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ABSTRACT

Reliable acoustic-phonetic (AP) information derived from
the speech signal can be used to detect and correct errors
in the output of a phone recognizer. In this paper, limited
acoustic-phonetic information derived primarily by process-
ing the excitation source information in the speech signal is
used to improve the performance of detection of manner of
articulation from a baseline phone recognition system. A
context-independent HMM-based monophone system with-
out any language information is used as the baseline system
for this purpose. The performance of the phone recognizer
in terms of its ability to detect the manners of articulation is
studied. The errors in the hypothesis of the manner of articu-
lation of phones are corrected using AP information such as
voicing, voice bar and frication. It is shown that significant
improvement can be achieved by using simple or limited AP
information.

Index Terms— Acoustic-phonetic, excitation source,
zero-frequency, manner of articulation, voicing, voice bar,
frication

1. INTRODUCTION

Popular systems for phone recognition employ a statistical
approach for building phone models, and use the standard
spectral features such as mel-frequency cepstral coefficients
(MFCCs) [1, 2]. The spectral features do not contain all the
necessary information to distinguish between various sounds
in speech, and additional information, such as from the exci-
tation source, needs to be used to improve the performance
of existing systems [3]. Also, the acoustic-phonetic (AP) fea-
tures of the phonemes are used to a minimal extent in these
systems, with most of the information embedded implicitly
in the features used. Explicit and reliable extraction of the
acoustic-phonetic features can help in two ways: (a) It can
provide an alternative approach for phone recognition [4],
and (b) it can be used to improve the performance of exist-
ing phone recognizers [2]. Towards this goal it is important
to derive the acoustic correlates from the speech signal to ob-
tain the AP attributes of a sound such as the manner and place

of articulation. Manner of articulation (MoA) is an impor-
tant piece of acoustic-phonetic information which is mainly
associated with the excitation source of the speech produc-
tion apparatus. In this paper, we explore the possibility of us-
ing reliable AP features derived primarily from the excitation
source in correcting errors in a baseline phone recognizer. A
context-independent HMM-based monophone system with-
out any language information is used as the baseline system.
In particular, we study the performance of the phone recog-
nizer in detecting the manners of articulation of the phones.
Acoustic correlates for identifying phonetic attributes namely,
voicing, voice bar (voiced closure) and frication are derived
from the signal and are used to correct the manner informa-
tion of the hypothesized phones.
The paper is organized as follows: Section 2.1 describes

the baseline phoneme recognition system using monophone
HMM models. The performance of the phoneme recognizer
in identifying the manner of articulation of the various phones
is analyzed. In Section 3, the signal-based evidences are used
to detect the AP features such as voiced/nonvoiced, voice bar
and frication. These AP features are used for correcting some
of the errors in the phoneme recognizer output. Section 4
gives a summary of the paper.

2. MANNER OF ARTICULATION IN CONTINUOUS
SPEECH

Manner of articulation is a phonetic attribute of sound which
primarily describes the nature of excitation source used dur-
ing the production of the sound. The list of ten manner la-
bels used, and the mapping of the phone labels to each of
the ten manners is given in Table 1. Traditionally, only six
manners namely {silence, stop, fricative, nasal, approximant
and vowel} are used in developing phone recognizers. The
manners for voiced and unvoiced closures ([ucl] and [vcl]),
along with voiced and unvoiced bursts ([vbt] and [ubt]), are
merged into a single manner, denoting a stop. But in contin-
uous speech it is observed that a closure need not always be
followed by a burst, and also a significant number of voiced
bursts are not clearly articulated or are so weak that they are
not manifested clearly in the acoustic signal. It is important
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Table 1. List of manners of articulation, and mapping of phone labels to their corresponding manners of articulation. The
number of reference phones for each MoA is also given.

