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Abstract

In this paper using meural network models we demonstrate
the presence of complementury speaker-specific information in
the residual phase as compared to the conventional spectral
features, The spectral features mainly represent the speaker-
specific vocal tract system features, The proposed LP residual
phase represents the speaker-specific excitation source infor-
mation. Speaker recognition studies are conducted using NIST
2003 speaker recognition evaluation dawbase. The speaker
recognition svstem using only specitral features gives an Equual
Error Raie (EER) of 15.5% and using only LP residual phase
information gives an EER of 22.0%, However, combining
the evidences from LP residual phase and spectral features
increases the performance to an EER of 13.5%. This result
clearly demonstrates the complementary nature of speaker-
specific information present in the LP residual phase.

1. INTRODUCTICN

Speaker recognition is the task of recogmizing the speaker
from his speech signal [1]. Speaker recognition can be either
identification or verification. In speaker identification the goal
is to identify the speaker of the speech signal from a given
set of speakers. Speaker verification involves validating the
identity claim of a given speaker. Further whether the speech
for the same or different text is used during training and
testing, we have text-dependent or text-independent categories.
This study focuses on text-independent speaker verification
task. .

Speech is produced from a time-varying vocal tract system
by a time-varying excitation source (2]. The vocal tract system
and the excitation source contain speaker-specific information.
Spectral features like Mel-Frequency Cepstral Coefficients
(MFCC), Linear Prediction Cepstral Coefficients (LPCC),
which mainly represent the vocal tract system features have
been well exploited for speaker verification studies [3], [4]. Ex-
¢itation source information like Linear Prediction (LP) residual
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and LP residual phase have been shown to contain speaker-
specific information {5], [6]. Eventhough excitation source
information contain significant speaker-specific information,
the difficulty in extracting features make them less preferable
compared to the existing spectral features. However, the fact
that the evidences from excitation source and vocal fract
system are from two independent sources, it will be interesting
to verify further whether they contain some complementary
speaker-specific information. This factor will be useful for
improving the performance of state of the art speaker recog-
nition systems using only spectral features [4] and hence the
objective of this paper.

Linear Prediction (I.P) analysis is performed on the speech
signal to separate the vocal tract system (LP Coefficients) and
excitation source information (LP residual). The LP residual
is processed further using Hilbert transform relations to derive
the phase information [7]. In LP analysis autocorrelation anal-
ysis is performed to estimate the Linear Prediction Coefficients
(LPCs) and hence relations among the samples up to second
order are removed in the LP residual. Therefore speaker-
specific information in the LP residual phase is present in
the higher order relations among the samples. Distribution
of moments taken on these higher order relations may not
give information about a speaker. Hence extraction of speaker-
specific information from such relations involves nonlinear
operation. In this work AutoAssociative Neural Network
{AANN) models are used for extracting the speaker-specific
information from the LP residual phase.

This paper is organized as follows: The extraction of resid-
ual phase information from the speech signal is discussed in
Section 2. AANN models for extracting the speaker-specific
information are discussed in Section 3. The speaker recogni-
tion studies are discussed in Section 4. The conclusions of this
study and the scope for future work are given in Section 5.
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2. SPEAKER-SPECIFIC INFORMATION

The residual phase information can be extracted from the
speech signal by LP analysis [8). In LP analysis each sample
is predicted as a linear combination of past p samples, where
p is the order of prediction. The predicted sample 5(n) is given
by '

f(n)i—iaks(n—k) (1)
k=1

where {s(n)} are the speech samples and {ay} are the LPCs.
The LPCs are obtained as a process of minimizing the error
between the actual and the predicted samples. This is achieved
by solving the following set of normal equations:
D
Y arR(n—k) = —R(n), n=1,...p 2)
k=1
where R(m) =¥, s(n)s(n —m) is the autocorrelation function.

The error between the actual samples and their predicted
versions is termed as LP residual and is given by

riny = s{n)—3i(n) 3
P

rin) = s(m)+ Y awsln—k) 4
k=1

A 20 ms frame of speech signal, its LP spectrum obtained
using the LPCs and the LP residual are shown in Fig. 1.

The features from the LP spectrum and the LP residual may
be used independently for speaker recognition studies [3].

The Hilbert transform of the LP residual ry(#) is the 90°
phase shifted version of the LP residual and is obtained using
~ the relations :

IDFT[—jR{®)], O<w<n
ru(n) = IDFT[jR(w)], 0>w>-n (5)
0 w=0,1

where R{@) is the Discrete Fourier Transform (DFT) of r{n).
The magnitude of the complex time signal constructed from
* the LP residual and its Hilbert transform is termed as Hilbert
envelope and is given by '

hefn) = [P+ ()

The residual phase information (sin®) is obtained as the
ratio of LP residual to the Hilbert envelope. .

