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Abstract
The objective of this work is to represent the information in the
speech signal picked up by a throat microphone (TM) in an effi-
cient manner in terms of number of bits required. Since the TM
signal is unaffected by ambient noise, it is possible to extract the
required information effectively under different environmental
conditions. A spectral mapping technique is proposed from the
TM speech to normal microphone (NM) speech to improve the
perceptual quality. The mapping is done using vector quanti-
zation of pairwise spectral feature vectors derived from each
frame of TM and the corresponding NM speech signals. Once
the codebook is formed, the spectral features from a TM sig-
nal are represented as a sequence of codebook indices. The
sequence of codebook indices, the pitch contour and the energy
contour derived from the TM signal are used to store/transmit
the TM speech information efficiently. From the received se-
quence of codebook indices, the NM spectral vectors are re-
trieved due to pairwise vector quantization of the feature vec-
tors. A synthetic residual signal is generated at the receiver from
prestored residual templates by incorporating the pitch and the
energy. The synthetic residual signal is used to excite the sys-
tem corresponding to the NM spectral vectors to generate the
speech signal.
Index Terms: Throat microphone, speech coding, spectral
mapping, vector quantization.

1. Introduction
Communication in adverse conditions makes it difficult to pro-
cess the speech due to high levels of ambient noise at the in-
put of the microphone. The intelligibility of speech transmitted
through low-bit rate coders severely degrades due to high lev-
els of noise present in the acoustic environment. One effective
way of overcoming noise is to collect the speech signal through
bone conduction using a throat microphone. Though the quality
of the throat microphone (TM) speech signal may be different
from that of a normal microphone (NM) speech signal, the TM
signal is not severely affected by ambient noise. Therefore the
high quality of the TM signal can be exploited for transmitting
the speech information at a low-bit rate. The objective of this
work is to represent the information in the speech signal picked
up by a TM in an efficient manner in terms of the number of bits
required. Since the TM speech signal is unaffected by noise and
degradation, it is possible to extract the required information ef-
fectively even under different environmental conditions.

While the signal collected through vibration pickup placed
at the throat (near the glottis) is clean, it does not sound natural

like a close-speaking microphone. The TM speech signal is
typically a low bandwidth signal, whereas the NM signal is of
wide bandwidth. Because of conduction through the bones and
skin, the high frequency components are attenuated in the TM
signal. As a result, the speech collected through a TM sounds
slightly muffled and metallic. However, it is possible to map the
features of TM speech to obtain the features of NM speech.

The spectral mapping methods from narrowband speech to
wideband speech aims at improving the perceptual quality of
the narrowband signals. There are several approaches for re-
construction of wideband spectrum from narrow band spectrum.
Codebook mapping approaches rely on one-to-one mapping be-
tween the codebooks of narrowband and wideband spectral en-
velopes [1] [2]. Neural network approaches exploit the nonlin-
ear properties of the network to estimate the missing frequency
components [3]. In [4], a multilayer feedforward neural net-
work was used to capture the functional relationship between
the spectral vectors of TM speech and NM speech.

In this work, we propose a vector quantization method for
coding and mapping the spectral features of the TM speech.
Two codebooks are generated for TM speech and NM speech,
which have one-to-one correspondence between their entries.
The given throat microphone signal is converted into a sequence
of codebook indices (symbols) by performing vector quantiza-
tion using TM codebook. The symbols thus derived can be en-
coded in fewer bits compared to the number of bits required
to represent the signal. During decoding, the spectral features
of the NM speech are derived by using the symbols and the
NM codebook. The NM residual signal is synthesized using the
pitch and energy contours of the throat microphone signal. In
Section 2, we explain the proposed vector quantization method
for spectral mapping from TM speech to NM speech. Section 3
discusses a method to generate the NM residual from the pitch
and energy contours of TM speech. In Section 4, we illustrate
the application of the proposed representation of the TM speech.
Finally, in Section 5, we summarize the contributions of this pa-
per, and discuss some limitations of the proposed method which
prompt for further studies.

