A MULTILINGUAL SCREEN READER IN INDIAN LANGUAGES

E.Veera Raghavendra®, Kishore Prahallad'™

TInternational Institute of Information Technology - Hyderabad, India.
TLanguage Technologies Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

raghavendra@jiiit.ac.in,

ABSTRACT

Screen reader is a form of assistive technology to help visu-
ally impaired people to use or access the computer and Inter-
net. So far, it has remained expensive and within the domain
of English (and some foreign) language computing. For In-
dian languages this development is limited by: availability of
Text-to-Speech (TTS) system in Indian languages, support for
reading glyph based font encoded text, Text Normalization for
converting non standard words into standard words, support-
ing multiple languages. In this paper we would discuss how
to handle these issues in building multilingual screen reader
in Indian languages.

Index Terms— speech synthesis, font identification and
screen reader

1. INTRODUCTION

A screen reading software speaks out the contents on the cur-
rent screen (display) of a computer system. Such software
would help a visually challenged user to access the computer
and Internet. Typically, screen readers have remained expen-
sive and within the domain of English.

Some of the limitations observed in existing screen read-
ers [1] [2] [3]include: 1) Professional English screen read-
ers fail to provide good support for Indian languages. The
voices have US/UK accent and thus native Indian speakers
found it hard to comprehend. 2) Screen readers in Indian lan-
guages support one or two major speaking languages. At the
same time, they often support only Unicode formats and thus
ignore the best local websites such as Eenadu, Vaartha, and
Jagran, which use ASCII based fonts. 3) Some screen readers
do not make use of recent advances in text-to-speech tech-
nologies and thus use robotic synthetic voice.

Our mission is to develop a multi-lingual screen reader
(for visually impaired) system which can read contents in all
official languages of India such as Hindi, Telugu, Tamil etc.,
including Indian English, and provide support for different
computer applications (email, Internet, office software) using
intelligible, human-sounding synthetic speech.

The rest of the paper is organized as follows. Section 2
explains the system architecture. Section 3 discusses each

skishore@iiit.ac.in

component of the system. Section 2.3 explains the implemen-
tation of the text-to-speech system.

2. SYSTEM ARCHITECTURE

The system architecture in Figure 1 is modular based and it
consists of three sub-systems. They are (i) Text Extractor sub-
system, (ii) Text Preprocessing sub-system and (iii) Text-to-
Speech systems sub-system. The sub-systems are further di-
vided into many modules as given below.

[Keyboard Input j [Mouse Input j

Windows
Event
Handler

V
Application Recognizer
V
Y
O
V
Text Encoding Identifier
V

Text Converter

Text Normalizer

Y
\

O
Text—to—Speech System

Fig. 1. System Architecture.

2.1. Text Extraction

Text extraction sub-system has functionally classified into: (i)
Event tracer for capturing the system wide events, (ii) Key-
board or mouse input capturer, (iii) Application recognizer
for identifying events raised by active application or by which
object such as button, check box etc., and (iv) Text extractor
for extracting the relevant text and some text features (espe-
cially font name) from the active application or object based

upon the current cursor position.

2.2. Text Processing

Text preprocessing sub-system is functionally classified into:
(1) Text encoding or font-type identifier for determining ex-
tracted text is encoded in Unicode or ISCII or ASCII type
font, (ii) Text converter for converting these different encoded
text into a phonetic transliteration notation IT3, (iii) Zext
normalizer for converting the Non-Standard Word (NSW)
(like currency, time, title etc.,) into a standard pronounce-
able/readable words, and (iv) Language identifier for identi-
fying the language constituent for selecting appropriate TTS
system.

2.3. Text-to-Speech System

Text-to-speech sub-system is functionally classified into: (i)
TTS selector for switching between different language TTS
systems based on language, (ii) Voice loader for loading
dynamically available voice for current language (iii) Voice
inventory for maintaining prerecorded speech segments and
language related features, (iv) Unit selection algorithm for
selecting the optimal speech segment for concatenation, and
(v) Speech segment concatenation. The TTS sub system uses
techniques explained in [4], [5], [6]. The voices are built on
Festvox framework [7].

3. COMPONENTS OF SCREEN READER

Developing a full-fledged screen reader for Indian languages
is not only a challenging but a daunting task considering the
eventualities aspects involved in the design and implementa-
tion. As we have addressed the common issues in developing
a screen reader in the Section 1, we now look into some in-
trinsic application such as internal text storage, identifying the
font type name, identifying the language, converting, normal-
izing the text as TTS renderable form (IT3 data) and invoking
the TTS system which is capable of synthesizing the voice for
the identified language text on the screen.

