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ABSTRACT 
While desi ning radial basis function neural networks for clas- 
sification, kzzy clustering is often used to position the hidden 
nodes in the input space. The main assumption of the clus- 
tering is that similar inputs produce similar out uts. In other 
words, it means that any two in ut patterns t o m  the same 
cluster must be from the same cfass. Generalization is pos- 
sible in the radial basis function neural networks due to this 
similarity pro erty. In many real life applications, however, 
two atterns f?om the same cluster belon6 to different classes, 
and [ence, classification based on mere similarit pro erty is 
inadequate. This problem arises because the a d a b l e  L t u r e s  
are not sufficient to discriminate the classes. It implies that 
the fuzzy clusters generated by the input featuses have rough 
uncdaint This paper proposes a fuzzy-rough set based net- 
work Whig loits fuzzy-rough membership functions to r e  
duce this r s e m .  The proposed network is theoretically a 
powerful cfassifier as it is equivalent to a u n i d  appraxima- 
tor. Moreover its activity is transparent as it can easily be 
mapped to a Takagi-Sugeno type fuzzy rule base system. The 
efficacy of the proposed method is studied on a vowel recogni- 
tion problem. 
Keywords: Fuzzy sets, rough sets fuzzy-rou h sets, cluster- 
ing, fuzzy-rough membership fundons, radiaf basis function 
networks, Takagi-Sugeno type fuzzy rule base systems. 

I .  INTRODUCTION 
Among various kinds of neural networks, feedforward neu- 

ral networks, based on the backpropagation learning alge 
rithm [5] ,  are extensively used for pattern classification. Haw- 
ever, a major drawback of the backpropagation al orithm is 
that it may not ensure successful learnin because ofqocal min- 
ima problems and a lon training time. 1 radial basis function 
neural network (RBFNh) [5 , a class of three layered feedfor- 

capability than the other feedforward neural networks witf 
back ropagation learning algorithm. However, the RBFNN 
empgys one hidden node com letely for each input trainin 
pattern, and hence, it suffers lorn a huge memory overhA 
while learning a large number of trainin examples. Moreover, 
the presence of a large number of hid%en nodes in turn in- 
creases the time required to classify each test attern. Hence, 
supervised ox unsupervised fuzzy clustering ot the input data 
set is used to put a bigger Gaussian at each hidden node, 
which subse uently reduces the number of hidden nodes. The 
main idea o? using fuzzy clusterin is that if two input pat- 
terns are similar, i.e., close neighfors in the input pattern 
%ace, then the class labels associated with them will be same. 

hen a new pattern is presented at the in ut layer of the 
network, the network classifies precisely b d o n  this similar- 
ity or neighborhood property. Thus, the inherent similarit 
or neighbourhood property of the clusters leads the networz 
to generalize. Since each cluster in the pattern s e repre- 
sents certain common pro erty, it is logical that tr atterns 
from the same cluster wilPalso belong to the same &ws. In 
real life cases, however, we cannot extract all the relevant fea, 
tures necessary for the classification. Consequently, two pat- 
terns may have similar features, but they are not similar if 
the other features, including the existing ones, are accounted 
for. Therefore, when the input patterns are clustered based on 

ward neural networks, has I aster local minima free learnin 
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the available features, two ap arently similar ox neighboring 
patterns may have dfferent c!ass labels. Thus the cluster- 
ing techni ues are not helpful to reduce the number of hidden 
nodes as &e same cluster ma have more than one pattern 
belongin to different classes. ft makes the output classes in- 
dtscern;b?e or indistin ishable based on the given set of fea- 
tures. For example, i E h e  objects are classified accordin to 
color (red, black) and shape (triangle, y a r e  and circle), &en 
the indiscernible classes are: red triang es, black squares, red 
circles, etc. Thus these two attributes make a partrtion or 
forms clusters in the set of objects and the universe becomes 
mrse. Now, if two red triangles with Merent  areas belong 
to Werent classes, it is impossible for anyone to classify these 
two red triangles based on the given two attributes. This kind 
of uncertaint is referred to  as rough uncertainty 111. One 

the essentiaffeatures 90 that distinct feature vectors are used 
to represent dierent  objects. But, it may not be possible to 
guarantee this as our knowledge about the system generating 
the data is limited. Another way to avoid rough uncertainity 
is to break the clusters further 90 that they $0 not contain 
any pattern from the other classes. This is difficult as each 
fuzzy cluster overla s patterns from the other classes to some 
extent. Moreover, &e breakin of clusters means destruction 
of the similarity property, whicf in turn means the destruction 
of the generalization pro ert In addition, if the clusters are 
broken too much, then t%e h F N N  training may need large 
space and high time complexity. 

