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ABSTRACT

Statistical parametric synthesis becoming more popular in recent
years due to its adaptability and size of the synthesis. Mel cepstral
coefficients, fundamental frequency (f0) and duration are the main
components for synthesizing speech in statistical parametric synthe-
sis. The current study mainly concentrates on mel cesptral coeffi-
cients. Durations andf0 are taken from the original data. In this
paper, we are attempting on two fold problem. First problem is how
to predict mel cepstral coefficient from text using artificial neural
networks. The second problem is predicting formants from the text.

Index Terms: speech synthesis, formants, statistical parametric
speech synthesis.

1. INTRODUCTION

Parametric speech synthesizers in early 80’s, also referred to as
synthesis-by-rule, were built using careful selection of parameters
and a set of rules for manipulation of parameters. Statistical Para-
metric Synthesis (SPS) uses machine learning algorithms to learn
the parameters from the features extracted from the speech signal
[1]. HTS [2, 3] and CLUSTERGEN [4] are statistical parametric
synthesis engines using hidden Markov models and Classification
and Regression Trees (CART) respectively to learn the parameters
from the speech data. In SPS framework, spectral features are of-
ten represented by Mel-Log spectral approximation based cepstral
coefficients, line spectral pairs and harmonic noise models features.
Excitation features are represented by fundamental frequency and
voicing strengths. Source-filter models are used to generate speech
signal from excitation and spectral features [5].

In this work, we propose two methodologies for synthesizing
speech using artificial neural networks. The first method is predict-
ing Mel-Cepstral Coefficients and synthesize speech using MLSA
[5] vocoder. The second method is building a statistitical parametric
synthesis using formant features. The need for such an investiga-
tion lies in the fact that formants are more flexible parameters than
cepstral coefficients. Formants allow simple transformation to sim-
ulate several aspects of voice quality, speaker transformation etc.,
and also on the other hand our understanding of speech production
mechanism is better in terms of formants and their bandwidths [6].
While many of the early rule based synthesizers used formants to
synthesize speech, the current investigation differs from these ear-
lier works as the formants and bandwidths extracted from the speech
signal are used to train parameters of machine learning models which
are capable of predicting the formants from the text directly during
synthesis phase. Moreover, the rules required to incorporate coartic-
ulation, and natural variations of formants within a phone are also
being learnt automatically.

2. DATABASE USED
In all the experiments reported in this paper, RMS voice from CMU
ARCTIC dataset was used. Out of 1132 utterances, 1019 utterances
were used as a part of training and the remaining utterances were
used for testing. The parameters extracted from the speech signal
were 25 coefficient Mel-Cepstral Coefficients (MCEPs), seven for-
mants, seven bandwidths, andf0 using ESPS formant extraction [7]
and one energy value with 25 milliseconds frame size and 5 millisec-
onds frame shift.
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Fig. 1. Mel Cepstral based ANN synthesis architecture

The complete system is shown in Fig 1. The text-to-speech
system includes a text-to-acoustic&phonetic analysis subsystem,
one/more neural network models used to predict MCEPs. During
synthesis, the given text is converted into acoustic & phonetic no-
tation and MCEPs are predicted using existing models. Here the
durations of each phoneme for and fundamental frequencies (f0)
are taken from the test sentence database. Predicted MCEPs and
originalf0 are given to MLSA vocoder to synthesize speech.

4. ARTIFICIAL NEURAL NETWORK MODELS FOR
SPEECH SYNTHESIS

Artificial Neural Network (ANN) models consist of interconnected
processing nodes, where each node represents the model of an artifi-
cial neuron, and the interconnection between two nodes has a weight
associated with it. ANN models with different topologies perform
different pattern recognition tasks. For example, a feedforward neu-
ral network can be designed to perform the task of pattern mapping,
whereas a feedback network could be designed for the task of pattern
association. ANN models are also known to capture complex and
nonlinear mapping and for their generalization behavior. In the con-
text of speech synthesis, a mapping is required from text (linguistic



space) to speech (acoustic space). Thus we exploit the pattern map-
ping capabilities of ANN models to perform complex and nonlinear
mapping of linguistic space to acoustic space to generate synthetic
speech.

