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ABSTRACT

While designing radial basis function neural networks for clas-
sification, ﬁlzzy clustering is often used to position the hidden
nodes in the input space. The main assumption of the clus-
tering is that similar inputs produce similar outputs. In other
words, it means that any two input patterns from the same
cluster must be from the same class. Generalization is pos-
sible in the radial basis function neural networks due to this
similarity progerty. In many real life applications, however,
two patterns from the same cluster belong to different classes,
and hence, classification based on mere similarity property is
inadequate. This problem arises because the available features
are not sufficient to discriminate the classes. It implies that
the fuzzy clusters generated by the input features have rough
uncertainty. This paper proposes a fuzzy-rough set based net-
work whi e:qivloits fuzzy-rough membership functions to re-
duce this Frob em. The proposed network is theoretically a
powerful classifier as it is equivalent to a universal approxima-
tor. Moreover, its activity is transparent as it can easily be
mapped to a Magi-Sugeno type fuzzy rule base system. The
efficacy of the proposed method is studied on a vowel recogni-
tion problem.

Keywords: Fuzzy sets, rough sets, fuzzy-rough sets, cluster-
ing, fuzzy-rough membership functions, radial basis function
networks, Takagi-Sugeno type fuzzy rule base systems.

1. INTRODUCTION

Among various kinds of neural networks, feedforward neu-
ral networks, based on the backpropagation learning algo-
rithm [5), are extensively used for pattern classification. How-
ever, a major drawback of the backpropagation algorithm is
that it may not ensure successful learning because of local min-
ima problems and a lon%training time. A radial basis function
neural network (RBFNN) [5‘[, a class of three layered feedfor-
ward neural networks, has faster local minima free learnin
capability than the other feedforward neural networks wit
backlpropa.ga.tion learning algorithm. However, the RBFNN
employs one hidden node comgletely for each input trainin
pattern, and hence, it suffers from a huge memory overh
while learning a large number of training examples. Moreover,
the presence of a large number of hidden nodes in turn in-
creases the time required to classify each test fpa.t'.tern. Hence,
supervised or unsupervised fuzzy clustering of the input data
set is used to put a bigger Gaussian at each hidden node,
which subsequently reduces the number of hidden nodes. The
main idea of using fuzzy clusterin% is that if two input pat-
terns are similar, i.e., close neighbors in the input pattern
space, then the class labels associated with them will be same.

hen a new pattern is presented at the input layer of the
network, the network classifies precisely b on this similar-
ity or neighborhood property. Thus, the inherent similarit
or neighbourhood property of the clusters leads the networ.
to %eneralize. Since each cluster in the pattern space repre-
sents certain common pmf)erty, it is logical that the patterns
from the same cluster will also belong to the same class. In
real life cases, however, we cannot extract all the relevant fea-
tures necessary for the classification. Consequently, two pat-
terns may have similar features, but they are not similar if
the other features, including the existing ones, are accounted
for. Therefore, when the input patterns are clustered based on
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the available features, two apparently similar or neighboring

atterns may have different class labels. Thus, the cluster-
ing techniques are not helpful to reduce the number of hidden
nodes as the same cluster may have more than one pattern
belonging to different classes. It makes the output classes in-
discernible or indistin§uishable based on the given set of fea-
tures. For example, if the objects are classified according to
color (red, black) and shape (triangle, s?uare and circle), then
the indiscernible classes are: red triangles, black squares, red
circles, etc. Thus, these two attributes make a partition or
forms clusters in the set of objects and the universe becomes
coarse. Now, if two red triangles with different areas belong
to different classes, it is impossible for anyone to classify these
two red triangles based on the given two attributes. This kind
of uncertainty is referred to as rough uncertainty £11]. One
way to completely avoid the rough uncertainity is to extract
the essential features so that distinct feature vectors are used
to represent different objects. But, it may not be possible to
guarantee this as our knowledge about the system generating
the data is limited. Another way to avoid rough uncertainity
is to break the clusters further so that they do not contain
any pattern from the other classes. This is difficult as each
fuzzy cluster overlaps patterns from the other classes to some
extent. Moreover, the breaking of clusters means destruction
of the similarity property, which in turn means the destruction
of the generalization property. In addition, if the clusters are
broken too much, then the FNN training may need large
space and high time complexity.