In this paper, we attem t to reduce the effect of xou h 
uncertainity, while keeping t t e  similarit property intact. 
tackle the similarity property we need fuzzy sets [7], and to 
tackle the roughness we need rou h sets [ll]. Since both 
fuzziness and roughness are present%ere, we incorporate both 
fuzzy and rough sets on a common platform, called jkzy-rough 
sets [3]. To manipulate the fuzzy-rough sets, we use jkw- 
rough membershi fitnctions [16]. The fuzzy-rough member- 
ship function is &her exploited to construct a fitzq-rough 
n e u d  network (FRNN). Basically, the FRNN uses the fuzzy 
linguistic uncertainity involved in the input data set and the 
roughness present in the input-out ut relationship. On the 
otherhand, the RBFNN captures onp the fuzzy lin uistic un- 
certainity. Althou h in absence of tKe rou hness &e F R ”  
behaves like an FbFNN, in resence of t%e rou hness the 
FRNN performs significantly getter than its RBI!” coun- 
terpart. One advantage of the classification procedure used in 
the FRNN is that it is possibilistic [7]. Specifically, it is useful 
when the output of the FRNN is a p n  used for further classi- 
fication. Theoretically, the F R ”  IS a powerful classifier as it 
can be shown to be a universal ap roximator. Unlike-the feed- 
forward neural networks with b&ropagation algorithm, the 
FRNN does not act like a black boz, but works like a transpar- 
ent one. In fact the FRNN can be viewed as a Takagi-Su eno 
ty e fuzzy rule base system [5 181. This trans arepcy ai& us 
togave a eater insi ht abou U he whole class&ation process 
performzb the F R h .  Moreover the FRNN can be used to 
extract the Lzzy rules hidden inside the data. 

way to com fetely avoid the rough uncertainity is L o extract 

11. BACKGROUND 

A. Rough Sets 

Let R be an uivalence relation on a universal set X. 
Moreover, let XIRe8enote the family of all equivalence classes 
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induced on X by R.  One such equivalence class in X / R ,  that 
contains x E x, is designated by [+. For any output class 
A C X ,  we can define the lower @ A )  and upper R(A)  approx- 
imat ioy which approach A as closely as possibE from inside 
and outside, respectively [7]. Here, 

- R(A) = U{[Z]R I [SIR C A, 2 E X} (1-4 
is the union of all equivalence classes in X / R  that are contained 
in A, and 

- 
R(A)  = U{[x]R I [x]R n A # 4, E X} (2) 

is the union of all equivalence classes in X / R  that overlap 
with A.  A rough set R(A)  = ( z ( A ) , R ( A ) )  is a representation 
of the given set A by &(A) and R ( A )  [12]. The set B N ( A )  = 
R(A) - &(A) is a rough description of the boundary of A by 
the equivalence classes of X / R .  The approximation is rough 
uncertainty free if E(A) = R(A). Thus, when all the patterns 
from an e uivalence class & not carry the same output class 
label, rou& ambipit  is enerated as a manifestation of the 
oneto-many relationhp %etween that equivalence class and 
the output class labels. 

The rough memberahip function ?-A($) : A -b [0, 11 of a 
pattern x E X for the output c1ass.A is defined by [19] 

- 

where IlAll denotes the cardinality of the set A. 

B. Fuzzy Sets 
In traditional two-state classifiers, where a class A is de- 

fined as a subset of a universal set X, any input pattern x € X 
can either be a member or not be a member of the given class 
A. This propert of whether or not a pattern x of the universal 
set belongs to t i e  class A can be defined by a chamcteristic 
function pa : X + {O,1} as follows: 

1 if and only if x E A { 0 if andonly if x 4 A 
In real life situations, however, boundaries between the classes 
may be overlapping. Hence, it is uncertain whether an input 
pattwn belongs total1 to  the class A.  To take care of such sit- 
uations, in fuzzy sets 711 the concept of characteristic function 
has been modified to memberahi function p~ : X 4 0, 11. 

value of the function denotes more membership of the element 
to the set under consideration. 

