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Abstract
This paper proposes a method for detection of voiced regions
from speech signals collected in noisy environment. The pro-
posed method is based on the characteristics of excitation
source of speech production. The degraded speech signal is pro-
cessed by linear prediction analysis for deriving the linear pre-
diction residual. Hilbert envelope of the linear prediction resid-
ual is processed using covariance analysis to obtain coherently-
added covariance signal. The periodicity property of the coher-
ently added covariance signal is exploited to detect the voiced
regions using autocorrelation analysis. The performance of the
proposed voice activity detection algorithm is evaluated under
different noise environments and at different levels of degrada-
tion.
Index Terms: Excitation source information, linear prediction
residual, glottal closure event, coherently added covariance sig-
nal.

1. Introduction
Speech signal can be considered as contiguous segments con-
sisting of voiced, unvoiced and silence regions. The quality of
speech collected in a noisy environment will be poor. But the
voiced speech in the production process corresponds mostly to
high Signal-to-Noise Ratio (SNR) regions, and hence these re-
gions are less affected compared to nonvoiced and silence re-
gions. Also, most (>80%) of the speech is of voiced type,
and the voiced characteristics are retained even when speech
is severely degraded. Therefore, if we are able to identify the
voiced regions from the degraded signal, then such regions can
be used for further processing in tasks like speech enhancement,
speech coding and speaker recognition. The objective of the
proposed Voice Activity Detection (VAD) algorithm is to iden-
tify voiced regions even when speech is degraded. The pro-
posed algorithm may be used as a front-end processor for some
of the applications mentioned above.

Conventional VAD algorithms assume that the background
noise statistics are stationary over a longer period of time
than those of speech, which makes it possible to estimate the
time varying noise statistics in spite of occasional presence
of speech. To determine the presence or absence of speech,
the observed signal statistics in the current frame are com-
pared with the estimated noise statistics according to some de-
cision rules. Moreover, this initial decision is modified by a
hang-over scheme to minimize misdetections at weak speech
tails. In these methods, estimating the parameters governing
the noise model is a crucial step. Sohn et al., proposed a
decision-directed parameter estimation method and a HMM-
based hang-over scheme which improves the performance of

VAD [1]. In [2], Li et al., proposed a VAD scheme using the
properties of higher order statistics of speech and noise signals.
Their scheme employs the logarithm of kurtosis of the LP resid-
ual, and is shown to be more effective and efficient in detecting
the speech activity in medium to low SNR conditions, without
being affected by variations in the signal energy. A statistical
method which employs a low-variance spectrum estimate, and
determines an optimum threshold based on the estimated noise
statistics is presented in [3]. An adaptive method of finding an
appropriate statistical model for noisy speech in the spectral do-
main is presented in [4]. It is shown that the complex Laplacian
and Gamma density functions are better suited for the paramet-
ric representation of noisy speech spectra distribution than the
conventional Gaussian density function. Dependence of these
methods on the statistical characterization of degradation con-
strains their usage to situations where such characteristics can
be derived. Moreover, the statistical characteristics of degra-
dations may vary widely depending on the type degradation.
Hence, these methods may not be suitable to situations where
the degradations are unknown and/or non-stationary. In this pa-
per, we present a VAD algorithm that relies on the properties of
the speech production process, rather than the statistical proper-
ties of the noise spectrum.

The speech-specific knowledge from vocal tract system or
from excitation source or from both may be used for developing
VAD algorithm. For example, the first predictor coefficient in
LP analysis contains some discriminating information between
voiced and non-voiced (unvoiced and silence) regions, and is
used in VAD technique proposed in [5]. The vocal tract system
features are severely affected by the degradations, compared to
some features corresponding to the excitation source of speech
production. For example, the relative spacing between the Glot-
tal Closure (GC) events is not affected by degradations. In this
paper we use this property of the excitation source of speech
production for developing a VAD algorithm. The paper is orga-
nized as follows: Section 2 discusses extraction of the excita-
tion source information from the speech signal. The proposed
method for detection of voiced regions is discussed in Section 3.
Performance evaluation of the proposed algorithm is presented
in Section 4. Summary of the present work and scope for further
studies in this direction are given in Section 5.

