
MULTI-LINGUAL SCREEN READER AND PROCESSING OF

FONT-DATA IN INDIAN LANGUAGES

A THESIS

submitted by

A. ANAND AROKIA RAJ

for the award of the degree

of

Master of Science (by Research)

in

Computer Science & Engineering

LANGUAGE TECHNOLOGIES RESEARCH CENTER

INTERNATIONAL INSTITUTE OF INFORMATION TECHNOLOGY

HYDERABAD - 500 032, INDIA

February 2008

Dedication

I dedicate this work to my loving parents ANTONI MUTHU RAYAR and MUTHU

MARY who are always behind my growth.

i

THESIS CERTIFICATE

This is to certify that the thesis entitled Multi-Lingual Screen Reader and Processing of

Font-Data in Indian Languages submitted by A. Anand Arokia Raj to the International

Institute of Information Technology, Hyderabad for the award of the degree of Master of

Science (by Research) in Computer Science & Engineering is a bonafide record of research

work carried out by him under our supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree or

diploma.

Hyderabad - 500 032 (Mr. S. Kishore Prahallad)

Date:

ACKNOWLEDGMENTS

I thank my adviser Mr.Kishore Prahallad for his guidance during my thesis work. Because

of him now I am turned into not only a researcher but also a developer.

I thank Prof.Rajeev Sangal and Dr.Vasudeva Varma for their valuable advices and inputs

for improving the screen reading software.

I am also thankful to my speech lab friends and other IIIT friends who helped me in

many ways. They were with me when I needed a help and when I needed a relaxation.

I am very grateful to my colleagues Mr.Diwakar, Ms.Susmitha, Mr.Rohit and Ms.Bhuvaneswari

in a special way for their advices, helps and contributions in my work.

The Lab (Speech Lab, LTRC) and the Institute (IIIT, Hyderabad) provided me a won-

derful environment to work.

Last but not the least; I thank God for all his grace on me.

A.Anand Arokia Raj

ABSTRACT

Keywords: Screen Reader; Font Encoding; Font Data; Text to Speech Systems; TF-IDF

Weight; Glyph; Glyph Assimilation Process; Font Converter.

Screen reader is a form of assistive technology to help visually impaired people to use or

access the computer and Internet. So far, it has remained expensive and within the domain of

English (and some foreign) language computing. For Indian languages this development is

limited by 1) availability of Text-to-Speech systems in the language and 2) support for read-

ing glyph based font encoded text. Because there is no consistency within font definitions,

number of glyphs per font and glyph code mapping for such glyphs for Indian languages. So

there are many fonts per language and huge amount of electronic data is available in those

fonts. So most of the existing Indian Language screen readers do not support many fonts,

consequently not many languages.

Most of the Indian language electronic data is either Unicode encoded or glyph based

font encoded. Processing Unicode data is quite straight forward because it follows distin-

guished code ranges for each language and there is a one-to-one correspondence between

glyphs (shapes) and characters. This is not true in the case of glyph based font encoded data.

Hence it becomes necessary to identify the font encoding and convert the font-data into a

phonetic notation suitable for the TTS system.

This thesis proposes an approach for identifying the font-type (font encoding name) of

a font-data using TF-IDF (Term Frequency - Inverse Document Frequency) weights. Here

the term refers to a glyph of a font-type and the document refers to a collection of words or

sentences in a specific font-type. The TF-IDF weight is a statistical measure used to evaluate

how relevant an N-glyph (‘N’ sequential glyphs like uniglyph, biglyph, triglyph etc.,) to a

specific font-data in a collection of textual data. We have built models of various font-

data for uniglyph, biglyph and triglyph. When these font models were evaluated for font-

type identification, triglyph models performed best and biglyph models performed better

than uniglyph models. The results show the performance increases when longer context

(neighboring glyphs) taken for building font models, subject to reasonable coverage in the

training data.

This thesis also proposes a generic framework to build font converters for conversion

of font-data into a phonetic transliteration scheme in Indian languages. It consists of two

phases: (i) building the glyph-map table for each font-type and (ii) defining glyph assimi-

lation rules for each language. A font-type has a set of glyphs which may be a character

or part of a character (merely a shape) and they have an 8-bit code value in the range 0 to

255. Conventional approaches map glyphs to a closest phonetic notation while building the

glyph-map table. This technique fails to uniquely identify the duplicates of a glyph. As a

novelty, we handle this by taking the place/positional information of the glyph into account.

The position, denoted by here numbers, refers to the position of glyph with respect to a piv-

otal character. Glyph assimilation, which is the second phase of font conversion is a process

of merging two or more glyphs to produce a single valid character/Akshara. A set of glyph

assimilation rules are defined under each level for each Indian language. Promising results

were obtained by following this approach for 10 languages like Hindi, Marathi, Telugu,

Tamil, Kannada, Malayalam, Gujarati, Punjabi, Bengali and Oriya.

As a major contribution of this thesis, we have successfully developed a multi-lingual

screen reader (RAVI) for Indian languages and have incorporated the modules for font-type

identification and font-data conversion.

iv

TABLE OF CONTENTS

Thesis certificate i

Acknowledgments ii

Abstract iii

List of Tables x

List of Figures xi

Abbreviations xiii

1 INTRODUCTION 1

1.1 Screen Reader . 1

1.2 Issues in Building a Screen Reader . 4

1.3 Related Work on Screen Reader . 7

1.4 Need of Screen Reader for Indian Languages 10

1.5 Thesis Statement . 11

1.6 Contributions . 11

1.7 Organization of the Thesis . 12

2 A Review of Nature of Scripts in Indian Languages 14

2.1 Aksharas of Indian Language Scripts . 14

2.1.1 Convergence and Divergence . 15

2.1.1.1 Consonant Symbol . 16

2.1.1.2 Half forms of the consonant 16

2.1.1.3 Vowel symbols - independent vowels 17

2.1.1.4 Maatra - dependent vowels 17

2.1.1.5 Halant . 17

2.2 Digital Storage Format . 18

2.2.1 ASCII Format . 18

2.2.2 Unicode Format . 18

2.2.3 ISCII Format . 19

2.2.4 Fonts and Glyphs . 20

2.3 A Phonetic Transliteration Scheme . 21

2.4 Need for Handling Font-Data . 24

2.5 Summary . 26

3 IDENTIFICATION OF FONT ENCODING 27

3.1 Problem Statement . 27

3.2 Related Work on Font-Type Identification 28

3.2.1 Related Work in Language Identification 28

3.2.2 Related Work in Font Recognition in OCR 30

3.3 TF-IDF Approach . 31

3.3.1 TF-IDF Weights . 32

3.3.2 Usage of TF-IDF Weights for Modeling 33

3.4 Modeling and Identification . 34

3.5 Results of Font Identification . 35

3.6 Summary . 36

4 CONVERSION OF FONT-DATA 39

4.1 Problem Statement . 40

4.2 Related Work on Font-Data Conversion 40

4.3 Exploiting Shape and Place Information 46

4.4 Building Glyph-Map Table . 48

4.5 Glyph Assimilation . 49

4.6 Rules for Glyph Assimilation . 51

4.7 Performance Analysis . 55

4.8 Rapid Fashion of Building Font Converters 56

vi

4.9 Summary . 56

5 RAVI: A MULTI-LINGUAL SCREEN READER 60

5.1 Proposed RAVI Architecture . 61

5.1.1 Components of RAVI Screen Reader 63

5.1.2 Implementation . 65

5.1.3 Merits of Proposed Architecture 65

5.2 Aspects of User Interface . 67

5.3 Functionalities Covered . 68

5.4 Testing and Evaluation . 68

5.5 Limitations . 71

5.6 Summary . 72

6 CONCLUSION AND FUTURE WORK 73

6.1 Future Work . 74

Appendix A 75

Appendix B 76

Appendix C 83

C.1 Glyph Assimilation Rules for Hindi . 83

C.1.1 Modifier Modification . 83

C.1.2 Language Preprocessing . 83

C.1.3 Maatra Assimilation . 83

C.1.4 Vowel Assimilation . 84

C.1.5 Consonant Cluster . 84

C.2 Glyph Assimilation Rules for Tamil . 84

C.2.1 Modifier Modification . 84

C.2.2 Language Preprocessing . 85

C.2.3 Maatra Assimilation . 85

C.2.4 Consonant Cluster . 85

vii

C.3 Glyph Assimilation Rules for Gujarati . 85

C.3.1 Modifier Modification . 85

C.3.2 Language Preprocessing . 85

C.3.3 Maatra Assimilation . 86

C.3.4 Vowel Assimilation . 86

C.3.5 Consonant Assimilation . 86

C.3.6 Consonant Cluster . 87

C.4 Glyph Assimilation Rules for Malayalam 87

C.4.1 Modifier Modification . 87

C.4.2 Language Preprocessing . 87

C.4.3 Maatra Assimilation . 87

C.4.4 Vowel Assimilation . 87

C.4.5 Consonant Cluster . 88

C.5 Glyph Assimilation Rules for Telugu . 88

C.5.1 Modifier Modification . 88

C.5.2 Language Preprocessing . 88

C.5.3 Consonant Assimilation . 88

C.5.4 Maatra Assimilation . 89

C.5.5 Consonant-Vowel Assimilation . 89

C.5.6 Consonant Cluster . 91

C.6 Glyph Assimilation Rules for Kannada . 91

C.6.1 Modifier Modification . 91

C.6.2 Language Preprocessing . 91

C.6.3 Consonant Assimilation . 91

C.6.4 Maatra Assimilation . 92

C.6.5 Consonant-Vowel Assimilation . 92

C.6.6 Consonant Cluster . 94

C.7 Glyph Assimilation Rules for Punjabi . 94

C.7.1 Modifier Modification . 94

viii

C.7.2 Language Preprocessing . 94

C.7.3 Vowel Assimilation . 95

C.7.4 Consonant Cluster . 95

C.8 Glyph Assimilation Rules for Bengali . 95

C.8.1 Modifier Modification . 95

C.8.2 Language Preprocessing . 95

C.8.3 Maatra Assimilation . 96

C.8.4 Vowel Assimilation . 96

C.8.5 Consonant Assimilation . 96

C.8.6 Consonant-Vowel Assimilation . 97

C.8.7 Consonant Cluster . 97

C.9 Glyph Assimilation Rules for Oriya . 97

C.9.1 Modifier Modification . 97

C.9.2 Language Preprocessing . 97

C.9.3 Maatra Assimilation . 98

C.9.4 Vowel Assimilation . 98

C.9.5 Consonant Assimilation . 98

C.9.6 Consonant Cluster . 98

References 99

ix

LIST OF TABLES

2.1 Unicode ranges for Indian languages. 19

3.1 Font-type identification: Uniglyph (current glyph) based font models per-

formance. 37

3.2 Font-type identification: Biglyph (current and next glyph) based font models

performance. 37

3.3 Font-type identification: Triglyph (previous, current and next glyph) based

font models performance. 38

4.1 Font-data conversion: Performance results for font converters. 57

5.1 Functionalities supported by RAVI. 69

LIST OF FIGURES

2.1 Full consonant symbols in Hindi and Telugu. 16

2.2 Half consonant symbols in Hindi and Telugu. 16

2.3 Vowel symbols in Hindi and Telugu. 17

2.4 Maatra symbols in Hindi and Telugu. 17

2.5 IT3 vowel phones for Indian languages. 22

2.6 IT3 consonant phones for Indian languages (a portion). 23

2.7 Illustration of glyph code mapping for English fonts. 25

2.8 Illustration of glyph code mapping for Indian (Hindi) fonts. 25

4.1 Shape and position change for /r/ in Hindi. 46

4.2 Shape and position change for /r/ in Telugu. 46

4.3 Assigning position numbers for Hindi glyphs. 47

4.4 Assigning position numbers for Telugu glyphs. 48

4.5 Examples for assigning position numbers for glyphs. 49

4.6 Glyph Assimilation Process for Hindi. 50

4.7 Glyph Assimilation Process for Telugu. 51

5.1 RAVI System Architecture. 61

A.1 IT3 consonant phones for Indian languages - part 2. 75

B.2 Portion of Eenadu Font Chart - Telugu. 76

B.3 Portion of Jagran Font Chart - Hindi. 77

B.4 Portion of Hindi Glyph Map Table. 78

B.5 Portion of Marathi Glyph Map Table. 78

B.6 Portion of Gujarati Glyph Map Table. 79

B.7 Portion of Bengali Glyph Map Table. 79

B.8 Portion of Oriya Glyph Map Table. 80

B.9 Portion of Punjabi Glyph Map Table. 80

B.10 Portion of Tamil Glyph Map Table. 81

B.11 Portion of Telugu Glyph Map Table. 81

B.12 Portion of Kannada Glyph Map Table. 82

B.13 Portion of Malayalam Glyph Map Table. 82

xii

ABBREVIATIONS

MSAA - Microsoft Active Accessibility

COM - Component Object Model

DLL - Dynamic Link Library

INI - Initialization files

OCR - Optical Character Recognition

CART - Classification And Regression Trees

TF - Term Frequency

IDF - Inverse Document Frequency

JAWS - Job Access With Speech

HAL - Home Automated Living

SAFA - Screen Access For All

RAVI - Reading Aid for Visually Impaired

NAB - National Association for Blind

IIIT - International Institute of Information Technology

IIT - Indian Institute of Technology

IISc - Indian Institute of Science

ATA - Assistive Technology Act

ATM - Automatic Teller Machine

API - Application Program Interface

ISO - International Organization for Standards

TTS - Text-to-Speech System

ASR - Automatic Speech Recognition

ASCII - American Standard Code for Information Interchange

ACII - Alphabetic Code for Information Interchange

ISCII - Indian Standard Code for Information Interchange

UCS - Universal Character Set

UTF - Unicode Transformation Formats

ITRANS - Indian languages TRANSliteration

IT3 - Indian Transliteration 3

OSM - Off Screen Models

SAPI - Speech Application Program Interface

GUI - Graphical User Interface

MBROLA - Multi-Band Re-synthesis OverLap Add

NLP - Natural Language Processing

0

CHAPTER 1

INTRODUCTION

1.1 SCREEN READER

A screen reader is a software designed for visually impaired people, integrated with speech

synthesizer to speak aloud everything on computer screen, such as icons, menus, text, punc-

tuations and control buttons. Screen readers (or speech enabled systems) are designed for

blind people to use/access standard computer softwares, such as Word Processors, Spread-

sheets, Email and the Internet. Typical computers like desktop or laptop can be adapted to

talk by adding a screen reader to it. The screen reader allows navigation around the com-

puter screen and presents what is happening on the screen to the user in a meaningful way

using speech output.

Today, in the world of Human Computer Interaction (HCI) the visually challenged com-

munity in India and other developing countries are deprived of technologies that could help

them to interact with the sighted world especially with gadgets which are not user friendly

for blind. Screen readers are a form of assistive technology for the blind people. It is a

technology that promise the visually challenged natural access to computers, gadgets and

the Internet.

Assistive Technology: A general term used to describe technology that assists people

with a disability such as screen reading software or alternate keyboards is “assistive tech-

nology”. The Assistive Technology Act (ATA) of 1998 defines assistive technology as “any

item, piece of equipment, or product system, whether acquired commercially, modified, or

customized, that is used to increase, maintain, or improve the functional capabilities of indi-

viduals with disabilities.” Some of this assistive technology includes screen readers, talking

web browsers, printed text readers, Braille translators (Text-to-Braille and Braille-to-Text),

1

screen magnifiers, special computer keyboards and technology that allow control of a com-

puter through head movements or eye movements.

Blindness and Low Vision: Blindness poses a threat to the way of life of people not

only in India but also world wide. There are an estimated 180 million visually-impaired

people [1] in the world. Approximately 10 to 20 million persons [2] in India are unable to

read or write due to the vision problems and 95 percent of them do not know English. While

there are many amongst us who share and concern the challenges faced by visually impaired,

studies/research reveals that many visually challenged persons naturally possess high degree

of senses and IQs than the normal persons. Most people who are visually impaired keenly

uses sensory touch and hearing, such senses are primary asset in operating fine controls,

working in voice based processes in BPO operations, or even doing complex operations

which require monitoring and resultant operations of audio signals.

While a blind or visually challenged person may or may not be able to read or write

effectively, their sharp sense of hearing becoming primary mode of interface. Today’s tech-

nology can exploit this very mode. Speech technology (that can convert a written/typed text

into speech) offers solutions which can enable development of interfaces on the computer

transforming documents, information and content accessible to the blind. One such solution

is called screen reading software which can be ported on a range of devices via. personal

computers, information kiosks, ATMs, handhelds and mobile phone, etc.,

Rendering on-line instruction allows blind and low vision students at a distinct disad-

vantage when the majority of the information is in visual format. Although blind and low

vision students can learn to use keyboards effectively, accessing output is a challenge. With

the help of Braille output devices, optical character recognition software, and screen readers,

blind students can also equally access to electronic information on par to their counterpart.

Screen readers are categorized into three major types: Command-line text screen reader,

GUI based screen reader and web-based screen reader, accordingly

• CLI (text) Screen Readers: Early operating systems such as MS-DOS which em-

ployed a Command Line Interface (CLI), and the screen display consisted of char-

acters mapping directly to a screen buffer in memory and to a cursor position. Input

2

was keyed from keyboard. All this information could be obtained from the system

by hooking the flow of information around the system and reading the screen buffer

and communicating the results to the user.

