
Fourier - Bessel based Cepstral Coefficient
Features for Text-Independent Speaker

Identification

Chetana Prakash and Suryakanth V. Gangashetty

Speech and Vision Laboratory
Department of LTRC

International Institute of Technology Hyderabad - 577 032, Andra pradesh , India
email: chetana@research.iiit.ac.in, svg@iiit.ac.in

Abstract. This paper proposes the Fourier-Bessel cepstral coefficients
(FBCC) as features for robust text-independent speaker identification.
Fourier-Bessel (FB) expansion is used instead of Fourier transform for
representing the signal in frequency domain. FB expansion can be viewed
as two-dimensional Fourier transform. Change in the kernel of the trans-
form from exponential to decaying exponentials helps in viewing the
speech signal as a linear sum of decaying exponentials. For signals aris-
ing out of acoustic tubes, where the signal is subjected to many damping
effects, delays in the different components of the signal is inevitable. Rep-
resenting such signals using FB coefficients helps in able identification of
different components present in the signal. The random non-stationary
nature of speech signal is more efficiently represented by damped sinu-
soidal nature of basis function that is more natural for the voiced speech
signal since Bessel functions have damped sinusoidal as basis function, so
it is more natural choice for the representation of natural signals. Vocal
tract is modeled as a set of linear acoustic tubes being cylindrical in shape
can be efficiently modeled using FB expansion because Bessel functions
are solutions to cylindrical wave equations. The proposed approach to
speaker identification is based on FBCC features, and method employ
Gaussian mixture for modeling the speaker characteristics. However, we
have build the speaker models from the Fourier-Bessel features derived
from the speech samples, as an alternative to Mel-frequency cepstral
coefficients (MFCC) and linear prediction cepstral coefficients (LPCC)
for building the speaker models. An evaluation of the Gaussian mixture
model is conducted on TIMIT database which consists of 630 speakers
and 10 speech utterances per speaker and white noise signals of TIMIT
database having various SNRs of 50, 40, 30 and 20 dB. Using the statis-
tical model like Gaussian mixture model (GMM) and features extracted
from the speech signals build a unique identity for each person who
enrolled for speaker identification [1]. Estimation and Maximization al-
gorithm is used for finding the maximum likelihood solution for a model
with features, to test the later speeches against the database of all speak-
ers who enrolled in the database. Experimental results shows that the
FBCC can be used as the alternate feature for the LPCC and MFCC
since it can improve the performance of the speaker identification task.
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model, MFCC, FBCC



1 Introduction

Numerous measurements and signals have been proposed and investigated for
use in biometric recognition systems. Among the most popular measurements
are fingerprint, face, and voice. While each has pros and cons relative to accuracy
and deployment, there are two main factors that have made voice a compelling
biometric. In particular, speech is a natural and convenient form of input that
carries the signature of the speaker. Moreover, speech is inexpensive to collect
and analyze, also it is hard to mimic. Therefore, automatic speaker recognition
is suitable for such applications.

The potential applications of speaker recognition systems exists when speak-
ers are unknown and their identities are important. Access to cars, buildings,
bank account and other services may be voice controlled in the future. Some
existing applications use voice in conjunction with other security measures, per-
haps a codeword, to provide an extra level of security. We may want to verify
that the speaker we are talking to is in fact who he or she claims to be. The
technology has applications to human-machine interfaces, where intelligent ma-
chines would be programmed to adapt and respond to the current user. Speech
recognition systems can usefully employ speaker-recognition technology.

Speaker recognition is one area of artificial intelligence where machines per-
formance can exceed human performance using short test utterances and a large
number of speakers [2]. This is especially true for unfamiliar speakers, where the
training time for humans to learn a new voice is normally very long compared to
that of machines. Human performance in adverse conditions was also reviewed,
where it was reported that human listeners are adept at using various cues to
verify speakers in the presence of acoustic mismatch [3].

