
Exploiting phone-class specific landmarks for refinement of segment
boundaries in TTS databases

Vijayaditya Peddinti, Kishore Prahallad

International Institute of Information Technology, Hyderabad
vijayaditya.p@research.iiit.ac.in, kishore@iiit.ac.in

Abstract
High accuracy speech segmentation methods invariably depend
on manually labelled data. However under-resourced languages
do not have annotated speech corpora required for training these
segmentors. In this paper we propose a boundary refinement
technique which uses knowledge of phone-class specific sub-
band energy events, in place of manual labels, to guide the re-
finement process. The use of this knowledge enables proper
placement of boundaries in regions with multiple spectral dis-
continuities in close proximity. It also helps in the correction
of large alignment errors. The proposed refinement technique
provides boundaries with an accuracy of 82% within 20ms of
actual boundary. Combining the proposed technique with iter-
ative isolated HMM training technique boosts the accuracy to
89%, without the use of any manually labelled data.
Index Terms: speech segmentation, under-resourced language,
landmarks

1. Introduction
The use of accurately annotated speech data enables devel-
opment of high quality data driven synthesis techniques [1].
Speech segmentation is a major task in the annotation pro-
cess. The use of manually segmented data for these accu-
rate annotations has a prohibitive cost. Automatic segmen-
tors are used to tackle this problem to some extent. In TTS
databases, transcripts are available during the segmentation pro-
cedure. Hence explicit segmentation (text-dependent) proce-
dures, which are better performing than the implicit segmen-
tation (text-independent) procedures are used for TTS segmen-
tation [2].

Hidden-Markov Model (HMM) based segmentation using
force alignment is prominently used for explicit-segmentation.
The flat start initialization [3] accuracy of HMM based segmen-
tation is comparatively low. Hence manually labelled data or
speaker-independent (SI) acoustic models are used as bootstrap
for training the acoustic models used for segmentation [4]. In
addition to this, methods such as [5], [6], [7], [8] have been pro-
posed to further refine the boundaries predicted by the HMM
segmentor. These refinement techniques can be broadly classi-
fied into two types:
1) error correcting methods, which reduce the systematic bias
in the HMM boundaries
2) alternate boundary detection methods, which move the
HMM boundary to alternate boundary candidates in it’s neigh-
bourhood
These refinement methods depend on manually labelled data.
It is difficult to obtain manually labelled data, more so in the
case of under-resourced languages. Hence alternate techniques
are required to guide the label movement during the refinement

process. This guidance is mostly obtained from spectral dis-
continuities in the locality of the HMM boundary. However
several spectral discontinuities are observed in close proximity
in several cases. Identification of the spectral discontinuity cor-
responding to the current HMM boundary is a non-trivial task,
especially in cases where the initial HMM boundaries are highly
erroneous. In this paper a set of boundary type specific cues
and cost functions are proposed to identify the spectral discon-
tinuity pertaining to the current HMM boundary. This method
exploits the knowledge of phone-class specific sub-band energy
events to identify the relevant spectral discontinuity. Kim et
al. [4] also suggested the use of a phone-class specific spectral
discontinuity measure for detection of boundary candidates and
phone-class specific time windows to identify the spectral dis-
continuity corresponding to the current HMM boundary. How-
ever these time windows are empirically derived, which requires
manual intervention. The proposed method on the other hand
eliminates the necessity for manual intervention by using large
time windows, to tackle even severe HMM segmentation errors.
The process of selecting the relevant boundary is instead guided
by using phone-class specific spectral cues.

The paper is organized as follows : Section 2 details the
existing techniques for refinement. Section 3.2 describes the
landmark based boundary refinement algorithm. Section 3.3 de-
scribes the proposed spectral cue based boundary selection pro-
cedure. Section 4 analyses the results and discusses improve-
ments due to the proposed method.