C. ELough-Fuzzy Sets 
Let X be a set, R be an equivalence relation defined on X 

and the output class A E X be a fuzzy set. A rough-fuzzy 
set is a tuple @(A), &(A)), where the lower approximation 
- R(A)  and the upper approximation X ( A )  of A are fuzzy sets 
of X / R ,  with membership functions defined by [3] 

This function is called membersgip function because \ arger 

C(R(A)([x]R) = inf {C(A(x)  I [ZIR) ( s a )  
p z ( ~ ) ( [ s ] R )  = sUp{pA(z) I E [ Z I R }  (3-b) 

Here, ~ E ( A ) ( [ ~ ] R )  and &(A)([+) are the membership d u e s  

The rough-fuzzy membership function of a pattern x E X 
of [ ~ J . J R  in &(A) and R(A), respectively. 

for the fuzzy output class C, E X is defined by [15] 

(4) 

where F = [ x ] ~  and IICc/l is equal to  the cardinality of the 
fuzzy set C,. One possib e way to  determine the cardinality 
is to use [20] llCcll dg pcc (x ) .  For the 'n' (intersection) 

operation, we can use [20] pAnB(z) 'g min{pa(z),pB(x)} 
Vz E X. When the output class is crisp, the definition (4) 
boils down to the definition (2). 

D. Fuzzy-Rough Sets 
When the equivalence classes are not cris they are in form 

of fuzzy clusters { F I ,  A , .  . . , FH}  generataby a fuzzy weak 
partition [3] of the input set X. The term fuzzy weak partition 
means that each F j  is a normal fuzzy set, i.e., m u 2  p~~ ( x )  = 1 
and inf, m m j  p~~ (2) > 0 while 

2EX 

sup min{pFd (s), pFj (2)) < 1 v i ,  j E {1,2, - - H) (5) 
2 

Here p~~ (z) is the fuzzy membership function of the pattern 
x in the cluster Fj. In addition, the output classes Cc, c = 
{ 1,2, .  . . , C} may be fuzzy too. Given a weak fuzzy partition 
{FI, F2, . . . , FH} on X, the description of any fuzzy set C, by 
means of the fuzzy partitions under the form of an upper and 
a lower approximation and & is as follows: 

~s(Fj 1 P C ~  (2)) V 2 (&a) 

P z ( F j )  = SUP min{PFj(x),PCo(x)} V 2 (6-b) 

= 2Fic m a t '  - PFj 

Z€C. 

The tuple (G, is called a fuzzy-rough set. Here, pc. (z) = 

zz roughness ap ears when a fuzzy cluster contains 
patterns &at belong to &erent classes. 

is the fuzzy membership of the input x to the class 

III. FUZZY-ROUGH MEMBERSHIP FUNCTIONS 
A .  Definition 

If the equivalent classes form the fuzzy clusters 
{ F I ,  F2, . . . FH}, then each fuzzy cluster can be considered 
as a fuzzy iinguistic variable. Now we eneralize the defini- 
tion (4) to the following definition 08 the fuzzy-rough member- 
ship function [16]: 

ppj (z)~$~((z) if 3j with p~~ (2) > 0 
TC,(X) = 0 otherwise 

(7) 
where fi is the number of cluster in which x has non zero 

the fuzzy-rough uncertainity of x in the class C,. 

B. Properties 

membership and I $ ~ ( Z )  =h,. FjnCcll Here, w C ( x )  represents 

1. 0 5 TC,(Z) 51 
Proof: Since q5 C Fj n C, C F j  , 0 _< I & ~ ( X )  5 1. More 
over, 0 5 p~~ (z) 5 1. Hence, the proof follows. 