Manner Symbol Phones # Ref
Silence [sil] [#h], [h#], [sil], [pau], [epi] 530

Stop

Unvoiced closure [ucl] [pcl], [tcl], [kcl], [qcl] 826
Voiced closure [vcl] [bcl], [dcl], [gcl], [dx] 603
Unvoiced burst [ubt] [p], [t], [k] 726
Voiced burst [vbt] [b], [d], [g] 412

Fricative Unvoiced fricative [ufr] [s], [sh], [f], [th], [ch], [jh], [hh] 817
Voiced fricative [vfr] [z], [v], [dh], [hv] 491
Nasal [nas] [m], [n], [ng], [em], [en] 736

Approximant/ Semivowel [svl] [y], [r], [l], [w], [el] 1004
[iy], [ih], [eh], [ey], [ae], [aa], [aw], [ay], [ah],

Vowel [vow] [ao], [oy], [ow], [uh], [uw], [ux], [er], [ax], [ix], 2953
[axr], [ax-h]

to discriminate between voiced and unvoiced closures for dis-
criminating between similar words such as {band, gant, pant,
can’t, canned}. One reason for merging the voiced and un-
voiced closures is the inability of most algorithms to detect
the weak voicing present during voiced closures (also referred
to as a voice bar). Also, phonetically, it is more appropriate to
label what is articulated than what is expected. In this paper,
we consider all the four manner labels separately. Similarly
the unvoiced and voiced fricatives are considered as separate
manners.

2.1. Baseline phone recognition system

A context-independent monophone hidden Markov model
(HMM) based phone recognizer is used as the baseline sys-
tem [1]. The system does not use language information in
any form. A 3-state left-to-right HMM model with a 64
mixture continuous-density diagonal-covariance Gaussian
mixture model (GMMs) per state is used to model each of
the phones. The baseline phone recognition system is built
for the TIMIT dataset, with the 48 phone labels listed in [1],
with the exception that the voiced closures ([bcl], [dcl] and
[gcl]) are not merged into a single voiced closure label. The
voiced fricative [zh] is mapped or merged in to its unvoiced
counterpart [sh], and the label for epithetic silence [epi] is
mapped onto the silence label [sil], thereby resulting in a total
of 48 phones. The entire TIMIT train dataset (462 speakers,
each with 10 short (3-5 s) sentences), is used for building the
phone models. Ten iterations of the Viterbi training is fol-
lowed by an embedded Baum-Welch training for another ten
iterations. The open source HMM tool kit (HTK) [5] is used
for building the phone recognition system. The performance
of the baseline phone recognition system when tested on the
TIMIT core test set (24 speakers, each with 10 sentences) is
given in Table 2 using the optimal string matching algorithm
based on dynamic programing [5]. The performance is given
for the standard 48 phones and for the reduced 39 phone set
given in [1]. The string matching strategy for performance

Table 2. Performance of the baseline phone recognition sys-
tem using optimal string matching. Pc denotes the percentage
of correct detections. Acc denotes the accuracy defined as
Acc = Pc − Pi, where Pi is the percentage of insertion errors.
Ph denotes the percentage of correct detections (hits) and Pfa
denotes the percentage of false alarms.

String matching Phone-spotting
# symbols Pc (%) Acc (%) Ph (%) Pfa (%)
48 phones 69.3 56.28 65.5 31.8
39 phones 75.17 61.70 70.1 27.2
10 MoA 81.1 77.7 79.3 17.0

evaluation depends only on the sequence of phone labels hy-
pothesized, and do not give any insight on the accuracies of
the phone boundaries detected. The performance of the sys-
tem using a word-spotting (rather phone-spotting) strategy,
where a reference phone label is considered correct (a hit) if
at least 50% of its duration matches that of a hypothesized
phone with the same label [5], is also given in the third row in
Table 2. Similarly, a hypothesized phone label is considered
a false alarm when less than 50% of its duration matches with
that of a matching reference label [6].
2.2. Manner detection

Manner information can be derived from the hypothesized
phone labels by mapping each of the phone label to a cor-
responding manner of articulation. The performance of the
baseline system in detecting the manner of articulation (MoA)
of a phone is given in Table 2. The confusion matrix of the
baseline phone recognizer in detecting the manner of articula-
tion of the phones is given in Table 3. It can be seen that one of
the primary sources of error is in detecting the voicing infor-
mation correctly, such as between unvoiced and voiced clo-
sures, unvoiced and voiced bursts, and unvoiced and voiced
fricatives. The objective of this study is to improve the per-
formance of the baseline phone recognizer in hypothesizing
the manners of articulation using reliable features from the
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Table 3. Performance of the baseline phone recognition system in terms of confusion in detecting the manner of articulation.
[del] denotes deletions.