Speech is produced from a time varying vocal tract system excited by a time
varying excitation source [4–6]. The resulting speech signal contains information
about message, speaker, language and emotional status. For analysis and pro-
cessing of speech signals, the vocal tract system is modeled as a time varying
filter, and the excitation as voiced or unvoiced or plosive or combination of these
types. The time varying filter characteristics capture variations in the shape
of the vocal tract system in the form of resonances, anti-resonances and spec-
tral roll-off characteristics. These filter characteristics are usually represented by
spectral features for each short (10-30 ms) segment of speech, and we call these
features as system features. This representation of speech has been extensively
exploited for developing speaker recognition systems [7–10, 5].

Speaker recognition [11] can be classified into identification and verification.
Speaker identification is the process of determining which registered speaker
provides a given utterance. Speaker verification, on the other hand, is the process
of accepting or rejecting the identity claim of a speaker. The system that we will
describe is classified as text-independent speaker identification system since its
task is to identify the person who speaks regardless of what is saying.

This paper approaches the speaker recognition field, an important biometric
domain, providing a text independent recognition system. The most success-
ful speech-independent recognition methods are based on vector quantization



(VQ) or Gaussian mixture model (GMM). Speaker (voice) recognition encom-
passes both identification and verification of speakers [12]. The basic structure
of speaker identification is shown in the following Figure 1.
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Fig. 1. Basic flow diagram of a closed-set speaker identification system.

In the identification, the speaker whose model best matches with the test
utterance is declared as the identified speaker. The output of the system is the
identity of the test speaker.

The primary task in a speaker recognition system is to extract features ca-
pable of representing the speaker information present in the speech signal. The
purpose of feature extraction is to describe the acoustic properties of the speak-
ers in the speech data. Feature extraction is the process of reducing data while
retaining the classification information. The selection of the best parametric
representation for acoustic data is an important task in the design of any text-
independent speaker recognition system. The acoustic features should fulfill the
following requirements.

– Be of low dimensionality to allow a reliable estimation of parameters of the
automatic speaker recognition systems.

– Be independent of the speech and recording environment.
– High inter-speaker discriminating.
– Low intra-speaker variability.
– Robust to channel characteristics and noise.



One early problem with speaker recognition systems was to choose the right
acoustic features and the right acoustic models to work with. Acoustic models
were chosen to be GMM , as they are assumed to offer a good fit to the statis-
tical nature of speech. Moreover, the acoustic models are often assumed to have
diagonal covariance matrices arising the need to have speech features that are by
nature uncorrelated. As with any pattern recognition task, the speech signal is
first reduced to a sequence of feature vectors, Speaker recognition is often based
on the premise that the speaker-specific information derived from speech utter-
ance of an individual is characterized by a unique distribution of feature vectors.
That is, the feature vectors extracted from the voice of an individual occupy a
region in the feature space in a manner unique to him. For better discrimination,
the distribution of the feature vectors should have high inter-speaker variability
and low intra-speaker variations. Text-independent systems are based on mod-
eling the speaker’s acoustic feature space. The distribution of each speaker is
determined from the feature vectors obtained from his/her speech. It is a fact
that the spectrum of a signal is prone to channel characteristics and noise. Chan-
nel characteristics and noise play a prominent role in the performance of spectral
feature-based systems.

The performance of ASR depends primarily upon the effectiveness of the
feature vector used. Although there are no exclusively speaker distinguishing
speech features, the speech spectrum has been shown to be very effective for
speaker identification [7]. This is because the spectrum reflects a person’s vocal
tract structure, the predominant physiological factor which distinguishes one
person’s voice from others. LPC spectral representations, such as LPC cepstral
and reflection coefficients, have been used extensively for speaker recognition;
however, these model-based representations can be severely affected by noise
[13]. Recent studies have found directly computed filter bank features to be
more robust for noisy speech recognition.

Most state-of-art speaker recognition systems use Mel frequency cepstral co-
efficients (MFCC) as the acoustic features, primarily because of MFCC’s superior
robustness to additive noise. Bandwidth of Mel-filter and number of Mel-filters
are two important parameters in the design of a Mel-filter bank. The choice of
the number of filters has no specific criteria and is generally based on the type
of the task as well as on the sampling frequency of the database. Stevens and
Volkmann, developed the Mel-scale as a result of a study of the human auditory
perception [14]. The Mel scale was used by Mermelstein and Davis to extract
features from the speech signal for improved recognition performance [15].

