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New noniterative technigues ars proposed
for reconstruction of signal from samples of
magnitude or phase of the Ffourier transform
of the signal. The only condition for recon=-
struction is that the signal is a minimum
phase one, The basis for these new technigues
is the relation between the magnitude and
phase functions through cepstral coefficients.
The techniques are illustrated through several
examples. In all the cases we find that phase
from magnitude can be obtained exactly and
magnitude from phase can be obtained to with-
in a scale factor, Effects of truncation of
minimum phase signals and aliasing due to
sampling in the frequency domain are discussed.
These studies show that effective noniterative
techniques can be evolved for signal recon-
struction ingtead of cumbersome iterative pro-
cedures suggested in literature recently.

I. INTRODUCTION

Recently iterative techniques are pro=-
posed for signal reconstruction from magnitude
or phage of the Fourier transform of a minimum
phase signal [1] . The objective of this
paper is to show that the signal reconstruc~
tion ig possible using noniterative procedures.
The same procedures can also be used for the
computation of Hilbert transform of log-magni-
tude or phase of the fourier transform of a
minimum phase signal., The noniterative proce~
dures are based on two key ideas. The first
idea is to use the relation between log magni-
tuda and phase functions through cepstral co-
efficients [2]. The second one is a new phase
unwrapping procedure discussed in this paper.

Iterative techniques for minimum phase
signal reconstruction proposed in [1] involve
repeatedly imposing the causality constraint
in the time domain and incorporating the knawn
phase or magnitude in the frequency domain.
The iterative algorithm for signal reconstruc-~
tion from phase results in a minimum phase
sequence that is accurate to within a scale
factor, whereas the iterative algorithm for
signal reconstruction from magnitude yields a
unique minimum phase sequeice. The convergence
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of these two algorithmg has not been firmly
established, although they seem to converge for
the examples considered by the authors in [1].

In this paper we propose noniterative tech=-
niques which accomplish the task of minimum
phase signal reconstruction from magnitude or
phase of the Fourier transform of the signal.
The minimum phase condition is imposed so that
the magnitude {or phase) function can be derived
from the given phase (or magnitude) function.
The conditions of causality and/or finite dura=-
tion are not explicitly imposed. The signal
reconstruction from the magnitude function
ig unigque. The recongtructed signal from the
given phase is determined to within a scale
factor. The conditions on signals given in[1.}
are applicable for our reconstruction algorithms
also,

The techniques proposed in this paper are
based on the relations between log magnitude
and phase of a minimum phase signal through
cepstral coefficients. These relations are dis-
cussed in [31. A new phase unwrapping method
ig proposed here which is based on the relations
given in [43. The method is somewhat similar to
the one given in [5], except that our method is
nonadaptive and noniterative, OQur signal re-~
construction results are valid only for minimum
phase signals, whose properties are discussed
in [1] and, therefore, they will not be repeated
here.

In section II we discuss the problem of
minimum phase signal reconstruction and the
basig for our noniterative techniques. The
techniques are illustrated through examples in
section III,

II. BASIS FOR THE NONITERATIVE TECHNIQUES

Problem of Minimum Phage Signal Reconstruction

Let V(w ) be the Fourier transform of a
minimum phase sequence y(n)of lenghth N samples.
N

That i -1 -j
at is V@O) = Z_ vem) elwn )
n=0 .
Also, let oy = \ (wﬂ eaeva)

Note that, V(w) is periodic inwwith period 2m.
The problem of our interest in signal recons-
truction can be stated as follows:

CH1841-6/83/0000-0639 $1.00 © 1983 IEEE 639

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 01:32 from IEEE Xplore. Restrictions apply.



Given the magnitude function V{w )| or the
phase function 8, (), how to obtain the
sequence w({n).

To reconstruct the sequence v{mn ), we
require both the magnitude |V(w)| and the phase
6y () . Given | y()| alone or g (Halone, the
first step in signal reconstruction is to
obtain eﬁg» from |y@))or |y from 6,&) .
It is possible to accomplish this first step
using Hilbert transform relations given in [ﬁ].
But computation of Hilbert transform is quite
involved and moreover, to recover \V@iﬂfrom

(&) , we require the unwrapped phase. Nor-
mally, the phase function available in these
problems is the principal value of the phase
only, i.e., all the phase values lie in the
range -7 to MM

An alternative to Hilbert transform is the
use of the relation between log |V&o)]and 6,69
through cepstral coefficients, which is des=-
cribed in [7] and will be briefly discussed
here.

