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ABSTRACT 
In th last few years, there has been a large upswing in 

research activities aimed at s nthesizing artificial neural net- 
works with other well-establisied paradigms, like evolutionary 
computation, fuzzy logic, rough sets and chaos. In this paper, 
we briefly discuss the merits of these paradigms from artifi- 
cial neural networks point of view, and we illustrate haw these 
paradigms can be fused with the existing artificial neural net- 
work models to make the later one more efficient. 

I. INTRODUCTION 

Durin the past decade, there has been a considerable 
owth of interest in integrating Artificial Neural Network 

5 ” )  with other existing pardgms. This paper is intended 
to briefly review some of these integration attempts. 

ANNs are a new breed of information processing systems 
that are constructed to exploit some of the or anizational prin- 
ciples that characterize the human brain [114 [62]. The central 

parallel computational device for various computational tasks, 
that are erformed poorly b conventional serial computers. 
Models of ANN are specifidby three basic entities: models 
of the processing element, architecture, and learning laws [62]. 
ANNs have a large number of highly interconnected processin 
elements that generally operate in parallel, and are con re8 
in regular architectures. The collective behavior of anyNN,  
like a human brain, demonstrates the ability to learn [14] [12], 
recall [61 [71 [86], and generalize [lo31 from training pat- 
terns or kta. ‘khrough learning, the network architecture and 
the weights connecting the processing elements are updated 
such that a network can erform a specific human reason- 
ing task [SS], [46]. The tas! may be pattern association, pat- 
tern map ing pattern classification, pattern clustering, feature 
mappingfl14j [37 [38], etc. Pattern association task involves 
capturing a set o patterns or a set of input-output pattern 
pars in such a way that when a test pattern is presented, the 
pattern or pattern pair corresponding to the input pattern is 
recalled [114]. In pattern mapping or function approximation, 
given a set of input patterns and the corresponding output 
patterns, the objective is to capture the implicit functional r e  
ationship between the input pattern and the output, so that 

when a test input is given, the corresponding output pattern 
is retrieved [114]. In pattern classification, there is a fixed 
number of classes into which the input pattern has to be clas- 
sified 38 In the case of pattern clusterine the task is to 
identi& tke subset of patterns possessing simifar features and 
group them together. The idea of a feature map is to design 
a network that would organize the given set of patterns in ac- 
cordance with similarity of features among them. By looking 
at the out ut of the feature map network one can visually o b  
tain an &a of how different patterns are related [114]. To 
learn these tasks, there exist several learning laws, like Heb- 
bian learning law [36], perceptron learning law [87], backprop 
agation learning law [87], Boltzmann learning law [58] [36], 
etc. 

The learning law in an ANN basically optimizes certain o b  
jective function which reflects the constraints associated with 
the given task. A set of o tima in this objective function gen- 
erally corres on& to  digwent stable states of the network. 
Most of the gaming laws utilize gradient based approach for 

theme of the ANN research focuses on mode k ing the brain as a 
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this optimization purpose. However, due to  its deterministic 
nature, gradient based methods frequently get stuck in local 
optima or saddle oints. This is because, the step size and 
step direction of t f e  optimization process are dictated by the 
local information sup lied by the gradient. This drawback, 
however, can be avoiled by choosi the step sue and step 
direction stochasticall in a controlla manner. The efficiency 
of the search for the gfobal o timum can be enhanced further 
if it is carried out in parallef Evolutionary Computation [29j 
is one such biologically inspired method, where a population 
of solutions are probabilistically explored over a sequence of 
generations to reach the globally optimum solution. The inte- 
gration of the evolutionary computational technique into ANN 
models is called Neuro-Evolutiona. . technique which can be 
used to  enhance the learnin ca abz ty  of the A h  model 481. 

of a network and to  select the proper learning law [11Of 
In a classification task, an ANN is used to  find the decision 

re ions in the input pattern space. But, if the patterns from 
dAerent classes are overlapping, then it is difficult for the ANN 
to find the class boundary. In pattern mapping also similar 
problems may arise when the inputs or target outputs are ill- 
defined or fuzar. These situations are common in many pattern 
reco ition tasks because of inherent fuzziness associated with 
the E m a n  reasoning. The pattern recognition capability of 
ANNs can be made powerful, if fuzzy logic is incorporated 
into the conventional ANN models. The resulting systems are 
called N e u r o - k q  systems [62] [49]. 