2. Spectral mapping through vector
quantization

In this work, we use the linear prediction cepstral coefficients
to represent the spectral information in the speech signal. In
linear prediction (LP) analysis, each sample s[n] is estimated
as a linear weighted sum of past p samples [5]. The predicted
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sample ŝ[n] is given by

ŝ[n] = −

pX
k=1

aks[n− k] (1)

where p is the order of prediction, and {ak}s are the linear pre-
diction coefficients (LPCs). The LPCs are obtained by minimiz-
ing the mean squared prediction error over the analysis frame.
The linear prediction cepstral coefficients (LPCCs) are derived
from the LPCs through a recursive relation given by [5]
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Typically a cepstral representation with q > p is used, where q

is the number of LPCCs. The low-order LPCCs are sensitive to
the spectral tilt and the high-order LPCCs are sensitive to noise
and other forms of variability. Hence the cepstral coefficients
are weighted by a bandpass lifter
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, 1 ≤ m ≤ q, (3)

to reduce the sensitivities. The weighting deemphasizes the
LPCCs around m = 1 andm = q. The wLPCCs derived from
the corresponding frames of TM speech signal and NM speech
signal are used for spectral mapping.

2.1. Modeling

The wLPCCs extracted from a frame of the TM speech are
appended with the wLPCCs extracted from the corresponding
frame in the NM speech to form a joint-feature vector. The
joint-feature vector represents the implicit relations between the
spectral features of the TM speech and the NM speech. The
joint-feature vectors of the entire speech data are pooled to-
gether and clustered to form a predecided number of clusters.
For coding purposes, the number of clusters (M ) is typically
chosen in the form of 2B , where B is the number bits required to
transmit a quantized spectral vector. The choice of the number
of clusters (M ) depends on the amount of data available, and the
tradeoff between quantization level and perceptual quality. The
centroids of the clusters were initialized to arbitrarily chosen
vectors from the training set. Clustering is done by minimizing
the sum of squares of distances between the joint-feature vec-
tors and the cluster centroids. The resulting cluster centroids
are split to form a TM codebook and a NM codebook. The TM
codebook is used at the encoding side, and the NM codebook is
used at the decoding side. The block diagram of the proposed
approach for speech coding and mapping is shown in Fig. 1.

The cluster centroids of the NM codebook are used to form
the all-pole filter for speech synthesis. As the cluster centroid
represents the mean of the wLPCCs of the frames that belong
to a given cluster, it may not be physically generated by the
speaker. Moreover, direct conversion of wLPCCs to LPCs is
not guaranteed to result in a stable all-pole filter realization. In
order to overcome this, we propose to store the LPCs of the
nearest frame to the cluster centroid as the NM codeword in-
stead of wLPCC vectors.

2.2. Encoding TM speech

During encoding, the LP analysis is performed on the TM
speech signal that is to be transmitted. The LPCs are converted
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Figure 1: Block diagram of the proposed approach for pairwise
vector quantization of spectral features derived from TM speech
and NM speech

to LPCCs, and cepstral liftering is applied to obtain wLPCCs.
Each of the wLPCC vectors is assigned a cluster index (0 to
M-1) based on its similarity to the corresponding cluster cen-
troid. The sequence of cluster indices is used for encoding and
transmitting the spectral information of TM speech.

2.3. Decoding and mapping

The received signal is decoded to obtain the sequence of cluster
indices. The NM cluster centroids corresponding to the received
sequence of cluster indices are used in synthesizing the speech
signal. The sequence of cluster centroids gives an approximate
representation of the spectral features of the NM speech sig-
nal. The all-pole filter corresponding to the LPCs is excited by
the synthetic residual signal, modified using the pitch and en-
ergy contours of the TM speech signal. Generation of synthetic
residual is discussed in the next section.

3. Generating synthetic residual
The residual signal is generated by modifying a prestored resid-
ual template of a pitch period of NM speech using the pitch and
energy contours of the throat microphone signal. The energy
contour is obtained by computing the energy of the throat mi-
crophone signal for every 20 ms interval shifted by 10 ms. The
pitch contour is obtained by the autocorrelation analysis of the
Hilbert envelope of the LP residual, which is derived from the
throat microphone signal [6]. Fig. 2 shows the pitch contour
and the energy contour derived from a throat microphone sig-
nal. Notice that the pitch frequency and energy contours are
smooth and can be compressed to obtain low-bit rate coding.
The frames with a pitch frequency value of 0 indicate a non-
voiced (unvoiced or silence) frame.

