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ABSTRACT

In the last few years, there has been a large upswing in
research activities aimed at synthesizing artificial neural net-
works with other well-established paradigms, like evolutionary
computation, fuzzy logic, rough sets and chaos. In this paper,
we briefly discuss the merits of these paradigms from artifi-
cial neural networks point of view, and we illustrate how these
paradigms can be fused with the existing artificial neural net-
work models to make the later one more efficient.

1. INTRODUCTION

During the past decade, there has been a considerable

owth of interest in integrating Artificial Neural Network

ANN) with other existing paradigms. This paper is intended
to briefly review some of these integration attempts.

ANNSs are a new breed of information processing systems
that are constructed to exploit some of the organizational prin-
ciples that characterize the human brain [114] [62]. The central
theme of the ANN research focuses on modeling the brain as a
parallel computational device for various computational tasks,
that are ferformed poorly by conventional serial computers.
Models of ANN are speciﬁedy by three basic entities: models
of the processing element, architecture, and learning laws [62].
ANNSs have a large number of highly interconnected processin;
elements that generally operate in parallel, and are configur
in regular architectures. The collective behavior of an ANN,
like a human brain, demonstrates the ability to learn [14] [12],
recall [61 [714‘ [86], and generalize [103] from training pat-
terns or data. Through learning, the network architecture and
the weights connecting the processing elements are updated
such that a network can perform a specific human reason-
ing task [66], [46]. The task may be pattern association, pat-
tern mapping, pattern classification, pattern clustering, feature
mapping f114] [39] [38], etc. Pattern association task involves
capturing a set of patterns or a set of input-output pattern
pairs in such a way that when a test pattern is presented, the
pattern or pattern pair corresponding to the input pattern is
recalled [114]. In pattern mapping or function approximation,
given a set of input patterns and the corresponding output

atterns, the objective is to capture the implicit functional re-
ationship between the input pattern and the output, so that
when a test input is given, the corresponding output pattern
is retrieved [114]. In pattern classification, there is a
number of classes into which the input pattern has to be clas-
sified gBL In the case of pattern clustering, the task is to
identify the subset of patterns possessing similar features and
group them together. The idea of a feature map is to design
a network that would organize the given set of patterns in ac-
cordance with similarity of features among them. By looking
at the output of the feature map network one can visually ob-
tain an idea of how different patterns are related [114]. To
learn these tasks, there exist several learning laws, like Heb-
bian learning law [36], perceptron learning law [87], backprop-

agation learning law [87], Boltzmann learning law [58] [36],

ete.

The learning law in an ANN basically optimizes certain ob-
jective function which reflects the constraints associated with
the given task. A set of optima in this objective function gen-
erally corresponds to different stable states of the network.
Most of the learning laws utilize gradient based approach for
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this optimization purpose. However, due to its deterministic
nature, gradient based methods frequently get stuck in local
optima or saddle points. This is because, the step size and
step direction of the optimization process are dictated by the
local information supslied by the gradient. This drawback,
however, can be avoided by choosix;g the step size and step
direction stochastically in a controlled manner. The efficiency
of the search for the global optimum can be enhanced further
if it is carried out in parallel. Evolutionary Computation [_29]
is one such biologically inspired method, where a population
of solutions are probabilistically explored over a sequence of
generations to reach the globally optimum solution. The inte-
gration of the evolutionary computational technique into ANN
models is called Neuro-Evolutionary technique, which can be
used to enhance the learning capability of the ANN model 48].
This technique is also useful to determine the suitable topology
of a network and to select the proper learning law [110].

In a classification task, an ANN is used to find the decision
r(-:iions in the input pattern space. But, if the patterns from
different classes are overlapping, then it is difficult for the ANN
to find the class boundary. In pattern mapping also similar
problems may arise when the inputs or target outputs are ill-
defined or fuzzy. These situations are common in many pattern
recognition tasks because of inherent fuzziness associated with
the human reasoning. The pattern recognition capability of
ANNs can be made powerful, if fuzzy logic is incorporated
into the conventional ANN models. The resulting systems are
called Neuro-Fuzzy systems [62] [49].

In some cases, ANN training faces difficulties to find a
class boundary when the same input training pattern belongs
to one class in some examples, and to another class in some
other examples. This scenario is due to the presence of rough
uncertainty, which arises from the indiscernibility of the ob-
jects based on the input features. The classification ability of
an ANN can be significantly improved if the input data set is
processed to reduce the rouih uncertainty. Motivated by this
idea, a new promising area based on Neuro-Rough synergism
is emerging.

