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ABSTRACT

I In this paper a new method for representation of

cepstrally smoothed speech spectra by a pole—zero
model is presented. In this method the cepatrally
smoothed log spectrum is split into two parts,
one corresponding to the response of the numerator
polynomial of the model transfer function arid the
other part to the response of the denominator
polynomial of the model transfer function. The
decomposition in achieved by using the properties
of the derivative of phase spectra of minimum
phase signals. The inverse of each of these re-
sponses is approximated by a small number of auto-
regressive coefficients. The method is illustra-
ted with several examples of speech spectra. The
residual from the inverse pole—zero model system
can be used to obtain information about the
excitation signal. The technique proposed in
this paper can be used to represent any arbitrary
smoothed log spectrum by a pole—zero model of
appropriate order.

I. INTRODUCTION

An important problem in speech analysis is the
estimation of the characteristics of the vocal
fract system and the excitation source from speech
signal. Due to nonatationary nature of speech the
analyils is performed by assuming stationarity
over short durations (20—40 m sec) of the signal.
The analysis is performed by approximating the
vocal tract system by a linear system model and
estimating the parameters of the model by adopting
an error criterion. The excitation information
is derived by passing the signal through the in-
verse of the model system. The accuracy of
analysis denenda on the accuracy- of representation
of the signal characteristics by the model system.
In general the model system is derived so as to
represent the smoothed short—time spectrum of
speech. The fine structure of the spectrum is
used to derive the excitation information.

A linear system model consisting of both poles
and zeros in its transfer function is required
to represent the characteristics of peaks and

valleys in the smoothed short—time spectrum of
speech. Approximating speech spectra by pole—
zero models and estimating the parameters of such
models has recently been the subject of active
research [1], [2]. We present in this paper a
new method for determining the pole and zero

parameters of the model. The basic idea is to
split the smoothed short—time spectrum into two
component responses, each of which can beappro—
ximated by a small number of parameters. The

smoothed log spectrum is obtained using the first
few (20—40 at a sampling rate of 10 kRz) cepstral
coefficients, which are the Fourier coefficients
of the log spectrum of speech data. Convolution
in time domain is equivalent to addition in the
cepstral domain. If the cepstral coefficients
correspond to the log spectrum of a pole—zero
system, then a pole—zero deconvolution can be
achieved if the coefficients are split into pole

part and zero part. We show that such a splitting
can be accomplished by using the properties of the
derivative of phase function of a minimum phase
signal [3]. The resulting component responses can
be approximated by a small number of parameters
through autoregressive modelling f2].
In Sec.II&. III the problem of pole-zero eatimation
and the underlying principle of the proposed tech-
nique for pole—zero decomposition is presented.
An algorithm for pole—zero decomposition of speech
spectra is presented in Sec. IV. Some examples
of pole—zero decomposition of speech spectra are
discussed in Sec.V. Effects of various analysis
parameters on the accuracy of the resulting pole—
zero model are also discussed.

II. PROPERTIES OF TEE DERIVATIVE
OF PHASE SP1CTRUM

In this section the problem and the underlying

principle of the proposed method for solving the
problem are discussed.

The Problemi

Let us represent a pole—zero model by

H(s) G N(z)/D(z), (i)
where G is a gain term,

— —k
N(s) 1 + a (k) z

D(z) = 1 + a(k) z
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The problem is to determine the parameters of
H(s) such that the frequency response of the model
matches the smoothed spectrum of a segment of
speech data x(n).

If all
-K (z)
plane, then the filter is called a minimum phase
filter. Properties of NDPS*of minimum ase
filters are described E4)• In particular, it
can be shown that significant values of NDPS for
a minizim phase all—pole filter are positive and
for a minimumphase all—zero filter are negative.
The significant values of NDPS are confined to
regions near frequencies of resonance for an all—
pole filter and to regions near frequencies of
antiresonance for an all—zero filter. The values
of NDPS near zero or folding frequency are contri-
buted by real poles and zeros. The height of the
peak at a resonance is inversely proportional to
its bandwidth. The contributions of several
filters in cascade are additive in the NDPS domain.
Using these properties of the negative derivative
of minimum phase spectrum it is possible to sepa-
rate the significant contributions of poles and
zeros in the combined NDPS response of a pole—
zero filter by considering the positive and

negative portions respectively.

III. POLE—ZERO ANALYSIS

Relation Between Derivative of liase Suectrum
and Ceiistral Coefficients:

Let V(w) be the Fourier transform of the minimum
phase correspondent of a given signal. For uni—
foraly sampled discrete signals the Fourier
transform is periodic in with period 211. Since
all the poles and zeros of V(0.)) lie within the
unit circle in the z—plane,n V(') can be exnje—
smed in Fourier series expansion as follows E4J:

00
lnV(o) = 0(0)12 +c(k) e (4)

where [c(k) are called cepstralcoefficients.
Writing

-j eft)
= 1(co) e (5)

Pole—zero Decomopsition

Sparating the positive and negative parts of
we get the approximate NDPS of the pole

and zero components of the filter respectively.

ec.) = s)J +. [ec (7)

(j' for 8,(oO (NDPS of pole
part)

= 0, for ü)<Q (8)

[((c.)] = c + k c(k) cos EQ.) (10)

and
[e(o)]

—
= —C +k c(k) cos kc., (ii)

where C is the average value, -and c+(k) + o(k)
= c(k) From .(c(k) and(c(k)7 the pole spectrum
and zero spectrum can be computed through Fourier
cosine transform and exponentiation.