In some cases, ANN training faces difficulties to find a 
class boundary when the same input trainin pattern belongs 
to one class in some examples, and to  anot%er class in some 
other examples. This scenario is due to  the presence of mu h 
uncertainty, which arises from the indiscemibility of the o!- 
jects based on the input features. The classification ability of 
an ANN can be significantly improved if the input data set is 
processed to reduce the rou h uncertainty. Motivated by this 
idea, a new promising areatased on Neuro-Rough synergism 
is emergng. 

The ability of a feedback network to store patterns can 
be improved, if we can exploit the chaotic part of the net- 
works dynamics. This observation has resulted in proposing 
h brid neurons, known as chaotic neurons. Different models 
ofychaotic neurons are studied, and initial results are quite 
promising [3]. 

This technique is also u s e d t o  $etermine the suitable to o I ogy 

11. R E C E N T  MERGING TECHNIQUES 

A. Evolutionary Computation 

Evolutionary computation (EC) [29] is a technique to en- 
compass a variety of population-based problem solving tech- 
niques that mimic the natural process of Darwinian evolu- 
tion. Current research in the evolutionary computation has 
resulted in powerful and versatile problem solving mechanisms 
for global searching, adaptation, learning and optimization 
in a variety of pattern recognition domams. The main av- 
enues for research in evolutionary computation are genetic 
algorithms [42] [34], genetic programming [60], evolutionary 
strategies [98 and evolutionary pmgmmming [31] [28] [30 G e  

netic programming stresses on operators opmore general hier- 
archical structures. Evolutionary strategies emphasize behav- 
ioral changes at the level of the individual, whereas evolution- 
ary programming focuses on behavioral changes at the level 

netic algorit h ms deal with chromosomal o erators, whi I; e ge- 
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of the species. The common factor underlyine all these a p  
proaches is the emphasis on an ensemble of solution structures, 
and the evaluation and evolution of these structures through 
specialized operators that mimic their biological counter arts 
in response to an ever chancing environment. specificalfy, ali 
of them maintain a population of trial solutions, im ose ran- 
dom changes to those solutions, and incorporate t t e  use of 
selection to determine which solutions are to be maintained 
into future generation and which are to be removed from the 
pool of trials. 

&om a mathematical point of view, all the EC tech- 
niques are controlled, parallel, stochastic search and optimiza- 
tion techniques. Since different learning techniques used in 
ANNs hin e on the o timization of various objective functions, 
it is possiile to empfoy the EC for learning weights, learning 
network architectures, learning the learning laws, input fea- 
ture selection and so on [110]. For instance, in a feedforward 
neural network, gradient based local search methods [38] can 
be substituted by the EC for weight training [84] [88]. In 
some cases, a more ambitious approach may be to ex loit lo- 
cal search methods, like gradient descent, and globapsearch 
methods like EC simultaneously [85]. The advantages of lo- 
cal s e ~ &  methods are better accuracy and fast computation. 
The disadvantages of the local search methods are stagnation 
at the subo timal solutions and sensitiveness to the initialii% 
tion. The EC, on the otherhand, is a global search method 
which can avoid local o tima, and does not have the initial- 
ization problem [97]. $owever, the EC can suffer from ex- 
tremely slow convergence before arriving at the accurate solu- 
tion. This is because, the EC uses minimal a priori knowledge, 
and does not exploit available local information [85]. In fact, 
in the search space the EC is good for exploration, whereas 
the gradient descent is good for exploitation. Therefore, by 
utilizing both of them, merits of both methods i.e. speed, 
accuracy reliability and com utation time can be obtained. 
Yao et a!. [lll] have propowx!one such method to evolve the 
topolo (weights and architecture) of a feedforward neural 
networq where they exploit both evolutionary programming 
and backpropagation algorithm [87], simultaneously. 

