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New noniterative techniques are proposed
for reconstruction of signal from samples of
magnitude or phase of the Fourier transform
of the signal. The only condition for recon-
struction is that the signal is a minimum
phase one. The basis for these new techniques
is the relation between the magnitude and
phase functions through cepstral coefficients,
The techniques are illustrated through several
examples. In all the cases we find that phase
from magnitude can be obtainsd exactly and
magnitude from phase can be obtained to with-
in a scale factor. Effects of truncation of
minimum phase signals and aliasing due to
sampling in the frequency domain are discussed.
These studies show that effective noniterative
techniques can be evolved for signal recon-
struction instead of cumbersome iterative pro-
cedures suggested in literature recently.

I. INTRODUCTION

Recently iterative techniques are pro-
posed for signal reconstruction from magnitude
or phase of the Fourier transform of a minimum

phase signal [1:1 . The objective of this
paper is to show that the signal recoristruc—
tion is possib.Le using noniterative procedures.
The same procedures can also be used for the
computation of Hubert transform of log—magni-
tude or phase of the Fourier transform of a
minimum phase signal. The noniterative proce-
dures are based on two key ideas. The first
idea ia to use the relation between log magni-
tude and phase functions through cepatral co-
efficients J. The second one is a new phase
unwrapping procedure discussed in this paper.

Iterative techniques for minimum phase
signal reconstruction proposed in [1] involve
repeatedly imposing the causality constraint
in the time domain and incorporating the known
phase or magnitude in the frequency domain.
The iterative algorithm for signal reconstruc-
tion from phase results in a minimum phase
sequence that is accurate to within a scale
factor, whereas the iterative algorithm for
signal reconstruction from magnitude yields a
unique minimum phase sequence. The convergence
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In this paper we propose noniterative tech-
niques which accomplish the task of minimum
phase signal recon3truction from magnitude or
phase of' the Fourier transform of the signal.
The minimum phase condition is imposed so that
the magnitude (or phase) function can be derived
from the given phase (or magnitude) function.
The conditions of causality and/or finite dura-
tion are not explicitly imposed. The signal
reconstruction from the magnitude function
is unic.ie. The reconstructed signal from the
given phase is determined to within a scale
factor. The conditions on signals given inVj]
are applicable for our reconstruction algorithms

The techniques proposed in this paper are
based on the relations between log magnitude
and phase of a minimum phase signal through
cepstrsl coefficients. These relations are dis-
cussed in [3]. A new phase unwrapping method
is proposed here which is based on the relation'
given in E4J. The method is somewhat similar to
the one given in [5] , except that our method is
nonadaptive and noniterative. Our signal re-
construction results are valid only for minimum
phase signals, whose properties are discussed
in tlj and, therefore, they will not be repeated
here.

In section II we discuss the problem of
minimum phase signal reconstruction and the
basis for our noniterativa techniques. The
techniques are illustrated through examples in
section III.

II. OASIS FOR THE NONITERATIVE TECHNIQUES

Problem of Minimum Phase Signel Reconstruction
Let V() be the Fourier transform of' a

minimum phase sequence v('n)of lenghth N samples.
That is N—IV)I1 v(n) e (1)

Also, let V@) V(T
Note that, V() is periodic inc.with period 2ir.
The problem of o interest in signal recons-
truction can be stated as follows:
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of these two
established,
the examples

algorithms has not been firmly
although they seem to converge for
considered by the authors in [1].

also.
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Given the magnitude function V(L)(or the
phase function (), how to obtain the

sequence

To reconstruct the sequence v(n ), we

require both the magnitude I V@ and the phase
Given I V() alone or e(L)alone, the

first step in signal reconstruction is to
obtain from IV()or IvCw)Ifrom e,@)
It is possible to accomplish this first step
using Hilbert transform relations iven in L6].
But computation of Hubert transform is quite
involved and moreover, to recover from

() , we require the unwrapped phase, Nor-
mally, the phase function available in these
problems is the principal value of the phase
only, i.e., all the phase values lie in the
range —if to n.

An alternative to Hilbert transform is the
use of the relation between logV3)and /1)
through cepatral coefficients, which is des-
cribed in LJ and will be briefly discussed
here.

Relation between Logmagnitude and Phase through
Cepatral Coefficient

For a minimum phase signal in V(L3) can be
written as 00t cCo)/2.H- c(n) e
where 1c(y)} are called cepstral coefficients.
Using (2) and (3) we get00

c(o)/2 t c(p)
and

sinn,

where ). is an integer.

Taking the negative derivative of Q,(() with
respect to ' we obtain the group delay function

TC).