Since all the real world services have to deal with speech coming over tele-
phone channel, the ASR systems have to be robust to environmental variations.
So Attempt made to develop an approach which can work for large amount of
speech data and also which is robust to noisy conditions is proposed in this work.

The Fourier series representation employs an orthogonal set of sinusoidal
functions as a basis set, while the Fourier transforms uses a complex exponential
function, related to the sinusoidal through Eulers relation, as its kernel [16]. The
sinusoidal functions are the periodic and ideal for representing general periodic



functions. But it may not fully match the properties of other waveforms. In
particular, the random non-stationary nature of speech waveforms do not lead
to the most efficient representation by sinusoidal based transformations.

In case of non-stationary signals, an aperiodic signal set may be more effi-
cient for representation. Based on this premise, several aperiodic non-sinusoidal
functions including exponentially modulated sinusoids and Bessel functions of
the first kind have been used for speech analysis with varying degrees of success
[17–23]. The Bessel functions has a orthogonal set of damped sinusiodal basis
functions which results in an expansion termed the Fourier-Bessel (FB) series [24,
16, 25, 26]. In the present work we consider the representation of non-stationary
signals using the zeroth-order Bessel functions.

The organization of the paper is as follows: The motivation for using damped
sinusoidal as basis function is given in the Section 2. The use of GMMs for
text-independent speaker identification is given in Section 3. The theory about
the Fourier-Bessel is explained in Section 4. In Section 5 the performance
evaluation of the Fourier-Bessel cepstral coefficients (FBCC) and Mel frequency
cepstral coefficients (MFCC) on the TIMIT database is presented.

2 Motivation for using Damped Sinusoids as Basis
Functions

In the Fourier-Bessel transformation the basis function is of damped sinusoidal
nature which is more natural for the voiced speech signal. There are at least three
reasons which make use of undamped sinusoids for base functions undesirable in
the case of voiced-sound waveforms. The reasons are:

1. While successive pitch periods resemble each other to a considerable degree,
the duration of this quasi-periodic function is limited, and thus, Fourier
analysis in terms of the fundamental pitch frequency and its harmonics is
not strictly applicable.

2. Because of variation of pitch and volume, successive pitch periods seldom
have exactly the same waveform.

3. From the mechanism of generation of voiced sounds, it is known that a pulse-
like excitation, originated by the action of the vocal cords, excites the various
resonant cavities of the vocal tract and thus starts a combination of decaying
oscillatory functions.

Thus, an approximation of the decaying functions by ordinary sinusoids does
not appear to be too efficient[17]. Thus a compact representation of speech is
possible using Bessel functions because of similarity between voiced speech and
the Bessel functions. Both voiced speech and the Bessel functions exhibit quasi-
periodicity and decaying amplitude with time.



3 Gaussian Mixture Speaker Model (Parametric)
Approach

Parametric approaches are model-based approaches. The parameters of the model
are estimated using the training feature vectors, it is assumed that the model
is adequate to represent the distribution. The most widely used parametric ap-
proaches are Gaussian mixture model (GMM) and hidden Markov model (HMM)
based approaches. GMM is used in speaker recognition applications as a generic
probabilistic model for multivariate densities capable of representing arbitrary
densities, which makes it well suited for unconstrained text-independent appli-
cations. The use of GMMs for text-independent speaker identification was first
described in [27–29]. An extension of GMM-based systems to speaker verification
was described and evaluated on several available speech corpora in [5, 30–34]

This section describes the form of the GMM and motivates its use as a
representation of speaker identity for text-independent speaker identification.
The speech analysis for extracting the Mel cepstral feature representation is done
first. Next the Gaussian mixture speaker model and its parameterization are
described. The use of the Gaussian mixture density for speaker identification is
then motivated by two interpretations. First, the individual component Gaussian
in a speaker-dependent GMM are interpreted to represent some broad acoustic
classes. These acoustic classes reflect some general speaker-dependent vocal tract
configuration that are useful for modeling speaker identity. Second, a Gaussian
mixture density is shown to provide a smooth approximation to the underlying
long-term sample distribution of observations obtained from utterances by a
given speaker.