3.1. Internal Storage Format of Text

The text extractor module extracts the relevant text which it-
self is complicated task for Indian languages. Because of the
nature of text as it can be represented in different formats,
mark-up (tagged) formats, encrypted, proprietary formats etc.
Relevant text extraction means part or position of the text
such as paragraphs, sentence, word, cell, title, cursor posi-
tion, character echoing etc., such fields explicitly restores the
text for retrieving in future. Now-a-days many document con-
tains multilingual text in the form of ANSI, True Type Font
(TTF) and Unicode text. Based upon the font name and char-
acter range we identify the text that belongs the langauge and
invoke the corresponding modules to process the text. More

over a suitable data type has to be identified to store internally
the extracted text. In this regard we faced problem on trying
to extract and store Unicode data. Later we found that we
should use a suitable data type to retrieve it. So, we identified
and used data types like ANSI C string and character pointer
for ASCII based text and binary string (bstr) for Unicode data
to store internally. Extracting text from Notepad and Word-
Pad is complicated since they don’t have any Object Library
files. So, we were restricted to use cursor position and Win-
dows messages to extract the relevant text.

3.2. Font Processing

Most of the Indian language electronic content is available
in different font encoding formats. Indian language content
processing is a real world problem for a researcher. Here
processing includes identifying the font encoding and con-
verting the text into TTS renderable input format. To pro-
cess the font-data first and foremost job of a screen reader
is to identify the underlying encoding or font. There will be
no header information like in the case of Unicode (UTF-8)
encoding or a distinguished ASCII code ranges for English
and Indian languages like in ISCII. All we can get is the se-
quence of glyph code values (ASCII values). So these can
be identified through statistical modeling or machine learning
techniques. The statistical models are generated by following
some statistical methods using the glyph codes. Converters or
models are developed using some machine learning algorithm
to learn the glyph code order. And these converters or models
are capable of identifying the font using the statistical mod-
els. The font identification module uses vector space models
for font-type identification [8], [9].

3.3. Text Preprocessing

In screen reader perspective text processing means convert-
ing the extracted text in some encoded/compatible format
for the TTS system, i.e font-to-IT3 conversion, Unicode text
conversion, ISCII text conversion etc. Then we need to nor-
malize the converted text. Text normalization is the process of
converting non-standard words like numbers, abbreviations,
titles, currency etc., to expanded/natural (pronounceable)
words. This can be achieved by writing a text Normalizer for
each and every language or designing a generic framework
which fits for most of the languages. There is one more step
which is optional. If we are using some third party TTS sys-
tems then we need to convert text in the notation supported
by that TTS system, since the input notation for TTS is ven-
dor/developer specific. If we are using our own TTS system
then there is no such overhead.

3.4. Language Identification

The language information of the text is very important to in-
voke the right TTS system. This can be done in two ways

either identify the language of the raw text (extracted text) or
identify the language from the converted text (phonetic text).
Based on the extracted/identified font name it identifies the
language, else it identifies the language based on the phonetic
sequences.

4. TEXT-TO-SPEECH SYSTEM

A text-to-speech system converts the given text into corre-
sponding spoken form. The current state of art systems are
concatenative synthesis [10] and statistical parametric syn-
thesis [11, 12]. The size of unit selection speech synthesis is
between few hundred of MBs to GBs. Such a huge database
requires a large memory size and slows down the computa-
tional speed. It also causes too much hindrance to download
and install in ordinary machine. Existing systems uses pruned
databases for concatenative synthesis. Hence, the quality of
the synthesis is not natural. Currently we are planning to inte-
grate statistical parametric synthesis. The size of such synthe-
sis is very small and easily downloadable. We have built sta-
tistical parametric synthesis using Artificial Neural Networks
(ANN). Following sub-sections explains in detail.

4.1. Overview of the ANN based synthesis

[Text Transcription] [Speech Databasej

Acoustic & Phonetic Mel Cepstral
Analysis Analysis
Acoustic & MCEPs
Phonetic features
(ANN Training)

Acoustic & :V
Phonetic
Acoustic &| Features MCEPs
- ANN
Phonetic i Model
Analysis odels

S Durations

Fig. 2. Mel Cepstral based ANN synthesis architecture

The complete ANN synthesis system is shown in Fig 2.

The text-to-speech system includes a text-to-acoustic&phonetic

analysis subsystem, one/more neural network models used to
predict MCEPs. During synthesis, the given text is converted
into acoustic & phonetic notation and MCEPs are predicted
using existing models. Here the durations of each phoneme
for and fundamental frequencies (fp) are taken from the test
sentence database. Predicted MCEPs and original f, are
given to MLSA vocoder to synthesize speech.

