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Abstract 

Most of the real life classification problems have ill 
defined, imprecise or fuzzy  class boundaries. Feedfor- 
ward neural networks with conventional backpropaga- 
t ion learning algorithm are not tailored to these kinds 
of classafication problems. Hence, an this paper, feed- 
forward neural networks, that use fuzzy  objective func-  
tions in the backpropagation learning algorithm, are in- 
vestigated. A learning algorithm is  proposed that min- 
imizes an  error term,  which takes care of fuzziness 
in Classification f r o m  the point of view of possibilis- 
tic approach. Since the proposed algorithm has possi- 
bilistic classification ability, it can encompass different 
backpropagation learning algorithms based on crisp and 
constrained fuzzy classification. The eficacy of the pro- 
posed scheme is  demonstrated on a vowel classification 
problem. 

1. Introduction 

Nowadays feedforward neural networks (FFNN) 
based on backpropagation (BP) learning algorithm [2] 
are used extensively for classification. However, a ma- 
jor drawback of BP algorithm is that it assigns each 
input pattern exactly to  one of the output classes, as- 
suming well-defined class boundaries. In real life sit- 
uations, however, boundaries between classes may be 
overlapping. There can be some data points which do 
not completely belong to  a single class, but partially be- 
long to other classes too. This limits the applicability 
of BP algorithm on real life problems. In order to alle- 
viate this drawback, fuzzy set based classification ap- 
proach, inside the basic framework of BP algorithm has 
been recently investigated. Several interesting feedfor- 
ward neuro-fuzzy systems have been proposed [6] ,  [7], 
and they cover a wide range of applications. 

This research work proposes a method of embed- 
ding fuzzy classification properties into conventional 
BP learning algorithm of feedforward neural networks 
(FFNN). Input is assumed to be crisp for these FFNNs, 
only the classification is fuzzy. Since the classification 
is fuzzy, an input pattern may not necessarily belong 
to one class; rather it may belong to more than one 
class with different degrees of belongingness. Conse- 
quently, unlike the conventional BP, the number of tar- 

get classes corresponding to each input training pattern 
may be more than one. The aim of the proposed learn- 
ing algorithm during training is to minimize an error 
term, henceforth termed as fuzzy  mean square error. 
The fuzzy mean square error is defined as the overall 
weighted sum of square error between the actual net- 
work output and all possible target outputs, where the 
weight signifies the level of belongingness of the pattern 
into the corresponding target class. If a new input is 
presented to the neural network after training, it yields 
the output as class membership values of the input pat- 
tern. We also propose another formulation of the learn- 
ing algorithm by considering a network that tries to  
minimize an alternative error term, called fuzzy  cross 
entropy, which is a fuzzy counterpart of crisp cross en- 
tropy [2]. Although the learning- algorithm for fuzzy 
mean square error and fuzzy cross entropy differ, the 
basic philosophy of introducing the concept of fuzzy 
classification into the crisp error measure is same. 

The proposed learning algorithm is derived such 
that the sum total of membership values of a partic- 
ular pattern to  all the classes need not necessarily be 
equal to one. This implies that the membership assign- 
ment is not constrained fuzzy [4]; on the other hand, it 
is possibilistic [4]. This kind of property is desirable 
to signify the ignorance or different levels of evidence, 
which are well discussed in belief theory [9] and possi- 
bility theory [3]. In case of constrained fuzzy member- 
ship assignment, i.e., when sum total of membership 
values of an input pattern to  all the classes is one, we 
show that the attractive learning algorithm, given by 
Pal and Mitra [6], is equivalent to  the proposed algo- 
rithm. In addition to it, when the classification is crisp, 
the proposed learning algorithm boils down to the con- 
ventional BP algorithm. Thus, it turns out that the 
possibilistic approach of the proposed algorithm leads 
it to encompass both constrained fuzzy classification 
and crisp classification. Another aspect of the pro- 
posed learning algorithm is that it has the scope for 
controlling the amount of fuzziness that is involved in 
the classification process. 