At the receiver, the residual corresponding to a pitch period
of the NM signal is modified according to the received pitch and
energy contours to generate a synthetic residual signal. Increas-
ing or decreasing the number of samples of the LP residual sig-
nal according to the desired pitch period is done by exploiting
the interpolation property of the discrete Fourier transform [7].
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Figure 2: (a) TM speech signal, (b) Pitch contour derived from
TM speech and (c) Energy envelope of TM speech

In this method, the residual samples can be resampled according
to the pitch period of the frame, instead of deleting or inserting
the samples arbitrarily. The process of resampling is illustrated
in the Fig. 3. The resampling is done as follows: Let p be the
number samples in the prestored template residual frame. Let
q be the number of samples in the corresponding pitch period
(T0 = 1

f0
) of the received frame, i.e., q = T0 ∗ fs, where fs

is the sampling frequency. Resampling of the template residual
e[n] is performed by inserting q − 1 zeros between successive
samples of the e[n]. The resulting zero-padded residual signal
ez[n] contains p ∗ q samples, and is given by

ez[n] =

(
e
h

n
q

i
, n = 0, q, 2q, . . . (p− 1)q,

0, Otherwise.
(4)

A p ∗ q point discrete Fourier transform is performed on the
zero-padded residual signal ez[n] to obtain its spectrum,

Ez[k] =
NX

n=0

ez[n]e−j 2π

N
kn

. (5)

The resulting spectrum Ez[k] is low-pass filtered up to the
Nyquist frequency

`
fs

2

´
to preserve the spectral characteristics

of the original residual signal, and thus avoiding the spectral
folding due to upsampling. A p∗q point inverse discrete Fourier
transform is performed on the low-pass filtered Ez[k] to obtain
the time-domain signal ezi[n] with interpolated samples. The
desired number (q) of the residual samples are derived by select-
ing every pth sample from the interpolated time-domain signal
ezi[n]. The modified residual frame em[n] of length q samples
is given by

em[n] = ezi[n ∗ p], n = 0, 1, 2, . . . , (q − 1) (6)
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Figure 3: DFT interpolation technique for resampling the signal
by a factor of q

p

In the voiced frames (indicated by a nonzero pitch fre-
quency value), the resampled residual signal is used as the ex-
citation. In the unvoiced frames (indicated by a zero pitch fre-
quency value), white noise is used as excitation. The resampled
residual signal is modulated with the energy contour to preserve

the relative amplitudes of the sound units. Fig. 4 shows a seg-
ment of TM residual and the corresponding reconstructed NM
residual. Since the true prosody (duration, pitch period and en-
ergy) of the TM signal is incorporated in the synthesized resid-
ual, it does not introduce significant perceptual distortions.
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Figure 4: Illustration of the synthetic residual generated by pro-
posed method. (a) Residual signal of TM speech and (b) Syn-
thesized residual from pitch and energy contours of TM speech.

4. Experimental studies
The training phase involves recording speech from a speaker us-
ing the TM and the NM simultaneously. Simultaneous record-
ing is essential for understanding the differences between com-
ponents of speech in both the signals, and for capturing the im-
plicit relations between the spectra of the two signals. For train-
ing, 5 minutes of speech data (read from a text, and containing
both speech as well as nonspeech regions) is used. The speech
signals from a TM and a NM are sampled at a rate of 8 kHz. A
10th order LP analysis is used on (Hamming) windowed speech
frames, each of 20 ms duration, at a rate of 100 frames per sec-
ond. A 15-dimensional wLPCC vector is extracted from the
10 LPCs of each frame of the speech signal. The choice of
LP analysis and the number of LPCCs is not critical. The 15-
dimensional wLPCCs extracted from a frame of the TM speech
signal are appended with the 15-dimensional wLPCCs extracted
from the corresponding frame of the NM speech signal to form a
30-dimensional joint-feature vector. k-means clustering is per-
formed on the joint-feature vectors extracted from the entire 5
min of speech data, with Euclidean distance as the distortion
measure. The number of clusters was chosen to be 512. It
was observed that there was no significant difference in the per-
ceptual quality of the synthesized speech with M = 512 and
M = 1024. The first 15 coefficients of each of the cluster cen-
troids are stored as the TM codebook at the transmitter. The
LPCs of the NM speech of the nearest frame to the cluster cen-
troid is stored as the NM codeword.