4 Fourier-Bessel Series

As similar to Fourier series, Fourier-Bessel series are another kind of infinite series
expansion on a finite interval, based on Bessel function which are solutions of
the differential equation

t2y
′′
+ ty

′
+ (t2 − n2)y = 0, n > 0 (1)

which is called Bessel’s differential equation. The general solution is given by:

y = C1Jn(t) + C2Yn(t) (2)

where Jn(t) is called a Bessel function of the first kind and Yn(t) is called Bessel
function of the second kind of order n. The order n can be any real number,
Bessel functions are expressible in series form. Bessel function of first kind is
expressed as follows:

Jn(t) = tn
∞∑
r=0

(−1)r(t/2)n+2r

2nr!Γ (n+ r + 1)
(3)



For non-integer n, the functions Jn(t) and J−n(t) are linearly independent, and
are therefore the two solutions of the differential equation. On the other hand,
for integer order n, the following relationship is valid i.e., J−n(t) = (−1)nJn(t)
It can be readily shown that Bessel functions are orthogonal with respect to the
weighting function t.

4.1 Fourier-Bessel Expansion for Speech Signal

The zeroth order Fourier-Bessel series expansion of a signal x(t) considered over
some arbitrary interval (0, a) is expressed as [35]:

x(t) =

∞∑
m=1

CmJ0

(λ
a
t
)

(4)

where λ = λm, m = 1, 2, 3, ... are the ascending order positive roots of J0(λ)

= 0 and J0

(
λm

a t
)
are the zero order Bessel functions. The roots of the Bessel

function J0(λ) can be computed using the Newton-Raphson method. The se-

quence of Bessel functions {J0
(

λm

a t
)
} forms an orthogonal set on the interval

0 ≤ t ≤ a with respect to the weight t , that is∫ a

0

tJ0

(λm

a
t
)
J0

(λn

a
t
)
dt = 0, for m 6= n (5)

using the orthogonality of the set {J0
(

λm

a t
)
}, the FB coefficients Cm are com-

puted by using the following equation

Cm=
2
∫ a

0
tx(t)J0

(
λm

a t
)
dt

a2[J1(λm)]2
(6)

with 1 ≤ m ≤ Q, where Q is the order of the FB expansion, and J1(λm) are
the first order Bessel functions. The FB expansion order Q must be known
apriori. The interval between successive zero-crossings of the Bessel function
J0(λ) increases slowly with time and approaches π in the limit. If order Q is
unknown, then in order to cover full signal bandwidth, the half of the sampling
frequency and Q must be equal to the length of the signal.

The integral in the numerator of (6) is known as the finite Hankel transform
(FHT). Many numerical computation methods are available to calculate the FHT
and the corresponding FB coefficients [36–42]. It has been demonstrated in [43]
that the order and range of non-zero coefficients of the FB series expansion of a
test signal are changed as the center frequency and the bandwidth of the signal
are varied. In particular that the range widens with larger bandwidth and the
order increases with higher center frequency. There is one-to-one correspondence
between the frequency content of the signal and the order (m) where the coef-
ficient attains peak magnitude [44]. As the Fourier series coefficients are unique
for a given signal, similarly FB series coefficients Cm are unique for a given



signal. However, unlike the sinusoidal basis functions in the Fourier series, the
Bessel functions is having damped sinusoidal function and will decay over time.
This features of the Bessel functions makes the FB series expansion suitable for
non-stationary signals.

The initial value of the roots of Bessel function J0(m) = 0 can be obtained
by the following relation [45] λm+1 ≈ λm + π, 1 ≤ m ≤ Q. In the next stage,
each of the roots of the equation J0(m) = 0 is determined accurately by the
Newton-Raphson method in successive iteration. The iteration will be stopped
when the root does not change its value significantly any more. The few roots
are shown in Figure 2.
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Fig. 2. Bessel roots {λm, m = 1, 2, ..., Q} are the ascending order positive roots of
J0(λm) = 0.