In this paper, we attemgt to reduce the effect of rough
uncertainity, while keeping the similarity property intact.
tackle the similarity property we need fuzzy sets [7], and to
tackle the roughness we need rough sets [11]. Since both
fuzziness and roughness are present here, we incorporate both
fuzzy and rough sets on a common platform, called fuzzy-rough
sets [3]. To manipulate the fuzzy-rough sets, we use fuzzy-
rough membershig&ftunctiom [16]. The fuzzy-rough member-
ship function is her exploited to construct a fuzzy-rough
neural network (FRNN). Basically, the FRNN uses the fuzzy
linguistic uncertainity involved in the input data set and the
roughness present in the input-output relationship. On the
otherhand, the RBFNN captures only the fuzzy linguistic un-
certainity. Although in absence of the roughness the FRNN
behaves like an FNN, in presence of the roughness the
FRNN performs significantly better than its RBFNN coun-
terpart. One advantage of the classification procedure used in
the FRNN is that it is possibilistic [7]. Specifically, it is useful
when the output of the FRNN is again used for further classi-
fication. Theoretically, the FRNN is a powerful classifier as it
can be shown to be a universal approximator. Unlike the feed-
forward neural networks with ba.cipropa.ga.tion algorithm, the
FRNN does not act like a black boz, but works like a transpar-
ent one. In fact, the FRNN can be viewed as a Takagi-Sugeno
type fuzzy rule base system [5l !:18]. This trangparency aids us
to have a greater insight about the whole classification process
performed by the F . Moreover, the FRNN can be used to
extract the fuzzy rules hidden inside the data.

1. BACKGROUND
A. Rough Sets

Let R be an equivalence relation on a universal set X.
Moreover, let X/R denote the family of all equivalence classes
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induced on X by R. One such equivalence class in X/R, that
contains z € X, is designated by [z]r. For any output class

A C X, we can define the lower R(A) and upper R(A) approx-
imations, which approach A as closely as possible from inside
and outside, respectively [7]. Here,

R(A) = U{[z]z | [z]r C 4, = € X} (1-a)

is the union of all equivalence classes in X/R that are contained
in A, and

RA)=U{lz]e|[z]lrnA#¢zeX} (2
is the union of all equivalence classes in X/R that overlap
with A. A rough set R(4) = (R(A), R(A)) is a representation
of the given set A by R(A) and R(A) [12]. The set BN(4) =
F(A) — R(A) is a rough description of the boundary of 4 by
the equivalence classes of X/R. The approximation is rough
uncertainty free if R(A4) = R(A4). Thus, when all the patterns
from an equivalence class do not carry the same output class
label, rough ambigui {uis enerated as a manifestation of the
one-to-many relationship between that equivalence class and
the output class labels.
The rough membership function ra(z) : A = [0, 1] of a
pattern € X for the output class A is defined by [19]

[I[=]r N Al
AR @

where ||A|| denotes the cardinality of the set A.

ra(z) =

B. Fuzzy Sets

In traditional two-state classifiers, where a class A is de-
fined as a subset of a universal set X, any input pattern z € X
can either be a member or not be a member of the given class
A. This properti of whether or not a pattern z of the universal
set belongs to the class A can be defined by a characteristic
function pa : X — {0, 1} as follows: »

_f 1 ifandonlyif z€ 4
”A(”)"‘{ 0 ifandonlyif z¢ A

In real life situations, however, boundaries between the classes
may be overlapping. Hence, it is uncertain whether an input
pattern belongs totally to the class A. To take care of such sit-
uations, in fuzzy sets [1] the concept of characteristic function
has been modified to membership function pa : X — [‘0, 1].
This function is called membership function, because larger
value of the function denotes more membership of the element
to the set under consideration.