4.1. Input Representation of Text

Since we are performing a mapping from text input space to formant
output space, a careful representation is needed at the input layer
as such mapping is not only complex but we also expect the ANN
model to produce subtle variations in the formants and bandwidths
for every frame.

Features extracted from the text to train the ANN model is
shown in Table 1. The features include current, left and right phone
articulatory and syllable features. Along with these, current phone
position in the word, current word position in the sentence and
temporal features (position of the frame within the current phone)
and state information of the current frame. Please note that the
state information is incorporated in the ANN modeling to help to
differentiate the frames within a phone. To represent the temporal
variations, fifteen time index neurons are used within a state, fol-
lowing formula [8] is used. These time indices represent the relative
position of the current frame within a state of a phone segment. This
helps to smooth transition between neighboring frames especially
on state and segment boundaries. The value of time indexi during
framej is calculated using Eq 1 (we have chosenβ = 0.01), such
that time indexi reaches its maximum value during framej = i.

Oi = exp(−β(i − j)2) (1)

4.2. Output Representation

The network is expected to predict Mel Cepstral Coefficients
(MCEPs) at the output layer. 25 coefficient vector is predicted
for each 10ms frame size with 5ms frame shift. The ANN model is
trained for 200 iterations using back propagation learning algorithm.

5. EXPERIMENTS WITH ANN MODELS

5.1. One network for all the phones
The purpose of this neural network is to generate MCEPs. Features
mentioned in 1(a) are used to represent mapping between input and
output. Generally statistical models require huge amount of data
to analyze the training patterns. Hence, we wanted to build model
with only one network. The architecture of the feedforward network
used in this work is a five layer network: 136 L 75 N 25 S 75 N
25 L, where the numbers indicate the number of nodes in the corre-
sponding layer.L represents linear activation function,N represents
tangential activation function andS represents sigmoid activation
function. Fig. 2 shows the error curve of the ANN model obtained
during training. The monotonically decreasing error curve demon-
strates that it is possible to train an ANN model to perform complex
mapping from text to formants.
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Fig. 2. ANN training error curve for one network for all the phones

Table 1. Input features to predict formants and bandwidths
(a) Overall features to map between input and output

Feat. Name # Bits Rep.
Current phone articulatory features 29 Binary
Previous phone articulatory features 29 Binary
Next phoneme articulatory features 29 Binary
Current phone position in the word 3 Binary
Current phone syllable features 9 Binary
Previous phone syllable features 9 Binary
Next phone syllable features 9 Binary
Current word position in sentence 3 Binary
Temporal features 15 Float
Phone Duration 1 Float
Total 136

(b) Articulatory features used in the input

Feat. Name Feat. Values # Bits
Phone type Vowel/Consonant 2
Vowel length Short/long/diphthong/schwa 4
Vowel height High/middle /low 3
Vowel frontness Front/mid/back 3
Lip rounding +/- 2
Consonant type Stop/fricative/affricative/ 6

nasal/lateral/approximate
Place of articulation Labial/alveolar/palatal/ 7

labio-dental/dental/velar/glottal
Consonant voicing voiced/unvoiced 2

(c) Syllable features used in the input

Syllable Feat. Feat. Values # Bits
Stress True/false 1
Phone type Onset/coda 2
Phone position in syllable Begin/middle/end 3
Syllable position in word Begin/middle/end 3

(d) Other features used in the input

Feature name Feat. Values # Bits
Phone position in the word Begin/middle/end 3
Word position in the sentence Begin/middle/end 3
Phone state information Begin/middle/end 3

To evaluate synthesis quality, Mel Cepstral Distortion (MCD)[9]
is computed on held-out data set. The measure is defined as

MCD = (10/ln10) ∗

√

√

√

√2 ∗

25
∑

i=1

(mct

i
− mce

i
)2 (2)

where mct

i and mcde

i denote the target and the estimated mel-
cepstra, respectively. MCD is calculated over all the MCEP coeffi-
cients, including the zeroth coefficient. Lesser the MCD value the
better it is, and informally we have observed that a difference of 0.2
in MCD value produces difference in the perceptual difference in
quality of synthetic speech. The MCD value we obtained is 6.47.

