
A Genetic Algorithm for Unit Selection based Speech Synthesis
Rohit Kumar

Language Technologies Research Center
International Institute of Information Technology, Hyderabad INDIA

rohit @ iiit.net

Abstract
We describe the use of a Genetic Algorithm (GA) for the Unit
Selection problem, which is essentially a search/optimization
problem. The various operators for the GA have been defined
and comparison with optimization reached by hill climbing
approaches is presented.

1. Introduction
Speech Synthesizers in current state of art text to speech
systems [1] are based on Data Driven Concatenative
Synthesis. Required sequence of basic units is synthesized by
selecting appropriate unit instances from a huge database
consisting of multiple instances of basic units with varying
prosodic properties. The crux of this approach is the unit
selection problem which involves selecting the appropriate
instance of required units from the database.

1.1. The Unit Selection Problem

Unit Selection involves finding the best sequence of unit
instances which is closely matching with a given target
specification of the required unit sequence in terms of features.
The best instance is decided by minimizing target cost between
features specification of desired unit and available instances of
the unit and the joining costs between the selected instances in
the sequence of units [2].

In order to synthesize a sequence of 15 units (nearly 5
words) by selecting units from a typical database having on an
average 10 occurrences of each basic unit, we have 1015
possible sequences. As we move towards bigger and bigger
databases for natural sounding and emotional synthesis,
efficient algorithms for unit selection need to be explored.

Essentially the Unit Selection problem is a heuristic search
problem involving optimization of selection costs of each unit
across the sequence of units to reach a minimum. We can
either reach the optimization by doing a local optimization or
by attempting a global optimization. A deeper analysis of the
nature of the Unit Selection problem can let us understand
which approach is better in reaching optimal results
efficiently.

We have experimented with local optimization in [3].
Global optimization is a search problem in very large high
dimensionality search space. Enumerative/Brute force search
is not suggested considering that Speech Synthesis would
often want a real time speed performance. Genetic Algorithms
(GA) have been widely successful for solving global
optimization problems in huge search spaces [4]. Through this
paper, we describe a GA implemented by us for the Unit
Selection problem.

Before we proceed, we look at some of the unit selection
algorithms being used in popular systems. [2] and [5]
describes a unit clustering and a pruned viterbi search based
unit selection that chooses a best path through a state
transition network so as to minimize unit distortion (i.e. target
cost) as well as concatenation distortion (i.e. join cost). This
algorithm is used in Festival and CHATR systems. A 3-Tier
Non-Uniform Unit Selection Algorithm used in the Microsoft
China Mandarin TTS is described in [6] which reduces the
choices for each unit in the sequence at each tier based on
feature distances and concatenation costs.

Further this paper is organized as follows: Section II
introduces the basic Genetic Algorithm. In section III we
describe the implementation of the various genetic operators
for the Unit Selection problem. Section IV presents the
perceptibility comparison between local optimization approach
and the GA approach.

2. A Genetic Algorithm
The basic Genetic Algorithm searches in the large search
space by searching in parallel at multiple locations in the
search space rather than at just one location. It does this by
producing a population of various possible solutions
distributed throughout the search space and then operates on
these solutions using basic operations to create newer
generation of better solutions. The operators correspond
closely with the operations of nature as pertains to survival of
species [7]. A basic GA is described ahead [8].

[Step 1]. An initial population consisting of several possible

solutions in the search space is created. The issues to be
addressed at this step are the size of the initial population
and the criteria for choosing the initial population so as to
distribute the search at the various locations in the search
space.

[Step 2]. The fitness (or mis-fitness) for each solution in the
current population is evaluated using a fitness function.
The fitness function is a measure of the suitability of the
solution to survive into the next generation.

[Step 3]. A new generation of the population is created by
applying the genetic operators of selection, crossover,
mutation and elitism on individuals of the current
generation.
Selection operation involves survival of some of the

individuals of the current populations into the next
generation. The probability of a element’s selection
is dependent upon its fitness.

Crossover operation combines 2 individuals of the
current generation (chosen with equal probability)
into offspring solutions for the next generation.

Mutation operation alters some of the individuals at some
points to create new solutions and is a mechanism to

extend search to unexplored domains in the search
space.

Elitism ensures that the fittest individuals of each
generation always propagate into next generation.

[Step 4]. The Steps 2 and 3 are repeated for several
generations to allow evolution of very stable and fit
population (solutions). Generally some termination
criteria are used to stop the evolution after some iterations
of this loop. The so resulting best solutions are then used
appropriately.