C. Rough-Fuzzy Sets

Let X be a set, R be an equivalence relation defined on X
and the output class A € X be a fuzzy set. A rough-fuzzy

set is a tuple (R(A), R(A)), where the lower approximation
R(A) and the upper approximation R(A) of A are fuzzy sets
of X/R, with membership functions defined by [3]

inf {pa(z)| = € [z]r} (3-a)
sup {pa(z)| z € [g]r}  (3-b)

Here, pip(a)([z]r) and pz A)([x]n) are the membership values
of [z]r in R(A) and R(A), respectively.

The rough-fuzzy membership function of a pattern z € X
for the fuzzy output class C; C X is defined by [15]
IFNCell

NFi

pr(a)([z]r)
I‘E(A)([z]R)

(4)

te.(z) =

4161

where F = [z]p and ||C.,!| is equal to the cardinality of the
fuzzy set C.. One possible way to determine the cardinality

is to use [20] |C| Y 3 pc.(z). For the ‘' (intersection)
zeX

operation, we can use [20] pans(z) ef min{pa(z), us(z)}

Vz € X. When the output class is crisp, the definition (4)

boils down to the definition (2).

D. Fuzzy-Rough Sets

When the equivalence classes are not crisp, they are in form
of fuzzy clusters {Fy,F2,...,Fu} generated by a fuzzy weak
partition [3] of the input set X. The term fuzzy weak partition
means that each F} is a normal fuzzy set, i.e., max; ur, (z) =1
and inf; max; ur;(z) >0 while

sup min{/‘F.' (z))l‘F,‘ (z)} <1l Vi je {19 2,... )H} (5)

Here pr;(z) is the fuzzy membership function of the pattern
z in the cluster F;. In addition, the output classes C,, ¢ =
{1,2,...,C} may be fuzzy too. Given a weak fuzzy partition
{F1,Fs,...,Fg} on X, the description of any fuzzy set C. by
means of the fuzzy partitions under the form of an upper and
a lower approximation C; and C; is as follows:

pe.(F) = o max{1 — pr;(z), pc.(x)} V2 (6-a)
s (F5)

sup min{pr; (), pe.(2)} V = (6-b)

The tuple (Q_g_, C_’.:) is called a fuzzy-rough set. Here, pc. (z) =

g), 1}}uis the fuzzy membership of the input = to the class
.. Fuzzy-roughness appears when a fuzzy cluster contains

patterns that belong to different classes.

mi. FUZZY-ROUGH MEMBERSHIP FUNCTIONS
A. Definition

If the equivalent classes form the fuzzy clusters
{Fi,F,,...,Fg}, then each fuzzy cluster can be considered
as a fuzzy Iinguistic variable. Now, we generalize the defini-
tion (4) to the following definition of the uzzy-rough member-
ship function [16]:

ro. () = { L XF  ury@)d,(2) i 3 with pry(2) > 0
: 0 otherwise
O]

where H is the number of cluster in which z has non zero

membership and «;_(z) = F";f’“" Here, 7c.(z) represents

the fuzzy-rough uncertainity of z in the class C..

B. Properties
1. 0<70,(z)<1
Proof: Since¢ C F;NC. C F; ,0< véc (z) < 1. More-
over, 0 < ur;(z) < 1. Hence, the proof follows.

2. 1¢.(z) =1 or 0 if and only if no fuzzy-rough uncertainty
is associated with the pattern .
Proof:
If part: If no fuzzy-rough uncertainty is involved, then
z must belong completely to all the clusters in which
it has non-zero belongingness. It implies pr;(z) =
1 for which ur,(z) > 0. Moreover, all the clusters in
which z has non-zero belongingness either (a) must be
the subsets of the class C., or (b) must not share any
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attern with the class C.. In other words, the condition
?a.) implies that F; C C, V j for which ur; (z) > 0. Hence,

5. (2) = % Z?:x 1.1 = 1. Similarly the condition (b)
expresses that F; N C. = ¢ V j for which ur;(z) > 0.