2. TC. (5) = 1 or 0 if and only if no jiaq-rough uncertainty 
i s  associated with the pattern x. 
Proof: 
If part: If no fuzzy-rough uncertainty is involved, then 
x must belong com letely to  all the clusters in which 
it has non-zero befkgingness. It implies p ~ ~ ( x )  = 
1 for which ~ F ~ ( z )  > 0. Moreover, all the clusters in 
which x has non-zero belongingness either (a) must be 
the subsets of the class C,, or (b) must not share any 
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attern with the class C,. In other words, the condition 
fa) implies that F j  E C, V j for which p~~ (x) > 0. Hence, 

r:,(z) = cj =l 1.1 = 1. Similarly the condition (b) 
expresses that F j  n 6, = 4 V j for which ~ F ~ ( z )  > 0. 
Hence, rze (2) = 
Only if part: If r& (2) = 0, then x may not belong to any 
cluster. Therefore, in this case there is no fuzz roughness 
associated with x. Otherwise? each term u n l i  the sum- 
mation symbol, i.e., ~ F ~ ( z ) L &  (2) is separately zero. It 
implies that either p~~ (x) or 15, (x), or both p~~ (2) and 
L&, (x) are zero. If p ~ j  (x) = 0, then the pattern x does not 
belong to the cluster F j ,  and hence, no fuzzy-rough uncer- 
tainty is involved with x. If I& (z) = 0, then F j  and C, do 
not have any pattern common, and therefore, no fuzzy- 
rough uncertainty exists with 2. Thus, r& = 0 implies 
that fuzzy-roughness is not assqciated with the pattern f. 
If r& = 1, then ppj = 1 and L&= = 1, V j  = 1,2,. . . , H. 
It also indicates the absence of, fuzzy-roughness. 
It is to be noted here that if H > 1, r& # 0 and fuzzy- 
rough uncertainty is absent, then rp never becomes one, 

CF rather it approaches towards one. It IS because, the condi- 
tion expressed in ( 5 )  does not allow ppj (x) = 1 to be true 
for more than one cluster. However, it hardly happens in 
practice as it needs two cluster centers to be same. 

3. If no fuzzg linguistic and fuzzy classification uncertainties 
are associated with the pattem x, then rc, (2) = rc, (2). 
Proof: If no fuzzy lin uistic uncertainty is involved, then 
each cluster is crisp. Eonsequently, the input pattern be- 
longs to only one cluster. Let it be the j t h  cluster. So, 
p~~ (z) = 1 and ,UF~ (2) = 0 Vlc # j .  Since the classifica- 
tion is crisp, &om the definition (2), rc,(x) = ' ' ~ ~ ~ ' '  = 

4. When each cluster i s  crisp and fine, that is ,  each clus- 
ter consists of a single pattern and the associated cluster 
memberships are cnsp, rc,(x) is uivalent to the fuzzy 
membership of x in the class C,. ?f the output class i s  
also crisp, then rce(x) i s  uivalent to the chamcteestic 
$mct;on value of x tn the 2ass  6 , .  
roof: Since each cluster is crisp and fine, TC,(Z) = 

1."cc1(2)' = pcC(x ) .  In addition, if the output class is 
crisp, then 76. (2) lies in (0, l}, and thus, it becomes the 
characteristic function. 

5. For a C-class classification roblem with cris output 
classes, the fuzzy-rough memgrship functions &have in 
a possibilistic manner. 
Proof: 

n 

pc, (x).O = 0 

rcc (2). 

Since E,"=, $(x) needs not t o  be equal to a constant, 
the resultant classification procedure is possibilistic [7] 191. 
Hence, $,(x) can distinguish between equal evidence and 
ignorance, which are well discussed in belief theory [17] 
and possibility theory [7]. 

IV. FUZZY-ROUGH NEURAL NETWORKS 

A .  Architecture 

The F R "  is designed such that it works as a fuzzy-rough 
membershi function, i.e., the outputs of the networks are 
fuzzy rougf membership values corres onding to the input. 
The proposed FRNN is a three la erd feedforward network 
with one hidden layer (Pi . 1). T i e  number of nodes in the 
input, hidden and out ut Lyers are equal t o  the dimension of 
the input pattern (=&, number of the fuzzy clusters present 
in the input data (=HI and number of the classes (=C), re- 
spectively. m e n  an input pattern x = (xI,xz,. . . , ziv j is 
applied at the input layer of the network, the output of the 
j t h  hidden node is 

(9) 

where m j  and U' are the center and spread of the Gaussian 
function used in the 'th hidden node, respectively. The center 
and spread of the hidden nodes can be determined by making 
them equal to the mean and variance of each cluster. There 
fore, the parameters necessary for the FRNN can be obtained 
from the parameters defined in the input-output space (Ta- 
ble I). The output of the kth output node is 

H 

j=1 

where W j k  is the weight from the j t h  hidden node to the kth 
output node. The output d u e  0: lies in between 0 and 1 (from 
property 1) as the output is the fuzzy-rough membership value 
corresponding to the input. Moreover, from the property 5,o; 
is possibilistic. 