2. Existing techniques

To tackle the lack of hand-labelled data in under-resourced lan-
guages, a variety of techniques have been suggested. Niek-
erk et al. [1] proposed the use of broad phonetic class label
data from other language speech corpora for bootstrapping of
HMM models. Kominek et al. [9] proposed the use of mel-
cepstral distortion (MCD) measure, rather than manual labels
for guiding the label movement. Hoffman et al. [10] proposed
a technique which uses frames in the middle of the automati-
cally labelled segments to guide the label refinement. However
none of these methods use the knowledge of boundary specific
sub-band events, which are already well researched in the lit-
erature ([11],[12]), to bring the performance of the fully auto-
matic methods closer to the supervised techniques. The use of
this knowledge base helps tackle errors, which are undetectable
using conventional spectral discontinuity based techniques. It
helps distinguish between closely occurring spectral disconti-
nuities and helps tackle large misalignment errors by the HMM
segmentor.



3. Proposed method
The proposed method uses boundary specific sub-band event
information for both detection and selection of the alternate
boundary candidates. The boundary candidates are detected us-
ing spectral discontinuities in sub-bands specific to the current
class of boundary. From these detected boundaries the ideal
candidate is selected using cost functions whose elements are
spectral cues extracted from the neighbourhood of the boundary
and from the center of phones on either side of the boundary.
The proposed method distinguishes closely occurring discon-
tinuities which pertain to different HMM boundaries by using
different cues for each class of HMM boundary. Further care
is taken to accurately place boundaries around burst segments
which are of really short duration, as even minor alignment er-
rors could lead to a mislabelling of the burst segment.

All the refinement techniques described in Section 2 are
combined with the isolated HMM training procedure (described
in [6]) to further increase the segmentation accuracy. The re-
fined labels are used for isolated training, where each HMM
model is initialized and iteratively re-trained, exclusively using
the segments of the corresponding phone. The boundaries ob-
tained using this combined training procedure are found to be
superior [4]. Hence the proposed boundary refinement tech-
nique was also combined with isolated training.

HMM segmentation

Landmark based boundary candidate detection

Cue based boundary candidate selection

Isolated training of HMM models

Force alignment

Final Boundaries

Figure 1: Flow chart of proposed segmentation process

3.1. HMM segmentation

Acoustic models for HMM segmentation were trained using
embedded training technique with flat start initialization as the
availability of manual labels or speaker-independent (SI) acous-
tic models is not assumed for bootstrap. Based on the analysis
of segmentation performance with various HMM configurations
described in [6], the HMM configuration was selected as three
state left to right context-independent (CI) models, without a
skip state (except for pauses), with one gaussian per state. The
feature set used is 12 mel-frequency cepstral coefficients (mfcc)
and normalised energy calculated with a frame length of 20ms
and hop size of 5ms, along with delta and acceleration coeffi-
cients, resulting in a vector of length 39. Sub-phoneme labels
were used for stop closures and bursts, as they have different
acoustic properties. The separation of stops into closures and
bursts must be accompanied a mechanism for detection of stop
stop interactions (SSI), which lead to incomplete stops (missing
bursts or closures). Hence intra and inter word stop-stop inter-
actions and other incomplete stop possibilities were considered
as pronunciation variations during the alignment. Geminates,
which are contiguous occurrences of the same consonant, were
mapped to corresponding single consonant [6]. Forced align-
ment was done using these acoustic models to derive the initial

segment boundaries. These boundaries are used as an input to
the refinement procedure.

3.2. Landmark based boundary candidate detection

Landmarks are time points of lexically significant acoustic
events. Consonantal landmarks represent instances of sudden
signal change eg., consonant release or consonant closure. Con-
sonantal landmarks correspond to segment boundaries, hence
the accurate identification of these landmarks implies increased
accuracy in the detection of the phonetic segment boundaries.
Hence these landmarks can be used for guiding the bound-
ary refinement process. Chitturi et. al, [13] proposed a land-
mark based boundary refinement procedure for HMM labels us-
ing multi-class support vector machines (SVM). However this
method requires manual labels for training the landmark detec-
tion SVMs. On the other hand, the accuracies of signal pro-
cessing based landmark detection methods are considerably low
for use in high accuracy segmentation. However in the case of
explicit segmentation, the expected landmark can be predicted
from the phonetic transcript and the HMM boundary provides
an approximate localization of the landmark. The proposed
technique uses this information for boosting the accuracy of the
signal processing based landmark detection methods. In this pa-
per we do not discuss the refinement of inter-vowel boundaries
and boundaries between vowels and glides.