Hence, 7§_(2) = & Z;;l pe.(z)0=0

Only if part: i 78 _(x) = 0, then ¢ may not belong to any
cluster. Therefore, in this case there is no fuzzy-roughness
associated with z. Otherwise, each term under the sum-
mation symbol, i.e., ur; (z)ep_(2) is separately zero. It
implies that either ur; (z) or chc (z), or both pr;(z) and
L‘éc (z) are zero. If pr,; (x) = 0, then the pattern z does not
belong to the cluster F}, and hence, no fuzzy-rough uncer-
tainty is involved with . If «;_(z) = 0, then F; and C. do
not have any pattern common, and therefore, no fuzzy-
rough uncertainty exists with @. Thus, 75 = 0 implies
that fuzzy-roughness is not associated with the pattern z.
7 =1,then pry =land ep, =1, Vi=1,2,...,H.
It also indicates the absence of fuzzy-roughness.

It is to be noted here that if H > 1, 75_# 0 and fuzzy-
rough uncertainty is absent, then rgc never becomes one,
rather it approaches towards one. It is because, the condi-
tion expressed in (5) does not allow ur; (z) = 1 to be true
for more than one cluster. However, it hardly happens in
practice as it needs two cluster centers to be same.

. If no fuzzy linguistic and fuzzy classification uncertainties
are associated with the pattern z, then 7¢ (z) = ro.(z).
Proof: If no fuzzy linguistic uncertainty is involved, then
each cluster is crisp. Consequently, the input pattern be-
longs to only one cluster: Let it be the jth cluster. So,
pr;(z) = 1 and pr, (x) = 0 Yk # j. Since the classifica-

tion is crisp, from the definition (2), 7¢ (z) = ufﬁ;.r:'ﬁl—‘ﬂ =
re,. (z).

. When each cluster is crisp and fine, that is, each clus-
ter consists of a single pattern and the associated cluster
memberships are crisp, ¢, () 15 equivalent to the fuzzy
membership of « in the class C.. If the output class is
‘also crisp, then 1o (x) is equivalent to the characteristic
gmction value of ¢ n the class C..

roof: Since each cluster is crisp and fine, 7¢c.(z) =

l.ﬁ-c—%(i)—’ = pe.(z). In addition, if the output class is

crisp, then 7¢. () lies in {0, 1}, and thus, it becomes the
characteristic function. :

. For a C-class classification Bpmblem with crisp output
classes, the fuzzy-rough membership functions behave in
a possibilistic manner.

Proof:

g‘;m’:(m) =% ggun(w)w
= ;1?_ Jz:; ury (z) T, ;‘:ﬁl:z g),ﬂcc )}
- 1 ,ém oy e Lyce, o)
= = gpp, (2) %
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= =2 k@ ®)
j=1

Since 3°°_, 7% () needs not to be equal to a constant,
the resultant classification procedure is possibilistic [7] [9].
Hence, 75_(x) can distinguish between equal evidence and
ignorance, which are well discussed in belief theory [17]
and possibility theory [7].

1v. FUZZY-ROUGH NEURAL NETWORKS
A. Architecture

The FRNN is designed such that it works as a fuzzy-rough
membership function, i.e., the outputs of the networks are
fuzzy rough membership values corresponding to the input.
The proposed FRNN is a three layered feedforward network
with one hidden layer (FiF. 1). The number of nodes in the
input, hidden and output layers are equal to the dimension of
the input pattern (=N), number of the fuzzy clusters present
in the input data (=H) and number of the classes (=C), re-
spectively. When an input pattern x = (z1,%2,...,ZN) is
applied at the input layer of the network, the output of the
jth hidden node is

h_ (x — m;)(x — m;)
%5 =exp 2073 ©)
where m; and o; are the center and spread of the Gaussian
function used in the jth hidden node, respectively. The center
and spread of the hidden nodes can be determined by making
them equal to the mean and variance of each cluster. There-
fore, the parameters necessary for the FRNN can be obtained
from the parameters defined in the input-output space (Ta-
ble I). The output of the kth output node is

H
ok =3 ofwjk (10)
i=1

where wjx is the weight from the jth hidden node to the kth
output node. The output value of lies in between 0 and 1 (from
property 1) as the output is the fuzzy-rough membership value
corresponding to the input. Moreover, from the property 5, 0§
is possibilistic.