To design the FR", the last task is to adjust the weights 
between the hidden layer and the output layer throu h train- 
ing. Precisely, the outputs of the hidden nodes are tPhe fuzzy 
linguistic membership values (equation (Q)), and the weights 
between the hidden and the output layer reflect the rou h- 
fuzzy membership values. The use of rou h-fuzzy members%ip 
functions makes the F R "  more powe&l than its RBFNN 
counterpart. 

B. I'raining and Testing 
For training) all the weights, w j k ( Q )  Vi, k, are initialised to 

zero. For each input trainin pattern, the weight adjustment 
in the first iteration is Carr ie% out as 

A W j k ( 1 )  = 0; * t vj, (11) 

where t = 1 if x E c k  else t = 0. It is interesting to note that 
the trainin process takes exactly one iteration to be over. 
After the wtole cycle is over, Wjk,  represents l l F j  n c k l l ,  i.e., xzEch ,UF~ (2). To make W j k  = I&,, (x), W j k  is normalized as e (since 114 I1 = Czech ppj(x) = W j k ) .  Since 
all the hidden nodes are using Gaussian clusters, each input 

h w>h 
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TABLE I 
THE RELATIONSHIP BETWEEN THE PARAMETERS USED IN FUZZY-F~OUQH 

NEURAL NETWORKS AND INPUT-OUTPUT SPACE 

number of hidden nodes of the CNN is equal to the number 
of inputs. Since the width of each cluster ap roaches towards 
zero, the transfer function of each hidden no& becomes a unit 
impulse function, i.e., 

I bkzzy-Hough neural networks 
No. of the input nodes = 
0. of the hidden nodes = No. of the cli 
0. ot the outnut nodes = 

Input-Output Space I 
Uimension of the inputs 

k- Center of ith hiid en node = Center of the ith cluster I 
E i d t h  ot the j t h  h 

pattern belongs to all the clusters, and hence, fi = H. Finally, 
the weights are set as W j k  = t o  take care of the term I? 
involved in (7). It is to be noted that no bias term is involved 
heme with any node. 

In the testing stage, a separate set of test patterns is given 
as the inputs t o  the network. For the test input x, the gener- 
ated output at the cth output node is the fuzzy-rough mem- 
bership value TC (x). The out ut node with the maximum 
output value indkates the classyabel of x. 

C. Implementation Details 
Determination of the fuzzy-rou6h membership values de- 

pend on the fuzzy clustering of the input data set. The fuzzi- 
ness associated with the clusters represent the fuzzy linguistic 
uncertainty resent in the input data set. The clustering can 
be perform3 by 

I.. Unsupervised Clustering: It involves takin the data from 
all the classes and cluster them subsequent& without con- 
sidering the associated class labels anth the data. 

2. Su ervised Clustering: Separate data sets are formed for 
e& class and clustering IS performed on each such data 
set to find the subgroups present in the input data from 
the same class. 

Both the clustering can be done by fuzzy K-means clustering 
a l l i t h m  [l]. But, the roblems with it are: a) the number 
o clusters has to be &e$ a priori, which may not be known, 
b) it will not work if the number of clusters is one and c) 
generated fuzzy memberships are not possibilistic. $0 over- 
come the first problem, the evolutionary programming-based 
method, used in 14 can be used. In many cases, this method 
can automatic a d &  y etermine the number of clusters. Other 
cluster validity measures [2] can also be used along with the 
fuzzy K-means algorithm to determine the number of clusters. 
For the second problem, if we know that only one cluster is 
resent for a class, then we can find the mean and standard 

Seviation from the input data set, and we ca9 fit a T fuzzy 
membership model [lo]. To overcome the third problem, the 
possibilistic K-means clustering algorithm [8] can be used. 