5.2. Separate network for vowels and consonants

We informally observed that there is some problem in mapping when
all types of phones are combined. Hence, the data is separated into
two parts; vowels and consonants, and one network is built for each
type. Though training data is less comparatively with previous ex-
periment, the mapping would be easy. The architecture of the feed-
forward network used in this work is a five layer network: 136 L 75
N 25 S 75 N 25 L.
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Fig. 3. ANN training error curves for vowels and consonants

Fig. 3 shows the error curve of the ANN model obtained dur-
ing training. We can observe that, vowel type network error has
decreased tremendously comparing to the previous experiment but
consonant type network is little higher than previous experiment.
The objective measure MCD also decreased 0.002 and the value is
found to be 6.45. It show that multiple networks gives better result.

5.3. Separate network for each state

Based on above experiments we further divided the data into further
level. Instead of using phones as the smallest unit, we considered
state as the basic unit. State level segments are obtained from the
EHMM[10] segmentation. EHMM considers three states for each
phone; staring, middle and ending. The architecture of the feedfor-
ward network used in this experiment is a five layer network: 136 L
75 N 25 S 75 N 25 L. In this experiment MCD value is drastically
change from 6.45 to 5.87. We observed that state based modeling
would be better choice.

5.4. One network for all the states

In this experiment we wanted to experiment with one network for
all the states. But, some how we want to represent state information
in the input features otherwise there will not be any difference with
first experiment. Hence, we have represented state information with
three bits for each frame as shown in 1(c) and state level duration is
used as duration value. To vary among the state segments we also
introducedf0 as one more feature. The architecture of the feedfor-
ward network used in this experiment is a five layer network: 140
L 75 N 25 S 75 N 25 L. This has given similar MCD value as we
got in previous experiment. The MCD value is found to be 5.86.
From this experiment we observed that more contextual information
at state level would be more useful for network mapping. It means
that more variations from frame to frame is better.

5.5. Experiments with different architectures

We know that network architecture also plays a vital role in the per-
formance of the synthesis. Hence, we have experimented with mul-
tiple architectures. Table 2 show the MCD values for each architec-
ture.

Table 2. ANN network architectures and corresponding MCD val-
ues.

Architecture MCD
140 L 100 N 25 S 100 N 25 L 5.87
140 L 100 N 15 S 100 N 25 L 5.85
140 L100 N 10 S 100 N 25 L 5.9
140 L 100 N 6 S 100 N 25 L 5.94
140 L 210 N 15 S 210 N 25 L 5.81

From above table we can observe that 1.5 time nodes of the input
layer in second and fourth layer gives the better results.

5.6. Applying MLPG on predicted MCEPs

Informal studies showed that speech produced by above technique
is understandable but not natural. The voice appears as robotic. To
alleviate this problem we have used Maximum Likelihood Parameter
Generation (MLPG) [11] to obtain smoother trajectories. The MCD
value obtained to be 5.74. Section Section 5.7 gives the difference
between ANN synthesis with MLPG and with out MLPG.

5.7. Experiment

So far we discussed all the experiments with the help of objective
evaluation. To evaluate the synthesizers perceptually we have con-
ducted subjective evaluation between CLUSTERGEN [4] and ANN
synthesizers; with out MLPG and with MLPG, discussed in above
sub sections. The subjects participated in this study are non-native
speakers of English but all of them are graduated students. For these
experiments we have selected 10 utterances from test database. The
subjects participated in these tests do not have any experience in
speech synthesis. Each listener is subjected to Mean Opinion Score
(MOS) i.e score between 1 (worst) to 5 (best) and AB-Test i.e the
same sentence synthesized by two different synthesizers is played in
random order and the listener is asked to decide which one sounded
better. They also had the choice of giving the decision of equality.