2. Background of Fuzzy Classification 

A C-class classification problem for a set of in- 
put data { X I ,  x2, . . . , xp} is basically an assignment 
of membership values p u c ( x p )  on each xp E X, Vc = 
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1 , 2 , .  . . ,C,  Vp = 1 , 2 , .  . .,P. If the membership val- 
ues are crisp, then X is partitioned into C subgroups 
during the classification process. In fuzzy context, C 
partitions of X are set of values {pc(xp)}, that can be 
conveniently arranged on a C x P matrix U = [,uc(xp)]. 
Based on the characteristic of U, classification can be 
of three types as follows [4]: 

1. Crisp classificatzon: 

M h c  = {U E ECN 1 p C ( x p )  E (0, 1) Vc,Vp; 
P 

2. Constrained Fuzzy Classification: 

Mfc = {U E RcN I pC(xp) E [0, 11 '~'c,t'p; 

C P 

c=l p= 1 

3 .  Possibilistic Classification: 

M p c  = {U E sCN I Pc(Xp) E [O, 11 'V'c:Vp; 
P > 

(1-c) 
p= 1 J 

From the relations (1-a), (1-b) and (1-c), it is obvi- 
ous that IMh, c M f ,  c Mpc. We will see later that 
our proposed learning algorithm is based on possibilis- 
tic classification, and hence as a natural consequence, 
various BP algorithms based on constrained fuzzy and 
crisp classification become particular cases of the pro- 
posed algorithm. 

Next part of the discussion describes how to deter- 
mine the membership value of each pattern. The mem- 
bership of the pth pattern to class c is defined as [SI 

1 

where zpc i s  the weighted distance and, the positive 
constants Fd and Fe are the denominational and ex- 
ponentional fuzzy generators controlling the amount of 
fuzziness in this class-membership set. The weighted 
distance is discussed in detail later. Obviously, pc(xp) 
lies in the interval [0, 11. Specific;ll'y; higher the dis- 
tance of a pattern from a class, the lower is its mem- 
bership value to that class. In particular when the 
distance is zero, membership value is one (maximum) 
and, on the other hand, when the distance j: infinite, 
membership value is zero (minimum). The method of 
calculating weighted distance is as follows: 

Let the N-dimensional vectors m, and crc denote the 
mean and standard deviation, respectively, of the set of 
training data for the d h  class. The weighted distance 
of a training pattern xp = [xpl , xp2, . . . , x p ~ l T  from the 
cth class is defined as 151 

The weight & is used to take care of the variance of 
the classes so that a feature with higher variance has 
less weight significance) in characterizing a class. Note 
that here &pc(xp) need not be equal to one. 

C 

3 .  Proposed Algorithm 

Let, the training set in a C class problem con- 
sists of vector pairs {(xl,yl) ,  (xq,yz), . . . , (xp, yp)}, 
where xp E 9iN refers to the pth input pattern and 
y p  E {tcl c = 1,2 , .  . . , C ;  t, E Ec} iefers to  the tar- 
get output of the network corresponding to this input. 
Specifically, if xp is from the kth class, then y p  = t,. 
where t k k  = 1 and tck = 0 'dc, c # k. The network 
used here is a multilayer feedforward network which 
can have several hidden layers. Without loss of gener- 
ality, number of the hidden layers can be assumed to be 
one with N hidden nodes. When an input pattern xp is 
applied at the input layer of the network, the output of 
the j t h  hidden unit is oiJ = f$(netiJ) = l+exp(-net,h,) 1 

N 

z= 1 
where = w;%xPz +e;. Here wt% is the weight of 

the link from the i th node of the input layer to the j t h  
node of the hidden layer, and 8; is the bias term for 
the j t h  hidden node. Similaily, the equations for the 
kth output node is o;, = f[(net;,) = i+exp(-netz,) 
where net;, = wg,f;(netEJ) + 0;. The h and o 
superscripts refer to  quantities in the hidden and out- 
put layer, respectively. 

1 

H 

3.1. Training Algorithm 

The adaptive parameters of the FFNN consist of 
all the weights and bias terms. The sole purpose of 
the training phase is to determine the optimum setting 

difference between the network output and the target 
output. This difference is called the training error of 
the network. The error measure can be fuzzy mean 
sauare error which is basically a fuzzv counterDart of 

of the weights and bias terms so as to minimize the I 

I 
i tge mean square error 121 used in the conventional BP . .  