w e n  the input clusters are cris and the output classes 
are cris , the out uts of the networt are rou h membership 
values groperty 37. Hence, the resultant F d N  architecture 
is reduced to a modified architecture, called mugh neumI net- 
works (R" . The architectural difEetence between the F R "  
and the RNA is in the transfer function used in each hidden 
node. In particular, the transfer function used in the FRNN 
is of Gaussian type, whereas in the case of RNN the transfer 
function is a unit gate function, i.e., 

1 if x = X j  
o$ = { 0 otherwise 

As a result, the weight calculation becomes very simple, i.e. 
W j k  =1 if xj E c k  else Wjk  = 0. Thus, the resultant CNd 
needs a large amount of space, and it works like a look-up 
table, which does not have any generalization capability, but 
has a very good memorising power. 

For further discussions, we will assume the structure of 
the FRNN as a general one, i.e., the one whose architecture is 
described in the section iv-A. 

D. Universal Approximation 

It is easy to notice that architecturally (although function- 
ally not) the FRNN is equivalent to the RBFNN. Since the 
RBFNN is a universal approximator [5], the F R "  is also a 
universal approurimator. 

II I - ~ l  

=4 
- 

Fig. 1. A typical F R "  with three input nodes, four 
hidden nodee and two output nodes. 

v. THE CORRESPONDENCE BETWEEN F R "  
AND TAKAGI-SUGENO TYPE FUZZY RULE 

BASE SYSTEM 

Following [5] [4], it is easy to show that the F R "  is func- 
tionally equivalent t o  Takagi-Sugeno (TS) type fuzzy rule base 
system (FRBS) [18] under the following conditions: 

1. The number of fuzzy rules for each claw is ual to the 
number of the hidden npdes pFesent in the F%N 

2. The membershm functions wthin each rule are chosen 
as Gaussian fun&ions. 

3. The t-norm o erator used to compute each rule's firing 
(12) strength is mukplication. 

1 if (x - mjj(x- mj) 5 2ujz 
0 otherwise 

For 1-Class classification, the lbble I1 shows how different p& 
-et- of the 

FR". Thus. if we are able to train an & % N  with H hid- 
Evidently, the 1/0 option used in the ate function makes the 
generalization capability of the RNN fjmited. of the FRBS are related to  the 

When the input clusters are crisp and fine, and the out- 
put classes are crisp, then from the property 4, the outputs of 
the! FRNN are the cris class membership values. The resul- 
tant network can be c&ed crisp neural network (CNN). The 

den nodes and 0 out ut  classes then we can also construct a 
TS type FRBS with &C fuzzy if-then rules. Since the F R "  
is a universal apprdmator, the derived FRBS is also a uni- 
versal approximator. 

41 63 

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 02:31 from IEEE Xplore.  Restrictions apply. 



2600 

,Oo0i 

+ 

+ 
+ x  

+t 

I #I 

Fig. 2. Input speech data corresponding to the classes 'a', 
'e', 'i', '0' and 'U' are depicted in I . ' ,  I+', 'x', '*' and 
lo', respectively. Along X-axis formant F1 and along 
Y-axis formant Fa are shown. The data contain both 
rough and fussy uncertainities. 

TABLE I1 

NEURAL NETWORKS 
THE MAPPINQ BETWEEN FUZZY RULE BASE SYSTEMS AND FUZZY-ROUOH 

VI. RESULTS AND DISCUSSION 

We study the task of vowel recognition [13] to demonstrate 
the efficiency of the proposed scheme. For our study, we con- 
sider the vowels 'a', e', 'i', '0' and 'U'. The data required for 
the training are collected from the vowel art of the utterances 
of the consonant vowel pairs of three d&erent speakers. The 
first three formants are used as features. The formants are 
extracted using linear prediction analysis [13]. The data set 
needed for this experiment is kept in the &st author's home- 
page at 
http://vw.geocities.com/SiliconValley/Lab/5073 
For ease of visualization, we illustrate (Fi . 2) the character- 
istic of the data on a two dimensional pkne formed by the 
formants F1 and F2. n o m  the figure, it is apparent that the 
classes 'e' and 'i' have lesser amount of fuzzy-rough ambigu- 
ity compared to the other three classes. We use the extracted 
features to constitute a training set of 230 examples. Here, 
our objective is to train various pattern classifiers as well as 
the F R "  on the same training set, and compare their classi- 
fication performance on a different test set consisting of 1508 
patterns. 