[sil] [ucl] [vcl] [ubt] [vbt] [ufr] [vfr] [nas] [svl] [vow] [del]
[sil] 93.20 1.13 0.75 0.18 0 0.75 0.56 0.94 0.18 0.56 1.70
[ucl] 3.14 62.71 14.16 2.66 0.36 9.07 2.66 1.81 1.69 0.48 1.21
[vcl] 0.66 8.62 72.13 0.33 1.16 1.82 3.48 3.98 1.32 4.97 1.49
[ubt] 2.20 2.20 0.68 53.71 7.16 11.01 2.47 1.51 2.06 16.39 0.55
[vbt] 0.97 0.24 3.39 10.19 67.71 2.66 4.85 1.45 5.09 3.39 0.00
[ufr] 0.61 1.34 0 4.03 0.48 87.02 5.26 0.12 0.12 0.12 0.86
[vfr] 0.61 0.40 2.64 2.03 3.46 21.99 60.48 3.25 1.01 3.46 0.61
[nas] 0 1.76 5.97 0 0.27 0.67 0.81 80.70 3.12 6.11 0.54
[svl] 0 0 0.19 0.09 0.29 0.69 1.49 1.19 72.21 23.60 0.20
[vow] 0.06 0 0.40 0.13 0.03 0.33 0.33 1.32 5.68 90.51 1.15

excitation source.

3. ACOUSTIC-PHONETIC INFORMATION USING
EXCITATION SOURCE FEATURES

The acoustic-phonetic features explored in this paper, namely,
voicing, voice bar and frication, rely predominantly on exci-
tation source features derived from the speech signal. Ex-
citation source features, namely, the instants of glottal clo-
sure (epochs), strength of excitation at the epochs and in-
stantaneous fundamental frequency or pitch are derived from
the zero-frequency analysis of the speech signal [7]. Zero-
frequency analysis of speech is motivated by the fact that ex-
citation source is impulse-like (for voiced speech), and its
effect is felt throughout the spectrum, including at zero fre-
quency, where the effect of vocal tract is minimal. Normal-
ized error for different linear prediction orders, normalized
zero-frequency filtered (ZFF) signal strength are some of the
other excitation source features used [8]. Vocal tract system
features such as dominant resonance frequency and it strength
derived from the modified group delay spectrum is used along
with the excitation source features [9].

3.1. Voicing features

The strength of excitation as measured from the ZFF signal is
a good measure of voicing, even in weak voiced phones such
as voiced closures [10]. In [11] a voiced/nonvoiced (V/NV)
detection algorithm is proposed, which utilizes the robustness
of the epoch locations as well as the strength of excitation
measured from the ZFF signal. The performance of the phone
recognition system in terms of the confusion in identifying
the manner of voicing of phones is given in Table 4. The
improvement in performance after validating the voicing de-
cisions hypothesized by the phone recognizer using the V/NV
evidence obtained using the excitation source is also given. A
phone hypothesized as voiced by the phone recognizer is con-
sidered valid, if more than 50% of the phone duration is iden-
tified as voiced using the excitation source information. A
similar validation is also performed on the nonvoiced phones.
It is seen that the overall voiced/nonvoiced detection accuracy
improves from about 90% to around 95%.

Table 4. Performance of the baseline phone recognizer in
detecting the manner of voicing of phones, before and after
correction using AP features from excitation source.