• GUI based Screen Readers: Arrival of Graphical User Interfaces (GUIs), added more

complication. A GUI is composition of characters and graphics drawn on the screen

at particular positions, and as such there is no pure textual representation of the graph-

ical contents on the display. Screen readers were only choice but driven to employ

new low-level techniques, gathering messages from the operating system and using

these to build up an “off-screen model”, model is a representation of the display in

which the required text content is stored. Screen readers can also communicate in-

formation from menus, controls, and other visual constructs to permit blind users to

interact with these constructs. However, maintaining an off-screen model is a sig-

nificant technical challenge: hooking the low-level messages and maintaining an ac-

curate model are equally difficult tasks. Operating system and application designers

have attempted to address these problems by providing ways which screen readers

can access the display contents without having to maintain an off-screen model. This

involves the provision of alternative and accessible representations of what is being

displayed on the screen accessed through an API. Existing APIs include: (1) Apple

Accessibility API, (2) IAccessible2, (3) Microsoft Active Accessibility (MSAA), (4)

Java Access Bridge and etc.,. Screen readers can query the operating system or ap-

plication which is currently being displayed and receive updates when the change in

the display.

• Web based Screen Readers: A relatively new approach in the field is web-based ap-

plications like Talklets that use JavaScript for adding Text-to-Speech functionality to

web content. The primary audience for such applications are those who have diffi-

culty in reading because of learning disabilities or language. Comparatively func-

tionality for this type remains limited than desktop applications, the major benefit

is to increase the accessibility of websites/URLs when accessed on public machines

3

where users do not have permission to install custom software, web-based plug-ins

give people greater ‘freedom to roam’.

1.2 ISSUES IN BUILDING A SCREEN READER

Building a screen reader is a complicated task, considering the technology and usage. There

are many hurdles in development of multilingual screen reader, some of them are com-

mon for all the screen readers. Let us review and highlight the problems with the existing

screen readers. The common issues are speech synthesizer, implementation strategy, user

interfaces, supported documents of different format, multi-lingual issues, supporting OS

platforms and the cost component. We discuss briefly about each of these points below.

• Speech Synthesizer: A speech synthesizer (aka TTS System) is the major component

of any screen reader system. A speech synthesizer accepts plain or marked up text as

input and generates speech output. In India, there are different organizations involved

in development of speech synthesizers for Indian languages. Some of them are pri-

vate companies and others are institutes. Every one of these has unique interface to

the speech synthesizer. The problems are: (i) they provide support for one or few

Indian languages, (ii) the quality of the speech output is still not natural and (iii) no

effort to integrate with any application and provide a unified model for a common

platform. Viable action in windows operating system involves creating a layer on

top of all the synthesizers by following Speech Application Programming Interface

(SAPI) standard proposed by Microsoft.

• Screen Reading Application: A screen reader monitors and extracts information on

computer screen through keyboard command/mouse click and sends that informa-

tion to the speech synthesizer in text form. Handling the keyboard events is relatively

easy; one can just capture keystrokes and convert with the help of in built keyboard

layouts. Monitoring the screen is a complex job particularly in windows based sys-

tem. By windows based system we mean any system with windowing capabilities.

Problems in windows based systems arise due to the fact that each window is just

4

an array of pixels on the screen, hence making it mandatory to get that information

from the program/application that has written that text on the screen. It is possible

only when the program has a well defined interface for obtaining that information or

graphics APIs are monitored for text output and then a record is maintained.

In Windows operating system almost all the screen components are well defined and

they allow one to get such information in multiple ways. Bare-bone approach is to

get such information through Win32 API and preferred approach is to hook into Mi-

crosoft Active Accessibility (MSAA) [3]. MSAA provides notification to the inter-

ested application and provides standard mechanism to obtain this information. How-

ever MSAA happens to be the heart of any screen reading application, it still can not

provide information for all the components and all the desired forms of information.

So one has to rely on Component Object Model (COM), Win32 API, and at times

on display drivers. Then there is the issue of handling each screen component differ-

ently than others. For example the “Language Bar” in Windows XP doesn’t expose

any interface to retrieve the text.

• Multi-Lingual Issues: Discussing to issues specific to multilingual screen readers, we

can mainly focus our attention to language representation code or scripts. The pre-

ferred coding is Unicode [4] which supports codes for almost any language currently

available. So if the world followed Unicode only, it would be easier for programmers

to write programs which could understand any language text and handle it appropri-

ately. But unfortunately there are different coding standards used by various vendors

and applications. So our approach has to address both forms of text. Our software

will internally use IT3 [5] phonetic notation but whenever required it can be converted

to Unicode or to other notations (when a speech synthesizer does not understand IT3

notations). We also convert from other font-encodings to IT3 (when a particular ap-

plication does not provide IT3 text). Our main focus will be on IT3 and Unicode

due to the fact that the current Windows and the subsequent versions will use Uni-

code for multi lingual applications. When required a converter (font converter, ISCII

5

converter etc.) it can be inserted to accommodate non IT3/Unicode applications.

• User Interfaces: User interfaces or navigation controls differ from one screen reader

to screen reader. A standard set of user interfaces has to be identified and to be de-

fined. Some time the user expects, they should be customizable like JAWS which pro-

vides some scripting mechanism to modify the user interfaces. Teaching and Training

regarding the new interfaces or navigation controls become mandatory.

• Document Formats: Screen reader has to read content from the documents in different

formats. They may be simple multi-line edit control (Notepad), word processor (MS

Word), spreadsheet (Excel), presentation tool (PowerPoint), web/marked up pages

(HTML/ASP/XML) and encrypted documents (PDF/PostScript). Extracting the re-

quired text from those documents is a complicated task. For some documents there

are built-in libraries and for others one needs to write his own parser to extract the

text.

• Supporting Platforms (OS): A screen reader is developed aiming at one platform

(Windows/Linux). Even for a single OS, it may work very well with one version and

may not with the other versions. So the user has to maintain one screen reader for

each platform if he works with multiple platforms. A platform independent architec-

ture has to be designed which is relatively challenging task.

• Cost: This is the most exciting question from the user end about a screen reader

(especially from Indian community perspective) “Whether it is available for free or

cost?” Well, if it costs then how much? A well developed screen readers like JAWS,

Window-Eyes etc are costly (in the range $500 dollars and above) which can not be

affordable by a common men in Indian. Users are expecting the screen reader at

affordable or free of cost with quality that of existing solutions.

6

1.3 RELATED WORK ON SCREEN READER

Advances in synthetic speech, has allowed the development of screen reader software, which

can capture text from the computer and transform it to the audio form thereby helping vi-

sually impaired people get the information via. the speech modality. Increasingly, screen

readers are being bundled with operating system distributions. Recent versions of Microsoft

Windows come with the rather basic Narrator, while Apple Mac OS X includes VoiceOver,

a more feature-rich screen reader. The console-based Oralux Linux distribution ships it with

three screen-reading environments: Emacspeak [6], Yasr and Speakup. The open source

GNOME desktop environment long included Gnopernicus also now includes Orca. There

are also many open source screen readers, such as the Linux screen reader for GNOME and

NonVisual Desktop Access for Windows. The most widely used screen readers are sepa-

rate commercial products: JAWS from Freedom Scientific, Window-Eyes from GW Micro,

and HAL from Dolphin Computer Access being prominent examples in English. With re-

cent initiatives from research organizations and major software vendors, the development of

screen reading software has begun in Indian languages. But support to languages and types

of content reading is limited due to technology constraint.

Here we review screen readers which are mostly in use. We categorize them as (1)

screen readers available for English and other foreign languages and (2) screen reader efforts

in Indian languages. The first four screen readers are for English and the later three are the

efforts in Indian languages. While English screen readers are widely used, attempts in Indian

languages have been met with limited success and popularity.

JAWS [7] : The most popular screen reader used worldwide, JAWS for Windows works

on any PC to provide access to latest software applications and the Internet. With its inter-

nal software for speech synthesizer and the computer’s sound card, the information from the

screen is read aloud, providing access to a wide variety of information, education and job re-

lated applications. JAWS also outputs to refreshable Braille displays, providing unmatched

Braille support of any screen reader on the market. JAWS Professional costs $1095 and

JAWS Standard costs $895. It has been released with Unicode (international digital coding

7

standard for representation of languages) enabling users to avail support in Indian languages.

It follows OSM (Off Screen Model), a standard developed to read Indian languages (Hindi)

based on what is displayed, which sometimes sounds weird from the actual pronunciation

of a letter or a word.

Window-Eyes [8] : It is comparable to the most stable screen reader available in the

market today. Window-Eyes gives total control over what you hear and how you hear it.

Provides an additional feature of enhanced Braille which understands user’s feelings. On

top of all that, the power and stability of Window-Eyes means that most applications work

right out of the box with no need for endless tinkering and juggling configuration in order

to get them to function properly. Applications that utilize standard Microsoft controls will

be spoken automatically with little or no configuration necessary. Other applications may

require simple modifications to Window-Eyes whose options are easily accessible via a well

cataloged menu organized in user friendly manner such as speech control panel. Window-

Eyes costs $895.00 and Window-Eyes SMA costs $299.00.

HAL [9] : It is a screen reader software that works by reading the screen interactively

and communicating through a speech synthesizer or by a refreshable Braille display. One

of only a few with rich featured screen readers in the world, HAL gives independence - not

only on a desktop PC, but can be carried on a USB stick to use at any campus, Internet

cafe, library or work place where PC is available across the globe. The benefit of this is that

users can now carry their screen access, with their favorite settings with them at all times.

In addition, HAL users can connect remotely on terminal servers or Citrix mainframes.

Kurzweil [10] : Kurzweil (1000 and 3000) reads printed materials such as books, mag-

azines, single sheets and newspapers. Printed materials are first scanned into the computer.

Then Kurzweil 1000’s optical character recognition capabilities recognize the and convert it

into synthetic speech. This gives people who are blind audible access to the printed pages.

SAFA [11] : Screen Access For All (SAFA) is an open source initiative to develop a

screen reading software for the vision impaired users to read and write in their language

of choice. The goal is to have multi-lingual software on multiple platforms. Based on

Vachak [12], a Text-to-Speech (TTS) engine developed by Prologix, Lucknow (India) and

8

National Association for the Blind (NAB-New Delhi) has developed this screen reader. It

currently supports English and Hindi only and the work is in progress to provide support for

all official Indian languages.

IITM Software for the Visually Handicapped [13] : Open source community at IIT

Madras has realized the importance of the need to incorporate some aspects of Assistive

Technologies in the Multilingual software, so as to benefit the disabled, at least in respect

of giving them opportunities to get educated in the first place by means of their own mother

tongue. The multilingual software, enhanced with speech, has gained wide acceptance in

the country on account of its simplicity and ease of use. Their development of systems for

the disabled is still at a stage of infancy when compared to solutions available in the west for

the English speaking users. MBROLA is a freely available speech engine which has been

used in this application and as of now, there is a slight European accent to the speech output.

Still packaging the software in any form that would allow visually handicapped persons to

download and install the same all by them is part of the future work. What the team has

done is to provide a suitable interface program to substitute the computer’s sound interface

for the external synthesizer so that the application could work on a Windows machine or a

Linux system. The JAWS reader interface uses MBROLA as the speech engine. MBROLA

is the dependency for the application has to work.

VoiceDot [14] : Analytica’s VoiceDot aims at fulfilling the need for a cost effective

screen reading solution, for visually impaired people in India and around the world. Ana-

lytica envisions VoiceDot as a means to aid the visually impaired in harnessing knowledge

from the wired world. VoiceDot will enable the visually impaired user to read and write

electronic documents, and communicate with the world through the Internet. VoiceDot is

built around a plug-in architecture, this supports third party plug-ins for supporting custom

applications. For instance, applications like Lotus Notes, Acrobat reader or Tally can be

made accessible using the plug-ins. VoiceDot supports Microsoft’s SAPI 5.1 (Speech Ap-

plication Programming Interface) and MSAA (Microsoft’s Active Accessibility). It uses

Microsoft’s TTS synthesizer to render text as speech output.

9

1.4 NEED OF SCREEN READER FOR INDIAN LANGUAGES

India is a multi-language, multi-script country with 23 official languages and 11 written

script forms. About a billion people in India use these languages as their first language. En-

glish, the most common technical language, is the lingua franca of commerce, government,

and the court system, but is not widely understood beyond the middle class and those who

can afford formal, foreign-language education. About 5% of the population (usually the

educated class) can understand English as their second language. Hindi is spoken by about

30% of the population, but it is concentrated in urban areas and north-central India, and is

still not only foreign but often unpopular in many other regions. Screen reading technology

provides many functionalities using speech technology to help the visually impaired people,

but it has hardly reached to the needy population in India other than small fortunate English

speaking community only as potential customer. Hence there is a need to have screen reader

that can aid other visually impaired people who speak Indian languages.

Some of the limitations observed in existing screen readers include:

• Professional English screen readers fail to provide good support for Indian languages.

The English voices have US/UK accent and thus native speakers found it hard to

comprehend.

• Screen readers in Indian languages support one or two major spoken languages, and

thus lack a generic framework of supporting multiple Indian languages. At the same

time, these screen readers often support only Unicode formats and thus ignore best

local websites such as Eenadu, Vaartha, Jagran which use glyph based fonts.

• Screen readers in Indian languages have also limitations in terms of support for com-

puter applications or programs. Typically the support is provided at the screen level

and to the browsers, and thus major applications such as Email clients, various inter-

net browsers and PDF/Postscript readers are ignored.

• Some screen readers do not make use of recent advances in text-to-speech technolo-

gies and thus provide intelligible but not as natural as human speech.

10

• Some are freely available and others are costly.

Hence we need good professional screen readers for Indian languages providing support

for many or all of the Indian languages, different computer applications and intelligible,

human-sounding synthetic speech. Such screen readers should be available freely or in some

reasonable cost so that the common Indian user can reap the benefit of such technologies.

1.5 THESIS STATEMENT

Developing a full-fledged screen reader for Indian languages is a challenging task consid-

ering the computer-science, language and speech processing aspects involved in the imple-

mentation. The problem of developing a screen reading software for Indian languages could

be stated as: Given a text in any Indian language encoded in any format the objective would

be to process them into the required format and speak it out in the respective language. We

wish to develop a screen reader for Indian languages and provide it for freely which would

help Indian community, especially blind people to a great extent.

1.6 CONTRIBUTIONS

The scope of the research includes 1) understanding the scripts of Indian languages and their

storage formats, 2) identifying the font-type (font encoding name) of the font-data, 3) de-

signing a generic framework for building font converters for scripts in Indian languages and

4) developing a screen reading software for Indian languages.

This research documents three main contributions. They are:

(a) An approach for identifying the font-type (font encoding name): TF-IDF weight based

vector space models for fonts, constituting uniglyph, biglyph and triglyph to classify

or identify the font encoding name of the text (Chapter 3).

(b) A generic framework for building font converters in Indian languages: Helps build-

ing rapidly a font converter by providing only the glyph-map table of a font. This

11

glyph-map table provides mapping information between glyph and its closest pho-

netic notation with position information. A set of glyph assimilation rules are already

identified and defined per language (Chapter 4).

(c) A screen reader for Indian languages: Reads content in different Indian languages and

helps blind people to use the computer and Internet (Chapter 5).

1.7 ORGANIZATION OF THE THESIS

This thesis is organized into six chapters.

• First chapter talks about general introduction to screen readers and common issues

involved in building screen readers.

• Second chapter discusses the nature of Indian language scripts, their digital storage

formats and need for handling the font-data especially. It describes a transliteration

scheme used for our research.

• Third chapter presents font-type (font encoding name) 1 identification in Indian lan-

guages. In detail it covers the TF-IDF weight, modeling the font-data using those

weights and classifying the font-type. Lastly it analyzes the performance for differ-

ent cases.

• Fourth chapter presents a generic framework for building font converters for font-

data conversion in Indian languages. It describes exploiting glyph shape and place

information and building glyph-map table for fonts. It explains glyph assimilation

process and rules for glyph assimilation in each language. In the end it analyzes the

conversion performance for different Indian languages.

• Fifth chapter presents a multi-lingual screen reader for Indian languages and issues

in development. It covers in detail the proposed architecture, user interfaces, func-

tionalities, evaluation and limitations.

1This thesis uses the terms font, font-encoding and font-type interchangeably

12

• Sixth chapter summarizes the thesis work and concludes then provides the road map

for the future work.

13

CHAPTER 2

A Review of Nature of Scripts in Indian Languages

This chapter presents a brief introduction to nature of scripts of Indian languages. Such

introduction is necessary as in Indian languages the basic alphabets take multiple shapes

and positioned in different places in the script (top, down, left and right). Most importantly

we have utilized these position and shape characteristics of Indian language scripts in our

approaches for identification of font-type and conversion of font-data. This chapter also

describes various digital storage formats used for the Indian language electronic content and

presents the IT3 transliteration scheme employed in this thesis.

2.1 AKSHARAS OF INDIAN LANGUAGE SCRIPTS

Indian language scripts originated from the ancient ‘Brahmi’ script. As Indian languages

are phonetic based, the minimal sound units called phonemes, are identified as root case.

The phonemes are divided into two groups: vowels and consonants and into further classi-

fications. Systematic combinations of elements of these groups resulted into the basic units

of the writing system are referred to as “Aksharas” 1. The properties of Aksharas are as

follows:

1. An Akshara is an orthographic representation of a speech sound in an Indian lan-

guage.

2. Aksharas are syllabic in nature.

3. The typical forms of Akshara are V, CV, CCV and CCCV, thus have a generalized

form of C*V where ‘C’ stands for consonant and ‘V’ stands for vowel.

1Akshara may mean ”syllable” of C*V form (in Sanskrit grammar)

14

4. An Akshara always ends with a vowel or nasalized vowel.

5. White space is used as word boundary thus separating Aksharas present in two suc-

cessive words.

6. The scripts are written from left to right.

7. Roman digits (0...9) are used as numerals. Some of the languages have their own

numeric symbols which are rarely used.

8. English Punctuations marks such as comma, full stops etc.,. are mostly used in writ-

ing. Languages such as Hindi have a set of their own punctuation marks which are

often used. Some languages like Tamil have special symbols for date, month, year,

dept and credit etc.,.