In the EC techniques, the whole population set evolves over 
and over again generations after generations. At the last gen- 
eration the network which has the highest fitness is considered 
to be the desired optimal network for the iven task. Instead 
of choosing a single network as the desiref network, in [112], 
all the networks in the population are considered as the de- 
sired networks. Here, the final result is obtained by combinin 
all the individuals in the last generation to make best use of 
all the information contained 111 the whole population. This 
result, in fact, confirms the fact that a population contains 
more information than a single individual, and the EC is used 
to exploit that. In particular, in [112], the classification out- 
puts of all the networks in the population are combined and 
thereafter, the output class is determined by a majority voting 
scheme. 

There are, two different a proaches to evolve the topology 
of the networks using the E 8  In one method (also known as 
Pitt’s a pmach in genetic algorithm community [70]), each ele- 
ment orthe o ulation represents one complete network. Con- 
sequent1 wtoye population is an ensemble of many networks 
with d i g e n t  topologies. In the process of evolution they com- 
pete among themselves, the weak individual dies, the strong 
survives and reproduces. In the other approach (also known as 
Michigan 4 pmach in genetic algorithm community [70]), the 
whole popufation represents only one network, i.e., each mem- 
ber of the opulation represents a part of the network. The 
second metfod is more time and space efficient. But it needs 
(a) delicate credit assipments, for which a heuristic method 
should distribute positive or ne ative credits among the mem- 
bers of the population, and (b) &e members of the population, 
i.e., dil€erent parts of the network, to cooperate with each other 
90 that they can build the complete network [70] [108]. 

In [lo81 [107] [ll], the EC-based techniques are successfully 

used to optimally configure radial basis function networks so 
that the networks generalize well. In another significaut d e  
velopment, An eliie et al. 41 have used the EC to con 

based a3proach is com letely uselless here as it nee& the ob- 
jective !unction to  be tfifferentiable. Using the EC, Jockusch 
et al. [50] have introduced an at&ractive self-organizing map 
[57] training strategy, where it is possible to  find the number 
of self-organizing map output units automat+ly. Moreover, 
in their scheme the training of the self-orgamzmg ma 
likely to1 be stuck in local optima. In literature, the%: 
been used for clustering also [89] [97]. Here, the roposed 
algorithim automatically finds the optimal number o f  clusters 
present in the input data set. Therefore, the clustered output 
can furtlher be used to construct a probabilistic neural network 
optimally [92]. Currently, researchers are working on different 
evolutionary methods, which can be utilized to learn wei hts, 
architectures and learnin laws, simultaneous1 (1101. Aow- 
ever, the problem here is &at the search space &r this type of 
problem becomes prohibitive1 large and it needs an enormous 
amount of computing time. $hew! drawbacks can be removed 
if parallel machines are used to implement the search o era- 
tion, or the search operation is made more efficient aniless 
time consuming using adaptive EC operators [loo] [67] [93]. 

recurrent n e u d  networks. [I t should be noted that gr P ent 

B. Fuziiy Logic 

The concept of fuzzy sets was &st introduced by L. Zadeh 
in 1965 [115], as a mathematical way to  represent vagueness 
present im the human reasoning. Fuzzy sets can be considered 
as a generalization of classical set theory. In the classical set, 
an element of the universe either belon to  or does not belong 

either yes (in the set) or no (not in the set In fuzzy sets, the 

or no; for example, a set of tall persons. We cannot identify a 
person as tall in a ges/no manner, as there does not exist any 
well-defined boundary for the set tall [75]. Mathematically, a 
fuzzy set, is a mapping (known as membership function) from 
the univcm of discourse to  [0, 11. The higher the membership 
value of an input pattern to  a class the more is the belong- 
ingness of the pattern to  the c l w  1511 [52]. Therefore, any 
concept that uses fuzzy sets requires the membershi func- 
tion to be defined. There may be various possible memEership 
functions for the set tall. Non uni ueness of membership func- 
tions may raise a question: how 8oes a designer know which 
one to we? In fact, the designer can obtain the membership 
function &om an expert (subjective computation) or from the 
data (objective computation) [75] 171 [lo] 91. Following the 

eralized it0 &my numbers [53]. The reasoning with fuzzy sets 
and fuzzy numbers is known as fuzzy logic [59]. 