algorithm. 
In the conventional BP algorithm, the mean square 

error for the pth input pattern is defined as Ep = 
C 

k=l 
(tpk - o ; ~ ) ~ .  However, use of Ep as an error term j 
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is justified when each input pattern belongs to only 
one class. But in fuzzy classification, the input pattern 
may belong to more than one class with different de- 
grees of belongingness. It implies that the target value 
of an input pattern may be more than one. In other 
words, each input can have all possible target values 
with different membership values (certain membership 
values may also be zero). Through training the network 
attempts to reach those target values weighted by dif- 
ferent membership values. In other words, the problem 
of training can also be conceptually viewed as a fuzzy 
constraint satisfaction problem. Here, the constraint 
is that each input pattern should belong to a particu- 
lar class, and the associated membership value signifies 
upto what extent this constraint should be satisfied. In 
the training phase, the task of the proposed network is 
to  adapt the parameters such that these constraints are 
resolved optimally. Mathematically, for the pth input 
pattern the constraints can be expressed as the fuzzy 
mean square error term, which is defiaed as 

. c  c 

Here, the index of p, i.e., q E [0, ca) controls the 
amount of fuzziness present into the classification. Dif- 
ferent values of q signifies upto what extent, the con- 
straints should be satisfied. When q = 0, each in- 
put pattern tries to  attain all the target outputs with 
equal importance, and ultimately the network learns 
the mean of all the class centers. When the value of 
q is greater then one, the constraint associated with 
high membership value gets more importance to be re- 
solved. When q tends to  be infinity. only the input 
pattern that belongs to  a class completely, i.e. with 
membership one, is learned. In fact, it can be proved 
that Epf decreases strictly as q increases in [l, m] for 
0 < pc(xp) < 1 Vc. As a result, for 0 < pc(xp) < 1 Vc, 
the minimization of Epf becomes trivial at q = CO as Epf 
attains its minimum value which is zero. On the other 
hand, when q is less than one, the constraint associ- 
ated with high membership value gets less importance 
to  be resolved. Thus, q controls the extent of mem- 
bership sharing among the fuzzy classes. This can be 
good; on the other hand, one must choose q to actu- 
ally implement it. In the current work q is assumed 
to  be one. The role of q here is quite similar to  the 
index of fuzziness in concentration and dilation opera- 
tors found in fuzzy hedge [3], and index of fuzziness in 
Fuzzy C-Means clustering algorithm [l]. 

Next we derive learning law for the network follow- 
ing the same method as followed in the conventional 
BP algorithm [2]. Here we assume that the weight up- 
dation, Aw, takes place after the presentation of each 
input pattern. Assuming the use of same learning- 
rate parameter 7 for all the weight changes made in 
the network, the weight changes applied to the weights 
wkj and wJZ are calculated, respectively, in accordance 

8 E f  to  the gradient-descent rules: Aw& = - 7 2  and awi3  

k=l 
= T$phjXPi (9) 

where 6 j j  = j;(netij) E:', 6;kw;j. 
Now, we generalize other error measure, i.e., cross 

entropy for the pth input pattern, which is defined as 
follows: 

(10) 
Since t p k  is either zero or one, we can write the above 
definition as 

?dp=-c t p k h ( 0 ; k )  +(l-tpk)In(l-o;k) (11) 
k=l c (  ) 

Following the same logic, as we used to justify the use 
of fuzzy mean square error in place of mean square 
error, we can generalize 31, to its fuzzy counterpart, 
called fuzzy cross entropy, which is defined as 

c C 

?$ = - cp:(xp) [ ( t ck  In(o;k) + (1 - t c k )  
c=l  k = l  

- O g k ) ) ]  (12) 

It can be proved that 31; decreases strictly to zero as 
q increases in [l, 031 for 0 < pc(xp) < 1 'dc. Here q 
controls the amount of fuzziness in a similar way as it 
does in (4). 

Following the same method as we used in case of 
fuzzy mean square error, here we obtain the following 
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learning equations (see appendix C and D). 

C 

Therefore, it turns out that, by introducing fuzzy 
concepts in the usual BP error measures, we can ob- 
tain a large class of learning algorithms. Although, the 
exact formulation of the learning equations for fuzzy 
mean square error and fuzzy cross entropy may be dif- 
ferent? the underlying concept of introduction of fuzzi- 
ness into the usual error measures is same. 

Now we illustrate the following particular cases of 
the proposed learning algorithm. 