2. Excitation Source Information for VAD

The excitation source information can be extracted from the
speech signal by performing LP analysis [6]. In LP analysis,
the sample s[n] is estimated as a linear weighted sum of past p
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samples. The predicted sample ŝ[n] is given by

ŝ[n] = −

pX
k=1

ak s[n − k], (1)

where p is the order of prediction and {ak}, k = 1, 2, . . . , p,
is the set of linear prediction coefficients (LPCs). The LPCs
are obtained by minimizing the mean-squared error between the
predicted sample value and actual sample value over the anal-
ysis frame. The error between the actual value s[n] and the
predicted value ŝ[n] is given by

e[n] = s[n] − ŝ[n] = s[n] +

pX
k=1

aks[n − k]. (2)

The error e[n] is called LP residual of the speech signal. Since
{ak} models the vocal tract system features, the LP residual
e[n] contains mostly information about the excitation source.
A segment of degraded speech signal and its LP residual are
shown in Figs. 1(a) and (b), respectively. Whenever there is
significant excitation to the vocal tract system, it is indicated by
a large error in the LP residual. This can clearly be seen in the
case of voiced speech, where the significant excitation within
a pitch period coincides with the GC event. The GC event is
the instant at which closure of the vocal folds takes place in
each glottal cycle. Even though the LP residual contains mostly
the excitation source information, there are difficulties in us-
ing it directly for further processing. This is due to fluctua-
tions caused by the phase of the residual, which results in signal
of random polarity around the instants of significant excitation.
The effect of phase can be reduced by using amplitude enve-
lope of the analytic signal derived from the LP residual [7]. The
analytic signal ea[n] corresponding to the LP residual e[n] is
defined as [8]

ea[n] = e[n] + jeh[n] (3)

where eh[n] is the Hilbert transform of e[n], and it is computed
as

eh[n] = IFT [Eh(ω)]

where

Eh(ω) =

j
jE(ω), −π ≤ ω < 0

−jE(ω), 0 ≤ ω < π
(4)

Here IFT denotes the inverse Fourier transform, and E(ω) is
the Fourier transform of e[n]. The amplitude envelope of the
analytic signal ea[n] (also called Hilbert envelope he[n]) of the
LP residual is given by

he[n] = |ea[n]| =
q

e2[n] + e2

h[n] (5)

The Hilbert Envelope (HE) of the LP residual is shown in
Fig. 1(c). The instants of significant excitation show periodic
nature in the voiced regions, and this periodicity is not present
in non-voiced (noise and unvoiced) regions. The instants of sig-
nificant excitation in the HE can further be emphasized using
covariance analysis as described below.

Consider a frame of the HE fm[n] of N samples, given by

fm[n] = he[n + m] w[n]

Here, he[n] is the HE of the LP residual, m is the starting sam-
ple number of the frame and w[n] is the window function of N

samples given by

w[n] =

j
1, for 0 ≤ n < N

0, otherwise.
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Figure 1: (a) Segment of degraded speech signal and its (b) LP
residual, (c) Hilbert envelope of the LP residual, (d) Coherently
added covariance signal derived from the Hilbert envelope.

For every frame fm[n] of N samples, the covariance sequence
ϕm[l] is computed as

ϕm[l] =

PN−1

n=0
fm[n]fm[n + l]qPN−1

n=0
f2

m[n]
qPN−1

n=0
f2

m[n + l]
, l = 1, 2, . . . , N.

(6)
where l is the time-shift. The peaks in the covariance sequence
occur at an interval corresponding to the peaks in the HE of the
LP residual. The peaks in the covariance sequence can be time-
aligned with the peaks in the current frame of the HE by using
cross-correlation approach. The location of the strongest peak
in the cross-correlation function of fm[n] and ϕm[n] gives the
delay km between the two sequences. The delay km is adjusted
in the covariance sequence to align the peaks in the covariance
sequence in coherence with the peaks in the current frame of the
HE. The time-aligned covariance sequences are computed with
a shift of q samples, and they are added to obtain the coherently
added covariance signal c[n] as

c[n] =
X
m

ϕm[n − m − km], m = 0, q, 2q, . . . (7)

For illustration, a segment of the HE of the LP residual for
speech signal at 5 dB SNR is shown in Fig. 2(a). The time-
aligned covariance sequences for four consecutive frames of
size 20 ms with a frame shift of 2 ms of the HE are shown
in Figs. 2(b)-(e). The time-aligned covariance sequences are
coherently added to obtain the signal shown in Fig. 2(f). The
peaks corresponding to the GC events are emphasized in the
coherently-added covariance signal, as compared to the peaks
in the HE. The periodic behavior of these peaks in the voiced
regions of the coherently-added covariance signal can be ex-
ploited for developing a VAD algorithm. The normalized
strength of the first peak (first major peak after the center peak)
in the autocorrelation sequence of the coherently-added covari-
ance signal is used to quantify the periodic behavior.