ANNs ado t numerical computations for learning; how- 
ever, numeric3 quantities evidently sufEer &om a lack of rep- 
resentative power [76]. There are many applications where 
information cannot be obtained in terms of numerical values- 
rather it is ossible to represent tlhe information in linguistic 
terms only 631. In a washing machine the input and output of 
the machine can only be represented in linguistic terms, like 
dirtg clothes, clean clothes, etc. The linguistic terms, dirty 
and clean do not have any precise numerical value as the con- 
cepts of dirty and clean are overla ping and there is no strict 
boundary between them. TherAre, it the operation of the 
washing machine is to be modeledl by an ANN, it should be 
capable of dealing with the fuzziness associated with the lin- 
gulstic terms. While training an ANN for a classification task, 
we generally use crisp target values, which can be either zero 
or one. This kind of target assignment can be generalized by 
exploiting fuzzy sets, where target valuea can be anything in 
between zero and one. Use of hzzy concepts in ANNs are 
also supported b the fact that the ps &&physiological pro- 
cess invol~ved in tKe human reasoning &es not employ precise 
mathematical formulation [73]. Specifically, fuzzy theory can 

to a set. That is, the belongingness of t  T e element is crisp-it is 

belongngness of the element can be anyt A ng in between yes 

idea of fuzz sets, the concept of crisp num t ers has been gen- 
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be incorporated in an ANN at the following levels: (a) at out- rt and target levels, (b) at in ut level, and (c) at each neuron 
evel in terms of weight value,%asis function and output func- 

tion. The appropriate level of incorporation of fuzzy theory 

For a classification task, perceptron algorithms exhibit 
an erratic behavior when the data is not linearly separable. 
In [55], fuzzy set theor is introduced into the perceptron ob- 
jective function to ame%orate this convergence problem in lin- 
early nonseparable cases. This improvement is possible, b e  
cause introduction of fuzzy sets into the learning algorithm 
makes the decision boundary a soft one, that is, near the de- 
cision boundary, class labels of the input pattern space slowly 
change &om one class to another class. 

In [91] [74], ANN outputs are interpreted as fuzzy member- 
ship values, and using this idea the conventional mean uare 
error objective function has been extended to various%zzy 
objective functions. Here, the learning laws are derived by 
minimizing the fuzz ob&ctive functions in a gradient descent 
manner. In [94] [9lf a similar idea is employed to extend the 
concept of cross entro y [23] which is another popularly used 
crisp error function. & has been found that incorporation of 
fuzziness in the objective functions leads to better classifica- 
tion rate. 

A neural network reinforcement learning al orithm with 
linguistic critic signals like good, bad, is propose% in [63j. The 
network is able to process and learn numerical information as 
well as linguistic information in control theoretic applications. 

algorithms, 
namely the unsupervised competitive learning, 5earning vec- 
tor uantization, and fiequenc sensitive competitive learning, 
are gzzified to form a class of kzzy competitive learning algo- 
rithms. Unlike the crisp counterpart, where only one output 
unit wins, here all the output units win with dfierent degrees. 
Thus the concept of win has been formulated as a fuzzy mem- 
bersdp function. It has been observed that this scheme leads 
to better convergence and better classification rate. 

In 1102 Kohonen's clustering network has been general- 

is that final weight vectors of the clustering network do not 
depend on the input se uence. Moreover, it uses a systematic 
approach to determine %e learning rate parameter and size of 
the neighborhood. 