Waveform

4.2. Artificial neural network models for speech synthesis

Artificial Neural Network (ANN) models consist of inter-
connected processing nodes, where each node represents the
model of an artificial neuron, and the interconnection between
two nodes has a weight associated with it. ANN models with
different topologies perform different pattern recognition
tasks. For example, a feedforward neural network can be
designed to perform the task of pattern mapping, whereas a
feedback network could be designed for the task of pattern
association. ANN models are also known to capture complex
and nonlinear mapping and for their generalization behavior.
In the context of speech synthesis, a mapping is required from
text (linguistic space) to speech (acoustic space). Thus we
exploit the pattern mapping capabilities of ANN models to
perform complex and nonlinear mapping of linguistic space
to acoustic space to generate synthetic speech.

4.2.1. Input Representation of Text

Since we are performing a mapping from text input space to
formant output space, a careful representation is needed at
the input layer as such mapping is not only complex but we
also expect the ANN model to produce subtle variations in the
formants and bandwidths for every frame.

Features extracted from the text to train the ANN model
is shown in Table 1. The features include current, left and
right phone articulatory and syllable features. Along with
these, current phone position in the word, current word po-
sition in the sentence and temporal features (position of the
frame within the current phone) and state information of the
current frame. Please note that the state information is in-
corporated in the ANN modeling to help to differentiate the
frames within a phone. To represent the temporal variations,
fifteen time index neurons are used within a state, following
formula [13] is used. These time indices represent the rela-
tive position of the current frame within a state of a phone
segment. This helps to smooth transition between neighbor-
ing frames especially on state and segment boundaries. The
value of time index ¢ during frame j is calculated using Eq 1
(we have chosen (3 = 0.01), such that time index i reaches its
maximum value during frame j = 7.

0; = eap(—f(i - j)*) M

4.2.2. Output Representation

The network is expected to predict Mel Cepstral Coefficients
(MCEPs) at the output layer. 25 coefficient vector is pre-
dicted for each 10ms frame size with Sms frame shift. The
ANN model is trained for 200 iterations using back propaga-
tion learning algorithm.

Table 1. Input features to predict formants and bandwidths
(a) Overall features to map between input and output

Feat. Name # Bits Rep.

Current phone articulatory features 29 Binary
Previous phone articulatory features 29 Binary
Next phoneme articulatory features 29 Binary
Current phone position in the word 3 Binary
Current phone syllable features 9 Binary
Previous phone syllable features 9 Binary

9

3

Next phone syllable features Binary
Current word position in sentence Binary
Temporal features 5 Float
Phone Duration 1 Float
Total 136

—_

(b) Articulatory features used in the input

Feat. Values # Bits
Vowel/Consonant 2
Short/long/diphthong/schwa
Vowel height High/middle /low
Vowel frontness Front/mid/back
Lip rounding +/-

Consonant type Stop/fricative/affricative/
nasal/lateral/approximate
Labial/alveolar/palatal/
labio-dental/dental/velar/glottal

voiced/unvoiced 2

Feat. Name
Phone type
Vowel length

QNN W W &~

=

Place of articulation

Consonant voicing

(c) Syllable features used in the input

Syllable Feat.
Stress
Phone type
Phone position in syllable
Syllable position in word

Feat. Values # Bits
True/false 1
Onset/coda

Begin/middle/end

Begin/middle/end

W W

(d) Other features used in the input

Feat. Values # Bits
Begin/middle/end 3
Begin/middle/end 3
Begin/middle/end 3

Feature name
Phone position in the word
‘Word position in the sentence
Phone state information

4.3. Experiments

The purpose of this neural network is to generate MCEPs.
Features mentioned in 1(a) are used to represent mapping be-
tween input and output. Generally statistical models require
huge amount of data to analyze the training patterns. Hence,
we wanted to build model with only one network. The archi-
tecture of the feedforward network used in this work is a five
layer network: 136 L 75 N 25 S 75 N 25 L, where the num-
bers indicate the number of nodes in the corresponding layer.
L represents linear activation function, [NV represents tangen-
tial activation function and S represents sigmoid activation
function.

