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ABSTRACT 

In this paper, we consider the problem of active 
sonar target classification based on the targets’ 
material composition using a Radial Basis Function 
(RBF) network. Sonar target responses were 
measured under controlled laboratory conditions in a 
laboratory tank. Spherical targets of different material 
composition were used. An important task in the 
design of RBF networks is the appropriatechoice 
of the RBF centers. In this paper, we propose a 
Karhunen-Loeve (KL) expansion based approach for 
centre selection. Results on the classification perfor- 
mance of the RBF network trained using the KL ex- 
pansion based training proc dure are provided. 

I. INTRODUCTION 

The problem of detection and classification of 
submerged targets is of considerable interest in sonars. 
Active sonar target recognition is based on sonar 
returns received from a target. In the past, both time- 
domain [1,2] as well as frequency-domain [1,3] techni- 
ques have been used. At the present time, there is a 
growinginterest in the use of neural networks for 
the automatic recognition of sonar targets [4-61. 

Previous theoretical and experimental studies [l-31 
on the forward scattering of sound waves by targets of 
different size, shape and material composition show 
that information about the target’s acoustic (depend- 
ent on the material composition) and geometric 
(dependent on the size, shape and structure) 
characteristics is buried in its sonar return. The target 
echo is composed of multiple componerts which are 

due to the target’s local features ( such as reflection 
coeficient and the radius of curvature at the specular 
reflection point ) and global features (such as shape, 
composition, and size ). The early part of the echo is 
due to specular refledon of the incident pulse. The 
other components of the echo can be grouped into two 
sets. One set of arrivak is due to the Franz waves 
which propagate in the surrounding medium and on 
the outside of the scatterer. The time separation be 
tween the specularly reflected arrival and the Franz 
wave arrival is related to the target dimension. The 
other set of waves is due to the creeping waves which 
travel on the inside of the scattdrer. The charac- 
teristics of the creeping waves are dependent on the 
elastic properties of the target. The Franz wave com- 
ponents are highly attenuated and are of limited clas- 
sification value. But, since the elastic creeping waves 
are strongly coupled to the surrounding medium their 
amplitude in the sonar return is significant. Thus it is 
easier to extract information regarding the composi- 
tion of the target from the sonar echo. Often, sonar 
signals of finite duration are used to interrogate the 
target. For the typical sonar target sizesused, it may not 
be possible to separate the different components of 
the target return in the time domain. Alternatively, one 
can use the target’s frequency response to derive the 
target information. The nulls in the frequency response 
correspond to the creeping waves. Thus we see that 
the crucial step is to extract target features from the 
target return. The sonar target recognition problem 
may then be posed as that of pattern recognition. 

Recently, there has been a resurgence of interest in 
the use of neural networks for pattern recognition due 
to the fact that multilayer feedforward neural net- 
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works can realize complex nonlinear decision func- 
tions. Among the several neural classifiers that have 
been suggested in the past, the multilayer perceptron 
network (MLP) trained using backpropagation 
(BP) algorithm, MLP-BP, has enjoyed a wide 
popularity. MLP-BP networks have bezn used in 
several applications including sonar target clas- 
sification [4]. While the capabilities of the multi- 
layered perceptron have been studied widely and 
understood now, theperformance of the BP train- 
ing algorithm is far less than satisfactory. Two im- 
portant limitations of the BP algorithm are: (i) it is a 
gradient based procedure and hence is likely to get 
stuck in a local minimum, giving a suboptimal solution 
and (i) it requires a lot of training time involving mul- 
tiple passes. To overcome the fmt drawback, several 
alternate global optimum seeking algorithms such as 
simulated annealing, genetie algorithm, diffusion algo- 
rithm, etc., have been suggested. Though these al- 
gorithms can provide a global solution, they are 
cornputationally more intensive than BP. 

In this paper, we present the results of our experi- 
ments carried out to study the active sonar target 
classification performance of a Radial Basis Function 
(RBF) network. RBF networks have been fruitfully 
usedin a number of applications such as speech 
recognition [7l and channel equalization 181. Since 
training the RBF network entails solving only a set of 
linear equations for every node in the output layer, RBF 
network training requires much lesser training time and 
is not plagued with the prhlem of local minima. 

In the next section we detail the design and training 
of a RBF network for the purpose of sonar target 
classification. In Section 111, we describe the experi- 
ments carried out to measure the sonar target echoes 
and the feature extraction procedure. Finally, target 
classification results are discussed in Section IV. 