2.1.1 Convergence and Divergence

India is a multi-lingual nation with 23 recognized official languages. These languages are:

Assamese, Bengali, Gujarati, Kannada, Kashmiri, Konkani, Malayalam, Manipuri, Marathi,

Nepali, Oriya, Punjabi, Sanskrit, Sindhi, Tamil, Telugu and Urdu. Except Urdu and English,

the remaining official languages have a common phonetic base, i.e., they share a common

set of speech sounds. While these languages share a common phonetic base, languages such

as Hindi, Marathi and Nepali also share a common script known as Devanagari. Languages

such as Telugu, Kannada and Tamil have their own scripts. The property that makes these

languages distinct is the phonotactics in each of these languages rather than the scripts and

speech sounds. Phonotactics is the permissible combinations of phones that can co-occur

in a language. The shape of an Akshara depends on its composition of consonants and

the vowel, and sequence of the consonants. In defining the shape of an Akshara, one of

the consonant symbols acts as pivotal symbol. Depending on the context, an Akshara can

have a complex shape with other consonant and vowel symbols being placed on top, below,

before, after or sometimes surrounding the pivotal symbol. Ideally, the basic rendering unit

for Indian language scripts should be Aksharas themselves. However Telugu, for instance

has around 15 vowels and 36 consonants. To render Aksharas as a whole unit, it requires 540

15

CV units, 19440 CCV units and 699840 CCCV units [5]. It is reasonable to assume that not

all combinations of consonant clusters are allowed, but even with that assumption, 10000

Aksharas are needed as rendering units. Due to this large number of units, an Akshara is

rendered by concatenating the constituent consonant and vowel symbols. The following are

the symbols used to render Aksharas by a Unicode rendering engine.

2.1.1.1 Consonant Symbol

A consonant symbol in an Indian language represents a single consonant sound with the

inherent vowel (short /a/). Akshara is syllabic so each consonant symbol represents a con-

sonant and the inherent vowel. Fig. 2.1 shows the consonant symbols in Hindi and Telugu.

Fig. 2.1: Full consonant symbols in Hindi and Telugu.

2.1.1.2 Half forms of the consonant

Aksharas of the type CCV or CCCV, have more than one consonant. In these cases, one

of the consonant(s) has full-form shape where others in half-form shape. These half-forms

do not have an inherent vowel. An half-form consonant occupies a place on top, below,

before or after the full-form consonant in the script. Fig. 2.2 shows the the half form of the

consonant symbols in Hindi and Telugu.

Fig. 2.2: Half consonant symbols in Hindi and Telugu.

16

2.1.1.3 Vowel symbols - independent vowels

A vowel symbol represents a vowel sound and is used to render a syllable of type V which

has no consonants before or after it. These vowel symbols are also referred to as independent

vowels. Fig. 2.3 shows the the vowel symbols in Hindi and Telugu.

Fig. 2.3: Vowel symbols in Hindi and Telugu.

2.1.1.4 Maatra - dependent vowels

Consonants can associate with vowels other than inherent vowel. If a non-inherent vowel

is needed, then a diacritical mark corresponding to the non-inherent vowel is added to the

consonant symbol. These vowels with their attached diacritical marks are referred to as

Maatras or dependent vowels. A Maatra can occupy a place on top, below, before, after,

or sometimes surrounding the consonant symbol and thus is often referred to as dependent

vowel. Fig. 2.4 shows the the Maatra symbols in Hindi and Telugu.

Fig. 2.4: Maatra symbols in Hindi and Telugu.

2.1.1.5 Halant

Sometimes it is necessary to write consonants without inherent vowels. To remove the

inherent vowel from a consonant, a symbol called Halant is used. The symbol may be an

oblique stroke under the consonant symbol, or can change the shape of the consonant if it is

on top of the consonant.

17

2.2 DIGITAL STORAGE FORMAT

Another aspect of diversion in electronic content in Indian languages is their digital storage

format. Formats like ASCII (American Standard Code for Information Interchange), ISCII

(Indian Standard code for Information Interchange) and Unicode are often used to store the

digital text data in Indian languages. The text is rendered using fonts of these formats. This

section describes briefly about each storage format and also about fonts and glyphs.

2.2.1 ASCII Format

ASCII is a character encoding based on the English alphabets. Digital computers and oper-

ating systems in the early 90s supported only ASCII based encoding and hence many elec-

tronic news papers in Indian languages used glyph based fonts to store and render scripts

of Indian languages. A font encoding stored in ASCII format specifies a correspondence

between digital bit patterns and the symbols/glyphs of a written language. ASCII is strictly

an eight bit code and ranges from 0 to 255.

2.2.2 Unicode Format

To allow computers to represent any character in any language, the international standard

ISO 10646 defines the Universal Character Set (UCS) [4]. UCS contains the characters to

practically represent all known languages in the world. ISO 10646 originally defined a 32-

bit character set. Each character is assigned a 32 bit code. However, these codes vary only

in the least-significant 16 bits. Table 2.1 shows the Unicode ranges for Indian languages.

UTF: A Universal Transformation Format (UTF) [15] is an algorithmic mapping from

every Unicode code point (except surrogate code points) to a unique byte sequence. Actual

implementations in computer systems represent integers in specific code units of particular

size (8 bit, 16 bit, or 32 bit). Encoding forms specify how each integer (code point) for

a Unicode character is to be expressed as a sequence of one or more code units. There

are many Unicode Transformation Formats for encoding Unicode like UTF-8, UTF-16 and

18

Table 2.1: Unicode ranges for Indian languages.

Indian Language Unicode Range (Hexadecimal) Unicode Range (Decimal)

Devanagari 0900 - 097F 2304 - 2431

Bengali 0980 - 09FF 2432 - 2559

Oriya 0B00 - 0B7F 2816 - 2943

Gurmukhi (Punjabi) 0A00 - 0A7F 2560 - 2687

Gujarati 0A80 - 0AFF 2688 - 2815

Tamil 0B80 - 0BFF 2944 - 3071

Telugu 0C00 - 0C7F 3072 - 3199

Kannada 0C80 - 0CFF 3200 - 3327

Malayalam 0D00 - 0D7F 3328 - 3455

Urdu 0900 - 097F 1536 - 1791

UTF-32. Both UTF-8 and UTF-16 are substantially more compact than UTF-32, when

averaging over the world’s text in computers. With the advent of Unicode, UTF-8 and their

support in operating systems, most of the current electronic documents are being published

in Unicode specifically in UTF-8 formats. Some of the news websites which produce Indian

language content in Unicode format are: BBC news, Yahoo, MSN and Google.

2.2.3 ISCII Format

In India since 1970s, different committees of the Department of Official Languages and

the Department of Electronics (DOE) have been developing different character encodings

schemes, which would cater to all the Indian scripts. In 1983, the DOE announced the 7-bit

ISCII-83 code , which complied with the ISO 8-bit recommendations [16]. ISCII (Indian

Script Code for Information Interchange) is a fixed-length 8-bit encoding. The lower 128(0-

127) code points are plain ASCII and the upper 95(160-255) code points are ISCII-specific,

which is used for all Indian Script based on Brahmi script. This makes it possible to use

an Indian script along with Latin script in an 8-bit environment. This facilitates 8-bit bi-

lingual representation with Indic Script selection code. The ISCII code contains the basic

19

alphabet required by the Indian Scripts. All composite characters are formed by combining

these basic characters. Unicode is based on ISCII-1988 and incorporates minor revisions of

ISCII-1991, thus conversion between one to another is possible without loss of information.

2.2.4 Fonts and Glyphs

People interpret the meaning of a sentence by the shapes of the characters contained in it.

Reduced to the character level, people consider the information content of a character in-

separable from its printed image. Information technology, in contrast, makes a distinction

between the concepts of a character’s meaning (the information content) and its shape (the

presentation image). Information technology uses the term “character” (or “coded charac-

ter”) for the information content; and the term “glyph” for the presentation image. A con-

flict exists because people consider “characters” and “glyphs” equivalent. Moreover, this

conflict has led to misunderstanding and confusion. [17] explains a framework for relating

“characters” and “glyphs” to resolve the conflict because successful processing and printing

of character information on computers requires an understanding of the appropriate use of

“characters” and “glyphs”.

Historically, ISO/IEC JTC 1/SC 2 (SC 2) [17] has taken responsibility for the develop-

ment of coded character set standards such as ISO/IEC 10646 for the digital representation

of letters, ideographs, digits, symbols, etc.,. ISO/IEC JTC 1/SC 18 (SC 18) has developed

the standards for document processing, which presents the characters coded by SC 2. SC

18 standards include the font standard, ISO/IEC 9541, and the glyph registration standard,

ISO/IEC 10036. The Association for Font Information Interchange (AFII) maintains the

10036 glyph registry on behalf of ISO.

• Character: A member of a set of elements used for the organization, control, or

representation of data. (ISO/IEC 10646-1: 1993)

• Coded Character Set: A set of unambiguous rules that establishes a character set

and the relationship between the characters of the set and their coded representation.

(ISO/IEC 10646-1: 1993)

20

• Font: A collection of glyph images having the same basic design, e.g., Courier Bold

Oblique. (ISO/IEC 9541-1: 1991)

• Glyph: A recognizable abstract graphic symbol which is independent of any specific

design. (ISO/IEC 9541-1: 1991).

Indian language electronic contents is scripted digitally using fonts. A font is a set of

glyphs (images or shapes) representing the characters from a particular character set in a

particular typeface. Glyphs are generated by font developers by considering the frequency

it appears in the script and the place/position where they appear. In typography, a typeface

is a coordinated set of glyphs designed with stylistic unity. A typeface usually comprises

an alphabet of letters, numerals, and punctuation marks; it may also include ideograms and

symbols, or consist entirely of them. A glyph is a particular image that represents a character

or part of a character. Glyphs do not correspond one-to-one with characters. A font family

is typically a group of related fonts which vary only in weight, orientation, width, etc, but

not design. Common font formats are META-FONT, “PostScript” Type 1, TrueType and

OpenType. A font may be a discrete commodity with legal restrictions. For more details on

Indian fonts, please refer to Appendix B.2 to B.13.

2.3 A PHONETIC TRANSLITERATION SCHEME

Transliteration is the method of writing script of one language using the characters of another

language (usually English). To conveniently process the text by computer most of the time

the Indian text content is converted and stored in these formats. Even they occupy less space

on the computer. Hence they could be considered as one of the storage formats. There

exist many such transliteration schemes for Indian languages like Roman WX, ITRANS

etc., to key-in the Indian language scripts. Using these schemes, text of Indian languages

can be written using English characters. This is a tremendous feature, which lets you use

your standard English keyboard with no changes whatsoever, to create documents in Indian

languages. The focus of these schemes was mainly to represent the Indian language scripts

and paid less attention on the importance of user readability aspect. But the user is concerned

21

with how to key-in the Indian language scripts. IT3 [5] is a transliteration scheme developed

by IISc Bangalore, India and Carnegie Mellon University with the primary focus on user

readability of the transliteration scheme [18].

Following figures shows some IT3 phones 2 for Indian languages. Fig. 2.5 shows IT3

vowel phones for Indian languages whereas Fig. 2.6 shows part of consonant phones for

Indian languages. For remaining list of IT3 phones, please refer to Appendix A.1.

Fig. 2.5: IT3 vowel phones for Indian languages.

The following are the salient points of this transliteration scheme.

1. It is case-insensitive.

2. This scheme is phonetic in nature, the characters correspond to the actual sound that

is being spoken. Thus a single transliteration scheme is used for all the Indian lan-

guages, as they share the same set of sounds.

3. Each character (corresponding to a phone/sound) should be not more than three let-

ters length.

2IT3 scheme uses the symbols /’/ with /:/ and /-/ with / /̃ interchangeably.

22

Fig. 2.6: IT3 consonant phones for Indian languages (a portion).

4. There should be minimal use of punctuation marks in the composition of a character

However, attention should be paid to the following issue in using IT3 notations. IT3

being phonetic in nature, a character ‘k’ represents a consonant sound /k/ and there is no

notion of inherent vowel (short /a/) associated with the consonant sound. Thus to get the

syllable /ka/ one has to write a sequence of two characters ‘ka’. The issue is whether the

IT3 character ‘k’ should be mapped to the half-form of the consonant /k/ or to the consonant

symbol, i.e., the syllable /ka/ which is a CV unit. As IT3 is a sound based scheme, it covers

most of the sound units of any new language and any new sound unit can be added to the

existing IT3 codes to support a new language. Thus it is generalized and extendable also to

a new language.

23

2.4 NEED FOR HANDLING FONT-DATA

There is a chaos as far as the text in Indian languages in electronic form is concerned. Nei-

ther can one exchange the notes in Indian languages as conveniently as in English language,

nor can one perform search on texts in Indian languages available over the web. This is

so because the texts are being stored in ASCII (as apposed to Unicode) based font depen-

dent glyph codes. A large collection of text corpus assumes primary role in building many

language technologies such as large vocabulary speech recognition or unit selection based

speech synthesis system for a new language. In the case of Indian languages, the text which

is available in digital format (on the web) is difficult to use as it is because they are available

in numerous encoding (fonts) schemes. Applications like screen readers developed for In-

dian languages and other applications have to read or process such text. Given that there are

23 official Indian languages, and the amount of data available in glyph based font encoding

is much larger than the text content available in Unicode and ISCII format. So it is impor-

tant to have a generic framework for automatic identification of font-type and conversion of

font-data to a phonetic transliteration scheme.

The glyphs are shapes, and when 2 or more glyphs are combined together form a char-

acter in the scripts of Indian languages. To view the websites hosting the content in a partic-

ular font-type then one requires that font to be installed on local machine. As this was the

technology existed before the era of Unicode and hence a lot of electronic data in Indian lan-

guages were made and available in that form. The sources for these data are news websites

(mainly), Universities/Institutes and some other organizations. They are using proprietary

fonts to protect their data. Collection of these text corpora, identifying the font-type and

conversion of font-data into a phonetically readable transliteration scheme is essential for

building many natural language processing systems and applications.

A character of English language has the same code irrespective of the font being used to

display it. However, most Indian language fonts assign different codes to the same character.

For example (Fig. 2.7) ‘a’ has the same numerical code ‘97’ irrespective of the hardware or

software platform.

24

Consider for example the word “hello” written in the Roman Script and the Devanagari

Script.

Fig. 2.7: Illustration of glyph code mapping for English fonts.

Arial and Times New Roman are used to display the same word. The underlying codes

for the individual characters, however, are the same and according to the ASCII standard.

Fig. 2.8: Illustration of glyph code mapping for Indian (Hindi) fonts.

The same word displayed in two different fonts in Devanagari, Yogesh and Jagran

(Fig. 2.8). The underlying codes for the individual characters are according to the glyphs

they are broken into. Not only the decomposition of glyphs and the codes assigned to them

are both different but even the two fonts have different codes for the same characters. This

leads to difficulties in processing or exchanging texts in these formats.

Three major reasons which cause this problem are: (i) There is no standard which de-

fines the number of glyphs per language hence it differs between fonts of a specific language

itself. (ii) Also there is no standard which defines the mapping of a glyph to a number (code

value) in a language. (iii) There is no standard procedure to align the glyphs while rendering.

The common glyph alignment order starts with left glyph followed by the pivotal character

and followed by any of the top or right or bottom glyphs. Some font based scripting and

rendering scheme may also violate this order and use their own.

As already mentioned, the basic writing unit of an Indian language is an “Akshara” and

is in the form C*V. When the consonant becomes half consonant the shape changes and for

25

vowel it becomes a Maatra. The shape changes but the sound remains same. These different

shapes become the glyphs for a font-type. Sometimes a broken part of a character becomes

a glyph which doesn’t have correspondence to any sound/character. It will be combined

with other characters to produce a valid character. The rendering engine renders a whole

character by combining and positioning a set of glyphs appropriately. Because of these

reasons font-data in Indian languages is very hard to process or convert to a consistent form.

2.5 SUMMARY

This chapter elaborated the nature of the Indian language scripts. Also we enumerated the

convergence and divergence properties of Indian language scripts. Lensing out the various

units/symbols and Aksharas of those scripts. Adopted standards of digital storage formats

for scripts like ASCII, ISCII, Unicode and transliteration schemes already available is dis-

cussed. Explaining fonts and glyphs in Indian context and compared the glyph/codes for

English and Hindi. A implemented transliteration scheme version IT3 which we discussed

and used for research purpose. Finally it addresses the need for handling Indian context

fonts specially. In the next chapter we are going to discuss font-type identification using

TF-IDF weights based method.

26

CHAPTER 3

IDENTIFICATION OF FONT ENCODING

The widespread and increasing availability of huge electronic textual data for Indian lan-

guages has increased the importance of developing a generic method for font-type identifi-

cation of various non-standard font encodings. Just as in any other text processing systems,

screen readers have to pre-process the raw text data before giving it to TTS for synthe-

sizing. One of the steps in pre-processing is font identification. Some forms of raw data

such as HTML contain the font-type but in most cases the font-type has to be identified at

the runtime such for data in MS-word or Notepad. This chapter presents our approach for

identifying the font-type.

3.1 PROBLEM STATEMENT

The problem of font-type (also referred to as font-encoding) identification could be defined

as: Given a set of words or sentences, identify the font-type by finding the minimum distance

between the input glyph codes and the models representing font-types.

For example consider a word and its glyph sequence is shown in the figure below.

So the input would be a sequence of ASCII values of the glyph sequence such as.

194 195 162 147 233 146 174 253

The issue is to find out whether this glyph sequence belongs to Eenadu or Vaarttha

or Amarujala etc.,. It should be noted that this identification is done across all font-types

belonging to different Indian languages.