3. Voice Activity Detection Algorithm
To exploit the periodic behavior of peaks in coherently-added
covariance signal of voiced regions, autocorrelation analysis is
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Figure 2: (a) A segment of the Hilbert envelope of the LP resid-
ual, (b)-(e) time-aligned covariance sequences of four consecu-
tive frames and (f) coherently-added covariance signal.

performed. The strength of the first major peak (after the center
peak) in the normalized autocorrelation sequence of the coher-
ently added covariance signal is an indication of the periodicity
and voicing level of the segment. For illustration, a 30 ms frame
of coherently-added covariance signal of a voiced segment of
degraded speech and its normalized autocorrelation sequence
are shown in Figs. 3(a) and 3(b), respectively. Similarly, a 30
ms frame of non-voiced region and its normalized autocorre-
lation sequence are shown in Figs. 3(c) and 3(d), respectively.
The values of the normalized strength Ps of the first peak are
indicated in Figs. 3(b) and 3(d). The normalized strength of the
first peak in the voiced regions is higher compared to that for the
non-voiced regions. The normalized strength of the first peak is
computed for every frame of the coherently-added covariance
signal using a frame shift of one sample. The values of the peak
strength thus obtained are used to detect the voice activity in
the speech signal. A large value of peak strength indicates the
presence of voicing in the corresponding frame.

4. Evaluation of VAD algorithm
The VAD algorithm was evaluated in different noisy environ-
ments at different levels of degradation. The data set required
for evaluation was prepared as suggested in [3]. A subset of
TIMIT corpus consisting of 62 individual speakers, each speak-
ing 4 sentences, is used to evaluate the proposed VAD algo-
rithm. This data consists of 248 different spoken sentences en-
compassing all phones and eight different dialects as defined in
the TIMIT set. All data was downsampled to 8 kHz. Sentences
were concatenated in sets of four, and silence was inserted be-
tween sentences. The duration of silence between sentences
was randomly chosen; however, the duration of silence was con-
strained to 60% of the total duration. The resulting database
consisted of 32 min of speech data, of which 40% was active
speech, which is typically the amount of speech activity in a
telephone conversation.

The entire data set was samplewise labeled for voice ac-
tivity using the clean data. Several noise environments were
artificially added to the clean data set at varying SNRs. The
noise used was taken from the NOISEX-92 database consisted
of babble, factory, Gaussian, high frequency, pink and vehicu-

0 10 20 30
0

0.2

0.4

0.6

0.8

1

20 40
0

0.2

0.4

0.6

0.8

1

0 10 20 30
0

0.2

0.4

0.6

0.8

1

Time (ms)
0 20 40

0

0.2

0.4

0.6

0.8

1

Time (ms)

(a) (b)

(c) (d)

Ps = 0.704 

Ps= 0.293 

Figure 3: (a) A 30 ms segment of the Hilbert envelope of voiced
speech, and, (b) its autocorrelation sequence. (c) A 30 ms seg-
ment of the Hilbert envelope of nonvoiced speech, and (d) its
autocorrelation sequence.

lar noise. Including different noise environments and SNRs, the
proposed VAD algorithm was evaluated on 15 hours of noisy
speech.

A 10th order LP analysis was performed on the degraded
speech signal to obtain the LP residual. The HE of the LP
residual was processed using covariance analysis to obtain
coherently-added covariance signal. Autocorrelation analysis
was performed on the coherently-added covariance signal using
frames of size 25 ms with a shift of one sample. A segment of
speech signal degraded by babble noise at 5 dB SNR, and corre-
sponding actual voice active regions, are shown in Fig. 4(a) and
Fig. 4(b), respectively. The sequence of peak strength values
obtained from the autocorrelation analysis of coherently added
covariance signal is shown in Fig. 4(c). The voice active re-
gions are marked by high peak strength values, and hence the
algorithm can be used for voice activity detection.
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Figure 4: (a) A segment of speech signal degraded by bab-
ble noise at 5 dB SNR (b) Manually marked voiced regions (c)
Normalized peak strength values obtained from autocorrelation
analysis.
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The performance of the proposed algorithm was evaluated
using the Detection Error Tradeoff (DET) curves which show
the tradeoff between False Alarm Rate (FAR) and False Rejec-
tion Rate (FRR). The FAR represents the number of non-voiced
frames that were detected as voiced, whereas, the FRR repre-
sents the number of voiced frames that were not detected. The
DET curves obtained by the proposed VAD algorithm under
babble noise environment at different levels of degradation are
given in Fig. 5. As the FAR decreases, the FRR increases and
vice versa. The performance of the system is expressed in terms
of equal error rate (EER), the point at which FAR and FRR are
equal. The lower the EER value, the higher the accuracy of the
VAD algorithm. The performance of VAD in various noise en-
vironments at different degradation levels is listed in Table 1.
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Figure 5: DET curves indicating the performance of proposed
VAD algorithm under babble noise environment at different lev-
els of degradation.