The consonantal landmark expected at each HMM bound-
ary is obtained using a mapping table described in [12]. The
use of this table requires the knowledge of the phoneclasses
and their constituent phones in a language. The consonantal
landmarks are classified into sonorant(s), burst(b) and glottal(g)
landmarks. Each landmark is further divided into ‘+’ and ‘-’
based on the expected energy change across the landmark. An
increase in energy across the landmark corresponds to a ‘+’
landmark and a decrease in energy corresponds to a ‘-’ land-
mark.

The position of the expected landmark is detected in the
speech signal around the HMM boundary. The algorithm
described here for landmark candidate detection is adapted
from the algorithm described in [11]. In this method the
consonantal landmarks are detected using discontinuities in
corresponding sub-band energy curves. Frequency ranges of
the sub-bands used for detection of each landmark type are
given in Table 1.

Table 1: Frequency ranges of sub-bands for landmark type

Band Frequency Range (in Hz) Landmark
1 0-400 g
2 800-1500

s & b
3 1200-2000
4 2000-3500
5 3500-5000
6 5000-8000

A search for discontinuities in corresponding sub-band en-
ergy curves, in the locality of the HMM boundary, using one-
dimensional edge detection provides the required landmark can-
didates. A window wbi is selected around the ith HMM bound-
ary bi for edge detection. This window is calculated as

wbi = [−1 ∗max( bi − bi−1

2
, 50),max(

bi+1 − bi
2

, 50)] (1)

The minimum spread of the window on either side of the HMM



boundary was taken as 50ms, to account for severe alignment
errors of the HMM segmentor. Further, if the segment on the
right side of the boundary is a stop burst, the right bound of the
window is calculated till the middle of the phone following the
burst. The short duration of bursts and the presence of stop clo-
sures in the left context of the bursts, results in a portion of the
closure being assigned to the burst segment in HMM boundaries
generated after embedded training [10]. Hence the actual stop
burst does not necessarily fall at the mid of the HMM bounded
segment.

The large time windows and low edge detection thresholds,
used for boundary candidate detection, enable the inclusion of
required landmark in the set of possible candidates. However
they also result in a large number of candidates for each bound-
ary.

3.3. Cue based boundary candidate selection

A cue based selection algorithm is used to select the bound-
ary from the landmark candidates. Park [12] and Liu [11] pro-
posed two different acoustic cue based techniques for selection
of landmark candidates. Liu [11] uses empirically determined
thresholds to eliminate extraneous landmark candidates. Park
[12] uses the knowledge of manual boundaries to build proba-
bilistic distributions of cues at segment boundaries. Both these
methods necessitate manual intervention. Further these meth-
ods are designed for use in the ASR scenario where the exact
nature of the landmark is not known prior to the selection. How-
ever as explicit segmentation provides prior knowledge of the
expected landmark, we proposed a selection procedure which
eliminates the necessity for manual intervention.

The proposed method is based on the hypothesis that the
behaviour of acoustic cues in the immediate neighbourhood of
the ideal boundary candidate, is similar to those at the center of
the phones on either side of the boundary. Hence the absolute
differences between the acoustic cues in the immediate neigh-
bourhood of the ideal boundary and those at the center of the
phones on the respective sides are minimal. Further as the ideal
boundary has a spectral discontinuity, there is maximal differ-
ence of acoustic cues in the immediate neighbourhood. These
differences are used as elements of a cost function. The bound-
ary candidate (bcj) which maximizes the cost function corre-
sponding to the expected landmark is selected as the boundary.

A typical cost function is composed of three elements viz.,

1. εl = |αIL − αCL|
2. εr = |αIR − αCR|
3. εi = |αIR − αIL|

where α is an acoustic cue calculated over a span of 10ms, in the
immediate neighbourhood of the boundary candidate bcj on left
(IL) and right (IR) side, or over a span of 10ms at the center
of the phone on the left (CL) and right (CR) side of the HMM
boundary bi.

Acoustic cue, α corresponds to one of the following

1. EH = Average high band (1.2-8KHz) energy

2. EG = Average glottal band (0-400Hz) energy

3. E5−6 = Average energy in bands 5 and 6 (see Table 1)

These cues are selected as they help in distinguishing different
types of landmarks. A subset of these cues is used in each cost
function, specific to the landmark type.