27

3.2 RELATED WORK ON FONT-TYPE IDENTIFICATION

Our problem of identification of font-type is a classification problem bearing similarities to

other problems such as Language Identification 1 and Font-Type Identification in OCR (Op-

tical Character Recognition) 2. In language identification, the goal is to identify the natural

language of the given input data. Different types of approaches followed in language iden-

tification are word n-gram, character n-gram, syllable characteristics, morphology, syntax

etc.,. Similarly, there is a lot of work done for font-type identification in OCR develop-

ment but it is little different from the current problem as here the input is image and the

goal is to identify font-type based on font attributes such as size, style etc.,. In order to see

the similarity of both the problems and the applicability of those approaches for font-type

identification, a brief review of both is reported in this chapter.

3.2.1 Related Work in Language Identification

Ingle [19] used a list of short characteristic words in various languages and matched the

words in the test data with this list. Such unique strings based methods were meant for

human translators. The earliest approaches used for automatic language identification were

based on that same idea of unique strings. They were called “translator approaches”.

Beesley’s [20] automatic language identifier for on-line texts used mathematical lan-

guage models originally developed for breaking ciphers. These models basically relied on

orthographic features like characteristic letter sequences and frequencies for each language.

Some of the methods were similar to n-gram based text categorization (Cavnar and

Trenkle) [21] which calculates and compares profiles of n-gram frequencies. Cavnar also

proposed that top 300 or so n-grams are almost always highly correlated with the language,

while the lower ranked n-grams give more specific indication about the text, namely the

topic. Many approaches similar to Cavnar’s have been tried, the main difference being in

1Language identification is the process of determining which natural language the given content is in
2OCR is the mechanical or electronic translation of images of handwritten, typewritten or printed text (usually

captured by a scanner) into machine-editable text

28

the distance measure used. The similarity measures tried for language identification in-

clude mutual information or relative entropy, also called Kullback-Leibler distance (Sibun

and Reynar) [22], cross entropy (Teahan and Harper) [23], and mutual or symmetric cross

entropy (Singh 2006).

Giguet [24] relied upon grammatically correct words instead of the most common words.

He used the knowledge about the alphabet and the word morphology via syllabication. He

tried this method for tagging sentences in a document with the language name, i.e., dealing

with multilingual documents.

Johnson’s method (Stephen 1993) was based on characteristic ‘common words’ of each

language. This method assumes unique words for each language. In practice, the test string

might not contain any unique words.

Cavnar’s method, combined with some heuristics, was used by Kikui [25] to identify

languages as well as language-encodings for a multilingual text. He relied on known map-

pings between languages and encodings and treated East Asian languages differently from

West European languages.

A K Singh [26] used character based n-grams and noted the language identification

problem here is that of identifying both language and encoding. This is because (especially

for South Asian languages) the same encoding can be used for more than one languages

(ISCII for all Indian languages which use Brahmi-origin scripts) and one language can have

many encodings (ISCII, Unicode, ISFOC, typewriter, phonetic, and many other proprietary

encodings for Hindi). He conducted a study on different distance measures. Most of them

are based on either well known or based on well known measures, but the results obtained

with them vis-a-vis one-another might help in gaining an insight into how similarity mea-

sures work in practice. He has proposed a novel measure using mutual entropy resulting

improved performance better than other measures for the current problem. The work de-

scribes some experiments on using such similarity measures for language and encoding

identification.

There has been no comparable systematic work on multilingual text documents, al-

though there has been some work based on an Optical Character Recognition (OCR) sys-

29

tem, such as by Tan et al. (1999). One attempt at multilingual identification was by Prager

(1999). His Linguini system uses a vector space based monolingual identifier to also find out

the component languages of a document and the relative proportions of each. Artemenko et

al. (2006) tried for identifying the languages in a document and have reported accuracy of

97%. But neither of them identified languages of segments.

A.K.Singh and Jagadeesh [27] extended the previous work for identifying the language-

encoding pair for multilingual documents. They divided the problem into three parts: mono-

lingual identification, enumeration of languages and identification of the language of every

portion. For enumeration, they have been able to get a precision of 96.20%. They also ex-

perimented on language identification of each word. Given correct enumeration, they could

obtain type precision of 90.91% and token precision of 86.80%. They even showed how

precision is affected by language distance.

3.2.2 Related Work in Font Recognition in OCR

Font recognition plays an important role in OCR systems [28]. People tried to achieve it in

a simple and effective way with texture analysis regarding fonts as different textures. Gabor

filters with traditional parameters were used to extract texture features. Since the Recogni-

tion Rate (RR) was low for similar fonts some attempts tried some adjustment to improve

it. The other approach is content independent and involves no local feature analysis. Global

features are extracted by texture analysis. They applied the well-established 2D Gabor filter-

ing technique to extract such features and a weighted Euclidean distance classifier to fulfill

the recognition task. Experiments are made using 6,000 samples of 24 frequently used Chi-

nese fonts (6 typefaces combined with 4 styles) and very promising results were achieved.

In [29], a multi-font classification scheme to help with the recognition of multi-font

and multi-size characters. It uses typographical attributes such as ascenders, descenders and

serifs obtained from a word image. The attributes are used as an input to a neural network

classifier to produce the multi-font classification results. It can classify 7 commonly used

fonts for all point sizes from 7 to 18. The approach developed in this scheme can handle

30

a wide range of image quality even with severely touching characters. The detection of

the font can improve character segmentation as well as character recognition because the

identification of the font provides information on the structure and typographical design of

characters. Therefore, this multi-font classification algorithm can be used for maintaining

good recognition rates of a machine printed OCR system regardless of fonts and sizes. Ex-

periments have shown that font classification accuracies reach high performance levels of

about 95 percent even with severely touching characters.

In [30], simple and fast algorithm to detect Thai and English characters in a document

without doing actual characters recognition is described. The document is segmented into

strings of letters separated by a blank, then each string is identified using characters features

and their writing positions. This method achieves 100% accuracy if the characters have clear

head feature. But if this feature is not used 90% of the strings still can be identified. This

identification provides more information about the character set so that OCR can recognize

faster with better accuracy.

3.3 TF-IDF APPROACH

As discussed in the above sections, the solutions for language identification make use of

word n-grams or character n-grams. In using n-gram based approach typically it is assumed

that there is sufficient amount of training data to get a better estimate of likelihood scores.

However, in our case of identification of font-type, we would expect to detect the font-type

from sparse data such as a single word, thus approaches such as word level n-grams are typ-

ically not applicable for our approach. The use of character n-grams is another alternative,

however, the definition of character is more applicable to a language than to a font-type as

the data corresponding to a font-type are a sequence of byte codes. At the same time, the ap-

proaches adopted in font-type identification from OCR deals with image data. While there

are many efforts to identify the language, but few efforts are made to identify the font-type

from sparse text data specifically given the large number of font-types in Indian languages.

Here we propose to use vector space model and Term Frequency - Inverse Document

31

Frequency (TF-IDF) weights based approach for identification of font-type. This approach

is used to weigh each term in the font-data according to how unique it is. In other words, the

TF-IDF approach captures the relevancy among term and document. To perform TF-IDF

approach, it is essential to define what a “term” is and what a “document” is.

• Term: It refers to a unit of glyph. In this work we have experimented with different

units such as single glyph gi (uniglyph), two consecutive glyphs gi−1gi (biglyph),

three consecutive glyphs gi−1gigi+1 (triglyph).

• Document: Document refers the ‘font-data (words and sentences) in a specific font-

type’.

3.3.1 TF-IDF Weights

The TF-IDF (Term Frequency - Inverse Document Frequency) weight is a weight often used

in information retrieval and text mining. This weight is a statistical measure used to evaluate

how important a word is to a document in a collection or corpus. The importance increases

proportionally to the number of times a term/word appears in the document.

The term frequency in the given document is simply the number of times a given term

appears in that document. This count is usually normalized to prevent a bias towards longer

documents (which may have a higher term frequency regardless of the actual importance

of that term in the document) to give a measure of the importance of the term ti within the

particular document.

tfi =
ni∑
k
nk

(3.1)

with ni being the number of occurrences of the considered term, and the denominator is

the number of occurrences of all terms.

The document frequency is the number of documents where the considered term has

occurred at least once.

32

|{d : d 3 ti}| (3.2)

The inverse document frequency is a measure of the general importance of the term

(it is the logarithm of the number of all documents divided by the number of documents

containing the term).

idfi = log
|D|

|{d : d 3 ti}|
(3.3)

with |D| total number of documents in the corpus

Here ‘log’ is used in this formula to smoothen the values.

|{d : d 3 ti}| : Number of documents where the term ti appears (that is ni 6= 0) Then

tfidf = tf.idf (3.4)

A high weight in TF-IDF is reached by a high term frequency (in the given document)

and a low document frequency of the term in the whole collection of documents; the weights

hence tend to filter out common terms.

3.3.2 Usage of TF-IDF Weights for Modeling

The motivation for the use of TF-IDF for modeling font-data comes from the fact that

TF-IDF weights give the relevance between a term and collection of such terms. In font

modeling, we consider this term can be contextual glyph (like sequence of glyphs) and the

document could be a collection of such terms. Because in Indian languages Aksharas are

formed by combinations of glyphs and these glyphs have different code values (numbers).

So the code combinations change from font to font. Certain glyph code combinations will be

unique to a font-type. Such combinations get high TF-IDF weight than other combinations

which helps us to identify the font-type. So in this context, the term refers a ‘glyph’ or ‘a

sequence of glyphs’ and the document refers the ‘font-data (words and sentences) in a spe-

cific font-type’. Here the glyph-sequence means uniglyph (single glyph), biglyph (current

33

and next glyph) and triglyph (previous, current and next glyph) etc.,. So this approach tries

to capture the relevance among glyph sequence, font-type and font-data. This approach also

gives different weights to a term

• occurring in one font-type (document)

• occurring in two font-types

• occurring in many font-types

• occurring in all font-types

3.4 MODELING AND IDENTIFICATION

Data Preparation: For font modeling we need sufficiently enough data of that particular

font-type. So we have collected manually and used an average of 0.12 million unique words

per font-type. We used nearly 37 differently encoded glyph based font data.

Modeling: Generating a vector space model for each font-type using TF-IDF weights

is known as modeling the font-data. For modeling we considered three different types of

terms. They are (i) uniglyph (single glyph), (ii) biglyph (current and next glyph) and (iii)

triglyph (previous, current and next glyph). And the document refers a collection of data

(words or sentences) of a specific font-type.

The procedure for building the models is: First we have taken all the provided data

at once and also we have considered three different kinds of terms for building models as

mentioned above. (i) First step is to calculate the term frequency (Eqn (4.1)) for the term

like, the number of time that term has occurred divided by the total number of terms in that

specific type of data. So it will be stored in a matrix format of N ∗ 256 for uniglyph, N ∗

256 ∗ 256 for biglyph and N ∗ 256 ∗ 256 ∗ 256 for triglyph model depending upon the term.

Where ’N’ denotes the number of different data types and 256 (0 to 255) is the maximum

number value for a single glyph. (ii) Second step is to calculate document frequency (Eqn

(4.2)) like, in how many different data types that specific term has occurred. (iii) Third

step is to calculate inverse document frequency (Eqn (4.3)) like, all data types divided by

34

the document frequency. Logarithm of inverse document frequency is taken for smoothing

purpose. (iv) Fourth step is to compute TF-IDF which is calculated like term frequency

* inverse document frequency (Eqn (4.4)). Finally that matrix will be updated with these

values. The common terms across the different font-type documents get zero values and

other terms get non-zero values depending upon their term frequency values. From those

values the models for each data type is generated.

Identification: Given a set of vectors generated out of a sequence of glyph codes the

objective is to identify the font-type by finding the minimum distance between the query

vector and the vector space models. The steps involved in identification of font-type are as

follows:

• Extract terms (glyph codes) from the input word or sentence

• Create the query vectors (uniglyph or biglyph etc.,) using these terms

• Compute the distance between the query vectors and all the models of font-type using

TF-IDF values

• The input word is said to be originated from the model of font-type which gives a

maximum TF-IDF weightage

• Get the TF-IDF weight of each word of sentence from the models of all font-types

3.5 RESULTS OF FONT IDENTIFICATION

Test Data: It is typically observed that TF-IDF weights are more sensitive to the length of

query. The accuracy increases with the increase in the length of test data. Thus two types of

test data were prepared independently for testing. One is set of unique words and the other

one is set of sentences.

Testing Criteria: While testing we are identifying the closest matching models for the

given inputs. And we are evaluating the identification accuracy in (%) as given below.

Accuracy =
Correct

Total
(3.5)

35

Where Correct : number of correctly identified tokens and Total : total number of

tokens.

Testing: The accuracy of a font-type identification depends on various factors:

• The number of encodings from which the identifier has to select one

• The inherent confusion of one font encoding with another and

• The type of unit used in modeling.

For a given ‘X’ number of different inputs we identified the closest models and cal-

culated the accuracy. It is done (repeatedly) for various (uniglyph, biglyph and triglyph)

categories. The results are tabulated below.

Font-Type Identification Results: The testing is done for 1000 unique sentences (Set 1)

and words obtained from 1000 unique sentences (Set 2) per font-type. The evaluation results

are tabulated below. We have added English data as also one of the testing data set, and is

referred to as “English-Text”. Table 3.1 shows the performance results for uniglyph (current

glyph) based models; Table 3.2 shows the performance results for biglyph (current and next

glyph) based models and Table 3.3 shows the performance results for triglyph (previous,

current and next glyph) based models. From Tables 3.1, 3.2 and 3.3, it is clear that triglyph

seems to be an appropriate unit for a term in the identification of font-type. It can also be

seen that the performance at word and sentence level is nearly 100% with triglyph. The

results also gives the notion that the performance increases when larger the glyph-sequence

taken for building font-type models, subject to reasonable coverage in the training data.

3.6 SUMMARY

This chapter answers where and why we need font-type identification. Screen reader appli-

cation as an example was discussed along with challenges and practical usage. In this chap-

ter we have proposed TF-IDF weights based approach for font-type identification. We have

explained the TF-IDF weight calculation and how that is used for modeling using uniglyph,

biglyph and triglyph. Identification results from different models show that the triglyph or

36

Table 3.1: Font-type identification: Uniglyph (current glyph) based font mod-
els performance.

Identification Accuracy Identification Accuracy

Font Name (Sentences) (Words)

Amarujala (Hindi) 100% 100%

Jagran (Hindi) 100% 100%

Webdunia (Hindi) 100% 0.1%

SHREE-TEL (Telugu) 100% 7.3%

Eenadu (Telugu) 0% 0.2%

Vaarttha (Telugu) 100% 29.1%

Elango Panchali (Tamil) 100% 93%

Amudham (Tamil) 100% 100%

SHREE-TAM (Tamil) 100% 3.7%

English-Text 0% 0%

Table 3.2: Font-type identification: Biglyph (current and next glyph) based
font models performance.

Identification Accuracy Identification Accuracy

Font Name (Sentences) (Words)

Amarujala (Hindi) 100% 100%

Jagran (Hindi) 100% 100%

Webdunia (Hindi) 100% 100%

SHREE-TEL (Telugu) 100% 100%

Eenadu (Telugu) 100% 100%

Vaarttha (Telugu) 100% 100%

Elango Panchali (Tamil) 100% 100%

Amudham (Tamil) 100% 100%

SHREE-TAM (Tamil) 100% 100%

English-Text 100% 96.3%

37

Table 3.3: Font-type identification: Triglyph (previous, current and next
glyph) based font models performance.

Identification Accuracy Identification Accuracy

Font Name (Sentences) (Words)

Amarujala (Hindi) 100% 100%

Jagran (Hindi) 100% 100%

Webdunia (Hindi) 100% 100%

SHREE-TEL (Telugu) 100% 100%

Eenadu (Telugu) 100% 100%

Vaarttha (Telugu) 100% 100%

Elango Panchali (Tamil) 100% 100%

Amudham (Tamil) 100% 100%

SHREE-TAM (Tamil) 100% 100%

English-Text 100% 100%

longer glyph sequence based models perform better. The following chapter presents font

conversion and a framework to build font converters for Indian languages.

38

CHAPTER 4

CONVERSION OF FONT-DATA

Chapter 3 presented techniques for font-type identification. This chapter presents the next

step in text processing, i.e., font-data conversion into a phonetic transliteration format. Font

conversion means conversion from glyph (font unit) to grapheme (Akshara - written lan-

guage unit). In typography 1, a glyph refers to a particular graphical representation of a

grapheme, or a combination of several graphemes (a composed glyph), or only a part of a

grapheme. Graphemes 2 include letters, Chinese characters, Japanese characters, numerals,

punctuation marks and other glyphs. In computing as well as typography, the term character

refers to a grapheme or grapheme-like unit of text, as found in natural language scripts. A

character or grapheme is a unit of text, whereas a glyph is a graphical unit. Most glyphs

originate from the characters of a typeface, where each character typically corresponds to a

single glyph. There are exceptions such as a font used for a language with a large alphabet or

complex writing system, where one character may correspond to several glyphs, or several

characters to one glyph. In graphonomics 3, the term glyph is used for a non-character, (i.e)

either a sub-character or multi-character pattern.

This chapter explains the generic framework for building font converters and the process

of glyph assimilation for font-data conversion in Indian languages. As we already have

discussed in Chapter 2 that the characters (Aksharas) are split up into glyphs in font-data

and the solution would be merging up the glyphs to get back the valid character. A generic

framework has been designed for building font converters for Indian languages based on this

1Typography is the art and techniques of type design, modifying type glyphs, and arranging type

2a grapheme is the fundamental unit in written language
3Graphonomics is the interdisciplinary field directed towards the scientific analysis of the handwriting process

and the handwritten product

39

idea using glyph assimilation rules. The framework consist of two phases, in the first phase

we build the glyph-map table for each font-type and in the second phase define and modify

the glyph assimilation rules for each language 4.