The selection of optimum window size a is required for good resolution. A
larger window provides a finer resolution in frequency, which also means that
more number of FB coefficients will be needed to cover the same signal band-
width. Since the FB coefficients are real, each signal component xi(t) can be
directly reconstructed from the FB coefficient.

The synthesized signal from the FB coefficients has an inherent filtering prop-
erty that helps to reduce the noise in low and high frequency regions of the
spectrum. Noise reduction by the frequency domain techniques needs two differ-
ent types of information processing, namely, magnitude and phase. The signal



can not be uniquely reconstructed without one of these quantities. The signal
enhancement technique which use some kind of frequency domain processing,
such as power spectrum subtraction, need the phase information to synthesize
the signal [46] [47]. Since the FB decomposition is defined in the time-domain,
there is no need for separate processing of the magnitude and phase informa-
tion. Instead, the FB coefficients contain all the necessary information for the
synthesis of the signal.

Moreover, the coefficients used to represent speech signal using Fourier-Bessel
basis function are less when compared to sinusoidal basis function. For effective
reconstruction of speech signal, very less number of FB coefficients is enough but
this is not the case for Fourier series expansion. Bessel expansion has other prop-
erties like resolving multi-component signals without knowledge of frequency
bands.

4.2 Analysis of Signal using FB Expansion

Considering multicomponent sinusoidal signal which has the frequencies at 500,
1000, and 2000 Hz, and its amplitude 10, 2, 0.5 respectively. FB coefficient of the
multicomponent signal is obtained from the zeroth order FB function and the
coefficients are plotted as shown in Figure 3. The original signal is reconstructed
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Fig. 3. Multicomponent signal (a) original signal (b) FB coefficients (c) Reconstuction
of the original signal using fewer number of FB coefficients.



back by having only a fewer number of FB order that is considering first com-
ponent FB coefficients (450:550), second component FB coefficients (950:1050)
and third component FB coefficients (1950:2050)

Calculate the FB coefficient Cm for a given signal, every component of the
multicomponent AM-FM signal has non-overlapping clusters of FB coefficients,
each component is directly reconstructed from its FB coefficients.

4.3 Requisite Conditions for Fourier-Bessel Decomposition

Some requisite conditions for the Fourier-Bessel (FB) decomposition of a signal
are listed below:

1. Since the FB decomposition can essentially represent only the oscillatory
nature of a signal, the dc component of the signal, if any, should be removed
prior to the decomposition.

2. The FB expansion order Q must be known a priori. Since, the interval be-
tween successive zero-crossing of the Bessel function J0(λ) increases with
time and approaches π in the limit. If order Q is not known, then for cov-
ering full signal bandwidth, that is, the half of the sampling frequency, Q
must be equal to the length of the signal.

3. The selection of the optimum window size a is required for effective separa-
tion of the components of a multicomponent signal. A larger window provides
a finer resolution in frequency, which also means that more number of FB
coefficients will be needed to cover the same signal bandwidth.

4.4 Applications and use of Fourier-Bessel Decomposition

1. A particular application where this method will be useful is in speech anal-
ysis, because speech can be modeled as a sum of AM and FM signals cor-
responding to formant frequencies, and one of the main objectives in the
analysis of speech signals is to estimate the formant frequencies.

2. As Fourier-Bessel expansion uses the Hankel transform to calculate the FB
coefficients, the shift variant property of the Hankel transform may prove
valuable for non-stationary analysis.

3. The FB series based method for decomposition of a signal into its constituent
components is advantageous over the technique based on the filter bank
approach, because we do not need any prior information about the frequency-
band of the signal.

4.5 Fourier-Bessel Cepstral Coefficients

The Fourier-Bessel cepstral coefficients (FBCC) are obtained by applying Mel
filtering to Fourier-Bessel coefficients and taking the cepstrum or the Mel filtered
coefficients, thereby characterizing the perceptual characteristics of human ear.
The Mel filter bank is designed in the same way as in the case of MFCC by
assigning frequencies to the index of the Fourier-Bessel coefficients.