The ability of a feedback network to store patterns can
be improved, if we can exploit the chaotic part of the net-
works dynamics. This observation has resulted in proposing
hybrid neurons, known as chaotic neurons. Different models
o¥ chaotic neurons are studied, and initial results are quite
promising {3].

1. RECENT MERGING TECHNIQUES
A. Evolutionary Computation

Evolutionary computation (EC) [29] is a technique to en-
compass a variety of population-based problem solving tech-
niques that mimic the natural process of Darwinian evolu-
tion. Current research in the evolutionary computation has
resulted in powerful and versatile problem solving mechanisms
for global searching, adaptation, learning and optimization
in a variety of pattern recognition domains. The main av-
enues for research in evolutionary computation are genetic
algorithms [42] [34], genetic programming [60], evolutionary
strategies [98] and evolutionary programming [31] [28] [30]. Ge-
netic algorithms deal with chromosomal operators, while ge-
netic programming stresses on operators of more general hier-
archical structures. Evolutionary strategies emphasize behav-
ioral changes at the level of the individual, whereas evolution-
ary programming focuses on behavioral changes at the level
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of the species. The common factor underlying all these ap-
proaches is the emphasis on an ensemble of solution structures,
and the evaluation and evolution of these structures through
specialized operators that mimic their biological counterparts

in response to an ever changing environment. Specifically, all
of them maintain a population of trial solutions, impose ran-
dom changes to those solutions, and incorporate the use of
selection to determine which solutions are to be maintained
into future generation and which are to be removed from the
pool of trials.

From a mathematical point of view, all the EC tech-
niques are conirolled, parallel, stochastic search and optimiza-
tion techniques. Since different learning techniques used in
ANNs hinge on the optimization of various objective functions,
it is possible to employ the EC for learning weights, learning
network architectures, learning the learning laws, input fea-
ture selection and so on [110]. For instance, in a feedforward
neural network, gradient based local search methods [38] can
be substituted by the EC for weight training [84] [88]. In
some cases, a more ambitious approach may be to g.ﬁloit lo-
cal search methods, like gradient descent, and global search
methods, like EC, simultaneously [85]. The advantages of lo-
cal search methods are better accuracy and fast computation.
The disadvantages of the local search methods are stagnation
at the suboEtima.l solutions and sensitiveness to the initializa-
tion. The EC, on the otherband, is a global search method
which can avoid local optima, and does not have the initial-
ization problem [37). However, the EC can suffer from ex-
tremely slow convergence before arriving at the accurate solu-
tion. This is because, the EC uses minimal ¢ priori knowledge,
and does not exploit available local information [85]. In fact,
in the search space the EC is good for exploration, whereas
the gradient descent is good for exploitation. Therefore, by
utilizing both of them, merits of both methods, i.e., speed,
accuracy, reliability and computation time can be obtained.
Yao et al. [111] have proposed one such method to evolve the
topology (weights and architecture) of a feedforward neural
network, where they exploit both evolutionary programming
and backpropagation algorithm [87], simultaneously.

In the EC techniques, the whole population set evolves over
and over again generations after generations. At the last gen-
eration, the network which has the highest fitness is considered
to be the desired optimal network for the given task. Instead
of choosing a single network as the desired network, in [112],
all the networks in the population are considered as the de-
sired networks. Here, the final result is obtained by combinix:&
all the individuals in the last generation to make best use
all the information contained in the whole population. This
result, in fact, confirms the fact that a population contains
more information than a single individual, and the EC is used
to exploit that. In particular, in [112], the classification out-
puts of all the networks in the population are combined and
;illtlereafter, the output class is determined by a majority voting

eme.

There are, two different approaches to evolve the topology
of the networks using the EC. In one method (also known as
Pitt’s agproach in genetic algorithm community [70]), each ele-
ment of the goYulation represents one complete network. Con-
sequently, whole population is an ensemble of many networks
with different topologies. In the process of evolution they com-
pete among themselves, the weak individual dies, the strong
survives and reproduces. In the other approach (also known as
Michigan approach in genetic algorithm community [70]), the
whole population represents only one network, i.e., each mem-
ber of the gopulation represents a part of the network. The
second method is more time and space efficient. But, it needs
(a) delicate credit assignments, for which a heuristic method
should distribute positive or ne%z:tive credits among the mem-
bers of the population, and (b) the members of the population,
i.e., different parts of the network, to cooperate with each other
so that they can build the complete network [70] [108].