6. FORMANT PREDICTION USING ANNS
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Fig. 4. Formant based synthesis architecture
In the previous section we discussed prediction of MCEPs from

the text using ANNs. In this section, we describe a method of build-
ing a statistical parametric synthesizer using formants as parameters.
The need for such an investigation lies in the fact that formants are
more flexible parameters than cepstral coefficients. Formants allow
simple transformation to simulate several aspects of voice quality,
speaker transformation etc., and also on the other hand our under-
standing of speech production mechanism is better in terms of for-
mants and their bandwidths. Figure 4 show the architecture of for-
mant based synthesis architecture with ANN and CLUSTERGEN.
Next section discuss more about the CLUSTERGEN based formant
prediction. Klatt [12] used 39 features for synthesizing speech. The
author extracted all the features manually very carefully from the
speech signal. As it is very difficult to extract all those features with
current technology, we are experimenting only with formants as a
first step. Energy, strengths andf0 are used from original data. The
formants are predicted using ANN with same input features men-
tioned in 1. As output we have used 14 coefficient; 7 formants and
7 bandwidths, vector. Since there is wide difference between each
formant of the frame, all the columns are normalized with mean and
variance of each column.



7. FORMANT PREDICTION USING CLUSTERGEN

CLUSTERGEN is a SPS engine using CART models to predict the
acoustic features from the given input text. While the framework of
CLUSTERGEN is flexible, it typically uses Mel-cepstral coefficients
derived from Mel-Log Spectral Approximation (MLSA) technique.
In this work, the CLUSTERGEN was adapted to predict formants
and bandwidths from the text. The standard build process of CLUS-
TERGEN was used to build the RMS voice using formants and band-
widths. CART trees are built by finding questions that split the data
to minimize impurity in the cluster. At each leaf node, a mean vector
is derived as a representation of the cluster of units.

8. SYNTHESIS FROM FORMANTS

To synthesize speech from formants we adapted two different strate-
gies. The first method is conventional form of synthesis where for-
mants are converted into linear prediction coefficients and speech
is synthesized using source-filter model. The second method is to
perform another transformation from formant space to cepstral co-
efficient space and the speech is synthesized using MLSA synthesis
technique. ESPS [7] toolkit was used for formant extractions.

8.1. Method I

The formant frequenciesFk and their bandwidthsBk, wherek de-
notes the formant index, can be used to derive the roots of the pre-
diction polynomial/poles using the equation 3.

θk =
2πFk

fs

and ρk = e
(
−Bk2π

fs
) (3)

whereρk andθk are the pole radius and the normalized formant
frequency respectively. These roots are used to derive the linear pre-
diction polynomial coefficients [13].

LPC synthesis equation is used to generate speech from the pre-
diction polynomial. The control parameters in formant synthesis
are normally updated every 5ms for mimicking the rapid formant
transitions and brief plosive bursts [12]. However LPC parameters
held too long during the production of speech give the perception
of buzzy quality. To avoid this, the lpc parameters are interpolated
for every sample. In order to maintain the stability of the LPC syn-
thesizer the predictor coefficients are converted into log area coeffi-
cients prior to interpolation [14].

To further reduce the buzzy quality of speech, mixed excitation
is used. This excitation method uses different mixtures of pulse and
noise in 5 frequency bands, where the relative pulse and noise mix-
tures are derived from the band pass voicing strengths of the five
frequency bands for every frame [15]. The LF model for differenti-
ated glottal pulse was used to model the glottal source signal and the
lip radiation [13]. The source was generated using mixed excitation
model [15]. As stated in the paper the strengths and f0 are required
for generating the residual. The radiation characteristic adds a grad-
ual rise in the overall spectrum [12]. However the parameters of
the LF model were kept constant across the duration of the sentence
and also across the speakers. When formants and bandwidths are
used for synthesis, ringing noise is perceived if the appropriate glot-
tal roll-off is not provided. To alleviate this mixed excitation output
was passed through a filter modelling the glottal source. LF model
for differentiated glottal pulse was used to model the glottal source
signal and the lip radiation [13].