The procedure for extraction of FBCC is similar to that of MFCC except
for the fact that in FBCC we find the Fourier-Bessel coefficients instead of DFT
coefficients. The block diagram for the computation of the FBCC is shown in
Fig. 4 and procedure to extract FBCC is as follows.
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ComputeDiscrete
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Fig. 4. Block diagram illustrating the steps involved in the computation of the Fourier
Bessel cepstral coefficients (FBCC).

1 The preprocessing step like pre-emphasizing, DC offset removal and window-
ing are performed.

2 The Fourier-Bessel transform is applied for getting Fourier-Bessel coefficients
for the windowed signal.

3 Mel filtering is done for the Fourier-Bessel coefficients to get Mel filtered
Bessel coefficients.

4 Natural logarithm is taken on the absolute values of Mel filters Bessel coef-
ficients to get log Mel filtered Bessel coefficients.

5 Discrete Cosine transform is applied on the log Mel filtered Bessel coefficients
to get FBCC

The first and second derivatives of the time domain signal are also concate-
nated with the FBCC to get a larger dimensional feature vector. So 12 FBCC,
1 energy coefficient, 13 first and 13 second derivatives of FBCC to get a 39
dimensional feature vector for each frame of speech signal.



5 Experimental Evaluation

The evaluation of a speaker identification experiment was conducted in the fol-
lowing manner. The test speech was first processed by the front-end analysis
to produce a sequence of feature vectors {−→x1, .....,

−→xt}. To evaluate different test
utterance lengths, the sequence of feature vectors was divided into overlapping
segments of T feature vectors. The first two segments from a sequence would be

Segment1︷ ︸︸ ︷
{−→x1,

−→x2, ...,
−→xT }, −−−→xT+1,

−−−→xT+2, ....

−→x1,

Segment2︷ ︸︸ ︷
{−→x2, ...,

−→xT ,
−−−→xT+1}, −−−→xT+2, ....

For example a test segment length of 4 seconds corresponds to T = 400 feature
vectors at a 10 ms frame rate. Each segment of T vectors was treated as a
separate test utterance. The shift in frame was taken to be 1, (First system was
tested with 1 to 400 feature vector, then with 2 to 401 and so on). The identified
speaker of each segment was compared to the actual speaker of the test utterance
and the number of segments which were correctly identified was tabulated.

% correct identification=
Number of correctly identified segments

Total number of segments
X100. (7)

The process was repeated for all users and the average of these percentages was
taken as the percentage recognition of the system.

Each speaker had approximately equal amounts of testing speech so the per-
formance evaluation was not biased to any particular speaker. While there may
be variations among the individual speakers performance, the aim of the evalu-
ation measure was to track the average performance of the system for different
speaker identification tasks, allowing common basis of comparison.

1. The experiment was performed on a closed set database of 20 speakers (10
male and 10 female). The database contained speech of 60 seconds for every
speaker sampled at 16 kHz. To reduce the effect of noise and to improve
the performance of system, preprocessing like pre-emphasis and DC offset
removal was performed on the signal. The speech signal was segmented into
frames of 20 ms length and frame shift is taken to be 10 ms. The MFCC
and FBCC coefficients are computed for each frame separately. Twelve filter
banks are taken in the frequency range of 0-8 kHz. After taking DCT, 11
coefficients (except the 0th coefficients) are taken as MFCC coefficients and
stored. Similarly 11 FBCC coefficients are calculated. The GMM system
was trained with the first 30 seconds of the speech data available for each
user. The covariance matrix type was set to be diagonal and the system was
trained for GMM orders 2, 4 and 8. The next, 30 seconds of the speech of
every speaker was used to test the system. The feature vectors are extracted



10 seconds of training 30 seconds of training
Number of SNR % recognition % recognition % recognition % recognition
Mixtures for MFCC for FBCC for MFCC for FBCC