During testing a new utterance (not used during modeling)
is recorded from the TM, and 10th order LP analysis is per-
formed on frames of 20 ms duration at a rate of 100 frames
per second. The wLPCCs extracted from the test utterance are
quantized into sequence of codebook indices. The pitch and en-
ergy contours are also obtained for every frame. The sequence
of codebook indices, the pitch contour and the energy contour
can be used to transmit the information in TM speech signal at
a low-bit rate. The sequence of codebook indices can be en-
coded at 900 bits/s (512 clusters, 100 frames per second). Since
the pitch and the energy contours are smooth, they also can be
coded in smaller number of bits. On an average, we expect to
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represent the information in the TM speech signal at 1000 bits/s
using this method.

At the receiver, the codebook indices are used to retrieve
the LPCs of the NM speech signal. The derived sequence of
LPCs provide mapping from actual TM speech signal to the re-
constructed NM speech signal. The LP spectra for a sequence
of frames of the TM speech and NM speech, and the corre-
sponding reconstructed spectra are shown in Fig. 5. The high
frequency content missing in the TM spectra is incorporated
in the reconstructed spectra. It is also seen from Fig. 5 that
the codebook mapping seems to provide an estimate of the NM
spectra which are smooth across consecutive frames. The resid-
ual signal generated from the pitch and energy contours (as de-
scribed in Section 3) is used to excite the time-varying all-pole
filter, corresponding to the retrieved LPCs, for synthesizing the
speech signal.

The performance of the proposed mapping technique is
evaluated using the Itakura distance measure as the objective
criterion. The Itakura distance measures the similarity between
two LP spectra [8]. The Itakura distance between the LPCs of
two frames (a and b) is given by

dab =
b

T
Rab

aTRaa
(7a)

dba =
a

T
Rba

bTRbb
(7b)

where dab and dba are the asymmetric distances from a to b

and vice versa, respectively, andRa andRb is the Toeplitz ma-
trices formed from the autocorrelation sequences of the speech
frame corresponding to a and b. The symmetric Itakura dis-
tance between two vectors is given by d = 1

2
(dab + dba). The

Itakura distance between the TM spectra and NM spectra, and
the NM spectra and reconstructed spectra are computed for each
frame. Fig. 6 shows the Itakura distance plot for a segment of
an utterance. It can be observed that the distance between the
NM spectra and reconstructed spectra is smaller compared to
the Itakura distance between the NM spectra and TM spectra.
This shows that the reconstructed spectra are very close to the
NM spectra. Thus, the proposed method of spectral mapping
is able to capture the implicit relations among the TM spectra
and NM spectra. Informal listening to the reconstructed speech
(speech synthesized using LPCs derived from NM codebook
and synthetic residual signal) showed that it is of perceptible
quality.
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Figure 5: LP spectra of the TM speech, NM speech and the
estimated LP spectra for a sequence of speech frames.

5. Summary and conclusions
In this paper, we proposed a framework for representing the in-
formation in the TM speech signal using a small number of bits.
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Figure 6: Itakura distance between the NM and TM spectra
(dashed lines) and NM and estimated spectra (solid lines) for
speech utterances.

The high SNR property of the TM speech signal is exploited
for this efficient representation. The proposed vector quantiza-
tion method also provides a speaker-dependent mapping of TM
spectral features to NM spectral features to improve the percep-
tual quality. The information in the TM speech signal is rep-
resented as a sequence of codebook indices (corresponding to
spectral information), and pitch and energy contours. Using the
proposed method, we expect to represent the TM speech signal
at 1000 bits/s, which can be reconstructed with reasonable per-
ceptual quality. Our future efforts focus on generating a residual
signal using more number of templates to improve the percep-
tual quality. Another objective is to perform spectral mapping
in a speaker-independent manner.
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