Relation between Logmagnitude and Phase through
Cepstral Coefficients

For a minimum phase signal ln V() can be
written as

o0 —jeon
in V(@) = c@f2+ 3 ety e (3)

n=1i
where {bgﬂ} are called cepstral coefficients.
Using (2) and (3) we get

\n[\/(w)} = CCO)/?_ t 5 o eos wn
n=i

and

(4)

L= =]

ev@):g@,»zxw = - >eln) sinwn, (5)
n=1

where X is an integer,

Taking the negative derivative of BV@J) with
respect to «> we obtain the group delay function
TE) .

f(’(m): —dev.@")/dw = choswn (6)
n=j\

Equationg (4) and (5) show that the log magni-
tude and the phase of a minimum phase sequence
are related through cepstral coefficients.

These relations together with (6) form the

basis for our noniterative algorithms for signal
reconstruction,

Briefly, the procedure for signal recon-
struction is as follows. Given | Y (e, compute
{c(n)} using (4) and then use the {c(n)} to
cotain (w) from (5), If By(«) is given,
then compute %c(n)} using (5) and then use the
{c(n)} to compute \V(w)| from (4). Computa-
fion of {e(n)} from §,(w) using (5) requires
the phase function to be given in unwrapped
form, Usually, only the principal value phase
function © (<2 ) will be available., The true
phase function 8, (w) is obtained from© ()
through a procedure called phase unwrapping.
The procedure involvesg computation of the all-
pass segquence x{n) from the given samples of
8 (w), The phase derivative is computed using
the discrete Fourier transforms(DFT) of{x(n)}
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and {nx(n)} as described in [ﬁ]. From the
phase derivative, the cepstral coefficients are
obtained using the relation {6). From the cep-
stral coefficients, samples of the unwrapped
phase are obtained through DFT. Note that the
constant and linear components of phase are not
included in the resulting unwrapped phase valuss.
The phase unwrapping and signal reconstruction
procedures can be implemented through N-point
DfTs.

111. EXAMPLES

In this section we illustrate the signal
reconstruction techniques through several
examples,

Example 1 : Unit sample Response of an All-pole
System

We consider the unit sample response of a
sixth order all-=pole digital filter correspond-
ing to three resonators in cascade. We assume
a sampling frequency of 10kHz, Only the first
256 samples of the response are used for illus=-
tration, Beyond 256 samples the response has
decayed to effectively zero and hence it is
ignored, Appending the signal with 256 zeros,

a 512 point sequence is created., The samples of
magnitude and phase of the Fourier transform are
obtained through a 512-point DFT.

The samples of magnitude are used to reconm
struct the signal. In this case the derived
phese and the reconstructed signal are exact.
When the samples of phase are used to recons-
truct the signal the derived magnitude and the
reconstructed signal are again exact, Nonitera
tive techniques proposed in this paper seem to
work very well for this example. This example
is similar to the example discussed in [1] to
illustrate iterative algorithms for minimum
phase signal reconstruction,

Example 2 : Unit sample Responge of am All-pole

System : Effect of Truncation

There are two important consequences of DFfT
realization of the recongtruction algorithms :
(1) only a finite number of samples of the
signal can be reconstructed; (2) The given in=-
put data consists of samples of magnitude or
phagse functions in the frequency domain. Ffor a
system with poles, the unit sample response is
infinite, Signal reconstruction using the DFT
samples of a truncated signal will not be exact.
The effect of truncation is illustrated by con-
sidering the first 64 gamples of the unit sample
response in Example 1, A 128-point FFT algori-
thm is used for this illustration, Sigmal re-
congtructed from magnitude samples is close to
the original, whereas the signal reconstructed
from phase samples is not exact. The errors
due to truncation are moge gevere in the signal
reconstructed from phase than from magnitude.