Before After
[NV] [V] [NV] [V]

[NV] 90.4 9.6 95.3 4.7
[V] 10.9 89.1 5.8 94.2

3.2. Voice bar

Voice bars are regions of closure during the production of
voiced stop consonants. These are regions of weak voicing
and most voicing detection algorithms fail to detect or ig-
nore. The performance of the phone recognizer in detecting
the regions of voiced closure is given in Table 5. The sym-
bols [OUVP] and [OVP] denote other unvoiced and voiced
phones respectively. The voice bars have the highest confu-
sion with unvoiced closures, and a large number of confusions
with other voiced phones is due to nasals and the voiced frica-
tive [dh], which have features closest to voice bars, especially
in continuous speech. In [8] we have proposed a knowledge-
based system for detection of the voice bars in continuous
speech. Excitation source features namely excitation strength,
normalized ZFF signal strength, normalized linear prediction
error, along with dominant resonance frequency (vocal tract
system feature derived from the phase spectrum) are used to
detect the voice bars. Every phone labeled by the baseline
system as a voiced closure ([vcl]) is validated, if at least 50%
of the segment is detected as voice bar using the AP features.
Similarly, phones hypothesized as [ucl], [nas] and [vfr] are
validated using the voice bar evidence derived from the sig-
nal. The improvement in performance is given in Table 5.
It is to be noted that the validations performed improves the
overall recognition accuracies of nasals and voiced fricatives.

3.3. Frication

The performance of the baseline system in spotting phones
with frication as a manner of excitation is given in Table 6.
The magnitude of the modified group delay (MGD) function
[9] at zero frequency is used to validate a phone hypothesized
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Table 5. Performance of the baseline phone recognizer in spotting phones with voiced closure before and after using the AP
evidence.

Before After
[OUVP] [ucl] [vcl] [OVP] [OUVP] [ucl] [vcl] [OVP]

[OUVP] 83.6 1.6 0.4 13.3 83.6 1.6 0.4 13.3
[ucl] 14.9 62.7 14.2 7.0 14.9 70.5 8.5 4.8
[vcl] 2.8 8.6 72.1 14.9 2.8 4.8 86.2 8.0
[OVP] 3.7 0.3 1.5 93.7 3.7 0.3 0.9 94.4

Table 6. Performance of the baseline phone recognizer in spotting phones with frication before and after using the AP evidence.
Before After

OUVP [ufr] [vfr] OVP OUVP [ufr] [vfr] OVP
OUVP 71.5 7.6 2.1 17.7 75.6 4.5 1.1 17.7
[ufr] 6.0 87.0 5.3 0.9 6.0 89.7 2.6 0.9
[vfr] 3.1 22.0 60.5 13.9 3.1 11.0 71.5 13.8
OVP 2.2 0.8 1.3 94.9 2.2 0.4 1.3 95.3

as unvoiced fricative. The magnitude of the MGD is positive
for voiced sounds, while it is negative for regions of frication.
A good number of voiced fricatives (especially [z] and [zh])
are normally hypothesized as unvoiced fricatives. This can be
reduced by using the voicing evidence derived from the ZFF
signal and the frication evidence derived from the MGD. A
phone labeled as an unvoiced fricative is corrected as voiced
fricative, if there is an overlap of voicing and frication ev-
idence for at least 10% of the phone duration. The overall
improvement in performance of detection of frication is given
in Table 6.

4. CONCLUSIONS

In this paper, the acoustic-phonetic information derived pri-
marily from the excitation source information in the speech
signal was used to correct errors in the manner hypotheses
of a baseline phone recognizer. It was shown that significant
improvement can be achieved by using simple or limited AP
information derived from the excitation source of the speech
signal. The overall performance of manner detection has im-
proved from 79.3% to 86.2%. The overall phone recogni-
tion performance of the baseline system can be improved, if
a similar correction of errors can be made on the hypotheses
of place of articulation. We are currently working on correct-
ing errors in the hypotheses of place of articulation using AP
features that can be derived from the modified group delay
spectrum. An improved hypotheses of acoustic-phonetic at-
tributes can be used to develop an alternate phone recognizer
along the lines outlined in [4].
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