8.2. Method II

The second method is to perform another transformation from for-
mant space to cepstral coefficient space. Such transformation is
done through the use of another artificial neural network (referred to
ANN-2). The input to this ANN-2 are the formants and bandwidths
as predicted in Section 3 or 4, and the output are the Mel-cepstral co-
efficients corresponding to that frame. This network could be viewed
as nonlinear transformation of formants to cepstral coefficients, and
also could be viewed as error correction network. The effect of any
error in the prediction of formants could be minimized in the trans-
formation process. The generated Mel-cepstral coefficients are used
to synthesize speech using MLSA synthesis technique. In order to
conduct a objective analysis, Mel-cepstral distortion was computed
for samples from Method II, and it was found to be 6.14.

9. EVALUATION OF PREDICTION OF FORMANTS

9.1. Visual Representation of Formant trajectories

Figure 5 shows the first, second, and third formant frequencies
for the word gregson. A comparison is made between formants
extracted from the original speech signal, formants predicted from
ANN models and formants predicted from CLUSTERGEN. While
both ANN models and CLUSTERGEN in general are able to
produce required trajectories, the ANN models seem to produce
smoother trajectories than CLUSTERGEN which could be attributed
to the generalization abilities of ANN.
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(a) Plot of first formant (F1) trajectory for analysis−by−synthesis (orig), ANN, Clustergen
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(b) Plot of first second formant (F2) trajectory for analysis−by−synthesis (orig), ANN, Clustergen
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(c) Plot of first third formant (F3) trajectory for analysis−by−synthesis (orig), ANN, Clustergen
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Fig. 5. Visual representation of F1, F2, and F3 formants in original,
predicted from ANN and CLUSTERGEN.

9.2. Analysis of formants in vowels

Fig. 6 shows the scatter plot displaying the correlation between the
formants extracted from the speech signal and the formants predicted



from CLUSTERGEN and ANN. It could be observed there exists
sufficient correlation between the original formants and the predicted
ones. The formants predicted from CLUSTERGEN may look fewer
in number for the reason that CLUSTERGEN is predicting same
frequencies over number of frames in a particular state.
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Fig. 6. Measured frequencies of first and seconds formants for vow-
els.

9.3. Root mean squared error

In order to evaluate, objectively, the prediction accuracy between
predicted and original values of test sentences, root mean squared
error (RMSE) is calculated. RMSE is calculated separately for each
formant.

d =

√

√

√

√

N
∑

i=1

(xi − yi)2/N (4)

Whered is the root mean square error,xi is the original value,yi

is the predicted value andN is the number of examples. Objective
evaluation of the deviations of each formant are given in the Table
3. From Table 3 we can observe that ANN and CLUSTERGEN
are able to predict efficiently in vowels and first formants and other
needs more prediction accuracy in other formant regions and conso-
nants.

10. EVALUATION OF SYNTHESIZED SPEECH

The speech synthesized from Method I and II, was perceived to be
intelligible in some informal experiments. However, the quality of
signal from Method II was found to be smoother than Method I. It
was observed that the excitation signal in Method I needs to be im-
provised for a smoother and better sounding quality speech. Speech
samples for Method I and II are available in the following link:
http://ravi.iiit.ac.in/̃speech/samples/icon-09/.

Table 3. Root mean squared error between ANN predicted and
analysis-by-synthesis formants and CLUSTERGEN predicted and
analysis-by-synthesis formants. F1 denotes first formant, F2 denote
second formant, F3 denotes third formant, F4 denote fourth formant,
F5 denotes fifth formant, F6 denotes sixth formant,V denotes Vowel
and C denotes Consonants.

ANN CLUSTERGEN
V C V C

F1 90 259 75 238
F2 206 319 147 297
F3 224 332 208 321
F4 266 365 259 363
F5 323 371 323 373
F6 283 305 287 307
F7 319 269 321 268
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