4.1 PROBLEM STATEMENT

The problem of font-data conversion is defined as: Given a sequence of glyphs the objective

is to rearrange and combine them to form a valid character (Akshara) in the language.

For example consider a word and its glyph sequence in the figure below.

So the input would be a sequence of ASCII values of the glyph sequence such as.

194 195 162 147 233 146 174 253

The issue is to find out how these glyph sequences can be rearranged, combined and

mapped unambiguously to Asksharas of a language. Since Aksharas are represented using

IT3 transliteration scheme in our work a valid output of the font-conversion process for the

above glyph sequence is expected to be k aa n’ g r e s.

4.2 RELATED WORK ON FONT-DATA CONVERSION

Conversion of Indian language electronic data to a machine processable format has become

an essential task in natural language processing. Several attempts were made at font conver-

sion. While many focused on text data few were on font data embedded in images. Many

attempts were commercially done where the source code is not released for free use in other

applications. Some of such tools are given below for reference. It is to be noted that each of

these tools work on one or a few languages but are not generic to all Indian languages. Also

support for a new font is not easy.
4Assimilation is the process of receiving new facts or of responding to new situations in conformity with

what is already available to consciousness

40

(a) TBIL Data Converter [31]: The TBIL Data Converter is a handy tool for the quick and

effective transliteration between data in font/ASCII/Roman format in Office docu-

ments into a Unicode form in any of 7 Microsoft supported Indian languages. It is

developed for the Bhasha project.

(b) FontSuvidha [32]: A tool for Devanagari Font Conversion. It allows font conversion

within Devanagari fonts like Times New Roman to Arial in English. Now it also sup-

ports any Devanagari font to Unicode font and vice versa. It works on any document

type like DOC, MDB, XLS, TXT, HTM as well as anything in the clipboard.

(c) IConverter [33]: A utility program for various code conversions. The program uses the

library ‘isciilib’ for code conversion. The inputs to the program are: (1) Configu-

ration file (2) Source code file. The code conversion is done according to the rules

specified in the configuration file. If, no matching rule(s) is found for any particu-

lar code, the code is passed unchanged to the output stream. The configuration files

for various code conversions are provided. Configuration files for different types of

conversions can easily be written. This program is developed at IIT Kanpur.

The following are freely released attempts in font conversion. Since they released paper

or documentation to refer they provide more insight to understand the problem. We explored

and extended them to cover all Indian languages. They followed different approaches for

different purposes so the output also varies. One thing we would like to mention here is that

they worked on few (may be 2 or 3) Indian languages only.

(a) Akshar Bharati et al. [34] have tried to generate converters between fonts semi-automatically.

Since Indian language texts do not follow any coding standards, the long term answer

might be switch to a standard alphabetic coding scheme (ACII - Alphabetic Code for

Information Interchange). Based on this concept they developed a system (converter)

for Devanagari fonts. The system takes: (i) a text in an unknown coding scheme

(font) and (ii) the same text transliterated in the ACII coding scheme, and generates a

converter between the given unknown coding scheme and ACII. The converter can be

used to convert a text from the non-standard coding scheme to ACII, and back. It can

41

be progressively refined, manually. For generating the converter, a glyph-grammar

for the script of the language is also needed, which specifies what possible glyph se-

quences make up an Akshara. The grammar is independent of the coding schemes,

and is structured. It needs to be developed only once, for a script. The glyph-grammar

can have at least three types of rules: Type 1 rules are applicable across all the In-

dian languages like schwa (‘a’ sound) deletion from an Akshara, Type 2 rules hold

for Devanagari, and perhaps for other scripts. Type3 rules pertain to idiosyncratic

combination of glyphs for that particular style.

Drawbacks: Some glyphs might remain unconverted because the training data (namely,

the given ACII file and the corresponding initial part of glyph file) might not be com-

prehensive, and the program might not have seen some glyphs as they do not occur

in this learning data. It is hoped that once a large part of the file is converted, the user

will be able to supply the missing code map and the rules manually, (by looking at

the remaining part of the glyph file and making intelligent guesses) using which the

converter would become complete.

Result: The overall converter, it is expected, will be able to convert 90 to 95% of the

glyphs with a page or two of sample ACII text.

(b) Garg [35] has worked on overcoming font and script barriers among Indian languages

as an extension of the work done by Akshar Bharati (et al.). He tried two different

approaches for building font converters. (i) First one is Glyph Grammar based ap-

proach. Here description of each glyph in the font is given using mnemonics in the

font glyph description file. If a glyph has equivalent ISCII/Unicode characters the

equivalents are given. Otherwise, a mnemonic is used. A sample mnemonic would

be like “&TC1@2” where top, left, right or bottom and whole character and position

in that character. Mnemonics are used to list all the smallest possible logical units

that a glyph can be a part of. A logical unit is a glyph or a group of glyphs combined,

that can be encoded by the Unicode/ISCII encoding system. Time can be reduced

if mnemonics are reused from a font that contains similar glyphs. Some amount of

42

manual editing may be required to make corrections. The user specifies the various

logical units a glyph can be a made of. The program uses the context to decide which

logical unit the glyph along with its neighbors gets converted. The information about

glyphs can be obtained from the glyph table of a font.

Drawbacks: (i) It is difficult to list all possible semantics for a glyph. (ii) Some

training in understanding the notation (and the nature of script) is required to be able

to describe new glyphs.

Results: Devanagari (Jagran / Kruti / Shusha) 90% and Telugu (Eenadu / Vaarttha)

75%.

(ii) Second one is Finite State Transducer based approach. This approach uses exam-

ple based machine learning techniques to generate Finite State Transducers. Trans-

ducer learning algorithms have been used in the EUTRANS project which aims at

using example based approaches for the automatic development of machine transla-

tion systems for limited domain applications and have been shown to give a low word

error rate. These Finite State Transducers can be automatically learned from syllable

mappings of font encoded text to Unicode text. The Finite State Transducers encode

the correspondence between glyphs and equivalent ISCII/Unicode characters. These

can be automatically learned from parallel corpora. The input to these is a parallel

list of syllables. The training set consists of a parallel corpus consisting of syllables

as a sequence of glyphs and their translation into ISCII. These transducers offer a

clear advantage over other statistical machine learning techniques, in that the models

that they depict are easily interpretable by humans. As a result they are potentially

modifiable to suit one’s needs. Moreover domain knowledge about the input or the

output can be incorporated to improve their performance.

Drawbacks: (i) finite state transducers cannot learn glyph movement. (ii) the exam-

ples required for training must be units smaller than whole words.

Results: Devanagari (Jagran / Kruti / Shusha) 98% and Telugu (Eenadu / Vaarttha)

93%.

43

(c) Khudanpur and Schafer [36] have followed a new approach in font conversion. They

have used two kind of mapping files for a font character (glyph). One is CHARMAP

file which gives a mapping between the character codes (in ASCII) to a ITRANS

character string like given below.

159 = shr

168 = i.n

177 = h

126 = @3

154 = .N

The other is CLASSMAP file which gives a mapping between the character codes (in

ASCII) to a class defined by them like given below. These classes provide the notion

about the place of occurrence and other informations.

255 LFRAG (Left Fragment)

22 RFRAGxV (Right Fragment Vowel)

205 SYL (Syllable or Akshara)

209 RFRAG (Right Fragment)

While converting the font text, they retrieve the character code value (in ASCII) of

that character delimited by space and word boundary by “;”. Even though this format

occupies more space and takes more processing time, compromised in the interest of

convenience. In the next step through some well defined rules for syllables in one

font they extract the syllables of the word. For each syllable they perform vowel

assimilation to reveal the original vowel. Further processing is done to convert to

ITRANS. They have reported this on Devanagari fonts. They insist on rapid font

converter building than on the accuracy (which was believed to be achieved with

some additional modifications).

(d) Kumar et al. [37] have worked on developing semi-automated or automated tools for

developing OCRs for Indian scripts. Based on study on the nature or features of

44

Indian language scripts, they identified four main problems in development of OCRs

like (a) the number of letters in the alphabet, the typical number being 50, (b) richness

of the structure of basic unit in the language as the combination of up to 3 consonants

and 1 vowel forms the basic unit, (c) the variations in the graphical form of the

different combinations even within the same script, and (d) non-adherence to any

standard structure while designing the fonts. It is to be noted that they have worked on

image data. They collected large data (images of printed hard copies) for training as

well as for testing. The segmentation algorithm is designed to produce the segments

(graphemes) of the images then suitable features are extracted. The boundaries of

the segments are tuned based on the output on the train data. The OCR is then tested

against a new script’s data and tuned. They found it working well but they face

problem when the font size is small.

The inference from above discussed works are (i) mapping between the glyph code to

some meta format like phonetic notation or some grammar is essential and (ii) on this meta

data either rules have to be defined or the machine has to be trained to learn using some

parallel corpora. To achieve the maximum performance following requirements are to be

met.

• the mapping from glyph codes to a meta notation should be unambiguous.

• in rule based conversion, stage by stage conversion has to happen. And those stages

should be in a specific order.

• in machine learning based conversion, the parallel corpora should have covered all

possible combinations.

• manual intervention or corrections should be minimal.

In our work, we do an unambiguous glyph code mapping by attaching the position number

along with the phonetic notation. We have identified the different stages in the conversion

and have ordered them according to their precedence. We have written well defined rules

under each stage. Earlier approaches need the effort to be repeated for each font whereas

45

in our approach the effort is for only three different fonts of different font-families of a

language to build the converter. To add a new font, only glyph-map table is required and no

more repetition of effort. Hence we provide a solution at each language level and a new font

could be added easily.

4.3 EXPLOITING SHAPE AND PLACE INFORMATION

As we have seen already in Chapter 3 (could also be observed from Fig. 4.1 and Fig. 4.2),

the natural shape of a vowel or consonant changes when they become half-consonant or

Maatra respectively. These symbols get attached in different places (top, bottom, left and

right) while forming an Akshara. For instance if we consider the character /r/, the shape and

place of attachment in the Akshara are different across languages. From the below shown

figures, Fig. 4.1 shows how /r/ changes its shape and place in Hindi and Fig. 4.2 shows how

/r/ changes its shape and place in Telugu. In this work we intend to capture the information

regarding the change of the shape of Akshara depending on the position, and incorporate it

in our font-data conversion process.

Fig. 4.1: Shape and position change for /r/ in Hindi.

Fig. 4.2: Shape and position change for /r/ in Telugu.

The novelty of our approach lies in exploiting positional information of a glyph in Ak-

shara to perform the conversion. We exploit this information for building the glyph-map

table for a font-type. It is possible for a native speaker of the language by looking at the

shape of the glyph to say whether that glyph occurs in center, top, left, right, bottom po-

46

sition of an Akshara. Thus we followed a simple number system to indicate the position

information of a glyph.

• Glyphs which could be in pivotal (center) position are referred by code 0/1.

• Glyphs which could be in left position of pivotal symbol are referred by code 2.

• Glyphs which could be in right position of pivotal symbol are referred by code 3.

• Glyphs which could be in top position of pivotal symbol are referred by code 4.

• Glyphs which could be in bottom position of pivotal symbol are referred by code 5.

Following figures depict the position number assignment to glyphs. Fig. 4.3 shows the

position number assignment for glyphs for Hindi and Fig. 4.4 for Telugu. In the top portion

of the figure it shows the word considered here and right below it distinguishes different

positions pictorially.

Fig. 4.3: Assigning position numbers for Hindi glyphs.

Independent vowels are assigned ‘0’ or nothing as position number. All the dependent

vowels known as “Maatras” occur at left or right or top or bottom side of a pivotal character

(vowel). So they are attached with positional numbers like 2 (left), 3 (right), 4 (top) and 5

(bottom). This is common for vowels across all Indian languages. Most of the consonants

will be either full or half and occur at center. So accordingly they are assigned 0 or 1 as

positional number. Some of the half consonants also occur rarely at the left, right, top and

bottom of a full character. They are assigned a positional number like 2, 3, 4 and 5 according

47

Fig. 4.4: Assigning position numbers for Telugu glyphs.

to their place. But these are specific to some Indian languages but are not common for all

Indian languages.

4.4 BUILDING GLYPH-MAP TABLE

Glyph-Map table is a map table which gives a mapping between the glyph code (0 to 255)

to a phonetic notation. This table gives us the basic mapping between the glyph coding of

the font-type to a notation of a transliteration scheme. As a novelty in our approach we have

attached some number along with the phonetic notation to indicate the position of occurrence

of that glyph in that Akshara. The various position or places of occurrence of such glyphs

are: left, right, top and bottom of a pivotal character. The way the position numbers are

assigned is ‘0’ or nothing for a full character (eg: e, ka), ‘1’ for a half consonants (eg: k1,

p1), ‘2’ for glyphs occur at left hand side of a pivotal character (eg: i2, r2), ‘3’ for glyphs

occur at right hand side of a pivotal character (eg: au3, y3), ‘4’ for glyphs occur at top of a

pivotal character (eg: ai4, r4) and ‘5’ for glyphs occur at bottom of a pivotal character (eg:

u5, t5).

To illustrate with some real font text we have given below in the Fig. 4.5 the position

numbers for glyphs. Glyphs occur in different places or positions are grouped in different

colors. We have covered vowel glyphs as well as consonant glyphs here. For more on

glyph-mapping for different Indian languages, please refer to Appendix B.2 to B.13.

48

Fig. 4.5: Examples for assigning position numbers for glyphs.

The position numbers along with the phonetic notation help us to form well distin-

guished glyph assimilation rules, because when similar glyphs are attached in different po-

sitions they form different characters. For each and every font in a language the glyph-map

table has to be prepared manually in this way. That means the glyph-map table converts

different font encoding to a meta data which is in a phonetic notation. It is observed that

when we do such glyph-mapping for three different fonts of a language we have covered

almost 96% of possible glyphs in a language.

4.5 GLYPH ASSIMILATION

Glyph Assimilation is known as the process of merging two or more glyphs and forming

a single valid character. This happens in many levels like consonant assimilation, Maatra

assimilation, vowel assimilation and consonant clustering and in that order.

The identification of different levels and ordering them is another important thing we

present here. Broadly they can be classified into four levels. They are language prepro-

cessing, consonant assimilation, vowel assimilation and schwa deletion. Under language

preprocessing level, language specific modifications like Halant and Nukta modifications

49

are carried out first. Because after this process only valid character glyphs (and not sym-

bols) are allowed. The next step is to reconstruct the pivotal consonant in an Akshara if it is

present. This can be done under three sub-levels like consonant assimilation, consonant and

vowel assimilation and consonants clustering. Then we can form the vowels from the left

out glyphs. Finally we have to do the schwa deletion because when a consonant and Maatra

merge together, the inherent vowel (schwa) has to be removed.

This assimilation process has been observed across many Indian languages and found

that they follow certain order. The order is: (i) Modifier Modification, (ii) Language Pre-

processing, (iii) Consonant Assimilation, (iv) Consonant-Vowel Assimilation, (v) Maatra

Assimilation, (vi) Vowel-Maatra Assimilation, (vii) Consonants Clustering and (viii) Schwa

Deletion. The idea is to first reveal the pivotal consonant in an Akshara and then the vowels.

Fig. 4.6 shows how the font conversion is happens in Hindi with an example word.

First phase gives the output in meta notation and the second phase re-orders, modifies and

assimilates the Aksharas based on rules. Finally the positional numbers get removed to

reveal the converted word in a phonetic transliteration form.

Fig. 4.6: Glyph Assimilation Process for Hindi.

Fig. 4.7 shows a similar example for Telugu.

50

Fig. 4.7: Glyph Assimilation Process for Telugu.

4.6 RULES FOR GLYPH ASSIMILATION

Glyph assimilation rules are defined by observing how the characters are being rendered by

the rendering engine. Each rule takes a combination of two or more glyphs in a certain order

and produces a valid character. This way we have defined a set of rules for each level and for

every language separately. Since they are written in the phonetic transliteration scheme (IT3)

it is easily understandable. There may be some common rules across many languages and

some specific rules for a language also. The different rules under each and every category are

explained with some examples below. These rules can be modified or redefined whenever

it is required. For a complete list of glyph assimilation rules per language, please refer to

Appendix C.1 to C.9.

(i) Modifier Modification is the process where the characters get modified because of the

language modifiers like Halant and Nukta. Eg:

(a) ta + Halant = t1 (Hindi) (Halant based schwa deletion)

(b) d’a + Nukta = d-a (Hindi) (Nukta based modification)

51

(c) n: + Halant = r1 (Telugu) (Halant based modification)

(ii) Language Preprocessing steps deal with some language specific processing like Eg:

(a) aa3 + i3 = ri (Tamil) (r,ri,rii modifications)

(b) r4 (REF) moves in front of the previous first full consonant (Hindi) (REF move-

ment)

(c) r3 moves in front of the previous first full consonant (Kannada) (Arkka votthu

movement)

(iii) Consonant Assimilation is known as merging two or more consonant glyphs to form a

valid single consonant like Eg:

(a) d1 + h5 + a4 = dha (Telugu) (Consonants da + ha assimilate to dha)

52

(b) tta + k3 = kta (Bengali) (Consonants tta + k3 assimilate to kta)

(iv) Consonant-Vowel Assimilation is known as merging two or more consonant and vowel

glyphs to form a valid single consonant like Eg:

(a) va + uu3 = maa (Telugu) (Consonant + Maatra assimilation)

(b) kshh1 + aa3 = kshha (Gujarati) (Consonant + Maatra assimilation)

(c) y1 + u3 = ya (Kannada) (Consonant + Maatra assimilation)

(v) Maatra Assimilation is known as merging two or more Maatra glyphs to form a valid

single Maatra like Eg:

(a) aa3 + e4 = o3 (Hindi) (Maatra assimilation)

(b) e4 + ai5 = ai3 (Telugu) (Maatra assimilation)

(c) e2 + e2 = ai3 (Malayalam) (Maatra assimilation)

53

(vi) Vowel-Maatra Assimilation is known as merging two or more vowel and Maatra glyphs

to form a valid single vowel like Eg:

(a) a + aa3 = aa (Hindi) (Vowel assimilation)

(b) e2 + e = ai (Malayalam) (Vowel assimilation)

(vii) Consonant Clustering in known as merging the half consonant which usually occurs

at the left, right and bottom of a pivotal character to the full consonant like Eg:

(a) ma + b5 = mba (Bengali) (b5 consonant clustering)

(b) r2 + t1 + a4 = tra (Telugu) (r2 consonant clustering)

(c) ma + y3 = mya (Malayalam) (y3 consonant clustering)

(viii) The Schwa Deletion is deleting the inherent vowel /a/ from a full consonant in neces-

sary places like Eg:

(a) va + ii3 = vii (Hindi) (Maatra based schwa deletion)

54

4.7 PERFORMANCE ANALYSIS

Data Preparation: In the development phase for each font, ‘N’ different sets of words were

prepared for each iteration to define the assimilation rules. In the testing phase, 500 unique

words from a new font were used to check the converter performance.