Example 3 : Unit gsample Regponse of an All-zsro
System : Effect of Aliasing

We consider the unit sample regponse of an
all-zero system consisting of three complex con-
jugate pairs of zeros, all within the unit cir-
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cle in the z=-plane. This example is chosen to
study the effects of the order of DFT used in
the reconstruction algorithmg, Since the unit
sample response is finite, there is no effect
of truncation as in Example 2. The samples of
phase and magnitude of the Fourier transform of
the given sequence are cbtained for different
values of N, by appending the sequence appropri-
ately with zeros. The original and the sequence
reconstructed are given in Table I. The
accuracy of the reconstructed sequence is mea=
gsured by computing the mean=-gquared error bet=-
ween the reconstructed sequence and the original
sequence for the first geven gamples. For sig-
nals recongtructed from phagse, the reconstructed
sequences is multipled with an optimum scale
factor o, which gives the least error. The
error progregeively increases as the number
points (n) used for DFT computation is reduced.
Thig is to be expected because the aliasing in
the computed cepstrum will increase with decre-
asing N {61, The alimsing error will ba more
in the case of sgignal reconstruction from
gsamples of phase than in the case of recons-
truction from magnitude. Thig is because of
the computation of the sequence{nc(n)}using DFT
of the samplesg of phase derivative. The re=-
sults in Table I show that the error due to
aliasing is low even for N=16 for the spscific
sequence congidered in this example. It is
possible that, for signals having sharp changes
in the phase derivative function, the aliasing
effect may be more gsvere,

Results of signal recongtruction using the
iterative algorithms described in [1) are also
given Table I for comparison with the results
of our noniterative techniques. The erxor in
the signal reconstructed even after 10 itera-
tions is larger than the error in the signal re-
constructed by our norniterative techniques. The
error can be reduced using a combination of non-
iterative and iterative methods. Samples of the
unknown phase {or magnitude) are first obtained
by the noniterative techniques. These samples
are used to begin iteration in the iterative
algorithms ingtead of using unity magnitude (or
zero phase). This method yields a2 significant
reduction in error as shown in the Tgble I for
the sequence derived from gamples of phase
using N=16.

1V.  SUMMARY AND CONCLUSIONS

In this paper we described noniterative
techniques for signal reconstruction from sam=-
ples of magnitude or phase of the Fourier trans-
form of a minimum phase gignal. These technique
do not explicity impose constraints of causality
or finite duration on the signal as in the ite-
rative techniques [1} . The disadvantage of the
iterative algorithms, namely, convergence pro-
blemg and large number of iterations, are not
present in our techniques. From the samplag of
the magnitude, the cepstral coefficients can
always be computed. So in thig case there may
not be any need for iterative procedures as
proposed in [1]. The reconstruction of signal
from phase, however, involves determination of
unwrapped phase first. The phase unwrapping

procedure proposed in this paper can be uged for
this purmose.

The principles in developing the signal re-
construction algorithms can also be used for ob-
taining the Hilbert transform of phase or log
magnitude. In fact, while deriving phase from
magrnitude and vice versa, we have obtained the
Hilbert transforms as intermediate results in
our algorithms.

The techniques suggested in this paper are
applicable only for minimum or maximum phase
signals, Generally most signals are mixed phase
either due to truncation of an infinite dura tion
unit sample regponse or due to gsome of the system
poles or zeros being outside the unit circle in
the z~plane, For mixed phase signals the magni-
tude and phage are not related through cepstral
coefficientg as given in this paper. In sguch
cases the reconstructed signal will be only the
minimum phase equivalent. However, our phase
unwrapping procedure ig applicable even for
mixed phase signals also.

We find that it is possible to extend the
concepts presented in this paper for mixed phase
signal recongtruction also. Using the ideas dis
~cussed in the context of pole~zero decomposgiti-
on in {7}, we feel that it is possible to esta-
blish a relation between the magnitude and phase
of the Fourier transform of certain categories
of mixed phage signala. This relation may be
useful to develop either noniterative or fast
converging iterative algorithms for mixed phage
gignal reconstruction, We are currently explor
~ing some of these possibilities.
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