$in® = #(n) /he(n) )

* A segment of speech signal, its LP residual, Hilbert trans-
form of LP residual, Hilbert envelope of the LP residuat and

- the residual phase information (sin®)} are shown in Fig. 2.:

. As it can be observed, the phase information looks like a

~ noise-like signal and hence it is difficult make out speaker

_ information visually. For comparison of residual phase across

different speakers, LP residual phase extracted for the same

sound unit /a/ for five different male speakers are shown in

Fig. 3

~ Asit can be observed, it is difficult to visually make out any
discriminatory features across different speakers. However, it
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Fig. 1: (a)Speech  signal, (b)LP spectrum,
{c)}Residual signal

is interesting to note that the speaker information is present in
the higher order relations among the samples of the residual
phase information [7], [9].

The LP residual phase signal mainly contains the infor-
mation about the phase relations among the samples of the
LP residual. In the LP residual, samples around the Glottal
Closure (GC) events are high Signal-to-Noise Ratio (SNR)
regions and are known.to contain better speaker-specific
information [10]. In a similar way, the phase information
around the samples of the GC events in the P residual phase
contains better speaker-specific information compared to other
places [9]. Hence the knowledge of GC evens is used for
extracting the phase relations for speaker recognition studies.
The difference between the LP residual and LP residual phase
information is that the strength of the excitation around the
GC event present in the LP residual is eliminated in the LP
residual phase information. Thus in the LP residual phase,
speaker information is present only in the sequence of the
samples.

3. NEURAL NETWORK MODELS FOR SPEAKER
VERIFICATION

Since LP analysis extracts the second order statistical features
through the autocorrelation matrix, the LP residual phase
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Fig. 2: (a)Spesch signal, (b)LP Residual, (c)Hilbert
Transform, (d)Hilbert envelope, (¢)Residual phase
(sin(0))
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does not contain any significant second order features cor-
responding to the shape of the vocal tract. That is why
the autocorrelation function of the LP residual phase signal
has low correlation values for nonzero time lags, like for
a whitening process, We conjecture that the speaker-specific
mformation may be present in some higher order relations
among the samples of the residual phase signal. It is not
clear how this information can be extracted from the residual
phase signal. Statistical features like higher order moments
of the distribution of the samples of residual phase do not
seem to capture the desired speaker-specific information. It is
conjectured that the exiraction of such an information may
involve ponlinear processing. Neural network models can be
rained to capture the nonlinear information present in the
signal. We explore these models. In particular, we propose
AANN models to extract the desired information from the
residual samples.

AANN models are basically Feed Forward Neural Network
(FFNN} models which try to map an input vector onto itself,
and hence the name auteassociation or identity mapping. It
consists of an input layer, an output layer and one or more
hidden layers. The number of units in the input and cutput

Proceedings of
ICISIP - 2005

0 5 0 5 % % B

Fig. 3: Residual phase for five different speakers in
the steady region of vowel /a/

layers are equal to the size of the input vectors. The number
of nodes in the middle hidden layer is less than the number
of units in the input or output layers. The middle layer is
also the dimension compression hidden layer. The activation
function of the units it the input and output layers are linear,
whereas the activation function of the units in hidden layer
can be either linear or nonlinear.

AANN models can capture the distribution of the input data,
if the data is a set of feature vectors in the feature space
[5]. However, when an AANN is presented with raw PCM
signal samples, such as samples of speech or LP residual or
LP residual phase signal, the AANN captures the implicit non-
linear (higher order) relations among the samples. Therefore
the behavior of the AANN depends on the type of input given
to the network.

The speech signal contains both the second (autocorrelation)
and higher order relations among the samples. If the speech
signal itself is given to the AANN, then the dominant second
order correlations among the samples will be captured in the
training of the network, When the second order correlations are
removed from the speech signal through the LP analysis, and
the resulting LP residual phase is used as input to the AANN,
then the implicit higher order relations in the LP residual
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phase signal are captured. Later we show experimentally that
these relations.do correspond to the desired speaker-specific
information in the excitation component.

When the input to an AANN consists of samples of random
neise, then the network weights will not converge. On the
other hand if blocks of speech samples or LP residual phase
samples are given as input, the error between the input (also
the desired output) and the actual output is reduced during
training, indicating that there is some relation among the
samples. As the number of LP residual phase samplgs per
block is increased, then the relations over longer length of the
black are capture ed. But, if the lengith of the block exceeds a
pitch period, then the effect of pitch period also influences the
training of the network. Therefore in this study the number
of samples per block are limited to less than a pitch period.
[f the number of wnits in the dimension compression layer is
farge, then too many details in the input data may be captured,
and these details may not be consistent across several blocks.
If the number of units in the compression layer is very small
(4 or 5), then important speaker-specific information may be
missing. The training error is an indication of the minimum
number of units required in the compression layer. Typically
the training error reaches a low value when the number of
units in the compression layer are increased to about 12, and
thereafter the error does not significantly reduce even if the
number of units are increased. Note that a lower number is
- preferable as it reduces the size {in terms of the weights) of
the network.