An ideal landmark candidate minimizes εl and εr while
maximizing εi. Combining these elements in a simple additive

unweighted cost function we have

Clm(bcj) = −εl − εr + εi (2)

where lm is the landmark type and bcj represents the jth

boundary candidate.
The HMM boundaries, though erroneous, are used to iden-

tify the center region of the phone segments; as the HMM
bounded phone segments have considerable overlap with the ac-
tual phone segments. However the average energies calculated
from the center of the stop burst segment cannot be assumed
to represent the burst landmark energy profile, as bursts do not
necessarily fall at the center of the HMM bounded segment (see
3.2). Hence the cost functions corresponding to b landmarks are
designed without considering the cues from the center regions
(CL andCR). Instead, the high band energy of the closure seg-
ment before the burst is compared with the average high band
energy of all silence segments in the current utterance (Esil).

The +g and +b landmarks, corresponding to the scenario
of a voiced phone following a stop burst, occur within a short
interval. Cues in the glottal band (EG) are insufficient to
differentiate these two closely occurring landmarks, leading
to boundary selection errors. Energy in the bands 5-6 (E5−6)
can be used to distinguish the +g and +b landmarks, as burst
landmarks are accompanied by broadband noise present even
in these high bands. Hence in the case where a +g landmark
follows the +b landmark, a separate cost function is used to
identify the ideal +g candidate.

Table 2 summarizes the details of elements in the cost func-
tion, for each landmark (LM). The cost functions are same for
both the ‘+’ and ‘-’ type landmarks, unless explicitly specified.

Table 2: Elements of the cost function for each landmark type

LM
Elements

εl εr εi
s |EHCL

− EHIL
| |EHCR

− EHIR
| |EHIL

− EHIR
|

+g |EHCL
− EHIL

| |EGCR
− EGIR

|
+g after +b |EHCL

− EHIL
| |EGCR

− EGIR
| E5−6IL − E5−6IR

-g |EGCL
− EGIL

| |EHCR
− EHIR

|

+b |EHIL
− Esil| |EHIL

− EHIR
|

-b |EHIR
− Esil| |EHIL

− EHIR
|

4. Experiment
4.1. Experimental Setup

The TTS database used is a single speaker Telugu language
database comprising of 4800 utterances (at 16KHz), with a total
duration of 30.6 hours. The performance evaluation was done
on five hours of manually labelled utterances in the database.
The phone sequences for explicit segmentation were automati-
cally predicted from the orthographic transcripts.The iterations
of isolated training combined with landmark refinement were
performed until the average shift of boundaries in successive
iterations started increasing.

4.2. Results

Table 3 has a comparison of baseline HMM segmentation
method (BL), the iterative isolated training method using em-
bedded HMM labels (IT) (described in [2]), proposed landmark



based refinement algorithm without iterative isolated training
(LM) and proposed landmark based refinement with iterative
isolated training (LM+IT). The accuracies of these segmen-
tation techniques are measured as percentage of boundaries
within 5ms, 10ms and 20ms deviation from the manual bound-
ary.

Table 3: Performance of the refinement methods

Boundary
Type

Deviation from
manual boundary

Percentage of boundaries
within specified deviation
BL IT LM LM+IT

Total
5ms 28.9 25.9 34.8 37.0
10ms 50.7 52.1 59.5 65.0
20ms 73.3 81.9 82.2 88.6

s
5ms 38.5 40.4 37.0 44.2
10ms 69.4 68.5 64.8 74.0
20ms 94.0 89.8 89.4 93.4

g
5ms 35.3 19.9 44.5 45.1
10ms 59.4 45.6 73.4 75.3
20ms 76.2 78.4 88.7 93.4

b
5ms 9.6 25.6 18.9 22.8
10ms 20.2 51.7 35.7 47.5
20ms 48.9 85.3 66.8 82.4

Isolated training using baseline labels, disregarding the
knowledge of the spectral cues, results in the HMM models cap-
turing some errors in baseline labels introduced due to embed-
ded training. This can be clearly observed in the performance of
the isolated training procedure, in the placement of boundaries
corresponding to g landmarks. However it can be seen that the
LM refinement method increases the accuracy of boundaries to
88.7% (< 20ms). On the use of these refined boundaries in the
iterative isolated training procedure the accuracy is boosted to
93.4%.