Derivation of Model Parameters
We now describe a method of obtaining the para-
meters of a pole—zero model that represents the
cepstrally smoothed spectrum of a signal. For
cepstrally smoothed spectrum 6,,(C.)) in equation
(6 ) is given by

M -

= tk c(k) cos ko (12)

where N is the length of the cepstral window used
for smoothing. Let the linear system given in
(1) represent the pole—zero model we are trying
to determine. Since the poles and zeros of H(z)
lie within the unit circle in z—plane, the numera-
tor and the denominator polynomials can be consi-
dered as two inverse filters of linear prediction

analysis. The c(k) and 1cik)}represent the
cepstral coefficients corresponding to the two
component spectra i.e. the ole part and the zero

part respectively. From [c (k)} and Fc(k)} the
pole spectrum P (c) and the zero specfrum z()
can be derived through p0urier transform and
exponentation.

- -

¶re spectra P() and i/Z.() are approximated using
autoregressive modelling. The autocorre-lation

coefficients R(k)1 and.[R(k)} corresponding to
P(c.) and 1/1(0.)) are given by the relations:

and

= R(Q) + 2R(k) COB k (13)

1/z(c) = f(o) + 2 R(k) cos , . (14)
fR(k)} and tR(k)} can obtained fromP(c.) and

1/z(o) respectively using inverse Fourier transform.
The autoregressive coefficients ta(k)3 and(a(k)}
are derived from {R(k)} and fR(k)} respectively
using Levinson's algorithm for solving autocorrela—
tion normal equations [2]. The gain term t in Ci)
is given by G = exp [c(O)/2:J. - -

IV. POLE—ZERO DECOMPOSITION OF
SPEECH SPECTRA

So far the general theoritical basis for pole—zero
decomposition has been discussed. In this section

- -

we present an algorithm for computing the parameters

for O(0)s0 (NDPS of zero

part)
= 0, for 4('.)O. (9)

Expressing each of the NDPS responses separately in
Basis for Pole—zero Decomoaition Fourier series yields the cepstral coefficients

the poles and zeros of the filter c+(k) and.(k)} corresponding to pole and zero
lie within the unit circle in the z - spectrum respectively. That is

we get the NDPS of V(0.))as

00

Ov(0.) Ek c(k) COS kW (6)
k=I

where

and
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of the model with specific reference to speech
signals.

In this paper we consider speech signals sampled
at 10 IcEs. A segment of 512 samples is used for
analysis. The data is multiplied with a Ramming
window before computing the spectrum. The deri-
vative of the phase spectrum is computed from the
first M cepstrai coefficients. The choice of M
depends on the accuracy of representation. The
effect of the parameters N, N1 and N2 on the re-
sulting model are discussed in Sec. V. All the
discrete Fourier transformers (DYr) reported in
this paper are computed using a 512—point FYT.

The algorithm for pole—zero decomposition and the
determination of model parameters are summarized
below:

1. Select a aegment of speech data of width 512

samples.

2. Multiply the data with Hamming window.

3. Compute 512—point DFT.

4. Compute log spectrum.

5. Compute cepetral coefficientø {cOc)} using
inverse D?P.

6. Multiply the cepstral coefficients with a
rectangular window of width N + I samples.

7. Compute NDPS from the windowed cepetral co-
efficients using DFT.

8. Split the NDPS Into positive and negative por-
tions.

9. Find the cepstral coefficients .[c+(k)} and

c(k)1 using IDFT.

10.Compute the component log spectra using DYT.

11.Cornpute the pole spectrum and zero spectrum
using exponentation.

12.Compute the autocorrelation coefficients (R(k)}
and {R(k)} using ID?r.

13.Solve for {'a(k)} and[a(k)} from the autocorre—
lation normal eaiiations.

14. (a+(k)J and {a(k)) determine the response of
the model system.

V. RESULTS AND DISCUSSION

In this section we consider some examples of speech
spectra to Illustrate the application of the pro-
posed method,

The value of N determines the width of the window
in the cepstral domain used for computation of the
derivative of phase spectrum. It is clear that a
larger value of N produces a derivative of phase
spectrum with increased resolution for peaks and
valleys in the smoothed spectrum.
For a 51.2 msec segment of voiced speech
the pole spectrum P(o), the zero spectrum z(c.) and
the cepatrally smoothed spectrum P(63) z(c.) for M

= 20 are shown in Fig.i, The figure shows the
cotniementar nature of pole and zero spectra. The
pole pectrum has narrow peaks and broad valleys,

whereas the zero spectrum has broad pks and
narrow valleys.

The pole spectrum and the inveTse of zero spectrum
are approximated by autoregressive models of order

and 1(2 respectively. The pole—zero model spectra
for different values of and N, show the nature
of approximation to the cepstrally amoothed spec-
trum. This is illustrated in Fig.2. Depending on
the spectral fit required the values of hi1 and

may be appropriately chosen.

VI. CONCLUSIONS

A new technique for representing the smoothed
short—time spectrum of speech by a pole—zero model
has been presented. The order of the model can be
chosen depending on the accuracy of representation
of peaks and valleys in the smoothed spectrum. It
appears that any smooth magnitude frequency respo-
nse can be realised by a pole—zero system of a low
order using the technique presented in this paper.
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* NDPS: Negative derivation of phase spectrum.
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