To design the FRNN, the last task is to adjust the weights
between the hidden layer and the outgut layer through train-
ing. Precisely, the outputs of the hidden nodes are the fuzzy
linguistic membership values (equation (9)), and the weights
between the hidden and the output layer reflect the rough-
fuzzy membership values. The use of rough-fuzzy membership
functions makes the FRNN more powerful than its RBFNN
counterpart.

B. Training and Testing
For training, all the weights, wg-,,(()) Vj, k, are initialised to

zero. For each input training pattern, the weight adjustment
in the first iteration is carried out as

Awjr(1)=of st Vi, k (11)

where t = 1 if x € Cj else t = 0. It is interesting to note that
the training process takes exactly one iteration to be over.
After the whole cycle is over; wji represents ||F; N Cill, i.e.,

2 zec, #F;(z). To make wjk = o, (z), wjk is normalized as
wy . .
= (since || = 3, X,eq, #r(2) = 3o, wye). Since
1]
all the hidden nodes are using Gaussian clusters, each input
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TABLE 1
THE RELATIONSHIP BETWEEN THE PARAMETERS USED IN FU2ZY-ROUGH
NEURAL NETWORKS AND INPUT-OUTPUT SPACE

[ Fuzzy-Rough neural networks Input-Output Space ]
No. of the input nodes Dimension of the inputs

No. of the hidden nodes No. of the clusters

No. of the output nodes No. of the classes

mutnn

Center of jth hidden node

Center of the jth cluster

Width of the jth hidden node

Width of the jth cluster

pattern belongs to all the clusters, and hence, H = H. Finally,
the weights are set as wj, = “2* to take care of the term H

involved in (7). It is to be noted that no bias term is involved
here with any node.

In the testing stage, a separate set of test patterns is given
as the inputs to the network. For the test input x, the gener-
ated output at the cth output node is the fuzzy-rough mem-
bership value 7¢,(x). The output node with the maximum
output value indicates the class label of x.

C. Implementation Details

Determination of the fuzzy-rough membership values de-
pend on the fuzzy clustering of the input data set. The fuzzi-
ness associated with the clusters represent the fuzzy linguistic
uncertainty present in the input data set. The clustering can
be performeg by

1. Unsupervised Clustering: It involves ta.kinﬁ the data from
all the classes and cluster them subsequently without con-
sidering the associated class labels with the data.

2. Superuised Clustering: Separate data sets are formed for
each class, and clustering is performed on each such data
set to find the subgroups present in the input data from
the same class.

Both the clustering can be done by fuzzy K-means clustering
algorithm [1]. But, the problems with 1t are: a) the number
of clusters has to be fixed a priori, which may not be known,
b) it will not work if the number of clusters is one, and c)
generated fuzzy memberships are not possibilistic. To over-
come the first problem, the evolutionary programming-based
method, used i;llJ]A , can be used. In many cases, this method
can automatically determine the number of clusters. Other
cluster validity measures [2] can also be used along with the
fuzzy K-means algorithm to determine the number of clusters.
For the second problem, if we know that only one cluster is
gresent for a class, then we can find the mean and standard
eviation from the input data set, and we can fit a « fuzzy
membership model [10]. To overcome the third problem, the
possibilistic K-means clustering algorithm [8] can be used.

When the input clusters are crisp and the output classes
are crisp, the outputs of the network are rough membership
values (property 3). Hence, the resultant FRNN architecture
is reduced to a modified architecture, called rough neural net-
works (RNN). The architectural difference between the FRNN
and the RNN is in the transfer function used in each hidden
node. In particular, the transfer function used in the FRNN
is of Gaussian type, whereas in the case of RNN the transfer
function is a unit gate function, i.e.,

R 1 i (x—my)(x—my) < 207
% _{ 0 otherwise ! ! ! (12)

Evidently, the 1/0 option used in the gate function makes the
generalization capability of the RNN limited.