In [108] [107] [11], the EC-based techniques are successfully
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used to optimally configure radial basis function networks so
that the networks generalize well. In another significant de-
velopment, Angeline et al. [il] have used the EC to coxﬁure
recurrent neurﬁ networks. It should be noted that, gradient
based alpproach is comglletely useless here as it needs the ob-
jective function to be differentiable. Using the EC, Jockusch
et al. [50] have introduced an attractive self-organizing map
[567] training strategy, where it is possible to find the number
of self-organizing map output units automatically. Moreover,
in their scheme the training of the self-organizing map is less
likely to be stuck in local optima. In literature, the EC has
been used for clustering also (89] [97]. Here, the ?roposed
algorithm automatically finds the optimal number of clusters
present in the input data set. Therefore, the clustered output
can further be used to construct a probabilistic neural network
optimally [92]. Currently, researchers are working on different
evolutionary methods, which can be utilized to learn weiﬁhts,
architectures and learning laws, simultaneousl}/ {110]. How-
ever, the problem here is that the search space for this type of
problem becomes prohibitively large, and it needs an enormous
amount of computing time. These drawbacks can be removed
if parallel machines are used to implement the search opera-
tion, or the search operation is made more efficient and less
time consuming using adaptive EC operators [100] [67] [93].

B. Fuzzy Logic

The concept of fuzzy sets was first introduced by L. Zadeh
in 1965 [115], as a mathematical way to represent vagueness
present in the human reasoning. Fuzzy sets can be considered
as a generalization of classical set theory. In the classical set,
an element of the universe either belon%f to or does not belong
to a set. That is, the belongingness of the element is crisp-it is
either yes (in the set) or no (not in the set). In fuzzy sets, the
belongingness of the element can be anything in between yes
or no; for example, a set of tall persons. We cannot identify a
person as tall in a yes/no manner, as there does not exist any
well-defined boundary for the set tall [75]. Mathematically, a
fuzzy set is a mapping (known as membership function) from
the universe of discourse to [0, 1]. The higher the membership
value of an input pattern to a class, the more is the belong-
ingness of the pattern to the class 151] [52]. Therefore, any
concept that uses fuzzy sets requires the membership func-
tion to be defined. There may be various possible membership
functions for the set tall. Non uniglueness of membership func-
tions may raise a question: how does a designer know which
one to use? In fact, the designer can obtain the membership
function from an expert (subjective computation) or from the
data (objective computation) [75] [7] [10] LQ] Following the
idea of fuzzy sets, the concept of crisp numbers has been gen-
eralized to fuzzy numbers [53]. The reasoning with fuzzy sets
and fuzzy numbers is known as fuzzy logic [59].

ANNs adopt numerical computations for learning; how-
ever, numeric£ quantities evidently suffer from a lack of rep-
resentative power [76]. There are many applications where
information cannot be obtained in terms of numerical values-
rather it is possible to represent the information in linguistic
terms only [63]. In a washing machine the input and output of
the machine can only be represented in linguistic terms, like
dirty clothes, clean clothes, etc. The linguistic terms, dirty
and clean do not have any precise numerical value as the con-
cepts of dirty and clean are overlapping, and there is no strict
boundary between them. Therefore, it the operation of the
washing machine is to be modeled by an ANN, it should be
capable of dealing with the fuzziness associated with the lin-
guistic terms. While training an ANN for a classification task,
we generally use crisp target values, which can be either zero
or one. This kind of target assignment can be generalized by
exploiting fuzzy sets, where target values can be anything in
between zero and one. Use of fuzzy concepts in ANNs are
also supported by the fact that the psycho-physiological pro-
cess involved in the human reasoning does not employ precise
mathematical formulation [73]. Specifically, fuzzy theory can
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be incorporated in an ANN at the following levels: (a) at out-

ut and target levels, (b) at input level, and (c) at each neuron
Eavel in terms of weight value, basis function and output func-
tion. The appropriate level of incorporation of fuzzy theory
depends on the given problem.