Use of a GA for Speech Synthesis is advantageous as we

can terminate evolution at any step and pick the best solution.
Also as size of databases grow, GA based algorithm could be
more and more efficient than local optimization approaches.

3. Genetic Algorithm for Unit Selection
Before we proceed to describe the various parameters and
operations we have used at each step of the unit selection GA,
brief description of the speech database is given.

3.1. Unit Selection Speech Database

The speech database we are using is developed from the Hindi
databases described in [3]. It consists of basic units of varying
sizes at syllable and phone levels. Each instance of the units is
stored along with prosodic and linguistic features like pitch,
duration, energy, phonetic context and syllable position in the
word.

The instances of each unit are further stored in the
increasing order of their global prosodic mismatch function
(GPMF) [9] value. The GPMF is an objective function that we
use to describe the suitability of an instance of a unit in the
most probable situations the unit might be used.

3.2. The various steps of GA for Unit Selection

The various steps of a basic GA for Unit Selection problem are
described. It must be mentioned that we are not doing any
mutation in the population currently.

Given the sequence of basic units (syllables and phones) to
be synthesized, the solution consists of the sequence of
appropriate instances of each. As each individual in the
population is a possible solution, it is implemented as a list of
instances of units in the desired sequence. The representation
of each individual in the population is shown in figure 1.

Instance
of U1

Instance
of U2

Instance
of U3 … Instance

of Un-1
Instance

of Un

Figure 1. Representation of each Individual in the
population for synthesis of a n - Unit Sequence

3.2.1. Creating the Initial Population

The size of the population is taken to be a multiple of number
of instances of the unit that has the maximum number of
instances in the database of all the units in the sequence to be
synthesized. The maximum number of instances of a unit in
the database is restricted to a small number (100) while
creation of the database [9]. Also a lower threshold on the
population size (30) is kept.

The initial population is created by initializing the required
number of individuals with instances of units as per the

sequence to be synthesized. This population initialization is
done so as to distribute the individuals throughout the search
space. We see each unit required in the sequence as a
dimension in the search space with n - discrete possible
choices on it.

If we have in all m individuals in the population and a
particular unit has n instances, then forming a circular list of
the n instances, every

m
n th (rounded to the nearest greater

integer) is filled into the m individual while rotating in the list
of instances. Following similarly for all the units we come up
with an initial population.

Here we are trying to create a population which has the
instance of the units evenly distributed among the individuals.
The combination and permutations amongst the instances will
happen as we proceed through the generations to evolve better
solutions.

3.2.2. Prosodic Mismatch as measure of unfitness

Each individual in the population is evaluated using a
measure of its unsuitability for use as the required sequence.
The measure incorporates the unsuitability due to distortion
between adjacent instances in the selected sequence. Let the
sequence of units in the i th individual be represented by

1
iU , 2

iU , 3
iU …. k

iU , 1+k
iU , … 1−n

iU , n
iU

The unfitness of the i th individual is calculated as
Score(i).

() ()()∑
=

+− +=
n

k

k
i

k
i

k
i

k
i UUMismatchUUMismatchiScore

1

11 ,,)(

…… Equation (1)
Mismatch function measures the mismatch between 2

units. It is measured as the weighted sum of the feature
mismatch between the 2 units. Currently we are using
prosodic features (pitch, duration and energy) and linguistic
features (neighboring phonemes and nuclei of neighboring
syllables). Mismatch of Linguistic features is Boolean i.e. 0
(matching) or 1(not matching). So mismatch is calculated as

() ()
() ()

+

+
=

y
i

x
i

y
i

x
i

y
i

x
iy

i
x

i UUNMUUPM
UUPMF

UUMismatch
,,

,
,

…… Equation (2)
PMF is the prosodic mismatch function as described in

[3]. We have used the following weights for the each prosodic
feature. WPitch = 2.5, WDuration = 2.5, WEnergy = 1.0. PM and
NM are Boolean function to compare linguistic features.

P M (A, B) = 0, if last phone of A is
 same as first phone of B

 = WPhonemeMatch, otherwise

N M (A, B) = 0, if nuclei of A is
 same as nuclei of B
 = WNucleiMatch, otherwise

We have set WPhonemeMatch = 3.0 and WNuclieMatch = 2.0. The
score of each individual in the population is calculated and
the individuals are ranked such that the individual with
minimum score has the best rank as it is the most suitable
solution currently in the population.

3.2.3. Evolution of better solutions

Now the next generation is created by applying the genetic
operations on the population. An elite section of population is
transferred to the next generation without modification. The
size of elite section is set to 10% of the population size with a
minimum threshold of 5.