A fuzzy adaptive resonance theory model, capable of rapid 
learning of recognition categories in response to an arbitrary 
sequence of binary input patterns, is proposed in [15]. This 
upgradation from binar ARTl [32] to fuzzy ART is achieved 
by converting the crisp 3bgical operators used in binary ARTl 
to the corresponding fuzzy logical operators. As a result of 
this U gradation, the learning becomes fast, and previously 
learn2 memories are not rapidly erased in res onse to sta- 
tistically unreliable input fluctuations. Fuzzy AgTMAP pro- 
vides a more powerful realization of ART concepts [IS]. It can 
autonomously learn, recognize and make prediction. 

Wang et al. [lo51 have proposed fuzzy basis functions to 
design a radial basis function network 381, which can accept 

In [82], Pedrycz has proposed an ANN model based on 
fuzzy logical connectives. Instead of using linear basis func- 
tions, he has utilized fuzzy aggregation operators. In [83] 
and [40], this technique has been extended to a more general 
one where inhibitory and excitatory characteristics of the in- 
puts are captured b em loying direct and complemented, i.e., 
negated input sign&. &e advanta e of this approach is that 
problem specific fuzz a priori knAedge can be incorporated 
into the network easiTy. 

In 471, Ishibuchi et al. have proposed an ANN learning 

if-thenrules, can be exploited to learn the information supplied 
by the numerical data. This type of approach has been used 
for both function approximation and classification. The whole 

on the given problem. 

In [21], three existing competitive learnin 

ized to its kl zzy Counterpart. One advantage of this approach 

both numerical inputs as well as fuzzy I inguistic inputs. 

algorit I m where expert's a priori knowledge, in terms of fuzzy 

scheme is based on clever manipulations of fuzzy numbers. 
In [58], Kosko generalized the concept of conventional 88- 

sociative memory [58] to fuzzy associative memory. Unlike 
conventional associative memory, where the association is b e  
tween two crisp sets, here the association is between two fuzzy 
sets. 

In man complicated problems it is beneficiarl to divide 
the origidpattern recognition task into several smaller sub- 
tasks and combine their individual solutions. Each of these 
subtasks can be accomplished by a neural subnetwork. The 
conflicting information sup lied by the information sources, 
i.e., the subnetworks, can l e  fused by applying the concept 
of fuzzy integral [54]. Instead of treating each module iden- 
ticall the subjective evaluation potential of fuzz integral- 
b d m e t h o d  stresses on those modules or sets of modules, 
which suppl the most evidence toward the determination of 
the output 681 [17] [go]. 

In addition to the above applications fuzzy theory can 
be employed to speed U the trainin oi  an ANN. In [19], 
a fuzzy rule base is d t o  dynamidly adapt the learning 
rate and momentum parameters of a feedforward neural net- 
work with back ropagation learning algorithm. In a similar 
approach [20], 8hoi et al. have proposed an incremental u p  
dating scheme to control the value of vigilance parameters of 
ART networks. 

c. Rough Seta 

In any classification task the aim is to form various classes 
where each class contains objects that are not noticeably dif- 
ferent. These indiscernible or indistinguishable objects can be 
viewed as basic building blocks (conce ts used to build up 
a knowledge base about the real world! do* example, if the 
objects are classified according to color (red, black) and shape 
(trian le, square and circle), then the classes are: red trian- 
gles, dack squares, red circles, etc. Thus, these two attributes 
make a partition in the set of objects and the universe becomes 
coarse. Now, if two red trian lea with different areas belong to 
merent clawes, it is impossifie for anyone to correctly classify 
these two red triangles based on the given two attributes. This 
kind of uncertainty is referred to as rough uncertainty [78] [80]. 
The rou h uncertainty is formulated in terms of rough seta [79]. 
Obviousfy, the rough uncertainty can be completely avoided if 
we can successfully extract the essential features so that dis- 
tinct feature vectors are used to represent Werent ob'ects. 
But, it may not be possible to garantee as our knowledge 
about the system generating the 