For a classification task, perceptron algorithms exhibit
an erratic behavior when the data is not linearly separable.
In [55], fuzzy set theory is introduced into the perceptron ob-
jective function to ameliorate this convergence problem in lin-
early nonseparable cases. This improvement is possible, be-
cause introduction of fuzzy sets into the learning algorithm
makes the decision boundary a soft one, that is, near the de-
cision boundary, class labels of the input pattern space slowly
change from one class to another class.

In [91] [74], ANN outputs are interpreted as fuzzy member-
ship values, and using this idea the conventional mean square
error objective function has been extended to various fuzzy
objective functions. Here, the learning laws are derived by
minimizing the fuzzy objective functions in a gradient descent
manner. In [94] [91], a similar idea is employed to extend the
concept of cross entropy [23], which is another popularly used
crisp error function. It has been found that incorporation of
fuzziness in the objective functions leads to better classifica-
tion rate.

A neural network reinforcement learning algorithm, with
linguistic critic signals like good, bad, is proposed in [63]'. The
network is able to process and learn numerical information as
well as linguistic information in control theoretic applications.

In [21], three existing competitive learning algorithms,
namely the unsupervised competitive learning, learning vec-
tor quantization, and frequency sensitive competitive learning,
are %.xzziﬁed to form a class of fuzzy competitive learning algo-
rithms. Unlike the crisp counterpart, where only one output
unit wins, here all the output units win with different degrees.
Thus, the concept of win has been formulated as a fuzzy mem-
bership function. It has been observed that this scheme leads
to better convergence and better classification rate.

In [102], Kohonen’s clustering network has been general-
ized to its fuzzy counterpart. One advantage of this approach
is that final weight vectors of the clustering network do not
depend on the input seqll‘lence. Moreover, it uses a systematic
approach to determine the learning rate parameter and size of
the neighborhood.

A fuzzy adaptive resonance theory model, capable of rapid
learning of recognition categories in response to an arbitrary
sequence of binary input patterns, is proposed in [15]. This
upgradation from binary ART1 [32] to fuzzy ART is achieved
by converting the crisp logical operators used in binary ART1
to the corresponding fuzzy logical operators. As a result of
this gggradation, the learning becomes fast, and previously
learned memories are not rapidly erased in response to sta-
tistically unreliable input fluctuations. Fuzzy ARTMAP pro-
vides a more powerful realization of ART concepts [16]. It can
autonomously learn, recognize and make prediction.

Wang et al. [105] have proposed fuzzy basis functions to

design a radial basis function network [38], which can accept
both numerical inputs as well as fuzzy linguistic inputs.

In [82), Pedrycz has proposed an ANN model based on
fuzzy logical connectives. Instead of using linear basis func-
tions, he has utilized fuzzy aggregation operators. In [83]
and [40], this technique has been extended to a more general
one where inhibitory and excitatory characteristics of the in-
puts are captured lz employing direct and complemented, i.e.,
negated input signals. The adva.nta%e of this approach is that

roblem specific fuzzy a priori know!
into the network easily.

In [47], Ishibuchi et al. have proposed an ANN learning
algorithm where expert’s a priori knowledge, in terms of fuzzy
if-then rules, can be exploited to learn the information supplied
by the numerical data. This type of approach has been used
for both function approximation and classification. The whole

edge can be incorporated
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scheme is based on clever manipulations of fuzzy numbers.

In [58], Kosko generalized the concept of conventional as-
sociative memory [58] to fuzzy associative memory. Unlike
conventional associative memory, where the association is be-
tween two crisp sets, here the association is between two fuzzy
sets.

In many complicated problems, it is beneficial to divide
the original pattern recognition task into several smaller sub-
tasks and combine their individual solutions. Each of these
subtasks can be accomplished by a neural subnetwork. The
conflicting information supglied by the information sources,
i.e., the subnetworks, can be fused by applying the concept
of fuzzy integral [54]. Instead of treating each module iden-
tically, the subjective evaluation potential of fuzz¥ integral-
b method stresses on those modules or sets of modules,
which supply the most evidence toward the determination of
the output d'S] [17] [90].

In addition to the above applications, fuzzy theory can
be employed to speed up the training of an ANN. In [19],
a fuzzy rule base is to dynamically adapt the learning
rate and momentum parameters of a feedforward neural net-
work with backgropagation learning algorithm. In a similar
approach [20], Choi et al. have proposed an incremental up-
dating scheme to control the value of vigilance parameters of
ART networks.