The selection operator selects individuals from the current
population and passes them to the next generation without
modification. The individual with best rank is most probable
to be selected. If ranks are such that bigger ranks are better, a
roulette wheel selection is used. The section of circumference
on the wheel for each individual is proportional to rankp, such
that p = 2 to 3 typically. Hence an individual with rank 10 is a
hundred or a thousand times more probable to be selected
than an individual with rank 1.

Crossover operation involves selection of 2 individuals
from the population and creation of a new individual which is
a result of the combination of the 2 original individuals. The
crossover operation we have combines individuals A and B of
the population consisting of sequence of units

1
AU , 2

AU , …. k
AU , 1+k

AU , … 1−n
AU , n

AU
and

1
BU , 2

BU , …. k
BU , 1+k

BU , … 1−n
BU , n

BU
respectively. They combine to create an individual

1
ABU , 2

ABU , … k
ABU , 1+k

ABU ,... 1−n
ABU , n

ABU

It must be noted that k
AU and k

BU are instances of the
same unit. Let us break up the recombination problem and
suppose that we have already selected the first k - 1 units in

the sequence, and we must choose amongst k
AU and k

BU for
the kth element of the combined sequence. We calculate score
of both the choices as

()

+

+

=
+

+

−

),(
),(
),(

1

1

1

k
B

k
A

k
A

k
A

k
A

k
AB

k
A

UUMismatch
UUMismatch

UUMismatch
UScore … Equation (3)

The unit with lesser score is chosen for k
ABU . For the

first unit the first component in the scoring formula is ignored
and for the last component the later 2 components are
ignored.

Our implementation of Selection and Crossover is
complimentary such that Probability of Selection plus
Probability of Crossover is unity. We select 2 individuals
using the selection operation and then randomly generate a

number between 0 and 100. If the number overshoots PCrossover
we select the better of the individuals and pass it to the next
generation. Otherwise we cross the 2 individuals and pass the
resultant into the next generation. This is repeated to
regenerate the next generation of size equal to the initial
population size. As mentioned earlier, no mutation is applied.

3.2.4. Termination Criteria

The evolution of newer solutions continues iteratively till one
of the termination criteria is met. Evolution terminates if the
change in fitness of the best individual in the population is
less than 0.1% in consecutive generations subject to condition
that atleast 5 generations have evolved. Atmost 50 generations
are allowed to evolve. We have observed that this second
criteria never comes into play during synthesis of meaningful
short sentences.

It must be mentioned that we synthesize the utterance
phrase by phrase limiting the maximum length of a sequence
going to be synthesized.

Fig 2 shows the plot of fitness of best individual in the
population as we progress through an evolution during the
synthesis of a sequence of 57 basic units. Also shown is the
plot of sequence mismatch covariance between best and worst
solutions in each generation. The purpose is to show the
justification for the termination criterion that has come into
play after 14 evolution cycles. We can observe that the
termination has happened at the right point when the best
solution seems to be stabilized and not evolving any further.

600

800

1000

1200

1400

1600

1800

2000

2200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Generation Number

Sc
or

e

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

Variance
(B

est vs. W
orst)

Variance

Score

Fig 2. Plot of Score of Best Individual and Variance

between Best and Worst Individual as Evolution happen

Figure 3 shows the plots of join-to-join mismatch sequence
for the best 200 individuals (out of a population of 300) in the
1st, 7th and 14th generations. We can observe that as we
progress through evolutions the randomness in the population
converges towards the optimal solution, which shows the
effectiveness of the crossover and other operations.

���� Sequence to be Synthesized ����

Figure 3. Join-to-Join Mismatch Sequence for Best 200 Individuals in 1st, 7th and 14th Generations (Left to Right)

3.3. Effect of various parameters

In order to explore the optimal set of parameter values for the
Genetic Algorithm, we have conducted some experiments.

460

470

480

490

500

510

520

530

540

550

560

0 200 400 600 800 1000

Population Size

Sc
or

e
of

 B
es

t I
nd

iv
id

ua
l (

at
 th

e
en

d
of

 s
yn

th
es

is
)

Fig 4. Plot of Score of Best Individual after termination of

evolution for different Population Sizes

Figure 4 shows the plot of score of best individual in the
population at the end of synthesis for a typical sentence
against various values of Population Size. Broadly, the score
will be lesser (i.e. better) as the size of population increases,
as more and more areas of search space will be explored. But
it also depends on the algorithm used for creating the initial
population. There is scope for improvement here. Further,
higher size of population amounts to more computation time,
which is undesirable.