4.3.1. Database Used

The quality of the unit selection voices depends to a large ex-
tent on the variability and availability of representative units.
It is crucial to design a corpus that covers all speech units
and most of their variations in a feasible size. The experi-

ment is conducted on Telugu and the voice is recorded by a
female speaker. All sentences are recorded in a professional
studio and the sentences are read in a relaxed reading style,
which is between “formal reading style” and “free talking
style”, at moderate speaking rate. Recordings are performed
in a soundproof room with close-talking microphone. The
parameters extracted from the speech signal were 25 coeffi-
cient Mel-Cepstral Coefficients (MCEPs) and f; using ESPS
formant extraction [14] with 25 milliseconds frame size and
5 milliseconds frame shift. The speech database has been
phonetically labeled using Ergodic hidden Markov models
(EHMM) [15], which is well tuned to automatic labeling for
building voices in Festvox [7] framework. Out of 1632 utter-
ances, 1468 utterances were used as a part of training and the
remaining utterances were used for testing.

4.3.2. Evaluation

To evaluate synthesis quality, Mel Cepstral Distortion (MCD)[16]

is computed on held-out data set. The measure is defined as

25
MCD = (10/In10) * , | 2 % Z (mck —mcef)?2 (2)

i=1

where mct and med¢ denote the target and the estimated mel-
cepstra, respectively. MCD is calculated over all the MCEP
coefficients, including the zeroth coefficient. MCD is cal-
culated over all the MCEP coefficients, including the zeroth
coefficient. Lesser the MCD value the better it is, and infor-
mally we have observed that a difference of 0.2 in MCD value
produces difference in the perceptual difference in quality of
synthetic speech. The MCD value we obtained is 6.53.

5. CONCLUSION

In this paper we have discussed issues involved in building
multilingual screen reader; such as extraction of text from ap-
plications, converting extracted text into system readable and
understandable form and building small footprint synthesizer
for converting text into spoken form. The quality of the syn-
thesis is evaluated using objective measures.

6. REFERENCES

[1] K. Krishnan, “Acharya software for the visually handicapped,
iit madras,” 2003.

[2] Kurzweil., “Text reader with tts,”
http:/fwww.kurzweiledu.com/support k3000win.asp, 2004.

[3] NAB NewDelhi., “Screen access for all, (safa): Screen reader
in indian languages,” http://safa.sourceforge.net.

[4] E. V. Raghavendra, B. Yegnanarayana, A. Black, and K. Pra-
hallad, “Building sleek synthesizers for multi-lingual screen
reader,” accepted at Interspeech, September 2008.

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

E. V. Raghavendra, B. Yegnanarayana, A. Black, and K. Pra-
hallad, “Speech synthesis using approximate matching of syl-
lables,” submitted at IEEE workshop on Spoken Language
Technologies., December 2008.

E. V. Raghavendra, D. Srinivas, B. Yegnanarayana, A. Black,
and K. Prahallad, “Global syllable set for speech synthesis
in indian languages,” submitted at IEEE workshop on Spoken
Language Technologies., December 2008.

A. Black and K. Lenzo, “Building voices in the festival speech
synthesis system,” 2000, http://festvox.org/bsv/.

Kishore Prahallad Anand Arokia Raj, “Identification and con-
version of font-data in indian languages,” in International Con-
ference on Universal Digital Library, November 2007.

Sathish Chandra Pammi Santhosh Yuvaraj Mohit Bansal
Kishore Prahallad Alan W Black Anand Arokia Raj,
Tanuja Sarkar, “Text processing for text-to-speech systems in
indian languages,” in 6th ISCA Workshop on Speech Synthesis
(SSW6) August 2007, August 2007.

Hunt, A.J. and Black, A.W., “Unit selection in a concatenative
speech synthesis system using a large speech database,” in
Proceedings of ICASSP-96, Atlanta, Georgia, 1996, vol. 1, pp.
373-376.

A. Black, H. Zen, and K Tokuda, “Statistical parametric syn-
thesis,” in Proceedings of ICASSP, 2007, pp. IV-1229-1V-
1232.

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and Kita-
mura T., “Speech parameter generation algorithms for hmm-
base speech synthesis,” in Proceedings of ICASSP, 2000.

C. Fatima and G. Mhania, “Towards a high quality arabic
speech synthesis system based on neural networks and residual
excited vocal tract model,” Signal, Image and Video Process-
ing, vol. 2, no. 1, pp. 73-87, January 2008.

ESPS, “Esps source code from the esps/waves+ package,”
2009, [Online; accessed 9-April-2009].

K. Prahallad, A.W. Black, and R. Mosur, “Sub-phonetic mod-
eling for capturing pronunciation variations for conversational
speech synthesis,” in Proceedings of ICASSP, France, 2006.

Tomoki Toda, Alan W Black, and Keiichi Tokuda, “Mapping
from articulatory movements to vocal tract spectrum with gaus-
sian mixture model for articulatory speech synthesis,” in in 5th
ISCA Speech Synthesis Workshop, 2004, pp. 31-36.