2

10 9 20 17 18
20 23 25 36 38
30 54 55 72 74
40 68 74 91 95
50 78 80 96 96

clean 80 82 97 98

4

10 12 13 17 30
20 28 31 40 48
30 57 59 77 79
40 90 91 94 97
50 91 92 99.65 99.73

clean 96.21 96.61 99.49 99.86

8

10 20 22 29 37
20 32 34 50 67
30 58 62 85 93
40 95 98 94 100
50 97.51 98.95 100 100

clean 97.68 99.26 100 100
Table 1. Performance evaluation of MFCC and FBCC over 10 second and 30 seconds
of training from speech data of 60 seconds and testing was performed on a closed set
database of 20 speakers (10 male and 10 female) using the remaining 30 seconds of
speech data.

for the speech and the probability was calculated for each speaker. The
speakers object for which the function returns the least value is taken as the
correct speaker.

2. The TIMIT corpus of read speech is designed to provide speech data for
acoustic-phonetic studies and for the development and evaluation of auto-
matic speech recognition systems. TIMIT contains broadband recordings of
630 speakers of eight major dialects of American English, each reading ten
phonetically rich sentences. The TIMIT corpus includes time-aligned ortho-
graphic, phonetic and word transcriptions as well as a 16-bit, 16 kHz speech
waveform file for each utterance. Corpus design was a joint effort among the
Massachusetts Institute of Technology (MIT), SRI International (SRI) and
Texas Instruments (TI). The speech was recorded at TI, transcribed at MIT
and verified and prepared for CD-ROM production by the National Insti-
tute of Standard Technology (NIST). From TIMIT database a random set
of 50 speakers, 40 male and 10 female was taken for speaker identification
system. In TIMIT database, 10 different utterance of 2-3 seconds of each are
available for every speaker. Of these 10 utterances 5 are of SX type, 3 are of
SI type and 2 are of SA type. The SX and SI type utterances concatenated
to be used as training data, while the SA type utterances are concatenated
to form testing data. In the process of feature extraction, for both MFCC



and FBCC, cepstral mean removal was done ( i.e., after taking log of filter
bank coefficients, normalization was performed).

20 sec of training and
5 sec of testing data

Number of SNR % recognition % recognition
Mixtures for MFCC for FBCC

2

10 42 43
20 68 74
30 90 91
40 93 95
50 93.89 95.45

clean 94.23 96.02

4

10 40 52
20 83 84
30 91 93
40 95 96
50 95.21 97.20

clean 95.48 97.24

8

10 45 49
20 92 93
30 95.59 98.50
40 98.86 99.78
50 98.78 99.42

clean 100 100
Table 2. Performance evaluation of MFCC and FBCC
for a random set of 50 speakers (40 male and 10 female)
from TIMIT database.

Table 1 and Table 2 shows the performance of speaker identification for the
20 speakers (10 male 10 female) and random set of 50 speakers (40 male and
10 female) taken randomly from the TIMIT database.It can be seen from
both the Tables 1 and 2 that FBCC gives better recognition accuracy than
MFCC coefficients. Results from the Table 1 and 2 shows that recognition
accuracy increases with increase in the order of GMM, this is due to the fact
that the system can be modeled accurately by using higher order GMM.
The FBCC outperforms MFCC significantly in noisy environment and the
performance of the system depends on the training time for building the
speaker model.

3. In TIMIT database of 630 speakers, of which 70% male and 30% female
speakers speech utterances were taken for testing the speaker identification
system. Among 10 different utterances of 2-3 seconds of each speaker 5 are
of SX type, 3 are of SI type and 2 are of SA type. The SX and SI type
utterances are concatenated to be used as training data, while the SA type
utterances are used as testing data.
The performance of LPCC, MFCC and FBCC features are considered for the
application of speaker identification and is evaluated on TIMIT database.



The steps for the evaluation are as follows and the performance of these
features for clean speech and different white noise SNR ratio is tabulated in
Table 3.

– Preprocessing: To improve the performance of the system and to re-
duce the effects of noise. Preprocessing steps like pre-emphasis and DC
offset removal was performed on the signal.

– Framing and windowing: The speech signal was split into frames of
length 20 ms, the frame shift was taken to be 10 ms. Hamming window
was applied to each frame to avoid abrupt discontinuities.