11. RADIAL BASIS FUNCTION NETWORK 

RBF classifier is a feedforward mapping network 
that can be used to form complex decision domains 
just as the multilayer perceptron. The network ar- 
chitecture is shown in Fig.1. RBF networks can be 
regarded as three layer networks with a single hidden 
layer. The hidden units, instead of evaluating a 
weighted sum of their inputs ( as in the case of the 
MLP), encode the inputs by computing how close they 
are to the centres of the r xeptive fields. To do this, 
each hidden unit i has an activation function of the form 
$(xp - Ci), where $ is an appropriately chosen basis 
function, xp is the pth input pattern vector and c, is a 
vector representing the ith RBF centre. Assuming the 
output layer to be linear, the activation of the jth output 
node is obtained as 

N 

1=1 
Yjp = ,z wij $ ( XP - ~ 1 )  (1) 

where N is the number of nodes in the hidden layer and 
wij is the connection weight between the ith hidden 
node and the jth output node. Letting 

hip=#( x, - Cl ) 1 (2) 

Yjp = hpwj * (3) 

we can write Eq.(l) as 

whereh+=[hip h2p ... h ~ p ] a n d w j = [ w l j w j .  
. . mj ] (T denotes transpose). For a network with 
M output nodes, the network output vector yp can be 
expressed as 

~p hpW, (4) 

where W = [wi Iw2 I . . . I WM I, yp = [yip YLP ... YMPI 
and w1 , ~2 , ..., WM are the weight vectors for the 
different output nodes. For P input patterns, stacking 
hp in H, i.e., H = [hi I h2 1 . . . I hpIT, the weight vectors 
can be obtained as 

W = H'Y, (5 )  

where Y = [ri lyz 1 . . . Iyp IT and + denotes the 
pseudo-inverse. In practice then, one can obtain the 
weights using the singular value decomposition or an 
iterative method such as the LMS algorithm. 

Note that the data centres ci and their number N, 
the basis functions $, and the parameters of the basis 
functions, if any, are design parameters that need to 
be chosen carefully, depending on the application on 
hand, to obtain the required performance. Thus two 
important issues that need to be addressed are: (i) 
which basis function is suitable for a classifier design 
and how to choose its parameters, if any, and (i;) how 
to choose the data centres ci and their number N. 

With regard to the choice of the RBF activation 
functions, the use of Gaussians, thin-plate-splines and 
multiquadratic functions has been reported. For the 
classifier application, addressed herein, we have 
chosen the Gaussians as in [8]. 

For Gaussian RBFs, 

n = l  
requires the specification of the spread of the 
Gaussian functions, c& . While Tsoi [9] made an ad hoc 
choice, Renals [7l chose the spread based on a distance 
measure depending on the type of the input feature 
vector. 
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The question of RBF centre selection has been 
addressed by Tsoi [9] and Chen et al. [SI. One approach 
to the centre selection is to choose centre for every data 
or a subset of data in the data set. Such an approach not 
onlyrequires that a large number of centresbe 
chosen to adequately sample the input data space, but 
also has the disadvantage that if the centres are close, 
it may lead to near linear dependency of those centres 
and in turn to numerical illconditioning problem. 
Similar ad hoc schemes were also adopted by Renals 
[lo] and Chen et al. [SI. Another approach is to fmd 
clusters of the input data and locate the RBF centres 
at the cluster centres [ 111. Recently Chen et al. [8] 
have proposed the use of orthogonal least squares 
method for selecting the centres. Further they sug- 
gested the use of AIC criteria for seleding the num- 
ber of centres. 

In this paper, we shall adopt an approach based 
on Karhunen-Loeve (KL) expansion of the feature 
vector covariance matrix, for RBF centre selection. 
Our approach is as follows. Let 

XmL = (XLlW, ... AIL ), (7) 

denote the kth feature vector due to the kth input 
pattern vector from the mth class. The feature data 
d a n c e  matrix of all the K feature vectors belonging 
to the mth class can be obtained as 

K 

k=l 
xm = ( l k ) x ( X m k  - %n) ( h k  - (8) 

where Z,,, is the mean vector of the mth class. The 
covariance of feature data from all M classes is given 
bY 

M 

m = l  
X =(uM)Xx,. 

The eigen decomposition of X can be expressed as 

x = E A E ~ ,  (10) 

where A is a diagonal matrix with the eigenvalueslli,h, 
..., LL of X and E is the corresponding eigenvector 
matrix. Further, we will assume that the eigenvalues are 
arranged in non-increasing order. The significance of 
this decomposition in the context of pattern recogni- 
tion can be explained as follows. The eigenvector 
corresponding to the largest eigenvalue captures 
most of the characteristics of the input feature data. 
The other eigenvectors vectors capture less informa- 
tion compared to thefust depending on the mag- 
nitude of their corresponding eigenvalues. 
Furthermore, since the eigenvectors are orthonormal 
they capture mutually exclusive information. Thus we 
may choose the eigenvectors as our RBF network 
centers. 

The other question is : How many of the L eigen- 
vectors are essential to capture most of the information 
in the input feature vectors in order to correctly iden- 
tify their class membership. It must be noted that for 
an M class problem, at least M RBF centers are neces- 
sary. In order to reduce the size of the network, we may 
choose only a subset of the eigenvectors. The smaller 
the subset of eigenvectors chosen, the larger will be the 
mean square error in representation. Since our em- 
phasis here is on the correct classificationrather 
than representation of the input feature vectors we 
may choose a smaller subset. One possible approach 
to choosing a subset of the eigenvectors is to use a 
threshold on the eigenvalues to select the eigenvectors. 
An alternative approach is to use Aikaike’sInformation 
Criteria (AIC). We have used the simple threshold 
scheme in our experiments. 