Crisp Classification: In case of crisp classifica- 
tion only one component of pz(xp) Vc = 1,. . . C,  
is one and the remaining components are zero. 
Thus, the expression for E! boils down to E{ = 

-+ x:=l(tcp - ~ p ) ~ ,  which is the mean 
square error term found in the conventional BP al- 
gorithm. Consequently, in a crisp case the learning 
algorithm based on mean square error and fuzzy 
mean square error become identical. This can be 
easily verified by making membership assignments 
in (6) and (9) crisp. 
Similarly, in case of crisp classification fuzzy cross 
entropy boils down to the conventional cross en- 
tropy term, and consequently, learning equations 
for cross entropy and fuzzy cross entropy become 
same. 

2. Constrained Fuzzy Classification: When 
Cpc(xp) = 1 Vp and q = 1, the learning equa- 

tions (6) and (9) achieve simpler forms as follows: 
C 

nw;, = qbp”ko;j (15) 

(16) 
Awh. = $pixpi  h 

3% 

where bik = [pk(xp)  - og.1 ogk(l - oo Pk ) and = 

f;(net:j) 6;kw&. In this particular situation, 

we can note down that this version of the proposed 
algorithm is equivalent to the learning algorithm 
proposed by Pal e t  al. in 161. It is also impor- 
tant to note that we are not considering Pal e t  
al.’s algorithm with fuzzy linguistic input; rather 
we are considering it with crisp input. In the fu- 
ture correspondence, the proposed algorithm will 
be extended to take care of fuzzy linguistic input. 

c 

k=l 

For C , p c ( x p )  = 1 Vp and q = 1, the learning 
equations (13) and (14) based on fuzzy entropy 
can be simplified as 

44, = rl [ P k ( X p )  - O;k] 0k.j (17) 

Awti = rlJ(net:j ).pi [ ~ k  (xp)  - okj] wij 
C 

k=l 

(18) 

This particular case of the learning algorithm 
is derivable from a variant of Pal e t  al.’s cross 
entropy [6], i.e., Xfal = (pk(xp)ln(o;k) +(1 - 
pk(xp)) ln(1 - o.;!)). This result is quite obvi- 
ous as the definition of fuzzy cross entropy boils 
down to Pal et al.’s cross entropy when q = 1 and 
Cc pc(xp) = 1 ‘dp. This claim can be proved from 
appendix E. 

Thus, being possibilistic in nature, the proposed al- 
gorithm encapsulates various BP algorithms based on 
crisp as well as constrained fuzzy classification. 

3.2. Testing 

The network learns the fuzzy boundaries between 
the different classes after training. In this stage, a sep- 
arate set of test patterns is given as inputs to the net- 
work. Generated outputs are class memberships corre- 
sponding to the respective test inputs. 

4. Results and Discussion 

We consider the task of vowel recognition [8] to 
demonstrate the efficiency of the proposed scheme. For 
our study we consider the vowels ‘a’, ‘e’, ‘i’, ‘0’ and 
‘U’. The data required for training is collected from 
vowel part of utterances of consonant vowel pairs of 
three different speakers. First three formants are used 
as features. They are extracted from the utterances by 
taking the LPC [8] and finding the frequencies a t  which 
the spectrum reaches peaks. We use these extracted 
features to constitute a training set of 800 examples. 
Here our objective is to employ different learning tech- 
niques on this training set, and compare their classifi- 
cation performances on a different test set that consists 
of 1000 samples. 

Initially we use Bayes [2] classifier for multivariate 
normal patterns with a priorz probabilities pi  = 5, 
where P, denotes 151 the number of patterns in the zth 
class and P is the total number of training patterns. 
The covariance matrix for each class is determined from 
the training patterns of that particular class. Classifi- 
cation performance of the Bayes classifier on the test 
set is shown in the second column of Table 1. 

Next we use different BP learning algorithms based 
on the variants of mean square error and cross entropy 
to train a feedforward neural network with 3 input 
nodes, 5 hidden nodes and 5 output nodes. The target 

I 

i 
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Class Bayes 
classifier 

Mean square error Cross entropy 
Conventional Pal et al.'s Proposed C onventional Pal et al.'s Proposed 

BP algorithm algorithm BP algorithm algorithm 

patterns are 5 dimensional vectors containing 1 in one 
location and 0 in all others. Here, we adopt the strat- 
egy of picking the output node with highest activation 
value as the output class corresponding to an input. 
For all the three learning algorithms, convergence is 
achieved within 3000 iterations. In all the cases, learn- 
ing rate is decreased over iterations as the training error 
becomes smaller and smaller. 