C. Rough Sets

In any classification task the aim is to form various classes
where each class contains objects that are not noticeably dif-
ferent. These indiscernible or indistinguishable objects can be
viewed as basic building blocks (concepts) used to build up
a knowledge base about the real world. For example, if the
objects are classified according to color (red, black) and shape
(triangle, square and circle), then the classes are: red trian-
gles, black squares, red circles, etc. Thus, these two attributes
make a partition in the set of objects and the universe becomes
coarse. Now, if two red triangl% with different areas belong to
different classes, it is impossible for anyone to correctly classi
these two red triangles based on the given two attributes. This
kind of uncertainty is referred to as rough uncertainty [78] [80].
The rough uncertainty is formulated in terms of rough sets [79].
Obviously, the rough uncertainty can be completely avoided if
we can successfully extract the essential features so that dis-
tinct feature vectors are used to represent different ob_{ects.
But, it may not be possible to guarantee as our knowledge
about the system generating the data is limited.

In any classification problem, two input training patterns
x, and x, (where x,, x, € X, the set of all input train-
ing patterns) are called indiscernible with respect to the gth
feature, when the gth component of these two patterns have
the same value. Mathematically, this indiscernibility can be
rePresented as x,RIx, iff #yq = 2,4, where RY is a binary
relation over X x X. Obviously, R? is an equivalence rela-
tion, that partitions the universal set X into different equiv-
alence classes. This idea can be generalized to take some or
all the features into our consideration. Without loss of gen-
erality, based on a particular set of features, let R be an
equivalence relation on the universal set X. Moreover, let
X/R denote the family of all equivalence classes induced on
X by R. One such equivalence class in X/R, that contains
x € X, is designated by [x]r. Now, in any classification prob-
lem, the objective is to approximate the given outgmt class
A € X by X/R. For the output class A, we can define lower
R(A) and upper R(A) approximations, which approach A as
closely as possibly from inside and outside, respectively [56].
Here, R(A) = U{[x]r | [x]Ir € A, x € X} is the union
of all equivalence classes in X/R that are contained in A,
and R(A) = U{[x]r | [X]r N A # ¢, x € X} is the union of
all equivalence classes in X/R that overlap with A. A rough
set R(A) = (R(A), _R_(A)) is a representation of the given set
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A by R(A) and R(A). The set difference, R(A) — R(A), is
a rough description of the boundary of A by the equivalence
classes of X/R. The approximation is rough uncertainty free
if R(A) = R(A). Thus, when all the patterns from an equiv-
alence class do not carry the same output class labels, rough
ambiguity is generated as a manifestation of the one-to-many
relationship between that granule and the output class labels.

In ANN design, one critical problem is to determine how
many input units are essential. Obviously, it depends on the
dimension, i.e., the number of features present in the input
data. Using rough sets, in many cases, it is possible to decrease
the dimension of the input data without losing any informa-
tion. A set of features is sufficient to classify all the input pat-
terns if the rough ambiguity, i.e., the quantity (R(A)—-R(A
for this set of fga.tures ?sueci:xal to zerg. Thusy stigg 1hi?;(1ua)xz-,
tity, it is possible to select a proper set of features from the
given set of data [81].

In any classification task, all the features do not usually
carry equal weightage. Hence, to facilitate the ANN training
as well as to increase the classification efficiency, it is possible
to put different weightages on the collected input features so
that the class separability increases. The pro?er weightage
can be evaluated from the importance of each feature, which
can further be determined by rough sets [95]. In [80;1, it is
claimed that, for a classification task, the number of hidden
units needed in a feedforward neural network is equal to the
minimal number of features required to represent the data set
without increasing the rough uncertainty.

One way to accelerate the ANN training is, to initialize
the weights of the networks in such a manner that the initial
decision region is closer to the desired one. For that, a set of
tra.ininirdata is collected, and the knowledge extracted from
them through rough sets is used to initialize the ANN [5].

In [64], Lingras has proposed an architecture for rough neu-
ral networks, which consist of a combination of rough neurons
and conventional neurons. Here, rough neurons use pairs of the
upper and lower bounds as values for inputs and outputs. In
certain practical situations, like road traffic control, it is prefer-
able to develop prediction models that use tolerance ranges as
values for input and output variables. It implies that each in-
put value is a rough %attern represented in terms of the lower
and upper bounds. Following similar approach, Lingras has
applied [65] rough neurons in self-organizing map [38] for un-
supervised classification of rough patterns. The author has
demonstrated that, in the field of traffic control predictions
obtained using rough neural networks are significantly better
than the conventional ANN models.