When the input clusters are crisp and fine, and the out-
put classes are crisp, then from the property 4, the outputs of
the FRNN are the crisp class membership values. The resul-
tant network can be called crisp neural network (CNN). The
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number of hidden nodes of the CNN is equal to the number
of inputs. Since the width of each cluster a}:froach&s towards
zero, the transfer function of each hidden node becomes a unit
impulse function, i.e.,

r_ [ 1 if x=xj
d={ 0 otherwise’ (13)

As a result, the weight calculation becomes very simple, i.e.
wjx =1 if x; € Cx else wjx = 0. Thus, the resultant CNN
needs a large amount of space, and it works like a look-up
table, which does not have any generalization capability, but
has a very good memorising power.

For further discussions, we will assume the structure of
the FRNN as a general one, i.e., the one whose architecture is
described in the section iv-A.

D. Universal Approximation

It is easy to notice that architecturally (although function-
ally not) the FRNN is equivalent to the RBFNN. Since the
RBFNN is a universal approximator [5], the FRNN is also a
universal approximator.

Ix—~m,l
—

0y

Fig. 1. A typical FRNN with three input nodes, four
hidden nodes and two output nodes.

v. THE CORRESPONDENCE BETWEEN FRNN
AND TAKAGI-SUGENO TYPE FUZZY RULE
BASE SYSTEM

Following [5] [4], it is easy to show that the FRNN is func-
tionally equivalent to Takagi-Sugeno (TS) type fuzzy rule base
system (FRBS) [18] under the following conditions:

1. The number of fuzzy rules for each class is equal to the
number of the hidden nodes present in the FRNN.

2. The membership functions within each rule are chosen
as Gaussian functions.

3. The t-norm operator used to compute each rule’s firing
strength is multiplication.

For 1-Class classification, the Table II shows how different pa-
rameters of the FRBS are related to the ameters of the
FRNN. Thus, if we are able to train an N with H hid-
den nodes and out}}ut classes, then we can also construct a
TS type FRBS with HC fuzzy if-then rules. Since the FRNN
is a universal approximator, the derived FRBS is also a uni-
versal approximator.
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Fig. 2. Inputspeech data corresponding to the classes ‘a’,
‘e’, ‘i’, ‘o’ and ‘u’ are depicted in ‘., ‘+’, ‘x’, **’ and
‘o’, respectively. Along X-axis formant F; and along
Y-axis formant Fa are shown. The data contain both
rough and fuzsy uncertainities.

TABLE II
THE MAPPING BETWEEN FU2zZY RULE BASE SYSTEMS AND FUzzZY-ROUGH
NEURAL NETWORKS

[FRBS FRNN

" No. of rules = No. of bidden nodes

“Center of membership _~  Center of Gaussian function
function for jth rule used in jth hidden node
"Width of membership _ Width of Gaussian function
function for jth rule used in jth hidden node

- Value of confidence —  Value of weight vector from jth
factor for jth rule hidden node to all output nodes

vi. RESULTS AND DISCUSSION

We study the task of vowel recognition [13] to demonstrate
the efficiency of the Proposed scheme. For our study, we con-
sider the vowels ‘a’, ‘¢’, ‘i, ‘0’ and ‘u’. The data required for
the training are collected from the vowel part of the utterances
of the consonant vowel pairs of three different speakers. The
first three formants are used as features. The formants are
extracted using linear prediction analysis [13]. The data set
needed for this experiment is kept in the first author’s home-
page at
http://www.geocities.com/SiliconValley/Lab/5073
For ease of visualization, we illustrate (Fig. 2) the character-
istic of the data on a two dimensional plane formed by the
formants F; and F>. From the figure, it is apparent that the
classes ‘e’ and ‘i’ have lesser amount of fuzzy-rough ambigu-
ity compared to the other three classes. We use the extracted
features to constitute a training set of 230 examples. Here,
our objective is to train various pattern classifiers as well as
the FRNN on the same training set, and compare their classi-
fication performance on a different test set consisting of 1508
patterns.