Jncoscn (6)

Equations (4) and (5) show that the log magni-
tude and the phase of a minimum phase sequence
are related through cepstral coefficients.
These relations together with (6) form the
basis for our noniterative algorithms for signal
reconstruction.

Briefly, the procedure for signal recon-
struction i5 as follows. Given compute
{c(n) using (4) and then use the [c(n) to
obtain e-.) from (5). If e() is given,
then compute c(n) using (5) and then use the
{c(n)} to compute V(c.) from (4). Computa-
tion of {c(n)) from (c) using (5) requires
the phase function to be given in unwrapped
form. Usually, only the principal value phase
function6(-') will be available. The true
phase function G, ( c.) is obtained from (()
through a procedure called phase unwrapping.
The procedure involves computation of the all—
pass sequence x(n) from the given samples of
e (c)). The phmae derivative is computed using
the discrete Fourier transforme(DFT) of{x(n)J

(3 )

and {nx(n)} as described in 1I]. From the
phase derivative, the cepstral coefficients are
obtained using the relation (6). From the cep—
stral coefficients, samples of the unwrapped
phase are obtained through OFT, Note that the
constant and linear components of phase are not
included in the resulting unwrapped phase valu.
Ihe phase unwrapping and signal reconstruction
procedures can be implemented through N—point
0FTc

111. EXAMPLES

In this section we illustrate the signal
reconstruction techniques through several
examples.

Example 1 : Unit sample Response of an All—pole
5is tern

We consider the unit sample response of a
sixth order all—pole digital filter correspond-
ing to three resonators in cascade. We assume
a sampling frequency of 10kHz. Only the first
256 samples of the response are used for illus-
tration. Beyond 256 samples the response has
decayed to effectively zero and hence it is
ignored. Appending the signal with 256 zeros,
a 512 point sequence is created. The samples of
magnitude and phase of the Fourier transform are
obtained through a 512—point OFT.

The samples of magnitude are used to recon-
struct the signal. In this came the derived
phase end the reconstructed signal are exact.

14)
When the samples of phase are used to recons-
truct th signal the derived magnitude and the
reconstructed signal are again exact, Nonitera-

(5) tive techniques proposed in this paper seem to
work very well for this example. This example
is similar to the example discussed in [iJ to
illustrate iterative algorithms for minimum
phase signal reconstruction,

14B.1

Example 2 Unit sample Response of an All—pole
Sjatem : Effect of Truncation

There are two important consequences of OFT
realization of the reconstruction algorithms
(1) only a finite number of samples of the
signal can be reconstructed; (2) The given in-
put data consists of samples of magnitude or
phase functions in the frequency domain. For a
system with poles, the unit sample response is
infinite. Signal reconstruction using the OFT
samples of a truncated signal will not be exact.
The effect of truncation is illustrated by con-
sidering the first 64 samples of the unit sample
response in Example 1. A 120—point FF1 algori-
thm is used for this illustration. Signal re-
constructed from magnitude samples is close to
the original, whereas the signal reconstructed
from phase samples is not exact. The errors
due to truncation are mote severe in the signal
reconstructed from phase than from magnitude.

Example 3 Unit sample Response of an All—zero
System Effect of Aliasi

We consider the unit sample response of an
all—zero system consisting of three complex con-
jugate pairs of zeros, all within the unit cir—
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cle in the z—plane. Ihis example is chosen to
study the effects of the order of OFT used in
the reconstruction algorithms. Since the unit
sample response is finite, there is no effect
of truncation as in Example 2. The samples of
phase and magnitude of the Fourier transform of
the given sequence are obtained for different
values of N, by appending the sequence appropri-
ately with zeros. The original and the sequence
reconstructed are given in Table I. The
accuracy of the reconstructed sequence is mea-
sured by computing the mean—squared error bet-
ween the reconstructed sequence and the original
sequence for the first seven samples. For sig-
nals reconstructed from phase, the reconstructed
sequences is multipled with an optimum scale
factor cC, which gives the least error. The
error progreseively increases as the number
points (i) used far OFT computation is reduced.
This is to be expected because the aliasing in
the computed cepstrum will increase with decre-

asing N L6J. The aliasing error will be more
in the case cf signal reconstruction from
semples of phase than in the case of recons-
truction from magnitude. This is because of
the computation of the sequence[nc(n)using OFT
of the samples of phase derivative. The re—
suits in Table I show that the error due to
aliasing is low even for N..16 for the specific
sequence considered in this example. It is

possible that, for signals having sharp chang
in the phase derivative function, the aliasing
effect may be more severe.