Training: At beginning a simple converter is built with minimal glyph assimilation rules.

The converter is tested with the first set of words by generating the output. Then a native

speaker (or a linguist) is asked to evaluate the output. He/she gives the evaluation results

besides the correction for the wrongly converted words. Based on that input the the existing

rules are modified or a new rule is added. Again the updated converter is tested with the

next set of words. The feedback is collected and modification or update of the rules is done.

This process is repeated until we reach none or minimal conversion errors. This process is

repeated for another font of the language. It is found sufficient to train three different fonts

of different font-families for each language. At the end of this process we will be having the

converter for that language.

Testing: We pass a set of 500 words from a new font of that language to the already

built font converter. The output is again evaluated. This is considered as the performance

accuracy of that font converter.

Evaluation: We have taken 500 unique words per font-type and generated the conversion

output. The evaluations results (Table 4.1) show that the font converter performs consistently

even for a new font-type. So it is only sufficient to provide the glyph-map table for a new

font-type to get a good conversion results. In the Table 4.1 third column shows either training

or testing. Training involves a set of fonts considered for defining and redefining the glyph

assimilation rules for a language while building the converter. Testing involves a font is

used to test or evaluate the already built font converter of that language. Here for some

languages (like Punjabi, Bengali and Oriya) testing wasn’t carried out since we couldn’t find

more downloadable fonts. In the case of Telugu, the number of glyphs and their possible

55

combinations are larger than other languages. Also it is common for all Indian languages

that the pivotal character glyph comes first and other supporting glyphs come next in the

script (Section 2.4). But in Telugu the supporting glyphs may come before the pivotal glyph

which creates ambiguity in forming assimilation rules. Hence the converter performed lower

than other converters. The conversion results are tabulated below in Table 4.1.

4.8 RAPID FASHION OF BUILDING FONT CONVERTERS

The other aim of this research is to find a method to build font converters rapidly for Indian

languages. We have achieved this by following glyph assimilation process to build a single

font converter per language. It is to be noted that the converter is for all fonts within that

language. These font converters are working based on a set of glyph assimilation rules. And

these rules are defined/written on a meta notation known as positional phonetic notations. So

the converters are independent of font of a language but the glyph-map tables are dependent

on fonts. To add a new font apart from the trained fonts, one needs to prepare only the

glyph-map table for the new font. Using the existing font converter of that language, one

can get the converted data by passing the glyph-map table and the input text. For building

the glyph-map table for a new font a native speaker hardly it takes 1-2 man hours.

4.9 SUMMARY

In this chapter we proposed the generic framework for building font converters for Indian

languages, and the related works which provide readily available tools. Two phases in the

framework glyph-mapping and glyph assimilation is discussed. Shape and position infor-

mation of the glyph is exploited to do an unambiguous mapping. Handling the glyph as-

similation process and various techniques with rules have been defined under each stage

with examples to solve assimilation. Finally font converters are built using the proposed

methodology for getting optimum conversion results. In brief, the chapter explains how to

rapidly build a converter for a new font without modifying the existing converter but by

56

Table 4.1: Font-data conversion: Performance results for font converters.

Language Font Name Training / Testing Accuracy

Hindi Amarujala Training 99.2%

Jagran Training 99.4%

Naidunia Training 99.8%

Webdunia Training 99.4%

Chanakya Testing 99.8%

Marathi Shree Pudhari Training 100%

Shree Dev Training 99.8%

TTYogesh Training 99.6%

Shusha Testing 99.6%

Telugu Eenadu Training 93%

Vaarttha Training 92%

Hemalatha Training 93%

TeluguFont Testing 94%

Tamil Elango Valluvan Training 100%

Shree Tam Training 99.6%

Elango Panchali Training 99.8%

Tboomis Testing 100%

57

Kannada Shree Kan Training 99.8%

TTNandi Training 99.4%

BRH Kannada Training 99.6%

BRH Vijay Testing 99.6%

Malayalam Revathi Training 100%

Karthika Training 99.4%

Thoolika Training 99.8%

Shree Mal Testing 99.6%

Gujarati Krishna Training 99.6%

Krishnaweb Training 99.4%

Gopika Training 99.2%

Divaya Testing 99.4%

Punjabi DrChatrikWeb Training 99.8%

Satluj Training 100%

Bengali ShreeBan Training 97.5%

hPrPfPO1 Training 98%

Aajkaal Training 96.5%

Oriya Dharitri Training 95%

Sambad Training 97%

AkrutiOri2 Training 96%

58

minimally providing only the glyph-map table. The next chapter deals with how these font

identification and font conversion modules are integrated with a screen reader for Indian

languages.

59

CHAPTER 5

RAVI: A MULTI-LINGUAL SCREEN READER

This chapter presents a screen reader (viz. RAVI) for Indian languages which implements

the text processing techniques described in the earlier chapters. RAVI (Reading Aid for

Visually Impaired) [38] is a GUI based screen reading software for Indian languages. It is

developed based on a comprehensive and intuitive design methodology. This system assists

the user for navigating through the computer and reads help information based on event

triggered or message popped. It reads menu, text boxes, dialogs and all other widgets on

the computer screen. It guides the user to navigate and to open a program or an application

which user wants to use without others help. Right from the starting of the computer or

execution of the software, the user is always provided with adequate voice over and verbosity

to operate it.

This software seamlessly integrates with almost all the variants of the Windows operat-

ing systems. To enable the end-user to work independently using this software, we provide

appropriate audio/speech support for each letter typed/keyed with audio alerts in case of any

unsupported key is pressed. However, the most vital feature of this software is its support for

handling Indian languages and compatibility to use with MS Office suite, Internet Explorer

and many other native windows applications. A laboratory developed Text-to-Speech Sys-

tem is integrated within RAVI to synthesize in Indian languages. Two independent speech

engines are internally used by RAVI. One for synthesizing English voice using “Microsoft

TTS” [39] system and other one for Indian languages “Indian language TTS” [40] [41] sys-

tem developed at IIIT Hyderabad. Our screen reader identifies the language specific contexts

and automatically selects to the respective synthesizer. The current version of the software

supports five Indian languages namely Hindi, Telugu, Tamil, Kannada and Marathi.

60

5.1 PROPOSED RAVI ARCHITECTURE

The proposed RAVI system architecture in Fig. 5.1 is modular based and it consists of three

sub-systems. They are (i) Text Extractor sub-system, (ii) Text Preprocessing sub-system

and (iii) Text-to-Speech systems sub-system. The sub-systems are further divided into many

modules as given below.

Fig. 5.1: RAVI System Architecture.

• The foremost is text extraction sub-system, functionally classified into:

– (i) Windows Event Handler for capturing the system wide events and maintain-

ing the related messages in stack

61

– (ii) Keyboard or Mouse Input for interfacing with the user to get the keyboard

command / mouse click input

– (iii) Application recognizer for identifying events raised by which active appli-

cation or by which object such as button, check box etc., and

– (iv) Text extractor for extracting the relevant text and some text features (espe-

cially font name) from the active application or object based upon the current

cursor position.

• Secondly text preprocessing sub-system is functionally classified into:

– (i) Text encoding or font-type identifier for determining whether the extracted

text is encoded in Unicode or ISCII or ASCII type font

– (ii) Text converter for converting these different encoded text into a phonetic

transliteration notation IT3

– (iii) Text normalizer for converting the Non-Standard Word (NSW) (like cur-

rency, time, date etc.,.) into a standard pronounceable/readable words, and

– (iv) Language identifier for identifying the language constituent for selecting

appropriate TTS system.

• Lastly text-to-speech systems sub-system is functionally classified into:

– (i) TTS selector for switching between different language TTS systems based

on language

– (ii) Voice loader for loading dynamically available voice for current language

– (iii) Voice inventory for maintaining prerecorded speech segments and language

related features

– (iv) Unit selection algorithm for selecting the optimal speech segment for con-

catenation and

– (v) Speech segment concatenation function for concatenating and smoothing

the selected segments to generate the speech corresponding to IT3 text.

62

5.1.1 Components of RAVI Screen Reader

Developing a full-fledged screen reader for Indian languages is not only a challenging but a

daunting task considering the eventualities aspects involved in the design and implementa-

tion. As we have addressed the common issues in developing a screen reader in the Chapter

1, we now look into some intrinsic application such as internal text storage, identifying the

font type name, identifying the language, converting and normalizing the text as TTS ren-

derable form (IT3 data) and invoking the TTS system which is capable of synthesizing the

voice for the identified language text on the screen. Modules required for these addressing

issues form integral components of RAVI, functionally they are:

• Internal Storage Format of Text: The text extractor module extracts the relevant text

which a is complicated task for Indian languages, because the text can be represented

in different formats, like mark-up (tagged) formats, encrypted, proprietary formats

etc. Relevant text extraction means part or position of text such as word, cell, title,

cursor position etc., such fields explicitly restores the text for retrieving in future.

Even sometime it is helpful if we are able to identify the corresponding font name

also. More over a suitable data type has to be identified to store internally the ex-

tracted text. In this regard we faced problem on trying to extract and store Unicode

data. Later we found that we should use a suitable data type to retrieve it. So we iden-

tified and used data types like ANSI C string and character pointer for ASCII based

text and binary string (bstr) for Unicode (UTF-8) data to store internally. Extracting

text from Notepad and WordPad is complicated since they don’t have any Object Li-

brary files. So we were restricted to use cursor position and Windows messages to

extract the relevant text.

• Font Processing: As we have learned in the introduction Chapter 2 that most of the

Indian language electronic content is available in different font encoding formats.

Indian language content processing is a real world problem for a researcher. Here

processing includes identifying the font encoding and converting the text into TTS

renderable input format. To process the font-data first and foremost job of a screen

63

reader is to identify the underlying encoding or font. There will be no header infor-

mation like in the case of Unicode (UTF-8) encoding or a distinguished ASCII code

ranges for English and Indian languages like in ISCII. All we can get is the sequence

of glyph code values (ASCII values). So these can be identified through statisti-

cal modeling or machine learning techniques. The statistical models are generated

by following some statistical methods using the glyph codes. Converters or models

are developed using some machine learning algorithm to learn the glyph code order.

And these converters or models are capable of identifying the font using the statis-

tical models. Our font identification module uses vector space models for font-type

identification (Chapter 3).

• Text Preprocessing: In screen reader perspective text processing means converting

the extracted text into some encoded/compatible format for the TTS system, i.e font-

to-IT3 conversion, Unicode-to-IT3 conversion, ISCII-to-IT3 conversion etc. Then

we need to normalize the converted text. Text normalization is the process of con-

verting non-standard words like numbers, abbreviations, titles, currency etc., to ex-

panded/natural (pronounceable) words. This can be achieved by writing a text Nor-

malizer for each and every language or designing a generic framework which fits for

most of the languages. There is one more step which is optional. If we are using some

third party TTS systems then we need to convert text in our notation to the notation

supported by that TTS system, since the input notation for TTS is vendor/developer

specific. If we are using our own TTS system then there is no such overhead. Font

Converter module does font-to-IT3 conversion and is covered in detail in (Chapter 4).

• Language Identification: The language information of the text is very important to

invoke the right TTS system. This can be done in two ways either identify the lan-

guage of the extracted text (raw text) or identify the language from the converted text

(phonetic text). Based on the extracted/identified font name it identifies the language,

else it identifies the language based on the phonetic sequences.

64

5.1.2 Implementation

For developing a screen reader, there are basically four options to get the information from

the operating system (Windows). Following approaches are given in the order of complexity

to implement. We exploited first three techniques and combinedly used in our implementa-

tion, last one considered as part of future work.

(i) MSAA [3] : Microsoft Active Accessibility provides access to most of the applications

bundled by Microsoft. Since it has been designed specifically to provide interface for

assistive devices, it is default to test and use it. This being standard way to retrieve

information from the applications, besides this one also gets implicit objects provided

for the programmer. All the common controls are supported by MSAA, available for

Microsoft applications such as MS Word, MS Excel, and Internet Explorer including

Outlook Express etc.

(ii) COM [42] : Component Object Model which is widely used in window based ap-

plications to expose a lot of functionality through automation components. This is

relatively useful as it is a standard way of communication between applications, then

MSAA inherits this model for application interface.

(iii) Win32 API: Window’s 32 application programming interface can be used where

MSAA and COM are not supported. The complexity of this approach is limited

to structural information.

(iv) Last resort would be to capture video driver intercept but harder to implement than

said.

5.1.3 Merits of Proposed Architecture

The robustness of this architecture is the Plug-and-Play (PNP) feature, also with ease of

allowing user to add a new module or replace the existing one with latest. Since all func-

tionalities are segregated and designed in modular approach, makes it lucid for user to ensure

that the configuration details and interfaces are mentioned appropriately. It expects the in-

65

terfaces and configuration details should correlate independent of internal implementation

aspects. For instance, upgrading with much more efficient application for extracting text

from Internet Explorer, just one can replace the old one by the latests along ensuring the

configuration. And also if we want to add a whole new application to it, we just need up-

date it and provide the interfaces and the configuration. All modules are Dynamic Link

Libraries (dlls) henceforth the new module name has to be registered in the RAVI configu-

ration file and the interfaces (APIs) have to be listed appropriately. The main configuration

file is a ravi config.ini (system file) file which has hierarchical sections for each module.

Under each section or sub-section the required information is provided in hash table with

key, value. So the application loads this system file and retrieves the required module name

and its interface pointers and accomplishes the required task. Crux of this architecture lies

in ease of augmenting language, font, application and TTS.

(a) Support for a New Language: Providing support for a new language, the components

specific to language are vector space models for fonts, font converter for that lan-

guage and text normalizer for that language then the TTS system of that language.

These modules have to be registered into the configuration (ravi config.ini) file under

Section [Language] in ravi config.ini as discussed above. No more changes need to

be done in the core software. It will accept and load those modules automatically

performing appropriate action.

(b) Giving support for a New Font: To add support for a new font user needs to follow

two steps. Firstly the vector space model of that font is to be added to the list under

Section [FontModels] in ravi config.ini. Secondly, adding the glyph-map table of

that font under Section [GlyphMapTables] in ravi config.ini. In the phase of font

identification, the font identifier will find model of the font and hence we can get

the font name. Then from [FontConverter] Section in ravi config.ini, we can get the

required font converter module name. The font converter uses this glyph-map table

and converts the text into phonetic notations.

(c) Support for a New TTS: Adding new TTS by mentioning it under Section [TTS] in

66

ravi config.ini. Screen reader expects basic commands support from TTS systems

such as Start, LoadVoice, Speak and Stop. Under each TTS Section (eg: [HindiTTS])

the four commands should be provided. So the screen reader is totally independent

of TTS architecture, used for text synthesis, supported functionalities etc.,. It only

expects these basic interface pointers to produce the speech output. When the text

and the language information are passed to the TTS sub-system it selects the right

synthesizer automatically based on the language. It loads the TTS with the selected

voice and synthesizes the text into speech and then plays it out. During the time of

toggling of TTS or closing the application, it stops the current running TTS system.

(d) Support for a New Application: Including support for new application is bit compli-

cated. User is restricted to avail this facility as of now but developer has free hand on

it to add new application module without disturbing the existing system.

5.2 ASPECTS OF USER INTERFACE

The common user interface adopted in RAVI is through standard/default input devices (key-

board or mouse). It performs the desired action according to pressing the shortcut keys (a

combination of keys) or focus of mouse or single click by the user. It automatically an-

nounces the error or status message to the user. Providing interface through keyboard we

followed two kind of supports; firstly utilizing the default windows shortcut keys and our

own defined application specific shortcut keys.

In designing the shortcut keys for applications, we referred the existing commercial

screen readers and collected feedback from the users. From this test/benchmarking we ob-

served that the existing screen readers offer a lot of shortcut keys which are practically

impossible to remember or too confusing for the users. So we wanted the minimal set of

shortcut keys which covers all basic functionalities addressing the ease of remembrance. Ac-

cordingly we designed shortcut keys for each and every application supported for reading

like previous, current and next word or sentence.

And we found that the users are well familiar with the default windows shortcut keys.

67

So we utilized those keys as it readily provides support for normal operations. They can

access the application menus, buttons, list boxes etc., using the default windows shortcut

keys.

Blind users always preferred to use keyboard only, even though sometimes they want

mouse support also. Sometimes normal users or students also use screen reader, in that case

they prefer mouse instead of keyboard. So we provided mouse support also by playing aloud

the object, menu item, button etc., through mouse focus or click.