First, we use Bayes classifier for multivariate normal pat-
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terns with the a priors probabilities p; = %’, where P; de-
notes [10] the number of patterns in the ith class and P is the
total number of training patterns. The covariance matrix for
each class is determined from the training patterns of that par-
ticular class. Classification performance ot the Bayes classifier
on the test set is shown in the second column of the Table III
The Bayes classifier gives optimal classification performance
for the probabilistic classifiers, provided the parameters of the
input distribution are estimatef from the inputs collected over
the whole input space. In practice, the distribution parame-
ters are estimatetf based only on a finite number of training
data. As a result, the performance of the Bayes classifier is no
longer optimal, but its performances approaches the optimal
one as the number of input data is made very large (theoret-
ically, it is infinity). Nevertheless, in the Table III, the Bayes
classifier, based on a finite number of training samples, is used
to compare the performance of the proposed method.

Next, we use the backpropagation (BP) learning algorithm
to train feedforward neural networks with input nodes, 5 out-
put nodes and variable number of hidden nodes. The target
patterns are 5 dimensional vectors containing 1 in one location
and 0 in all others. Here, we adopt the strategy of picking the
output node with the highest activation value as the output
class corresponding to an input. The learning-rate is p-
tively changed in the following way: If the error decreases
during training, then the learning-rate is increased by a pre-
defined amount. In contrast, if the error increases, then the
learning-rate is decreased, and the new weights and errors are
discarded. As a result, the error always decreases or stays as
it is. The momentum is kept constant throughout the process.
We used the BP learning algorithm on three different feed-
forward neural network architectures based on five, ten and
fifteen hidden nodes. We have repeated the training of each
architecture for 5000 iterations with 25 different weight and
bias initializations. The mean classification performance of
the BP algorithm over these three architectures are shown in
the third, fourth and fifth columns of the Table III. Although
for certain weight and bias initialization the overall classifica-
tion performance is high, for some initializations the classifi-
cation efficiency becomes quite low. Consequently, when the
classification efficiency is averaged over twenty-five different
initializations, the classification performance remains low.

Finally, we train the RBFNN and FRNN for the perfor-
mance comparison. We use the supervised clustering scheme
to cluster the input data. For that, we take all the training
data from a particular class to determine the mean and vari-
ance of the clusters. Thus, we obtain one cluster for each class.
The resultant FRNN and RBFNN have three input nodes, five
hidden nodes and five output classes. For both the networks,
the training data set is further used to train the weights be-
tween the hidden layer and the output layer. For the KBFNN,
the weights in between the hidden and the output layer are
determined directly by computation (i.e., by matrix inversion)
so that we obtain the optimal weight and bias values. After
training, both the networks are tested on the test set. The
sixth and seventh columns of the Table III exhibit the per-
formance of the RBFNN and FRNN. It can be observed that
compared to all the other classifiers, the FRNN enhances the
overall classification result significantly. For training and test-
ing, the space and time complexity of the FRNN is also less.

Instead of using the FRNN for the classification, we can
use the generated FRBS as well. From the cluster charac-
teristics of the input data, we can construct the membership
functions needed for each linguistic variable. The number of
linguistic variables per input feature is 5 as there are 5 clusters.
Since there are 5 clusters and 5 output classes, the number of
possible rules is 25. The use of the rules makes it easy to un-
derstand the classification process. Moreover, we can ignore
certain rules if the confidence factors associated with them are
very low. If we fix a threshold as 0.001, then the rules with
confidence factors less than 0.001 are deleted. The final class
labels are decided based on the output node with maximum
output. The rule {)runing operation in the FRBS by ﬁxinF the
threshold as 0.001, does not cause any damage to the classi-
fication performance (second column of the Table IV). When
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There are several extensions possible to the proposed
FRNN. It is possible to use other t-norm operators in place
of the multiplication operator used in the definition (7). How-
ever, this kind of generalization is possible if in the absence
of fuzziness, the resultant function boils down to the rough
membership function. Some of the possible t-norm operators
are [6]: drastic product, bounded product and logical product.
Moreover, it is possible to a;;pl other aggregation operators
like min and max in place of the summation operator. The
exact choice of the operators will obviously be dictated by the
application domain.