Results of signal reconstruction using the
iterative algorithms described in i] are also
given Table I for comparison with the results
of our noniterative techniques. The error in
the signal reconstructed even after 10 itera-
tions is larger than the error in the si al re-
constructed by our noniterative techniques. The

error can be reduced using a combination of non—
iterative and iterative methods. Samples of the
unknown phase (or magnitude) are first obtained
by the naniterative techniques. These samples
are used to begin iteration in the iterative
algorithms instead of using unity magnitude (or
zero phase). This method yields a significant
reduction in error as shown in the T9ble I for
the sequence derived from samples of phase
using N16.

IV. SUMMARY AND CONCLUSIONS

In this paper we described noniterative
techniques for signal reconstruction from sam-
ples of magnitude or phase of the Fourier trans-
form of a minimum phase signal. These techniqt.m
do not explicity impose constraints of causa1iy
or finite duration on the signal as in the ite-
rative techniques [Q . The disadvantage of Its
iterative algorithms, namely, convergence pro-
blems and large number of iterations, are not
present in our techniques. From the samples of
the magnitude, the cepatral coefficients can
always be computed. So in this Case there may
not be any need for iterative procedures a
proposed in Li]. The reconstruction of signal
from phase, however, involves determination of
unwrapped phase first. The phase unwrapping

14B.1

procedure proposed in this paper can be used for
this purpose.

The principles in developing the signal re-
construction algorithms can also be used for ob-
taining the Hilbert transform of phase or log
magnitude. In fact, while deriving phase from
magnitude and vice versa, we have obtained the
Hilbert transforms as intermediate results in
our algorithms.

The techniques suggested in this paper are
applicable only for minimum or maximum phase
signals. eneraUy most signals are mixed phase
either due to truncation of an infinite duration
unit sample response or due to some of the system
poles or zeros being outside the unit circle in
the z—plene. For mixed phase signals the magni-
tude and phase are not related through cepstral
coefficients as given in this paper. In such
cases the reconstructed signal will be only the
minimum phase equivalent. However, our phase
unwrapping procedure is applicable even for
mixed phase signals also.

We find that it is possible to extend the
concepts presented in this paper for mixed phase
signal reconstruction also. Using the ideas dis
—cussed in the context of pole—zero decompositi-
on in LT], we feel that it is possible to esta-
blish a relation between the magnitude and phase
of the Fourier transform of certain categories
of mixed phase signals. This relation may be
useful to develop either noniterative or fast
converging iterative algorithms for mixed phase
signal reconstruction. We are currently explor
—ing coma of these possibilities.

RE FE RE NC ES

1. T.F.Quatieri and A.V.Oppenheim,'Iterative
techniques for minimum phase signal recons-
truction from phase or magnitude, ' IEEE Trans.

Acousticb, Speech,Signal Processing, Vol.ASSP
—29, Dec.1981, pp.118?—1193.

2. B.Yegnanarayana,'Speech analysis by pole—zero
decomposition of short—time spectra,' Signal
Processing, Vol.3, Jan.1981, pp.S—17.

3. B.Yegnanarayana,'Design of Recursive group—
delay filters by autoregressive modelling,'
IEEE Trans.Acouatfrs, Speech, Signal Process-
ing, Vol.ASSP—3O, Aug.1982, pp.632—631.

4. A.V.Oppenheim and R.W.Schafer, Digital Signal
Processing, Englewood cliffs, NJ, Prentice—
Hall, 1915, p.510.

5. J.M.Tribolet, 'A new phase unwrapping algor.—
thm,' IEEE Trans.Acoustics, Speech, Signal
Processing, Vol.ASSP—25, April, 1971.

6. Ref.4, p.49?.

7, B.Yegnanarayana,'flesign of ARMA digital fil-
ters by pole—zero decomposition,' IEEE Trans.
Acoustics, Speech, Signal Proceaaing, Vol.
ASSP—29, June 1981, pp.433—439.

ICASSP 83, BOSTON 641

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 01:32 from IEEE Xplore.  Restrictions apply. 



X
(
0
)
 

O
r
i
g
i
n
a
l
 
s
i
g
n
a
l
 

F
r
o
m
 
m
a
g
n
i
t
u
d
e
 

X
(
i
)
 

X
(
2
)
 

X
(
3
)
 

1
.
0
0
0
0
 

—
0
.
6
0
6
0
 

1
.
5
3
8
7
 

1
.
0
0
0
 

—
0
.
6
0
8
0
 

1
.
5
3
8
7
 

1
 .
5
3
8
4
 

4,
 

rj
 i&.