First, we use Bayes classifier for multivariate normal pat- 

terns with the a priori probabilities pi = 9, where Pi de- 
notes [lo] the number of patterns in the ith class and P is the 
total number of training patterns. The covariance matrix for 
each class is determined from the training atterns of that par- 
ticular class. Classification erformance ofthe Ba es classifier 
on the test set is shown in t!e second column of t i e  Table 111. 
The Bayes classifier optimal classification performance 
for the probabilistic c assifiers rovided the parameters of the 
input dwtribution are estimatgfrom the inputs collected over 
the whole input s ace. In practice, the distribution parame- 
ters are estimateabased only on a finite number of training 
data. As a result, the performance of the Bayes classifier is no 
longer o timal, but its performances a proaches the optimal 
one as tge number of input data is m J e  very large (theoret- 
ically, it is infinity). Nevertheless, in the Table 111, the Bayes 
classifier, based on a finite number of trainin samples, is used 
to compare the performance of the proposecfmethod. 

Next we use the backpropagation (BP learning algorithm 

put nodes and variable number of hidden nodes. The target 
patterns are 5 dimensional vectors containing 1 in one location 
and 0 in all others. Here, we adopt the strategy of picking the 
output node with the highest activation value as the out ut 
class corresponding to an input. The learning-rate is d p -  
tively changed in the followm6 way: If the error decreases 
during training, then the learnin rate is increased by a pre- 
defined amount. In contrast, if K e  error increases, then the 
learning-rate is decreased, and the new weights and errors are 
discarded. As a result, the error always decreases or stays as 
it is. The momentum is kept constant throughout the process. 
We used the BP learning algorithm on three different feed- 
forward neural network architectures based on five, ten and 
fifteen hidden nodes. We have repeated the training of each 
architecture for 5000 iterations m t h  25 dfferent weight and 
bias initializations. The mean classification performance of 
the BP al orithm over these three architectures are shown in 
the third,!ourth and fifth columns of the Table 111. Although 
for certain weight and bias initialization the overall ClassificiG 
tion performance is high, for some initializations the classifi- 
cation efficienc becomes quite low. Consequent1 when the 
classification ekciency is averaged over +menty-&e different 
initializations, the classification performance remains low. 

Finally, we train the RBFNN and FRNN for the perfor- 
mance comrison.  We use the supervised clustering scheme 
to cluster t e input data. For that, we take all the training 
data from a particular class to determine the mean and vari- 
ance of the clusters. Thus we obtain one cluster for each class. 
The resultant F R "  and kBFNN have three input nodes, five 
hidden nodes and five output classes. For both the networks, 
the trainine, data set is further used to train the wei hts be- 
tween the hidden layer and the output layer. For the &FNN, 
the weights in between the hidden and the output layer are 
determined directly by computation (Le., by matrix inversion) 
so that we obtain the optimal weight and bias values. After 
training, both the networks are tested on the test set. The 
sixth and seventh columns of the Table I11 exhibit the per- 
formance of the RBFNN and FR".  It can be observed that 
compared to all the other classifiers, the F R "  enhances the 
overall classification result significant1 For training and test- 
ing, the space and time complexity o?ihe FRNN is also less. 

Instead of usin the F R "  for the classification, we can 
use the generated%RBS as well. Fkom the cluster charac- 
teristics of the input data, we can construct the membership 
functions needed for each lin uistic variable. The number of 
linguistic variables er input t a tu re  is 5 as there are 5 clusters. 
Since there are 5 cgsters and 5 output classes, the number of 
possible rules is 25. The use of the rules makes it easy to un- 
derstand the classification process. Moreover, we can ignore 
certain rules if the confidence factors associated with them are 
very low. If we fix a threshold as 0.001, then the rules with 
confidence factors less than 0.001 are deleted. The final class 
labels are decided based on the output node with maximum 
output. The rule runing operation in the FRBS by fixin the 
threshold as O.OO[ does not cause any damage to the cksi-  
fication performance (second column of the Table IV). When 

to train feedforward neural networks with J input nodes, 5 out- 
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TABLE 111 
RESULTS OF VOWEL CLASSIFICATION FOR DIFFERENT TYPES OF 