In the GUI of the software, we also provided menus like file, help, language, options and

settings. Using this user can access some sample files or help document. By using language

menu user can change language specific TTS support at operating system level.

5.3 FUNCTIONALITIES COVERED

The functionalities offered in RAVI is classified into two. Firstly the general or basic and

secondly application specific functionalities. The general functionalities are speaking out

time, date and reading the text of simple edit control or rich edit control. It speaks out the

menu, combo box and list box items and the selected items. Application specific functional-

ities are speaking out the cell position in Excel sheet, goto the last slide of the presentation,

speaking out the subject of the mail in Outlook etc.,.

They are tabulated in Table 5.1 under categories such as general, office suite, Internet

applications and controls. For each category the number of items supported and their func-

tionalities are listed out.

5.4 TESTING AND EVALUATION

Ergonomic systems like RAVI are designed using modularized sub-systems, are composed

of procedures and functions. Henceforth testing process should therefore be carried in stages

where testing is scaled out incrementally in conjunction to system implementation. Tradi-

tional system testing process consist of five stages. Generally, the sequence of testing activ-

68

Table 5.1: Functionalities supported by RAVI.

Category Item Functionalities

General reads text as character, word, sentence and paragraph

informs text attributes like font size, type and style

echoes the character or word is being typed

navigating and accessing the desktop

reading out control panel, start menu and menus of various applications

reading via keyboard commands and mouse movement/click

option to change TTS or languages on the fly

Office suite MS Word reads previous, next and current character or word or sentence.

announces about tables, format and alignment

MS Excel reads cell content, informs row or column number and speaks out formula

WordPad reads rich edit controls and previous, next and current character or word or sentence

Notepad reads previous, next and current character or word or sentence

PowerPoint reads slides informations, contents and navigates through slides

Outlook reads mail attributes like From, To, Cc, Bcc, subject, mail content and navigates through mails

Internet Applications Internet Explorer reads previous and next lines, links informations,

headings and images (alt text)

News Portals reads headlines, news items (whole content or line by line) and navigates to pages

Email supports reading emails in all leading email service providers

Controls Push Button reads the caption and its state

Checkbox reads the caption and its state

Radio Button reads the caption and informs whether it is checked or not

Group reads the group name then the items

Drop-Down Combobox reads the label and the content of the edit control

Drop-Down Listbox reads the label and the selected/focused item

Simple Combobox reads the content of the edit control

Single Line Edit Control reads previous, next and current character or word

Multi-Line Edit Control along single line edit control capabilities it reads previous and next line,

sentences and paragraphs

List Box reads the selected/focused item in the list

Static Controls reads the entire text of the static control since it may be a message or a label

69

Controls Calendar reads the date information

Progress Bar reads the percentage of task is done

Tooltip Control reads the tool tip text

Tree View reads the current item and the level in the tree

ities are component testing, integration testing and user testing. This is an iterative process

where the feedback from one testing stage is piped to the next testing stage.

(a) Unit Testing: Individual components are tested to ensure that they operate correctly.

Each component is tested independently without other system components. We have

done an in-house testing of each unit.

(b) Module Testing: A module is a collection of dependent components. A module encap-

sulates related components so can be tested without other system modules. We have

done an in-house testing of all modules.

(c) Sub-system Testing: This phase involves testing collection of modules which have been

integrated into sub-systems. The most common problem which arises in large soft-

ware systems are sub-system interface mismatches. So the sub-system test process

should therefore concentrate on the detection of interface errors by rigorously exercis-

ing these interfaces. We have done an in-house testing of sub-system after integrating

all modules.

(d) System Testing: The sub-systems are integrated to make up the entire system. The test-

ing process is targeted for finding errors which result from unanticipated interaction

between sub-systems and system components. It is also deals with validating that

the meets it’s functional and non-functional requirements. This testing is done by the

targeted users other than in-house users and the feedback accounted.

(e) Acceptance Testing: This is the final stage of testing process before the system is ac-

cepted for operational use. The system is tested with the data supplied by the system

procurer rather than simulated test data. This testing reveals requirement problems,

70

where the system does not really meet the users need or the system’s performance is

unacceptable. This is also called as alpha testing.

When a system is to be marked as a software product, a testing process called beta

testing is done. This testing involves delivering a system to a number of potential customers,

agreeing to use the system. They report the problems to the developers. After this feedback,

the system is modified and either released for further beta testing or for general sale. We have

compiled this testing by circulating a copy of the software to outside people and collected

feedback for the same task. And, also we have done real-time testing by installing the

software at L.V.Prasad Eye Hospital [43], Hyderabad in their teaching lab. They have

successfully tested and provided the feedback from the blind students. Some of them are:

• It is easy to instal.

• Feature to define their own shortcut-keys/hot-keys for a command.

• Improve the feature to fill-up on-line application/form.

• Provide more voices per language so that they can choose the suitable one.

All these and other comments collected from many other users will be updated in the

next coming version.

5.5 LIMITATIONS

Every system has its own limitations. RAVI is also no exception, listed below are some of

them.

• Text extraction: At times RAVI fails to extract the text from some controls (eg: lan-

guage bar) which do not expose any interface to extract text.

• OS level support: RAVI provides operating system level support for Indian languages

using dictionaries. All the basic commands are translated in the interested language.

But these dictionaries have limited entries. So it may fail to translate the new/rare

words.

71

• TTS switching: When switching between one language to another, the TTS takes

considerable time to load the voice database. And if the switching is so frequent, it

may fail to load it and eventually crashes or hang up.

• TTS buffer size: TTS may often have input buffer limitation problems

• Font identification: RAVI comes with models for fonts currently in usage and can

identify the font name. For any newly developed font, it is capable of building models

by providing the sufficient training data. However it fails to identify the font for

which the model is missing.

• Font Conversion: RAVI comes with glyph-map tables for fonts currently in usage

and can convert those text. For any newly developed font, it is necessary that either

the RAVI developer or the user has to provide the glyph-map table.

• Language identification: Since RAVI is developed to work with only Indian lan-

guages it will identify any Indian language but it will fail to identify any foreign

language. So it will try to speak out in English.

5.6 SUMMARY

This chapter deals with the design and development of the multi-lingual screen reader for

Indian languages. Various components for processing the Indian language specific issues

were discussed. A new modular based architecture for the screen reader, and its advantages

such as ease to add a new module i.e plug and play (PNP) is highlighted. Modules explained

in the previous chapters, font identification and font conversion have been integrated with

the software. Customized functionality for various applications and intuitive controls were

listed out. Software testing paradigms for testing and benchmarking screen reader is done

and feedbacks/results are registered.

72

CHAPTER 6

CONCLUSION AND FUTURE WORK

Given that there are 23 official languages and 11 scripts in India, the amount of electronic

text available in glyph based font is greater than the text available in Unicode format which

makes preprocessing the font-data necessary. In this thesis, we have proposed a new method

for identification of font-type using TF-IDF approach and have designed a generic frame-

work for building font converters to convert font-data to a phonetic transliteration scheme.

We have demonstrated the effectiveness of our conversion to be as high as 99.5% on 37 fonts

of 10 different languages. This thesis also explained the nature and difficulties associated

with Indian language electronic data. The results show the proposed methodologies are suit-

able for processing font-data for Indian languages. The advantages and disadvantages of the

two proposed approaches are as follows:

(i) Biglyph (current and next glyph) based font-type models yield good classification results

and are also time effective. For more accurate classification one can consider triglyph

or more glyphs for modeling. In font-type modeling when the number of glyphs in the

glyph sequence increases, it consumes more space and the process is computationally

slower. In font-type identification it takes more time to load the model into memory

and also the model files occupy more space.

(ii) In font-data conversion we found that three different font-type of different font-families

data is sufficient to train or to define assimilation rules for a language. A new font-

type data can be converted with the same accuracy by providing only the glyph-map

table of the new font-type. We have achieved 99.5% overall accuracy. Although not

encountered in our observations, there may be a rare font in a language which may

require addition of new rules. The effectiveness of the framework has been verified

73

for development of font converters in all Indian Languages.

As an outcome of this thesis, we have developed RAVI (Reading Aid for Visually Im-

paired) [38] a GUI based screen reading software for Indian languages. It was developed

based on a comprehensive and intuitive design methodology with plug-in-play architecture

to add new font converters, text-to-speech systems in a easy fashion. This system assists

the user for navigating through the computer and reads help information based on event

triggered or message popped. It reads menu, text boxes, dialogs and all other widgets on

the computer screen. It guides the user to navigate and to open a program or an application

which user wants to use without others help. Right from the starting of the computer or ex-

ecution of the software, the user is always provided with adequate voice over and verbosity

to operate it.

However, the most vital feature of this software is its support for handling Indian lan-

guages and compatibility to use with MS Office suite, Internet Explorer and many other

native windows applications. Two independent speech engines are internally used by RAVI.

One for synthesizing English voice using “Microsoft TTS” [39] system and other one for

Indian languages “Indian language TTS” [40] [41] system developed at IIIT Hyderabad.

Our screen reader identifies the language, appropriate font-type, performs font-conversion

and automatically selects the respective synthesizer. The current version of RAVI software

supports five Indian languages namely Hindi, Telugu, Tamil, Kannada and Marathi.

6.1 FUTURE WORK

We have planned to create and add more glyph-map tables for more fonts for all Indian

languages. We have planned to improve the quality and increase the support by adding more

fonts with the screen reading software. Need to design a new methodology for websites

which do not release their font or using some dynamic font rendering mechanism.

74

APPENDIX A

IT3 PHONES MAP FOR INDIAN LANGUAGE CHARACTERS

In this appendix, we provide the IT3 phones mapping for Indian language characters.

One can observe that the IT3 phones are assigned according to the pronunciation of the

phones in the native language. This makes it very easy to understand the notation and use

it effectively. Fig. A.1 shows the remaining consonant phones list in IT3 scheme. The

mapping is showed for 8 different Indian languages.

Fig. A.1: IT3 consonant phones for Indian languages - part 2.

APPENDIX B

FONT CHARTS AND FONT GLYPH MAP TABLES

In this appendix, we provide font charts for two fonts namely Eenadu (Telugu) and

Jagran (Hindi). It gives an idea how the glyphs are accommodated in the ASCII code range

(0 to 255). This kind of chart is necessary to prepare a glyph map table for every font as

shown in the figures B.4 to B.13. By looking at this chart a linguist or a native speaker of

that language can easily prepare the glyph map table. The rows and columns of this table

are in decimal which are used to calculate the the glyph code. The glyph code value for a

glyph/cell is calculated like column + row value (80 + 2 = 82).

Fig. B.2: Portion of Eenadu Font Chart - Telugu.

Fig. B.3: Portion of Jagran Font Chart - Hindi.

As stated previously, the glyph-map tables prepared for different languages are provided

below. The left most column in the table is the glyph code and on its right are it’s corre-

sponding glyph and equivalent IT3 notation with position number attached. It clearly shows

that for a single code value different glyphs get assigned for different fonts.

77

Fig. B.4: Portion of Hindi Glyph Map Table.

Fig. B.5: Portion of Marathi Glyph Map Table.

78

Fig. B.6: Portion of Gujarati Glyph Map Table.

Fig. B.7: Portion of Bengali Glyph Map Table.

79

Fig. B.8: Portion of Oriya Glyph Map Table.

Fig. B.9: Portion of Punjabi Glyph Map Table.

80

Fig. B.10: Portion of Tamil Glyph Map Table.

Fig. B.11: Portion of Telugu Glyph Map Table.

81

Fig. B.12: Portion of Kannada Glyph Map Table.

Fig. B.13: Portion of Malayalam Glyph Map Table.

82

APPENDIX C

GLYPH ASSIMILATION RULES FOR INDIAN LANGUAGES

In this appendix, we provide the glyph assimilation rules defined by us and used in the

above mentioned font converters. For every Indian language a set of glyph assimilation rules

are given under respective levels. Rules are written using IT3 scheme 2.3.

C.1 GLYPH ASSIMILATION RULES FOR HINDI

C.1.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) (d’a, d’ha, ra) + Nukta = (d-a, dh-a, r’a)

(iii) (ka, kha, ga, ja, ta, na, la, ya) + Nukta = (k, kh, g, j, t, n, l, y) + “-a”

C.1.2 Language Preprocessing

(i) REF (r4) moves before the first full consonant

(ii) i + r4 = ii

(iii) n: + Maatra = Maatra + n:

(iv) half consonant + aa3 = full consonant

(v) i2 moves to next of the next full consonant

C.1.3 Maatra Assimilation

(i) aa3 + e-4 = o-3

(ii) aa3 + e’4 = o’3

(iii) aa3 + e4 = o3

(iv) aa3 + ai4 = au3

(v) aa3 + ei4 = o3

(vi) aa3 + ein:4 = on:3

C.1.4 Vowel Assimilation

(i) a + o-3 = o-

(ii) a + o’3 = o’

(iii) a + o = o

(iv) a + au3 = au

(v) a + aa3 = aa

(vi) e + e-3 = e-

(vii) e + e’3 = e’

(viii) e + e3 = ai

(ix) ei + ei4 = ei

C.1.5 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.2 GLYPH ASSIMILATION RULES FOR TAMIL

C.2.1 Modifier Modification

(i) full consonant + Halant = half consonant

84

C.2.2 Language Preprocessing

(i) aa3 + Halant = r1

(ii) aa3 + (i4 or ii4) = r1 + (i4 or ii4)

(iii) (e2, ei2, ai2) + consonant = consonant + (e2, ei2, ai2)

C.2.3 Maatra Assimilation

(i) e2 + aa3 = o3

(ii) ei2 + aa3 = oo3

(iii) e2 + l’a = au3

C.2.4 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.3 GLYPH ASSIMILATION RULES FOR GUJARATI

C.3.1 Modifier Modification

(i) full consonant + Halant = half consonant

C.3.2 Language Preprocessing

(i) REF (r4) moves before the first full consonant

(ii) i2 moves to next of the next full consonant

(iii) left Maatra + consonant = consonant + left Maatra

(iv) m:1 + n: = m:

(v) full consonant + m:1 + n: = full consonant + e-3

85

C.3.3 Maatra Assimilation

(i) aa3 + e4 = o3

(ii) aa3 + m:1 = o-3

(iii) aa3 + ai4 = au3

(iv) aa3 + ein:4 = on:3

(v) aa3 + ai4n:4 = aun:3

C.3.4 Vowel Assimilation

(i) a + e4 = e

(ii) a + e-3 = o-

(iii) a + o3 = o

(iv) a + ai4 = ai

(v) a + au3 = au

(vi) a + aa3 = aa

C.3.5 Consonant Assimilation

Assume CONSO = (kh1, g1, gh1, ch1, b1, bh1, p1, t1, th1, tr1, tt1, sh1, shh1, s1, x1, n1,

nd-1, nj-1, nn1, m1, y1, v1, l1, l’1, h1, hy1, dy1)

(i) CONSO + aa3 = + a

(ii) CONSO + o-3 = + e-3

(iii) CONSO + o3 = + e3

(iv) ruu + aa3 = stra

(v) jaa + e4 = jo

86

C.3.6 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.4 GLYPH ASSIMILATION RULES FOR MALAYALAM

C.4.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) left Maatra + n1 = n1 + left Maatra

C.4.2 Language Preprocessing

(i) e2 + e2 + consonant = consonant + e2 + e2

(ii) left Maatra + consonant = consonant + left Maatra

C.4.3 Maatra Assimilation

(i) e2 + e2 = ai3

(ii) e2 + aa3 = o3

(iii) ei2 + aa3 = oo3

(iv) e2 + au3 = au3

C.4.4 Vowel Assimilation

(i) e + e2 = ai

(ii) o + aa3 = oo

(iii) i + au3 = ii

(iv) u + au3 = uu

(v) o + au3 = au

87

C.4.5 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.5 GLYPH ASSIMILATION RULES FOR TELUGU

C.5.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) n: + Halant = r1

C.5.2 Language Preprocessing

(i) a4 + (n:, p1, s1, shh1, h1, ph1, ch1) = (n:, p1, s1, shh1, h1, ph1, ch1) + a4

(ii) left Maatra + consonant = consonant + left Maatra

(iii) ai5 + e4 = e4 + ai5

(iv) (vowel or n:) + (e4 or o4) + consonant = consonant + (e4 or o4)

(v) h1 + aa4 = ha

(vi) Maatra + n: = n: + Maatra

C.5.3 Consonant Assimilation

(i) half consonant + a4 = full consonant

(ii) n: + a4 = ra

(iii) n: + half consonant + Maatra = r1 + half consonant + Maatra

(iv) (h5 + di) or (di + h5) = dhi

(v) (h5 + d1) or (d1 + h5) = dh1

(vi) (h5 + s1) or (s1 + h5) = s1

88

(vii) (d1 + th1) or (th1 + d1) = dh1

(viii) (h5 + d5) or (d5 + h5) = dh1

(ix) (h5 + d’1) or (d’1 + h5) = d’h1

(x) (ch1, p1) + h5 = (ch1, ph1)

(xi) h1 + a4 + aa4 = ha

(xii) v1 + u3 = m1

(xiii) ri + t’h1 = t’hi

C.5.4 Maatra Assimilation

(i) (a4 + Maatra) or (Maatra + a4) = Maatra

(ii) (e4 + ai5) or (ai5 + e4) = ai3

(iii) e4 + i4 = ei4

(iv) o4 + i4 = oo4

(v) u3 + u3 = u1

C.5.5 Consonant-Vowel Assimilation

(i) e +h5 = ph1

(ii) e + a4 = va

(iii) e + Maatra = p1 + Maatra

(iv) ba + u1 = ru

(v) va + u3 = ma

(vi) va + uu3 = maa

(vii) v1 + a4 + (u1 or uu1) = ma + (u1 or uu1)