In [109], it is argued that the underlying assumption of
the randomness of the sample elements of a population causes
each element of the gopula.tion to lose its specific detail and
identity, if it is described in terms of statistical parameters. In
contrast, rough sets enhance each object identity by looking
for its contexts in available data. They also claimed that the
conventional ANNs, which depend on some of the principles
of statistical regression and discriminant models, inherit the
drawbacks of statistics. In order to circumvent these problems,
they have proposed a rough neural network approach for faster
and more accurate data processing.

D. Chaos

In many simple physical systems, it has been observed that
there is no apparent relationship between causes and effects.
For example, while water falls from a tap, the flow remains
steady, laminar and regular for some time, and then it be-
comes unsteady, turbulent and irregular. Although the flow
rate is constant, the behavior of the water flow becomes un-

redictable. This kind of uncertainty, however, is not random
in the sense that gathering more information does not help to
avoid the uncertainty involved in the relationship between the
cause and the effect. Therefore, standard statistical results
cannot be applied here to solve this problem. Although the
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whole process is absolutely deterministic, this kind of apparent
randomness is, in fact, generated by small differences in the
initial values of the physical systems. This type of uncertaint;
has been termed as deterministic chaos or simply chaos [225
[41] [68]. Chaos theory attempts to explain the fact that com-
plicated and unpredictable results can occur in the systems
that are senmsitive to their initial conditions. A popular ex-
ample (known as butterﬁy effect [33]) of chaos states that, in
theory, the flutter of a butterfly’s wings in India could effect
weather patterns in New York City, thousands of miles away.
It implies that a very small occurrence can produce unpre-
dictable and sometimes drastic results by triglgering a series of
increasingly significant events [33]. The results of discovering
chaos are: (a) it draws a fundamental limit of the ability on
the prediction, and (b) many real life random phenomena are
more deterministic than that had been thought.

It has been claimed that chaotic dynamics exists in biolog-
ical neurons [35]. Nonlinearity in brain arises because biolog-
ical neurons contain appropriate feedbacks that can generate
rhythms, which are essential for regularizing the neural func-
tions. }fere, the neurons act as oscillators, and while trans-
ferring information throufh the interactions among these neu-
rons, chaos is generated. It has also been argued that stability-
plasticity in the brain is observed due to its ability to convert
the brain dynamics from highly ordered state to chaotic state
and vice versa. Naturally, in order to mimic the human reason-
ing on machines, we must exploit the chaos part that already
exists in the currently available feedback type ANNs. In fact,
the response of a feedback type ANN may be so sensitive to
the initial condition that unless a computer of infinite word
length is employed in the simulation, no long term prediction
is possible [77]. Such extreme sensitivity of feedback networks
is but one, among many, talltale manifestation of chaos.

The dynamics of a feedback neural network can be ex-
plained by a state space and a guideline, that describes how the
state evoﬁves over time. Any such network that comes to a rest
with the passage of time can be characterized by a fixed point
in the state space. In some cases, the system does not come
to the rest, but it txclw through a sequence of states to create
a periodic orbit. Any such region, where the system settles
down to, or attracted to, is termed as an attractor. There can
be several types of attractors like fized point, quasi-periodic,
periodic and strange atiractors. The strange attractor is an
example of chaotic attractor, whereas the fixed goint, periodic
and quasi-periodic attractors are not [106]. In the state space,
the orbits of the strange attractors sometimes diverge. But,
the divergence cannot be continued forever as the state space is
finite. Hence, the attractors must fold over onto itself. These
stretching and folding operations continue repeatedly, creating
folds witﬁin folds. Consequently, chaotic attractors generate
a fractal [69] like structure that reveals more and more as it
is increasingly magnified. This stretching operation systemat-
ically removes the initial information, and makes small scale
uncertainty large. The folding operation also removes the ini-
tial information, but makes large scale uncertainty small. If
we know the initial state of the network with some uncertainty
(due to measurement error), after a short period of time the
uncertainty specified initially covers the entire attractor and
all predictive power is lost, and therefore, there exist no rela-
tionships between the past and the future, or the cause and
the effect.