111. DATA COLLECTION AND FEATURE 
EXTRACTION 

Sonar target responses were measured under 
controlled conditions in a laboratory tank of dimen- 
sion 10m x 3m x 2m. Spherical targets of different 
material composition, namely, wood, aluminium, iron 
and rubber were used. Sice our emphasis was on 
classification based on the material composition, all 
targets used were of the same size. Though the tank 
walls are anechoic, the transmitter, the target and 
the receiver were positioned at the centre of the tank 
to minimize any reflections from the side walls. A 
circular disc type transmitter of 12’ beamwidthat 
its resonant frequency of 110 kHz was used. Gated 
five-cycle sinewave signals of centre frequency 110 
kHz were amplified and fed to the transmitter. Echoes 
from the targets were received using a B&K 8103 om- 
nidirectional transducer. The received echoes were 
digitized and stored in a TEK 2220 storageoscil- 
loscope, which were then transferred over the GPIB 
to an IBM-PC compatible for further processing. 

The acquired target responses were of very 
high signal-to-noise ratio (SNR). Several sets of target 
responses were measured from which it was possible to 
identify a reference echo for each of the targets 
(Fig.2). To these reference echoes, white Gaussian 
noise was added to simulate noisy sonar returns with 
u)dB,25dB, and 3OdB. Out of 200 such noisy sonar 
returns synthetically generated for each of the targets, 
60% were used for training the network and the rest 
were used for testing the performance of the net- 
work. 

The feature vectors for input to the network were 
obtained using the frequency domain characterization. 
Each of the target responses was Fourier transformed 
using a 2048-point m. The squared magnitude 
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spectrum of the sonar return was divided by the 
squared magnitude spectnun of the 5-cycle sinewave 
input to obtain the transfer function of the targets. 
Furthermore, in order to reduce the dimensionality 
of the feature vector, we divided the frequency inter- 
val into 15 bins of equal size. The average energy in 
each of the bins was calculated. Each of the resulting 
vectors was normalized and used as input to the net- 
work. 

IV. RESULTS AND DISCUSSION 

Classification experiments were carried out using 
a RBF network with a one-out-of-N type of output 
coding. The network was a three layer feed-forward 
network. The input layer had 15 nodes corresponding 
to the 15 elements of the input feature vector. The 
output layer had 4 nodes to represent the four dif- 
ferent sonar target classes. The centers of the RBF 
network were chosen using the KL transform based 
procedure detailed in the previous section. In all the 
experiments it was found adequate to use just 4 
nodes with the centres being the eigenvectors cor- 
responding to the first four dominant eigenvalues. The 
widths of the Gaussians were chosen using a n-nearest 
neighbour rule. 

The dissiiarity measures, shown in Table 1, are 
indicative of the degree of difficulty of the sonar target 
classification problem under study. Different inter- 
class centroid separations are given in Table la  and 
the intra-class variations are given in Table lb. As 
expected the dissimilarity measures diminish with a 
decrease in the SNR and also the intra-class variations 
increase with a decrease in the SNR. Also the between 
class separation for the target pairs (aluminum- 
wood) and (rubberprk) is less compared to the 
target pairs (aluminum,rubber), (aluminnm,cork), 
(wood,rubber) and (wood,cork). This is again as ex- 
pected from the targets' acoustic properties since 
rubber and cork are both acoustically soft materials. 

The results of the classification experiments, for 
the different S N R s ,  are given in Table 2. The values 
given represent the average performance of the clas- 
sifier, averaged over trials with different sets of syn- 
thetically generated noisy data. The classifier 
performance as a function of number of training 
samples, for UMB SNR, is shown in Fg.3. While in the 
25dB SNR case, near exact performance could be 
achieved only after training with 50 samples, for 30 dB 
S N R  simiiar performance could be achieved with 
much fewer samples. These performance results cor- 
roborate with the observations made from the dis- 
similarity measures. 

In conclusion, we note the following. The choice of 
Gaussian nodes seems to be appropriate for a clas- 

sifier design. The training method suggested herein is 
robust and did not break down due to any numerical 
illconditioning problems in any of the cases studied 
herein. Furthermore, the satisfactory performance of 
the network with the minimal number of nodes re- 
quired for the sonar target classitiCation problem is 
indicative of the fact that most of the features of the 
input data are captured in the first few significant KL 
components. The advantage of much shorter training 
timerequired to train the RBF network in addition 
to its real-time classification capabilities (shared by 
other neuralnetworks) makes it a very useful tool 
for sonar target classification. Ofcourse, in contrast 
to the batch mode training scheme suggested herein, 
it would be more useful if a suitable adaptive on-line 
learning algorithm can be developed. 
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