 

U
, 4,

 

c'
J 

I.
- 1 

0
.
9
9
9
8
 

—
0
.
6
0
7
7
 

T
A
B
L
E
 
I
 

S
i
g
n
a
l
 
r
e
c
o
n
s
t
r
u
c
t
i
o
n
 
f
r
o
m
 
m
a
g
n
i
t
u
d
e
 
a
n
d
 
f
r
o
m
 
p
h
a
s
e
 
o
f
 
t
h
e
 
F

ou
rie

r 
tr

an
sf

or
m

 o
f
 
a
 
f
i
n
i
t
e
 d
u
r
a
t
i
o
n
 
s
i
g
n
a
l
 
(
u
n
i
t
 
s
a
m
p
l
e
 
r
e
s
p
o
n
s
e
 
o
f
 

a
l
l
—
z
e
r
o
 
s
y
s
t
e
m
)
 

:
 
E
f
f
e
c
t
 o
f
 
a
l
i
a
g
i
n
g
 

M
e
a
n
 

X
(
4
)
 

X
(
5
)
 

X
(
6
)
 

S
q
u
a
r
e
d
 

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
 _
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
 

E
rr

or
 

0
.
 8
6
 81

 

0
.
8
6
8
1
 

0
.
4
 
x
 
1
0
 

0
.
8
6
7
9
 

1
.
4
 
x
 

0
.
9
9
9
5
 

—
0
.
6
0
7
9
 

1
.
5
3
7
7
 

—
0
.
3
5
5
6
 

1
.
4
7
7
8
 

—
0
,
5
4
5
5
 

0
,
8
6
9
2
 

0
,
9
 
x
 
l
0
—
 

1
.
4
8
3
7
 

—
0
.
4
7
7
9
 

0
.
8
6
0
3
 

3
,
0
 
x
 
i
0
 

—
0
.
3
 5
5
 6
 

—
0
.
3
5
5
6
 

—
0
.
3
 5
5
 2
 

F
r
o
m
 
p
h
a
s
e
 

F
r
o
m
 
m
a
g
n
i
t
u
d
e
 

F
r
o
m
 p
h
a
s
e
 

F
r
o
m
 
m
a
g
n
i
t
u
d
e
 

F
r
o
m
 
p
h
a
s
e
 

1
.
4
7
7
2
 

—
0
.
5
4
5
4
 

1
.
4
7
7
2
 

—
0
.
5
4
5
4
 

1
.
4
7
6
9
 

—
0
.
5
4
5
1
 

1
.
0
0
0
0
 

a
 

C
 0 4,
 u 4

,
 a c 0 U
 

-1
 a C U
, 

—
0
.
 5
3
 9
7
 

1
 
.
5
4
7
1
 

- - 

1
.
1
1
6
4
 

0
.
8
9
5
1
 

—
0
,
 2
3
5
2
 

—
0
.
 6
 8
3
3
 

—
0
.
6
7
 1
2
 

1
.
6
1
9
6
 

1
.
6
1
2
3
 

—
0
.
3
1
2
0
 

—
0
 .
3
 6
 2
4
 

1
.
3
1
2
7
 

1
.
5
7
5
0
 

I-
 

I.
- 4,
 

—
0.

47
07

 
0.

82
25

 
0
9
 x
 
1
0
—
2
 

—
0
.
5
1
9
8
 

0
.
6
1
9
6
 

1
.
3
 
x
 
1
0
—
2
 

2
.
0
 
x
 
i
o
2
 

F
r
o
m
 
p
h
a
s
e
:
 
r
e
s
u
l
t
 

a
f
t
e
r
 
1
0
 
i
t
e
r
a
-
 

t
i
o
n
s
 
s
t
a
r
t
i
n
g
 

1
.
0
9
0
0
 

—
0
.
3
4
8
0
 

1
.
5
0
5
8
 

—
0
.
2
5
2
7
 

1
.
4
4
6
5
 

—
0
.
3
8
0
6
 

0
.
9
7
0
2
 

w
i
t
h
 
u
n
i
t
i
 
m
a
g
n
i
-
 

t
u
d
e
 

F
r
o
m
 
p
h
a
s
e
:
 r
e
s
u
l
t
 

a
f
t
e
r
 
1
0
 
i
t
e
r
a
—
 

0
.
8
9
5
0
 

—
0
.
5
4
8
 

1
.
5
6
3
3
 

—
0
.
4
2
1
2
 

1
.
4
8
6
8
 

—
0
.
4
8
8
5
 

0
.
7
5
7
9
 

0
.
5
 

d
e
r
i
v
e
d
 
f
r
o
m
 
p
h
a
s
e
 

n
o
n
i
t
e
r
a
t
i
v
e
l
y
.
 

0
 
.
 

0
 
z
 

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 01:32 from IEEE Xplore.  Restrictions apply. 