In any classification problem two input training patterns 
x ,  and xu (where xr, xu E d, the set of all input train- 
ing patterns) are called indiscernible with respect to the qth 
feature, when the qth component of these two patterns have 
the same value. Mathematically, this i n d i m b i l i t y  can be 
re resented as xvRqx,  if€ Z+q = 2. ,.where Rq is a binary 
regtion over X x X. Obviously, R2 is an equivalence rela- 
tion, that partitions the universal set X into different equiv- 
alence classes. This idea can be generalized to take some or 
all the features into our consideration. Without loss of gen- 
erality, based on a particular set of features, let R be an 
equivalence relation on the universal set X. Moreover, let 
X/R denote the family of all equivalence classes induced on 
X by R .  One such equivalence class in X/R, that contains 
x E X is designated by [ x ] ~ .  Now, in any classification prob- 
lem, the objective is to appraximate the given out ut class 
A C X by X/R. For the output class A, we can deffne lower 
R(A) and upper R(A) approximations, which approach A as 
closely as possibly &om inside and outside, respectively [56]. 
Here, R(A) = U{[X]R 1 [ x ] ~  E A, x E X} is the union 
of all equivalence classes in X/R that are contained in A, 
and B(A) = u([X]R I [ x ] ~  fl A # 4, x E X} is the union of 
all equivalence classes in X/R that overlap with A. A rough 
set R(A) = (E(A), €L(A)) is a representation of the given set 

ta is limited. 

- 
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A by &(A) and a ( A  . The set difference, a(A) - &(A), is 

classes of X/R. The approximation is rough uncertainty free 
if WA) = R A). Thus, when all the patterns from an equiv- 
alence classdo not carry the same output class labels, rough 
ambiguit is generated as a manifestation of the onetemany 
relationszip between that granule and the output class labels. 

In ANN design, one critical problem is to determine how 
many input units are essential. Obviously, it depends on the 
dimension, i.e., the number of features present in the input 
data. Using rou h sets, in many cases, it is ossible to decrease 
the dimension ogf the input data without gsing any informa- 
tion. A set of features is sufficient to classify all the input pat- 
terns if the rou h ambiguity, Le., the quantity (W(A) -HA)), 
for this set of &tures is equal to zero. Thus using this quan- 
tity, it is possible to select a proper set of h a r e s  from the 
given set of data [81]. 

In any classification task, all the features do not usually 
carry equal weightage. Hence to facilitate the ANN training 
as well as to increase the c1ass)ification efficiency, it is possible 
to put different weightages on the collected input features so 
that the class separability increases. The pro er weightage 
can be evaluated from the importance of each k t u r e ,  which 
can further be determined by rough sets [95]. In [BO it is 
claimed that, for a classification task, the number of bidden 
units needed in a feedforward neural network is equal to the 
minimal number of features required to  represent the data set 
without increasing the rough uncertainty. 

One way to accelerate the ANN training is, to initialize 
the weights of the networks in such a manner that the initial 
decision region is closer to  the desired one. For that, a set of 
trainin data is collected, and the knowledge extracted from 
them t!rough rough sets is used to  initialize the ANN [5]. 

In [64], Lingras has proposed an architecture for rough neu- 
ral networks, which consist of a combination of rough neurons 
and conventional neurons. Here, rough neurons use pairs of the 
upper and lower bounds as values for in uts and outputs. In 
certain practical situations, like road t r d c  control, it is prefer- 
able to develop prediction models that use tolerance ranges as 
values for input and output variables. It implies that each in- 
put value is a rough attern represented in terms of the lower 
and upper bounds. bollawing similar approach, Lin as has 
applied [65] rough neurons in self-organizmg map [38Eor un- 
supervised classification of rou h patterns. The author has 
demonstrated that, in the fielrfof traffic control predictions 
obtained using rough neural networks are significantly better 
than the conventional ANN models. 