470

490

510

530

550

570

590

610

0 10 20 30 40 50 60 70 80 90 100

Crossover Probability (Percentage)

Sc
or

e
of

 B
es

t I
nd

iv
id

ua
l a

fte
r S

yn
th

es
is

Fig 5. Plot of Score of Best Individual after termination of

evolution for different Crossover Probabilities

Figure 5 shows the same plot for different values of
crossover probabilities. We can observe that high probability
of crossover is better. PCrossover=0.8 should be optimal.

4. Evaluation and Comparison
Table1: Comparison of GA and Local Optimization based

Synthesizers

GA based synthesizer Local Optimization
based synthesizer Sentence

Number Score Variance Score Variance
1 2.500 0.5714 3.000 0.5714
2 2.250 0.2143 2.875 0.6964
3 3.875 0.4107 3.500 2.0000
4 3.000 0.2857 3.500 0.8571
5 2.250 0.5000 2.625 1.4107
6 3.500 0.5714 3.875 0.9821
7 3.250 0.2143 2.750 1.3571
8 3.375 0.5535 3.125 0.6964
9 2.875 1.5535 3.125 1.5536

10 3.250 0.5000 2.875 1.2679
Average 3.013 0.5375 3.125 1.1392

The GA based Hindi Unit Selection Speech Synthesizer was
evaluated and compared with the Local Optimization based

Speech Synthesizer described in [4]. 8 native Hindi speaking
subjects (2 females and 6 males) evaluated a set of 10
sentences synthesized individually from both the synthesizers
by grading the output on a scale of 0 (worst) to 5 (Best). The
results of the evaluation are shown in table 1. The scores
(averaged across 8 subjects) and variance of each sentence for
both synthesizers is shown.

We can observe that the GA based Unit Selection
synthesizer gets an overall score less than the Local
Optimization based Unit Selection synthesizer. We can also
see that the scores are very close to each other and further that
the scores of GA is more consistent (low variance) as
compared to the hill climbing based synthesizer.

5. Conclusion
An Evolutionary Unit Selection Algorithm is proposed and
various details of its implementation are mentioned. Several
parameters for the GA are experimented with and termination
criteria are justified. On comparison with Local Optimization,
we observe that GA scores less but very close with more
consistency. Further there is scope of improvement in the GA
based Unit Selection during the creation of Initial Population
to cover wider search space. GA based Unit Selection can
offer faster results as size of Unit Selection databases grows.

Acknowledgement
I would like to acknowledge the contributions of Prof. Rajeev
Sangal and Mr. S. P. Kishore for their inputs and discussions
from time to time. Also I am thankful to Volunteers for
perceptual tests for their contribution.

6. References
[1] AT & T Natural VoicesTM Text to Speech System,

http://www.naturalvoices.att.com/
[2] Alan W. Black and Nick Campbell, “Optimizing selection

of Units from Speech Databases for Concatenative
Synthesis”, In Proceedings of Eurospeech 95, vol 1., pp.
581 – 584, Madrid, Spain, 1995

[3] S P Kishore, Rohit Kumar and Rajeev Sangal, “A Data
Driven Synthesis Approach For Indian Languages using
Syllables as Basic Unit”, in Proceedings of Intl. Conf. on
NLP (ICON) 2002, pp. 311-316, Mumbai, India, 200

[4] Lawrence Davis ed., “Handbook of Genetic Algorithms”,
Van Nostrand Reinhold, New York, 1991

[5] Alistair Conkie, “A robust unit selection system for
speech synthesis”, in Joint Meeting of ASA/EAA/DAGA,
Berlin, Germany, March 1999

[6] Min Chu, Hu Peng, Hong-yun Yang, Eric Chang,
“Selecting Non-Uniform Units from a very large corpus
for Concatenative Speech Synthesizer”, in Proceedings of
ICASSP, Salt Lake City, 2001

[7] David E. Goldberg, “Genetic Algorithms in Search,
Optimization and Machine Learning”, Addison Wesley
Publishing Company, 1989

[8] Xavier Hue, “Genetic Algorithms for Optimization”,
Edinburgh, 1997

[9] Rohit Kumar, S. P. Kishore, “Automatic Pruning of Unit
Selection Speech Databases for Synthesis without loss of
Naturalness”, submitted to ICSLP, Jeju Island, Korea,
2004

	Introduction
	The Unit Selection Problem

	A Genetic Algorithm
	Genetic Algorithm for Unit Selection
	Unit Selection Speech Database
	The various steps of GA for Unit Selection
	Creating the Initial Population
	Prosodic Mismatch as measure of unfitness
	Evolution of better solutions
	Termination Criteria

	Effect of various parameters

	Evaluation and Comparison
	Conclusion
	Acknowledgement
	References