TABLE III
RESULTS OF VOWEL CLASSIFICATION FOR DIFFERENT TYPES OF
CLASSIFICATION ALGORITHMS ARE SHOWN IN PERCENTAGE OF CORRECT
CLASSIFICATION

Feedforward neural networks

Class Bayes with BP algorithm RBFNN | FRNN
classifier No. of hidden nodes

1 10 15

overall 77.08% 81.04% | 76.707% 11.977% 11.14%

the threshold is chosen as 0.01, the FRBS is reduced to a set
with eight rules. The classification performance of this FRBS
does not degrade much as seen from the third column of the
Table IV. If the threshold is chosen as 0.1, then the FRBS
shrinks to a set of five rules, with one rule per class. Obviously,
this is the minimum possif;le size of the rule base. Althoug
the classification performance of the resultant FRBS degrades
nearly by four percent (fourth column of the Table IW the
Ferforma.nce is still better than the Bayes, RBFNN and feed-
orward networks.

f

TABLE 1V
CLASSIFICATION PERFORMANCE OF FRBS WiTH DIFFERENT THRESHOLD
VALUES
Threshold value
Class 0.001 0.01 0.1
‘a’ 91.84% | 92.14% | 92.44%
‘e’ 85.66% | 85.66% | 85.66%
Y 91.82% | 91.82% | 91.82%
‘0’ 88.34% | 87.86% | 60.67%
u’ 73.20% | 73.20% | 84.31%
Overall || 86.17% | 86.13% | 82.98%

If the input is [0,0,0], then the the input pattern is far away
from the antecedent part of each rule. Hence, the activation
of the antecedent parts of all the fuzzy rules are negligible.
Consequently, the output given by each output node is almost
zero indicating that the input pattern does not belong to any of
the output classes. Therefore, the Eroposed network, as well as
the derived FRBS, demonstrate the possibilistic classification
capability.

vii. SUMMARY AND CONCLUSION

The main points of the paper can be summarised as fol-
lows: 1) This paper proposes the concept of fuzzy-rough neural
networks for classification. 2) Proposed network attempts to
ca.gture the fuzzy linguistic ambiguity in the input data set as
well as the rough uncertainty in the input-output relationship.
3) The working principle of the proposed network is based on
the fuzzy—rouéi membership function. Since the fuzzy-rough
membership function is possibilistic, the resultant network has
gossibilistic classification ability. 4) Thglproposed network can

e directly mapped to a zeroth order TS type FRBS. Thus,
unlike the feedforward networks with backpropagation algo-
rithm, here the classification process is transparent. Moreover,
the proposed network can be used to extract the fuzzy rules
hidden inside the data. 5) Capturing fuzziness and roughness
simultaneously indeed increases the classification performance
in the vowel classification problem.
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‘8’ 84.80% | 80.77% | 69.49% | 70.23% | 86.10% | 91.84% | . . . . .

e B3.86% | B6.03% | 83.98% | 71.33% | 67.53% 567, One interesting gomt to note in the FRBS derived from
iy 87.33% | 82.67% | 80.30% 34% [ 88.50% | 91.52% | the FRNN is that the sum of the confidence factors used for
o’ 10.20% | 72.80% | 7T6.50% | 63.04% | €3.50% | 88.34% | each class (i.e., ). wjz) does not necessarily be equal to one.
U 89.86% | 8T.04% | 70.99% | 72.90% | 86.03% | 7320% | () the other hand’ the sum of the confidence factors for each

class used in the FRBS obtained from the RBFNN is essen-
tially one [5]. Thus, the confidence factors used in the FRNN
do not obey the addition rule used in the probability theory;
rather, the confidence factors are like fuzzy measures [6], where
the result of the addition depends on whether the confidence
factors are cooperative or noncooperative. Therefore, one at-
tractive issue here is to explore the possibility of using non-
linear operators, like fuzzy integrals [6], in place of the linear

summation operator used in the definition (7).

If the output class is fuzzy, then it may be possible to make
the FRNN more powerful by a.ssignili‘g the fuzzy memberships
for the output class subjectively. For instance, if the out-

ut_class for an image processing agplication is represented
y BRIGHT, then it is possible to fit an ‘S’ fuzzy member-
ship curve [10], and assign the fuzzy membership values for

sricuT(Z) subjectively. However, if the domain specific

nowledge is absent, then we have to be satisfied with the
given crisp membersf:ip values for the output classes.
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