In [log], it is argued that the underlying assumption of 
the randomness of the sample elements of a population causes 
each element of the opulation to  lose its specific detail and 
identity, if it is descriged in terms of statistical parameters. In 
contrast, rough sets enhance each object identity by looking 
for its contexts in available data. They also claimed that the 
conventional ANNs, which depend on some of the principles 
of statistical regression and dwriminant models, inherit the 
drawbacks of statistics. In order to circumvent these problems, 
the have proposed a rough neural network approach for faster 
anfmore accurate data processing. 

a rough description o 2 the boundary of A by the equivalence 

D. Chaos 

In many simple physical systems, it has been observed that 
there is no apparent relationshi between causes and effects. 
For example, while water falls %om a tap, the flow remains 
steady, laminar and regular for some time, and then it be- 
comes unsteady, turbulent and irregular. Although the flow 
rate is constant, the behavior of the water flow becomes un- 
predictable. This kind of uncertainty, however is not random 
in the sense that Fatherin more information does not help to 
avoid the uncertlunty invJved in the relationship between the 
cause and the effect. Therefore, standard statistical results 
cannot be applied here to  solve this problem. Although the 

whole pralcess is absolutely deterministic, this kind of apprent  
randomness is, in fact, generated by small differences in the 
initial values of the physical systems. This type of uncertaint 
has been termed as deterministic chaos or simply chaos [2$ 
[41] [68 . Chaos theory attempts to  explain the fact that com- 

that are sensitive to their initial mnditions. A popuar ex- 
ample (known as butte y e&t [33u of chaos states that in 

weather patterns in New York City, thousands of miles away. 
It implies that a very small occurrence can produce unpre 
dictable and sometimes drastic results by triggering a series of 
increasingly significant events [33]. The results of discovering 
chaos are: (a) it draws a hndamelotal limit of the ability on 
the prediction, and b) many real life random phenomena are 

It has been claimed that chaotic dpamics exists in biolog- 
ical neurons [35]. Nonlinearity in b r a  arises because biolog- 
ical neurons contain appropriate feedbacks that can generate 
rhythms which are essential for regularizing the neural func- 
tions. &e, the neurons act as oscillators, and while trans- 
ferring information throu h the intrxactions among these neu- 
rons, chaos is generated. & has also been argued that stabdity- 
plasticity in the brain is observed due to its abilit to convert 
the brain dynamics from highly ordlered state to  &ot ic  state 
and vice versa. Naturally, in order to mimic the human reason- 
ing on mahiines, we must exploit the chaos part that already 
exlsts in the currently available feedback type ANNs. In fact, 
the response of a feedback type ANN may be so sensitive to 
the initid condition that unless a computer of infinite word 
length is employed in the simulation, no long term prediction 
is ossible [77]. Such extreme sensitivity of feedback networks 
is &ut om., among many, talltale manifestation of chaos. 

The dlynamics of a feedback neural network can be ex- 
plained b r a state space and a guideline, that describes how the 
state evofves over time. Any such network that comes to a rest 
with the passage of time can be characterized by a fixed point 
in the state space. In some cases, the system does not come 
to the resit, but it c cles through a sequence of states to create 
a periodic orbit. i n y  such region, where the system settles 
down to, or attracted to, is termed as an attmctor. There can 
be severdl t pes of attractors l i e  ed point, quasi-periodic, 

example of chaotic attractor, whereas the fixed oint, periodic 
and quasi-periodic attractors are not [106]. In t i e  state space, 
the orbits of the strange attractom sometimes diverge. But, 
the divergence cannot be continued forever as the state space is 
finite. Hence, the attractors must told over onto itself. These 
stretchin , and foldin operations continue repeatedly, creating 
folds wit !in folds. tonsequently, chaotic attractors generate 
a fractal 169 like structure that reveals more and more as it 

ically remioves the initial information., and makes small scale 
uncertainty large. The foldin operation also removes the ini- 
tial information but makes krge scale uncertainty small. If 
we know the inihal state of the network with some uncertainty 
(due to measurement error after is short period of time the 

all predictive power is lost, and therefore, there exist no rela- 
tionships between the past and the future, or the cause and 
the &ect. 