Here we illustrate the results of different BP algo- 
rithms based on the variants of mean square error. 
Classification efficiency of the network trained with 
the conventional BP algorithm, Pal et al.'s algorithm 
and proposed algorithm are demonstrated in the third, 
fourth and fifth columns of the Table 1, respectively. 
The values of Fe, Fd and q are chosen as 2 ,  5 and 1, 
respectively. In Table 1, we can observe better classifi- 
cation performance of the proposed method compared 
to  the other methods on the same test set. 

Now we illustrate the classification efficiency of the 
network with different BP learning algorithms based 
on the variants of cross entropy. Sixth, seventh and 
eighth columns of Table 1 shows the classification ef- 
ficiency of the conventional BP algorithm, Pal et al.'s 
algorithm and the proposed algorithm on the test set. 
Here also the proposed method performs better than 
the other methods. This improvement takes place be- 
cause of considering the fuzziness involved in classifi- 
cation from possibilistic angle. 
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Appendix 
a E J  The expression for & can be derived as, 

k i  
A. 

(A-4) O g k ( 1  - O ; k ) O p j  h 

c 
o ; k ( 1 - o ; k ) o p 3  h 

(-4- 5) 

The expression for + 8 E f  can be found as follows: 
8% 

B. 

k = l  c=l 

k = l  c=l  

Following the steps involved while deriving (A-5) from 
(A-2), we can write 

c c 

c=l  c = 1  
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Hence, 

0 ; k O  - 0;k)w;j (B-5) 

axf The find the value of --E, we differentiate (12) 
8 4 ,  

c. 
with respect to wEJ as follows: 

c=l 

Hence, using identity (B-4), 

axf 
aw. ,  

The value of +- can be calculated as, D. 

c=l k=l 

Applying identity (B-4), 

C 1 

c=l J 
(D-3) 

E. 
and Pal et al.'s entropy can be established by the following 

When q = 1 and k = 1, the equivalence of 

steps. 

k=l L \ 

\ c 

' C=lc#k 

1 

Since t k k  = 1 and t c k  = 0 V c  # I C ,  

c 1 

",f = - C [  P L k b P )  In(0;k)  + (1 - P k ( X P ) )  141 - 0 ; k ) ]  

k = l  

(E-5) 
= Pal et al.'s entropy 

References 

[I] J. C. Bezdek. Pattern Recognztzon wzth Fuzzy Ob- 
jective Functzon Algorithms. Plenum Press, Kew 
York, 1981. 

[2] S. Haykin. Neural Networks - A Comprehenszve 
Foundatton. Macmillan College Publishing Com- 
pany, New York. 1994. 

[3] G. S. Klir and T. A. Folger. Fuzzy Sets, Uncertaznty 
and Informatzon. Prentice-Hall, Englewood Cliffs, 
NJ, 1993. 

[4] N. R. Pal and J. C. Bezdek. On cluster validity for 
the fuzzy C-means model. IEEE Transactzons on 
Fuzzy Systems, 3(3):330-379, August 1995. 

[5] S. K. Pal and D. Dutta Majumder. Fuzzy Math- 
ematical Approach to  Pattern Recognition. Wiley 
(Halsted Press), New York, 1986. 

[6] S. K. Pal and S. Mitra. Multilayer perceptron. fuzzy 
sets and classification. IEEE Transactzons on Neu- 
ral Networks, 3(5):683-697, September 1992. 

f izzy  neural networks with refer- 
ence neurons as pattern classifiers. IEEE Transac- 
tzons on  Neural Networks, 3(5):770-775, September 
1992. I 

[8] L. R. Rabiner and 3. H. Juang. Fundamentals of 
Speech Recognztzon. Prentice Hall, Englewood Cliff, I 

NJ. 1993. 

A Mathematacal Theory of Evzdence. 
Princeton University Press, Princeton, 1976. 

[7] W. Pedrycz. 

[9] G. Shafer. 

k=l L c = l  

1706 

Authorized licensed use limited to: INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY. Downloaded on August 26, 2009 at 02:16 from IEEE Xplore.  Restrictions apply. 