The overall accuracy (inclusive of even inter-vowel and
boundaries between vowels and glides) of the baseline labels is
79.0% (< 20ms). On the inclusion of errors, in the placement
of sub-phoneme boundaries before the stop bursts, the baseline
accuracy falls to 73.3%. Using the proposed method the accu-
racy was increased to 88.6% (including the sub-phoneme stop
burst boundaries). [10] and [4] report increases in accuracy to
88.4% and 94.8% respectively. However these refinement meth-
ods operate on labels whose baseline accuracies are 80.2% and
87.3% respectively. The current method on the other hand is
able to operate on labels with initial accuracies as low as 73.3%
due to the use of large time windows, during the detection and
selection of boundary candidates. The use of these large win-
dows is made possible due to use of boundary specific cost func-
tions, which help select the desired boundary from a number of
boundary candidates within a large time window.

The baseline accuracies in the placement of boundaries cor-
responding to +g landmark, following a +b landmark (+g after
+b), are as high as 97.2% (< 20ms). This is a misleading statis-
tic as 59.0% of these +g boundaries encroach on the preceding
burst segment. Stop burst segments are typically of small dura-
tions (∼ 25ms) and a boundary error of even a few milliseconds
could lead to mislabelling of the burst segment. Use of these
mislabelled segments in unit selection synthesis, results in miss-
ing bursts in the synthesized output. As stop bursts are crucial
for perception of stops, these mislabelling errors are detrimental
to synthesis quality and have to be avoided during refinement.
The proposed landmark based refinement algorithm reduces the
error in the placement of the +g boundaries, while ensuring that

the burst segment is not mislabelled due to encroachment. The
proposed landmark based spectral correction technique ensures
that these encroachments are reduced to 18.9% while maintain-
ing the accuracy at 97.0% for this class of boundaries. The use
of phone-class specific cue (E5−6) ensures the proper assign-
ment of these boundaries.

5. Conclusion
In this paper we explored the use of knowledge base, in the
form landmark specific cost functions, to guide the boundary
movement during the refinement process. The use of the knowl-
edge base helped to distinguish between closely occurring spec-
tral discontinuities and to correct large alignment errors of the
HMM segmentor. The overall segmentation accuracy was in-
creased to 89% (within 20ms from manual boundary) from the
baseline accuracy of 73%. Thus the proposed refinement proce-
dure is suitable for segmentation of TTS databases in under-
resourced languages where the initial HMM labels have low
accuracies, due to lack of properly annotated speech corpora
for boot-strapping the acoustic models. The only resource nec-
essary for applying the proposed method to a speech database
in a new language is the knowledge of phone-classes and their
constituent phones in the language, required to identify the ex-
pected landmarks.
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[7] J. Matoušek and J. Romportl, “Automatic Pitch-Synchronous
Phonetic Segmentation,” in Proceedings of INTERSPEECH, Bris-
bane, Australia, 2008, pp. 1626–1629.

[8] J. A. Antonio and A. Bonafonte, “Towards Phone Segmentation
For Concatenative Speech Synthesis,” in Proceedings of the 5th
ISCA Speech Synthesis Workshop, 2004, pp. 139–144.

[9] A. W. Black and J. Kominek, “Optimizing segment label bound-
aries for statistical speech synthesis,” Proceedings of ICASSP, pp.
3785–3788, 2009.

[10] S. Hoffmann and B. Pfister, “Fully Automatic Segmentation for
Prosodic Speech Corpora,” in Proceedings of INTERSPEECH,
2010.

[11] S. A. Liu, “Landmark detection for distinctive feature based
speech recognition,” Ph.D. dissertation, MIT, 1995.

[12] C. Park, “Consonant landmark detection for speech recognition,”
Ph.D. dissertation, MIT, 2008.

[13] R. Chitturi and M. Hasegawa-Johnson, “Novel Entropy based
moving average refiners for HMM Landmarks,” in Proceedings
of ICSLP, 2006.