There are several avenues to  exploit chaos under the ANN 
paradigm. It is believed that several limitations of the existing 
artificial neuron models are due to its ossly simplified struc- 
ture. For example, the output of ~LI A% is smooth, whereas 
the output of a biolo 'cal neuron actually forms a train of elec- 
t r i d  spikes or neur6;" pulses. Hence, using Hodgkin-Huxley cell 
e ations [58 , attempts are bein made to create more com- 

generated by Hodgkii-Hwley cell equations) is exploited for 
p p e r  functioning of the neurons. In an un ressive work, 

eeman ;md his co-workers have demonstrateathat different 
kinds of stimuli in animal cortex can be represented as chaotic 

Pms plicat eil and unpredictable results can occur in the s 

theory, the flutter of a T! utterfly's "rigs in India could dect 

more dettaministic t 6 an that had been thought. 

periodic ancfrstmnge attmctors. T f e strange attractor is an 

is increasing 1 y magnified. This stretching operation systemat- 

uncertainty specified initi P y covers the entire attractor and 

p r a t e d  arti f! cial neuron models.% this approach, the chaos, 
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attractors 11131. They successfully developed an artificial ol- 
factory model, where the artificial neurons exploit chaos for 
its functioning [27]. 

Another group of researchers? mostly en@" and math- 
ematicians, are extending the &in artificial neurons to ex- 
ploit its chaotic behaviors 43 [99] 371. Hence, the formu- 
ated different measures to Jnd how l ao t i c  the neurajfdynam- 

ics is, and based on that, they control the chaotic behavior of 
the neurons 1721 [U]. Here, the chaotic variables may be the 
output activlties of the neurons, and the control parameters 
may be the s naptic weights or the outputs of the external 
neurons [13]. &I many cases, however, the proposed models do 
not have any direct physiological interpretation [13]. 

A large group of scientists are recently analyzing 
the chaotic dynamics of the existing feedback type 
ANNs [lo4 101. They are employing the periodic attrac- 
tors, emb JJ ed in each chaotic attractor, to store the input 
patterns. Following this strate in [l a chaotic associative 

of model has the possibility to store a huge number of spaticr 
temporal patterns [3]. 

III. CONCLUSION 
From the above discussion it is evident that ANNs enable 

computers to learn from the past data; evolutionary com uta- 
tion, fuzzy logic, rough sets and chaos allow the networL to 
manage uncertainty better. Together, they create the abilit 
to solve many classes of human reasoning problems more e d  
ciently. However, to  integrate evolutionary computation, fuzzy 
logic, rough sets and chaos with the existmg ANN models, the 
designer must be able to  identify what type of uncertainty 

memory is constructed. It has T i  een o served that this type 

non-overlapping concepts [25] [26]. Both roughness and fuzzi- 
ness do not depend on the occurrence of the event; whereas 
probability does. Fuzziness lies in the subsets defined by the 
linguistic variables, like tall, big, whereas indiscernibility is 
a property of the referential itself, as perceived by some ob- 
servers, not of its subsets [26]. In fuzzy sets, each granule of 
knowledge can have only one membership value to a particular 
class. However, rough sets awert that each granule may have 
different membership values to  the same class. Fuzzy sets deal 
with overlapping classes and fine concepts; whereas rou h sets 
deal with nonoverla ping classes and coarse concepts. bhaos, 
on the otherhand, &ills with uncertainty which is created by 
small differences in the initial values. Thls kind of uncertainty, 
however, is not random in the sense that gathering more infor- 
mation does not help to  avoid the uncertainty involved in the 
relationship between the cause and the effect. This is neither 
fuzzy, nor rough, as it does not deal with overlapping classes 
or coarse concepts. 

contributes a distinct methodology for addressing problems in 
its domain. 

There are several other attractive paradigms which can be 
fused with the current ANN techniques. For example, Artifi- 
cial Ant System (241, Cultural Evolution [6], Immunsty Net [45] 
and DNA Computing [2], seem to be attractive and viable a p  
proaches that can be amalgamed with ANNs. 

One key advantage of the ANN is that it is adaptive. Many 

existing paradigms can be fused into it easily. Although, as 
of now there are no strict guidelines for develo ing hybrid 

nition tasks will continue to motivate researchers to explore 
new directions in this field. 

paradigms, the urge to develop models to perform Yl uman cog- 
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