There are several avenues to exploit chaos under the ANN
paradigm. It is believed that several limitations of the existing
artificial neuron models are due to its grossly simplified struc-
ture. For example, the output of an ANN is smooth, whereas
the output of a biological neuron actually forms a train of elec-
trical spikes or neural pulses. Hence, using Hodgkin-Huzley cell
equations [52!, attempts are being made to create more com-
plicated artificial neuron models. In this approach, the chaos,
generated by Hodgkin-Huxley cell equations, is exploited for
g;oper functioning of the neurons. In an impressive work,

eeman and his co-workers have demonstrated that different
kinds of stimuli in animal cortex can be represented as chaotic
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attractors [113]. They successfully developed an artificial ol-
factory model, where the artificial neurons exploit chaos for
its functioning [27).

Another group of researchers, mostly engineers and math-
ematicians, are extending the existing artificial neurons to ex-

loit its chaotic behaviorsf!4?:} [99] [37]. Hence, they formu-
Pated different measures to find how chaotic the neural dynam-
ics is, and based on that, they control the chaotic behavior of
the neurons [72] [44]. Here, the chaotic variables may be the
output activities of the neurons, and the control parameters
may be the synaptic weights or the outputs of the external
neurons {13}, i,n many cases, however, the proposed models do
not have any direct physiological interpretation [13].

A large group of scientists are recently analyzing
the chaotic dynamics of the existing feedback type
ANNs [10;1&1[101.]. They are employing the periodic attrac-
tors, embedded in each chaotic attractor, to store the input
patterns. Following this strategy, in [11], a chaotic associative
memory is constructed. It has been observed that this type
of model has the possibility to store a huge number of spatio-
temporal patterns [3].

ur. CONCLUSION

From the above discussion it is evident that ANNs enable
computers to learn from the past data; evolutionary computa-
tion, fuzzy logic, rough sets and chaos allow the networks to
manage uncertainty better. Together, they create the abilg,iy
to solve many classes of human reasoning problems more effi-
ciently. However, to integrate evolutionary computation, fuzzy
logic, rough sets and chaos with the existing ANN models, the
designer must be able to identify what type of uncertainty
is present in the given problem. Unfortunately, probabilistic,
fuzzy, rough and chaotic uncertainties are often confused. In
fact, they are different facets of uncertainty. Fuzziness deals
with vagueness between the overlapping sets [52] [8] [10], while
probability concerns the likelihood of randomness of a phe-
nomenon {62]; on the other hand, rough sets deal with coarse
non-overlapping concepts [25] [26]. Both roughness and fuzzi-
ness do not depend on the occurrence of the event; whereas
probability does. Fuzziness lies in the subsets defined by the
linguistic variables, like tall, big, whereas indiscernibility is
a property of the referential itself, as perceived by some ob-
servers, not of its subsets [26]. In fuzzy sets, each granule of
knowledge can have only one membership value to a particular
class. However, rough sets assert that each granule may have
different membership values to the same class. Fuzzy sets deal
with overlapping classes and fine concepts; whereas rou%h sets

eal with nonoverlapping classes and coarse concepts. Chaos,
on the otherhand, deals with uncertainty which is created by
small differences in the initial values. This kind of uncertainty,
however, is not random in the sense that gathering more infor-
mation does not help to avoid the uncertainty involved in the
relationship between the cause and the effect. This is neither
fuzzy, nor rough, as it does not deal with overlapping classes
or coarse concepts.

The above discussed four paradigms along with the ANN
paradigm are collectively called soft computing paradigm; be-
cause they can tolerate imprecision, uncertainty and par
tial truth. Although, in this paper, we have discussed only
neuro-fuzzy, neuro-evolutionary and chaotic neurons, it is
possible to have more complicated fusions like neuro-fuzzy-
evolutionary [92], neuro-rough-fuzzy [9611, neuro-fuzzy-chaotic,
neuro-rough-fuzzy-evolutionary, etc. These integration tech-
niques are based on partnerships, in which each of the partners
g&n‘tsiribuges a distinct methodology for addressing problems in
1 omain.

There are several other attractive paradigms which can be
fused with the current ANN techniques, For example, Artifi-
cial Ant System [24], Cultural Evolution [6], Immunsty Net [45]
and DNA Computing [2], seem to be attractive and viable ap-
proaches that can be amalgamed with ANNs.

One key advantage of the ANN is that it is adaptive. Many
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existing paradigms can be fused into it easily. Although, as
of now there are no strict guidelines for developing hybrid
paradigms, the urge to develop models to perform human cog-
nition tasks will continue to motivate researchers to explore
new directions in this field.
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