maximum variance increases,
the uniqueness in the acoustic characteristics will be
utilized well. Table 2 shows the results of the exper-
iments conducted to demonstrate this point. Experi-
ments are conducted with 38 speakers data from the
`dialect region 1' of TIMIT database. A 14th order lin-
ear prediction cepstral coe�cients with index weighting
are used as feature vectors (19-D).

Table 2: E�ect of network size on AANN-based
speaker veri�cation system performance.

Network con�guration Equal
error rate

19L-6N-19L 15.79%
19L-30N-6N-19L 15.79%
19L-6N-25N-19L 7.97%
19L-6N-30N-19L 7.89%

19L-30N-6N-30N-19L 6.69%
19L-30N-6N-20N-30N-19L 5.90%

19L-30N-20N-6N-20N-30N-19L 5.94%

Each row in the table corresponds to a single experi-
ment. Structures of speaker models used for the exper-
iments are given in the �rst column of the table. From
the table, it can be seen that EER decreases and hence
veri�cation performance improves as the network size
is increased. Performance tends to reach a saturation
value as the size is increased to a large value. This is
because, as the size is increased, the number of patterns
required to achieve good generalization also increases.

4. Summary and conclusions

In this paper, we have analysed the mapping behav-
ior of autoassociative mapping neural networks. The
network performs better autoassociation as the size is
increased. The reason for this is that a network of par-
ticular size can deal with only a certain level of non-
linearity. This was illustrated with 2-D examples. The
validation of the analysis is demonstrated for a real-
world application, by applying the AANN to speaker
veri�cation problem.
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