Table 1: Performance of VAD in EER (%) for various noise
environments and SNRs.

Noise Type 20 dB 15 dB 10 dB 5 dB 0 dB
Babble 3 5 8.5 14 21
Factory 3.2 5.5 10 16 25

Gaussian 5 11 17 25 32
HF Channel 4 7 12 20 25

Pink 4 6 11 19 29
Vehicular 0 0 0.2 0.6 1.2

The average performance of the proposed excitation source
based VAD algorithm is comparable with the existing spectrum
based statistical methods [3] [4]. The proposed method is in-
ferior to the spectrum based methods under white noise envi-
ronment. This poor performance can be attributed to the limita-
tions of LP analysis under high degradation due to white noise.
The performance can be improved by characterizing the type
of noise and performing a lower order LP analysis under white
noise environment. The proposed VAD algorithm performs bet-
ter than the spectrum based methods [3] under babble noise en-
vironment. The spectrum based methods perform poorly in bab-
ble noise environment because of its speech-like spectral prop-
erties. But, the excitation source information and the periodic-
ity of the GC instants are not preserved in the babble noise, and
hence the proposed algorithm is well suited for babble noise
environment. The proposed method is comparable to the spec-
trum based methods in vehicular noise environment. Since the

proposed method is based on the excitation source information,
it provides complimentary information to the spectrum based
methods. Moreover, it is difficult to develop a universal VAD
algorithm that performs equally well in all the noise environ-
ments. Hence, the proposed method can be used along with
the existing spectrum based methods to develop a robust VAD
system.

5. Conclusions
In this paper, a method based on the characteristics of excitation
source of speech production was proposed to detect the voiced
regions in degraded speech. The method exploits the periodicity
of the GC events in the excitation source information to identify
the voiced regions. Because of high SNR nature of the regions
around the GC events, the periodicity information is preserved
even under high levels of degradation. Coherent addition of
the covariance signals derived from HE of LP residual was pro-
posed to emphasize the peaks at GC events. This method of
emphasizing the peaks can also be employed to detect the ac-
curate locations of GC events, which is essential for applica-
tions like speech enhancement [9]. The proposed method relies
mainly on the characteristics of the speech production process,
rather than on the properties of the noise spectrum. Moreover,
the proposed method does not assume any noise characteris-
tics, and does not depend on parameters estimated from the
noise spectrum. Hence, the proposed method can be applied
irrespective of the noise environment. The performance of the
proposed method can be improved by employing a hang-over
scheme which modify the VAD decision using sequence infor-
mation.

6. References
[1] J. Sohn, N. S. Kim, and W. Sung, “A statistical model-based

voice activity detection,” IEEE Signal Proc. Letters, vol. 6,
pp. 1–4, Jan. 1999.

[2] K. Li, M. N. S. Swamy, and M. O. Ahmad, “An improved
voice activity detection using higher order statistics,” IEEE
Trans. Speech Audio Processing, vol. 13, pp. 965–974, Sep.
2005.

[3] A. Davis, S. Nordholm, and R. Togneri, “Statistical voice
activity detection using low-variance spectrum estimation
and an adaptive threshold,” IEEE Trans on Audio, Speech,
and Language Processing, vol. 14, pp. 412–424, Mar. 2006.

[4] J.-H. Chang, N. S. Kim, and S. K. Mitra, “Voice activity de-
tection based on multiple statistical models,” IEEE Trans.
Signal Processing, vol. 54, pp. 1965–1976, Jun. 2006.

[5] W. Hess, Pitch determination of speech signals. Berlin Hei-
delberg, New York: Springer-Verlag, 1983.

[6] J. Makhoul, “Linear prediction: A tutorial review,” Proc.
IEEE, vol. 63, pp. 561–580, Apr. 1975.

[7] T. V. Ananthapadmanabha and B. Yegnanarayana, “Epoch
extraction from linear prediction residual for identification
of closed glottis interval,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-27, pp. 309–319, Aug. 1979.

[8] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-
time signal processing. Upper Saddle River, New Jersey:
Prentice Hall, 2000.

[9] M. Chaitanya, Single Channel Speech Enhancement. M.S.
Thesis, Indian Institute of Technology Madras, 2005.

2944


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Sri Rama Murty K.
	Also by Yegnanarayana B.
	Also by Guruprasad S.
	------------------------------