4. SPEAKER RECOGNITION STUDIES
A. Database for the Study

All the speaker recognition experiments of this study are con-
ducted on NIST 2003 speaker recognition evaluation database
of male speakers [11]. Our objective is only to demonstrate the
complementary nature of the speaker-specific information in
the residual phase information and hence only male speakers
part of the database was chosen for the study. There are 149
male speakers, and the duration of training data for each
speaker is about 2 minutes. There are 1343 test utterances,
gach having a duration of 15-45 sec duration. Fach test
utterance has 11 claimants, where genuine speaker may or
may not be present. Alt speech signals were sampled at 8
© kHz.

B. Studies using LP Residual Phase Information

The LP residual phase information (sin®} is extracted from
the speech signals as explained earlier. Only voiced frames
are selected for the study using a method based on the
autocorrelation of the Hilbert envelope. GC events are also
detected using a method based on the Hilbert envelope. LP
residual phase information around the GC events is considered
in blocks of 40 samples for the study. The structure of the
network used for the study is shown in Fig. 4 The structure
of the network is 401, 48N 12N 48N 40L, where, L represents
linear, N represents nonlinear and the numerals represent
number of units in the layer. The structure of the network was

Number P P
of nodes

Input Layer
Type of
activation L N N N L
function

Fig. 4: Structure of the AANN model

determined experimentally. The performance does not depend
critically on the structure of the network.

During training phase, é blocks of 40 samples around each
GC event are considered in shifts of one sample. Each block is
applied to input as well as output of the AANN model and was
allowed to learn the higher order relations among the samples
in the block. One AANN model was trained for each speaker
for 500 epochs.

During testing phase, 6 blocks of 40 samples around each
GC event are considered in shifts of one sample. Each block
is applied as input to the AANN and the output of the AANN
is noted. The error between the input block and the output
of the AANN is computed. The error is converted into a
confidence value using the relation ¢; = exp(—Xe;} where ¢
and ¢; are error and confidence of block §, respectively, and
A =1 throughout the study. The average confidence of all
the blocks in the test utterance gives the score of the speaker
for the given test utterance. The performance of the speaker
recognition system is given as Detection Estimation (DET)
curve and is shown in Fig. § From the DET curve the EER is
found to be 22%.

C. Siudies using Spectral Features

The Linear Prediction Cepstral Coetticients {LPCCs) derived
from the LPCs are used as the spectral features for the speaker
verification study. Voiced frames arc detected as mentioned
earlier. 19 dimension LPCCs are computed for cach frame
of 20 ms with a shift of 5 ms. The structure of AANN for
capturing distribution of LPCCs of cach speaker is 19L 38V
8N 38N 19L, where L refers to lincar nodes and N refers to
nonlinear nodes.

During training, the LPCCs are led in random erder to
the AANN and one AANN is trained for each speaker for
60 epochs. We found the performance obtained for AANNs
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trained with 60 epochs is almost equal to the AANNs trained
with 500 epochs, but with significant reduction in time, Hence
we used only 60 epochs for training AANN models using
LPCCs. ‘

During testing, LPCCs extracted from the test utterance for
every block of 20 ms with a shift of 5 ms are applied to the
AANN models. For each block ot 20 ms the error between the
LPCCs and the output of AANN are computed. The error i3
converted into confidence and the average confidence across
all frames represent the score of the model for the given test
utterance. The performance of the speaker recognition system
using spectral features shown in the form of DET curve in
Fig. 5. From the DET curve the EER for spectral features is
15.5 %.

L . | == Only System

30 o "% . . ] System+ Residual Phase
- a. . L= Only Residual Phase

Miss probability (in %)

e iy M,

9 i i
9 10 1 12

False Alarm probability {in %)

Fig. 5: DET curves for the systemns built using
residual phase, spectral features and the combined
system

D. Combining evidence fiom Spectral and LP residual phase

The scores obtained for each speaker using LPCCs and the
LP residual phase are combined by simple addition of the
two scores. The performance of the combined system is
plotted as DET curve in Fig. 5. The EER for the same is
13.5%. This study infers that the speaker-specific information
in the LP residual phase is complementary to existing spectral
featurcs and hence the improvement in the performance of the
combined syster,

5. CONCLUSIONS

The objective of this paper was 1o demonstrate the comple-
mentary nature of speaker-specific information present in the

13 14 1516 17 18 192021 22232425 3
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residual phase information. This was was demonstraied by
conducting speaker verification experiments on NIST 2003
Speaker Recognition evaluation database. The speaker recog-
nition systemn using only residual phase information gives an
EER of 22%, using only spectral features gives an EER of
15.5% and the combined system gives an EER of 13.5%.

In this work it was experimentally demonstrated that AANN
models indeed capture speaker-specific information. However,
efforts are needed to give analytical framework for the funec-
tioning of AANN models in the two cases.
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