(viii) v1 + e4 + u1 = mo

89

(ix) v1 + ei4 + u3 = moo

(x) v1 + e4 + uu3 = moo

(xi) v1 + a4 + uu3 = maa

(xii) v1 + a4 + u3 = ma

(xiii) vi + u3 = mi

(xiv) vi + i4 + u3 = mii

(xv) vi + uu3 = mii

(xvi) n: + (u1 or uu1) = yi

(xvii) y1 + a4 + u3 = ya

(xviii) y1 + a4 + uu3 = yaa

(xix) y1 + ei4 + u3 = yei

(xx) y1 + e4 + uu3 = yoo

(xxi) y1 + e4 + u3 = ye

(xxii) y1 + u3 = yi

(xxiii) ya + u3 = ya

(xxiv) ya + uu3 = yaa

(xxv) p1 + u3 = ma

(xxvi) p1 + a4 + u3 = ma

(xxvii) p1 +e4 + uu3 = ghoo

(xxviii) p1 + a4 + u3 = ghu

(xxix) p1 + a4 + uu3 = ghoo

(xxx) ph1 + u3 = gh1

(xxxi) ph1 + a4 + u1 = ghu

(xxxii) ph1 + a4 + uu3 = ghu

90

(xxxiii) pha + u3 = gha

(xxxiv) pha + u1 = ghu

(xxxv) shh1 + u3 = jh1

(xxxvi) shh1 + a4 + u1 = jhu

(xxxvii) shh1 + a4 + u3 = jha

(xxxviii) m1 + e4 + u3 = mo

(xxxix) m1 + e4 + uu3 = moo

C.5.6 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.6 GLYPH ASSIMILATION RULES FOR KANNADA

C.6.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) u1 + Halant = u3

C.6.2 Language Preprocessing

(i) arkkaa vottu (r3) moves before to the next first full consonant

(ii) left Maatra + consonant = consonant + left Maatra

C.6.3 Consonant Assimilation

(i) half consonant + a4 = full consonant

(ii) e + a4 = va

(iii) n: + u3 = y1

91

(iv) n: + u3 + a4 = y1

C.6.4 Maatra Assimilation

(i) (a4 + Maatra) or (Maatra + a4) = Maatra

(ii) (e4 + ai5) or (ai5 + e4) = ai3

(iii) e4 + (uu3 or uu5) = o3

(iv) (e4 + ii3) or (ii3 + e4) = ei3

(v) u3 + u1 + aa4 = aa3

(vi) u3 + u3 = u1

C.6.5 Consonant-Vowel Assimilation

(i) e + a4 + u3 = ma

(ii) e + a4 + uu3 = maa

(iii) e + aa4 = vaa

(iv) e + e4 + u1 = mu

(v) e + e4 + u3 = me

(vi) e + e4 + u3 + ii3 = mei

(vii) e + e4 + u3 + ai5 = mai

(viii) e + e4 + u3 + uu3 = mo

(ix) e + e4 + u3 + uu3 + ii3 = moo

(x) ri + jh3 + u3 = jhi

(xi) yi1 + u3 = yi

(xii) y1 + u3 = ya

(xiii) y1 + uu3 = aa

92

(xiv) y1 + e4 + u3 = ye

(xv) y1 + e4 + u3 + ii3 = yei

(xvi) y1 + e4 + u3 + uu3 = yo

(xvii) y1 + e4 + u3 + uu3 + ii3 = yoo

(xviii) y1 + e4 + uu3 = yuu

(xix) ye1 + u3 = ye

(xx) ye1 + u3 + ii3 = yei

(xxi) ye1 + u3 + ai5 = yai

(xxii) ye1 + u3 + uu3 = yo

(xxiii) ye1 + u3 + uu3 + ii3 = yoo

(xxiv) ye1 + uu3 = yo

(xxv) ye1 + uu3 + ii3 = yoo

(xxvi) ya + (u3 or u1) = ya

(xxvii) ra + jh3 = jha

(xxviii) ra + jh3 + u3 = jha

(xxix) ph1 + u3 = gh1

(xxx) va + aa3 = maa

(xxxi) va + u1 = mu

(xxxii) va + uu3 = muu

(xxxiii) v1 + o3 = mo

(xxxiv) v1 + oo3 = moo

(xxxv) v1 + e4 + u3 = me

(xxxvi) v1 + e4 + u3 + ii3 = mei

(xxxvii) v1 + e4 + u3 + ai5 = mai

93

(xxxviii) vi + u3 = mi

(xxxix) vi + u3 + ii3 = mii

(xxxx) r1 + e4 + jh3 = jha

(xxxxi) r1 + e4 + jh3 + u3 = jhe

(xxxxii) r1 + e4 + jh3 + u3 + ii3 = jhei

(xxxxiii) r1 + e4 + jh3 + u3 + ai5 = jhai

(xxxxiv) r1 + e4 + jh3 + uu3 = jho

(xxxxv) r1 + e4 + jh3 + uu3 + ii3 = jhoo

(xxxxvi) shi + consonant + ii3 = shi + consonant + i3

(xxxxvii) shi + ii3 = shi + i3

C.6.6 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.7 GLYPH ASSIMILATION RULES FOR PUNJABI

C.7.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) (la, kha, sa, pha, ja, ga) + Nukta = (l’a, kh-a, sha, ph-a, j-a, g-a)

C.7.2 Language Preprocessing

(i) (n: or m:) + right side Maatra = Maatra + (n: or m:)

(ii) left Maatra + consonant = consonant + left Maatra

(iii) om:1 + m4 = om:

(iv) i2 + consonant = i2 moves next to the next full consonant

94

C.7.3 Vowel Assimilation

(i) a + aa3 = aa

(ii) a + aa3n: = aan:

(iii) a + a-4 = a-

(iv) a + ai4 = ai

(v) a + au4 = au

(vi) i1 + i2 = i

(vii) i1 + i3 = ii

(viii) u1 + u5 = u

(ix) u1 + e4 = e

C.7.4 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.8 GLYPH ASSIMILATION RULES FOR BENGALI

C.8.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) (ba, ya, d’a, d’ha, ja) + Nukta = (ra, y-a, d-a, r’a, j-a)

C.8.2 Language Preprocessing

(i) left Maatra + consonant = consonant + left Maatra

(ii) i2 moves to next of the next full consonant

(iii) (m: or n:) + Maatra = Maatara + (m: or n:)

(iv) (sh1, kh1, p1, nd-1, g1, th1, dh1) + aa3 = (sha, kha, pa, nd-a, ga, tha, dha)

95

C.8.3 Maatra Assimilation

(i) (au4 + e2) or (e2 + au4) = ai3

(ii) e2 + aa3 = o3

(iii) e2 + aa3 + au4 = au3

(iv) e2 + au3 = au3

C.8.4 Vowel Assimilation

(i) a + aa3 = aa

(ii) (e + au4) or (au4 + e) = ai

(iii) (o + au4) or (au4 + o) = au

C.8.5 Consonant Assimilation

(i) tta + k3 = kta

(ii) tra + k3 = kra

(iii) cha + chha = chchha

(iv) tra + r3 = kra

(v) dba + h3 = ddha

(vi) kba + r3 = kka

(vii) x4 + k3 = kta

(vi) dba + uu3 = ddha

(vii) bba + uu3 = bdha

(viii) nba + ii3 = ndha

96

C.8.6 Consonant-Vowel Assimilation

(i) d’a + au4 = u

(ii) ha + au4 = i

(iii) (d’hs + au4) or (au4 + d’ha) = t’a

(iv) e + r3 = kra

(v) e + nj-3 = nj-a

(vi) dba + uu3 = ddha

(vii) bba + uu3 = bdha

(viii) nba + ii3 = ndha

(ix) x4 + e = kra

(x) x4 + o = tta

C.8.7 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

C.9 GLYPH ASSIMILATION RULES FOR ORIYA

C.9.1 Modifier Modification

(i) full consonant + Halant = half consonant

(ii) (d’a, d’ha) + Nukta = (d-a, dh-a)

C.9.2 Language Preprocessing

(i) left Maatra + consonant = consonant + left Maatra

(ii) REF (r4) moves before the first full consonant

(iii) i2 + consonant = i2 moves next to the next full consonant

97

C.9.3 Maatra Assimilation

(i) e2 + aa3 = o3

(ii) e2 + au3 = au3

(iii) e2 + ai4 = ai3

(iv) e2 + o4 = ai3

C.9.4 Vowel Assimilation

(i) a + aa3 = aa

C.9.5 Consonant Assimilation

(i) (h + da) or (da + h) = ha

C.9.6 Consonant Cluster

full consonant + (consonant2/3/5) = consonant cluster

98

REFERENCES

[1] LowVisionCare, Visual Problem Status Globally.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1705713.

[2] Visual Problem Status in India. http://www.fastcompany.com/magazine/43/drv.html.

[3] MSDN, Microsoft Active Accessibility.
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnanchor/html/accessibility.asp.

[4] Unicode Consortium - Universal Code Standard. http://www.unicode.org.

[5] Prahallad Lavanya, Prahallad Kishore and GanapathiRaju Madhavi, “A simple approach for
building transliteration editors for indian languages,” Journal of Zhejiang University Science,
vol. 6A, no. 11, pp. 1354–1361, 2005.

[6] EmacSpeak Screen Reader. http://emacspeak.sourceforge.net.

[7] Freedom Scientific, Job Access and Work Software (JAWS) for Windows.
http://www.freedomscientific.com/fs products/software jaws.asp.

[8] G W Micro, Windows-Eyes Screen Reader. www.gwmicro.com/Window-Eyes.

[9] Dolphin Computer Access, HAL Screen Reader.
http://www.yourdolphin.com/productdetail.asp?id=5.

[10] Kruzweil, Text Reader with TTS. http://www.kurzweiledu.com/support k3000win.asp.

[11] NAB NewDelhi, Screen Access For All, (SAFA): Screen Reader in Indian languages.
http://safa.sourceforge.net.

[12] Prologix, Vaachak: The Indian Language Text to Speech Software.
http://www.prologixsoft.com/vaachak.htm.

[13] IIT Madras, Software for the Visually Handicapped.
http://acharya.iitm.ac.in/disabilities/software.php.

[14] Analytica, VoiceDot Screen reader for India.
http://www.analytica-india.com/products/aries.html.

[15] UTF - Unicode Transformation Form. http://www.unicode.org/versions/Unicode 4.0.1.

[16] ISCII - Indian Standard Code for Information Interchange. http://tdil.mit.gov.in/standards.htm.

[17] ISO/IEC JTC1/SC18/WG8, Document Processing and Related Communication - Document
Description and Processing Languages, PDTR15285 An operational model for characters and
glyphs, 1997. www1.y12.doe.gov/capabilities/sgml/wg8/document/1909.pdf.

99

[18] Ganapathiraju M., Balakrishnan M., Balakrishnan N. and Reddy R., “Om: One tool for many
(indian) languages,” Journal of Zhejiang University Science, vol. 6A, no. 11, pp. 1348–1353,
2005.

[19] INGLE N. C., “A language identification table,” 1976.

[20] Beesley, K. R., “Language identifier: A computer program for automatic natural-language iden-
tification on on-line text,” 1988.

[21] William B. Cavnar and John M. Trenkle, “N-gram-based text categorization,” in Proceedings
of SDAIR-94, 3rd Annual Symposium on Document Analysis and Information Retrieval, (Las
Vegas, US), pp. 161–175, 1994.

[22] Penelope Sibun and Jeffrey C. Reynar, “Language identification: Examining the issues,” in 5th
Symposium on Document Analysis and Information Retrieval, (Las Vegas, Nevada, U.S.A.),
pp. 125–135, 1996.

[23] William J. Teahan and David J. Harper, “Using compression-based language models for text
categorization,” in Workshop on Language Modeling and Information Retrieval, 2001.

[24] Emmanuel Giguet, “Multilingual sentence categorization according to language,” in Proceed-
ings of the European Chapter of the Association for Computational Linguistics SIGDAT Work-
shop, (Dublin, Ireland.), pp. 73–76, 1995.

[25] G. Kikui, “Identifying the coding system and language of on-line documents on the internet,”
1996.

[26] A. K. Singh, “Study of some distance measures for language and encoding identification,” in
Proceedings of the Workshop on Linguistic Distances, (Sydney, Australia), pp. 63–72, Associ-
ation for Computational Linguistics, July 2006.

[27] Anil Kumar Singh and Jagadeesh Gorla, “Identification of languages and encodings in a mul-
tilingual document,” in Proceedings of the 3rd ACL SIGWAC Workshop on Web As Corpus,
(Louvain-la-Neuve, Belgium.), 2007.

[28] XiuFen Miao, Fang Yang, Xue-Dong Tain and Bao-Lan Guo, “Identification of languages and
encodings in a multilingual document,” in Conference on Machine Learning and Cybernetics,
(Beijing, China.), 2002.

[29] M. Jung and Y. Shin and S. Srihari, “Multifont classification using typographical attributes,”
in ICDAR ’99: Proceedings of the Fifth International Conference on Document Analysis and
Recognition, (Washington, DC, USA), p. 353, IEEE Computer Society, 1999.

[30] Min-Chul Jung Yong-Chul Shin and Srihari S.N., “Identification of languages and encodings in
a multilingual document,” in Fifth International Conference on Document Analysis and Recog-
nition, ICDAR, (Banglore, India), 1999.

[31] TBIL Data Converter. www.bhashaindia.com/Downloadsv2/Category.aspx?ID=4.

[32] FontSuvidha - Devanagari Font Conversion.
http://www.cybershoppee.com/products/fontsuvidha5.htm.

100

[33] IConverter, A utility program for various code conversions.
http://www.cse.iitk.ac.in/users/isciig/iconverter/main.html.

[34] Akshar Bharati, Nisha Sangal, Vineet Chaitanya, Rajeev Sangal and G Uma Maheshwara Rao,
“Generating converters between fonts semi-automatically,” in Proceedings of SAARC confer-
ence on Multi-lingual and Multi-media Information Technology, (CDAC, Pune, India), 1998.

[35] Himanshu Garg, “Overcoming the font and script barriers among indian languages,” MS Thesis
at International Institute of Information Technology Hyderabad, India, 2005.

[36] Khudanpur S. and Schafer C., Devanagari Converters. http://www.cs.jhu.edu/cschafer/jhu de-
vanagari cvt ver2.tar.gz.

[37] M.N.S.S.K. Pavan Kumar, S.S. Ravi Kiran, Abhishek Nayani, C.V. Jawahar and P J Narayanan,
“Tools for developing ocrs for indian scripts,” in Proceedings of the Workshop on Document
Image Analysis and Retrieval (DIAR:CVPR’03), (Madison, WI, USA.), 2003.

[38] IIIT Hyderabad, Reading Aid for Visually Impaired (RAVI) Screen Reader for Indian lan-
guages.
http://ltrc.iiit.ac.in/newsletter/trishna-august2005.pdf.

[39] Microsoft TTS. http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/SAPI51sr/html/SDKtutorial tts.asp.

[40] S.P.Kishore, Rohit Kumar and Rajeev Sangal, “A data driven synthesis approach for indian
languages using syllable as basic unit,” in Proceedings of International Conference on Natural
Language Processing (ICON), (Mumbai, India), 2002.

[41] Rohit Kumar, “A genetic algorithm for unit selection based speech synthesis,” in International
Conference on Spoken Language Processing (Interspeech - ICSLP), (Jeju, Korea.), 2004.

[42] MSDN, Automating Office with VC++: Knowledge Base Articles.
http://msdn.microsoft.com/library/default.asp?url=/archive/en-
us/dnaro97ta/html/msoautovc.asp.

[43] L V Prasad Eye Hospital - Vision Rehabilitation Center. http://www.lvpei.org/.

101

LIST OF PUBLICATIONS

The work done during my masters has been disseminated to the following confer-

ences/journals:

1. Anand Arokia Raj, Rahul.Ch, Susmitha, “A Voice Interface for the Visually Im-

paired” at Sciences of Electronic, Technologies of Information and Telecommuni-

cations (SETIT) - March 2005 Susa, Tunisia.

2. Anand Arokia Raj, A Susmitha, S P Kishore, “Indian Language Text-To-Speech In-

terface for Visually Impaired” at International Conference on Natural Language Pro-

cessing (ICON) - December 2005, IIT-Kanpur, India.

3. Anand Arokia Raj, Tanuja Sarkar, Sathish Chandra Pammi, Santhosh Yuvaraj, Mo-

hit Bansal, Kishore Prahallad, Alan W Black, “Text Processing for Text-To-Speech

Systems in Indian Languages” at 6th ISCA Workshop on Speech Synthesis (SSW6)

August 2007, Bonn, Germany.

4. Anand Arokia Raj, Kishore Prahallad, “Identification and Conversion of Font-Data in

Indian Languages” at International Conference on Universal Digital Library (ICUDL2007)

November 2007, Pittsburgh, USA.

102

CURRICULUM VITAE

1. NAME: A.Anand Arokia Raj

2. DATE OF BIRTH: 10 January 1982

3. PERMANENT ADDRESS:
A.Anand Arokia Raj

S/O: A.Antoni Muthu Rayar

South Street, Pattanamkurichy

Andimadam 621801

Perambalur Dt

Tamil Nadu, India

4. EDUCATIONAL QUALIFICATIONS:

• April 2003: Bachelor of Technology (Information Technology, Arunai Engi-

neering College, University of Madras)

• February 2008: Master of Science (by Research) (Computer Science and Engi-

neering, IIIT Hyderabad)

103

THESIS COMMITTEE

1. GUIDE: Mr. S. Kishore Prahallad

2. MEMBERS:

• Dr. C. V. Jawahar

• Mrs. Amba P Kulkarni

104