CLP~SSIFICATION ALQORITHMS ARE SHOWN I N  PERCENTAQE OF CORRECT 
CLASSIFICATION 

- 
Bayes 

classifier 

Feedforward neural networks 
with BP algorithm RBFNN FRNN 

No. of hidden nodes 
r. I i n  I i s  

the threshold is chosen as 0.01, the FRBS is reduced to a set 
with eight rules. The classification performance of this FRBS 
does not de ade much as seen from the third column of the 
Table IV. f t h e  threshold is chosen as 0.1, then the FRBS 
shrinks to a set of five rules with one rule per class. Obvious1 
this is the minimum possihe size of the rule base. Althougt 
the classification performance of the resultant FRBS de ades 
nearly by four percent (fourth column of the Table 16 the 
pdormance is still better than the Bayes, RBFNN and feed- 
orward networks. 

TABLE IV 
CLASSIFICATION PERFORMANCE OF FRBS WITH DIFFERENT THRESHOLD 

VALUES 

tt 

r Threshold value 

1 I u.u1 I u . l  

If the input is [O,O,Oj, then the the input pattern is far away 
from the antecedent part of each rule. Hence, the activation 
of the antecedent parts of all the fuzzy rules are negli ‘ble 
Consequently, the output given by each output node is && 
zero indicating that the in ut pattern does not belong to an of 
the output classes. Theregre, the roposed network, as wexas 
the derived FRBS, demonstrate t f e  possibilistic classification 
capability. 

VII. SUMMARY AND CONCLUSION 
The main points of the paper can be summarised as fol- 

lows: 1) This paper proposes the concept of fuzzy-rough neural 
networks for classification. 2) Proposed network attempts to 
ca ture the fuzzy linguistic ambiy ty  in the input data set as 
we71 as the rough uncertainty in t e input-output relationship 
3 The workin principle of the proposed network is based on 

membership nction is possibilistic, the resultant network has 
oasibilistic classification abilit 4) The roposed network can 

&e d l i rdy  mapped to a zero& order 7% type FRBS. Thus, 
unlike the feedforward networks with backpropagation a l p  
rithm, here the classification process is transparent. Moreover, 
the roposed network can be used to extract the fuzzy rules 
hiddPen inside the data. 5 )  Capturing fuzziness and roughness 
simultaneous1 indeed increases the classification performance 
in the vowel cfassification problem. 

t k e rUzzy-rou& membership function. Since the fuzzy-rough 

There are several extensions possible to  the proposed 
FR” .  It is ossible to use other t-norm o erators in lace 
of the multip&ation operator used in the de&tion (7). &ow- 
ever, this kind of generalization is possible if in the absence 
of fuzziness, the resultant function boils dawn to the rough 
membership function. Some of the possible t-norm operators 
are [SI: dmtic product, bounded product and logical product. 
Moreover, it is possible to ap 1 other aggregation operators 
like min and max in place o?tie summation operator. The 
exact choice of the operatora will obviously be dictated by the 
application domain. 

One interesting oint to note in the FRBS derived from 
the FRNN is that t f e  sum of the confidence factors used for 
each class (i.e., xi wjk) does not necessarily be equal to one. 
On the other hand the sum of the confidence factors for each 
class used in the I;’RBS obtained from the RBFNN is essen- 
tially one [5]. Thus, the confidence factors used in the F R ”  
do not obey the addition rule used in the probabilit theory; 
rather, the confidence factors are like fuzzy measures $1, where 
the result of the addition depends on whether the confidence 
factors are cooperative or noncoopenative. Therefore, one at- 
tractive issue here is to  explore the ossibility of using non- 
linear operators, like fuzzy integrals &, in place of the linear 
summation operator used in the definition (7). 

If the output class is fuzzy, then it may be possible to make 
the FRNN more owerful by assignin the fuzzy memberships 
for the output cfass subjectively. &r instance, if the out- 

ut class for an image processing a plication is represented 
&y BRIGHT, then it is possible to %t an ‘S’ fuzzy member- 
ship curve [lo], and assign the fuzzy membership values for 

BRIGHT(?) subjectively. However, if the domain specific 
!nowledge is absent then we have to  be satisfied with the 
given crisp membership values for the output classes. 
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