– Feature extraction: The LPCC, MFCC and FBCC coefficients are
compared for each frame separately, 26 filter banks are taken in the
frequency range of 0-8 kHz. After taking DCT, 12 coefficients (except
the 0th coefficient) are taken as MFCC coefficients. Similarly 12 FBCC
coefficients are calculated.

– Training the system: The GMM system was trained with 5040 speech
sentences that is among 630 speakers 8 utterances from each speaker is
taken. The covariance matrix type was set to be diagonal and the system
was trained for GMM orders 2, 4, 8, 16 and 32.

– Testing: The system was tested with 1260 speech utterances that is
among 630 speakers 2 utterances per speaker is taken for testing the
performance of the system. The feature vectors were extracted for the
test speech and the probability was calculated for each speaker. The
speaker object for which the function returns the maximum probability
is taken as the correct speaker.

– Performance evaluation: The system was tested by taking 400 feature
vectors at a time. The shift in frame was taken to be 1 sample ( First,
system was tested with 1 to 400 feature vectors, then next with 2 to
401 and so on ). The percentage that the system identifies each speaker
correctly was calculated. The process was repeated for all users and the
average of these percentages was taken as the percentage recognition of
the system.

6 Summary and Conclusion

The compact representation of speech is possible using Bessel functions because
of similarity between voiced speech and the Bessel functions. Both voiced speech
and Bessel functions exhibit quasi-periodicity and decaying amplitude with time.
An important step in the speaker identification process is to extract sufficient
information for good discrimination and at the same time, have to capture the
information in a form and size that is amenable to effective modeling. The LPC
spectral representation, such as LPC cepstral and reflection coefficients have
been used extensively for speaker recognition; whereas these model based repre-
sentation can be severely affected by noise. Recent studies have found that the
directly computed filter bank features are more robust for noisy speech recogni-
tion. So the Fourier-Bessel cepstral coefficients (FBCC) are obtained by applying



Number of Gaussian Mixtures
SNR Features 2 4 8 16 32

20 dB
LPCC 16.21 22.34 36.87 41.08 47.05
MFCC 19.89 22.35 36.62 43.31 47.58
FBCC 20.11 24.88 38.65 48.50 53.48

30 dB
LPCC 33.28 48.48 59.84 73.32 77.18
MFCC 64.58 65.21 81.63 88.67 90.47
FBCC 66.53 66.89 81.66 88.68 91.42

40 dB
LPCC 46.06 60.73 75.23 84.50 87.47
MFCC 83.60 84.12 94.06 97.13 97.31
FBCC 84.06 84.80 94.39 97.24 97.46

50 dB
LPCC 55.36 68.24 82.60 90.18 91.56
MFCC 86.71 86.81 95.71 98.05 98.09
FBCC 87.85 88.00 96.01 98.08 98.34

Clean
LPCC 59.72 71.47 84.07 92.53 93.10
MFCC 87.52 88.52 96.27 98.17 98.38
FBCC 88.49 88.91 96.52 98.22 98.38

Table 3. Performance evaluation of LPCC, MFCC and FBCC over the TIMIT
database for 630 speakers taking GMM orders of 2, 4, 8,16 and 32 for the white
noise SNR ratios of 20, 30, 40, 50 db and clean speech data.

Mel filtering to Fourier-Bessel (FB) coefficients and taking the cepstrum or the
Mel filtered coefficients. We have build the speaker models from the FB features
derived from the speech samples, as an alternative to Mel-frequency cepstral
coefficients (MFCC) and linear prediction cepstral coefficients (LPCC). Evalu-
ated the performance of LPCC, MFCC and FBCC features using the Gaussian
mixture models on the TIMIT database which consists of 630 speakers and 10
speech utterances per speaker. From the resulted tables it is observed that FBCC
outperforms MFCC and LPCC. Recognition accuracy increases with increase in
the order of GMM. This is due to the fact that the system can be modeled accu-
rately by using higher order GMM. The performance of the system depends on
the training time for building the speaker model. Fourier-Bessel cepstral features
(FBCC) are likely to be more robust to noise, hence the effects of environment
on the systems performance can be reduced.
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