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ABSTRACT

Keywords: automatic speech recognition; pronunciation modeling; baseform inference;

automatic dictionary generation.

Automatic Speech Recognition (ASR) is a sequential patternrecognition problem. It

aims to correctly hypothesize a spoken utterance into a string of words. The conventional

statistical framework employed to accomplish the speech-to-text conversion comprises three

major components- acoustic models, language model and the pronunciation dictionary.

The pronunciation dictionary(or the lexicon) is a mapping table, a representation of

the system’s vocabulary in terms of its acoustic modeling units. In general, while acoustic

and language models are outputs of statistical optimization procedures, lexicons are usu-

ally taken off the shelf. During the training, the system is provided with speech data, the

corresponding transcription and a pronunciation dictionary. At the decoding run-time, the

acoustic models and language models trained on the task are used while one of the standard

dictionaries (CMUdict, Pronlex etc.) is used as the lexicon. Standard lexicons are manually

built by linguists to provide the most generic pronunciations of the words. However, vari-

ations occur in pronunciation due to a number of factors including gender, accent, dialect,

mode of speaking etc. While a generic pronunciation dictionary remains to be the safest bet,

it may not be optimally suited for a test condition. Thus, there is a need to adapt a lexicon

in order to best match the test conditions. This thesis showsthat the lexicon can also be

improved for a task by adding the variants to pronunciations, inferred using the resources

already provided for acoustic model training.

The focus of pronunciation modeling research has to been to incorporate all kinds of

genuine pronunciation variation into the speech recognition models. Several approaches

operating at various components of the recognizers have been proposed to account for these

kinds of variation. Existing methods fall into two broad categories. Modeling at the acoustic



level, (including front-end signal processing and model parameter adaptation given some

adaptation data) and modeling at the lexical level, modifying the entries in the dictionary.

This thesis falls into the latter category.

The primary contribution of this thesis is a generic framework for generation of pro-

nunciation variants of words seen in the training data. The framework is realized by con-

struction of a pronunciation grammar network along which tosearch for the variants used in

the acoustics. The network itself is constructed via a statistical model (here decision trees)

built to predict likely candidate phones of the word. The framework provides for adjusting

the reliability of each source of information about the pronunciation: the acoustic evidence,

the orthography and the phone transition patterns in the language. The three sources are

effectively combined to score each candidate in the search space. The hidden variant of the

pronunciation is inferred from the network via a Viterbi trace-back. The thesis presents a

thorough analysis of the nature of the inferred variants andproposes criteria to select the

best set of variants that when augmented to the lexicon will enhance the system’s tolerance

to such variations, thereby increasing its performance.

The thesis validates the proposed framework and techniqueson three different tasks. It

uses an isolated word task, the OGInames corpus for establishing the importance of orthog-

raphy as the most reliable source of information about the pronunciation. The experiments

involving evaluation of inferred variants are done on single speaker and multi-speaker con-

tinuous speech tasks, ARCTIC and TIMIT databases respectively. Among the two, the

largest improvement was seen on the single speaker ARCTIC database, in which the auto-

matically learned pronunciations corrected 14% of the errors made by the baseline system.
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CHAPTER 1

Automatic Speech Recognition

The problem of speech recognition is defined as the conversion of spoken utterances into

textual sentences by a machine. An utterance that is given asinput to an Automatic Speech

Recognition (ASR) system is digitized and processed using signal processing algorithms

to extract representational vectorsX = x1,x2...xt, wheret depends on the length of the

utterance. If the hypotheses space of word sequences isζ , the problem of speech recognition

can be formally stated as

W ∗ = argmax
Wǫζ

P (W |X) (1.1)

In other words, an ASR system tries to find a string of wordsW ∗ that has the highest prob-

ability for the given acoustic waveform. The direct computation of posterior probability

P (W/X) is difficult and hence Bayes’ rule is applied to splitP (W/X) into realizable sub-

components:

W ∗ = argmax
Wǫζ

P (W |X) = argmax
W

P (X|W )P (W )

P (X)
(1.2)

= argmax
W

P (X|W )P (W ) (1.3)

The priorP (X) is constant over all candidates of the hypotheses space and hence may be

ignored in the denominator of Equation 1.2. From Equation 1.3, it can be observed that an

ASR system needs to model two probability distributions: (1) the probability of the acous-

tics matching a particular hypothesisP (X|W ), and (2) the prior probability of the candidate

hypothesesP (W ). The estimation of likelihoodP (X|W ) involves modeling the relation-

ship between the acoustic sequence and all possible word strings which is computationally

expensive.
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Since hypothesisW is a sequence of wordsW = w1, w2...wN ,

max
W

P (X/W )P (W ) = max
W

P (X/w1, w2...wN) ∗ P (w1, w2...wN) (1.4)

Words in utterances are represented by sub-word units called phones. If wi is a word

model thenPi = p1,p2...pn is corresponding sequence of phones. Each phone may further

be realized as a sequenceQ of a defined number of states,Q = q1,q2...qs. Thus models

of utterances are deconstructed into a phone state sequenceQi. Three different terms that

comprise the entire probability distribution are:

PA(X|Qi): The probability of acoustics given the phone state sequence (known as the

acoustic model)

PP (Qi|W ): The probability of a state sequence given the words (thepronunciation model)

PL(W ): The prior probability of word sequences (thelanguage model)

These three models,PA, PP , PL are related to Equation 1.4 as follows :

max
W

P (X/W )P (W ) = max
Qi

{P (X/Qi)P (Qi/W )P (W )} (1.5)

= max
Qi

{PAPP PL} (1.6)

Equation 1.5 follows from probability theory and the assumption that acoustic likelihood

is independent of word models given the state sequence. To decode the best state sequence

according to Eqn. 1.6, aViterbi approximationis often employed. The Viterbi algorithm

tries to find the state sequence which has the highest posterior probabilityPAPP PL on the

observations. Hence, it is also referred to as the maximuma posteriori(MAP) decoding.

The typical ASR system has different components that estimate each part of the model.

To begin with, acoustic features (X = x1,x2...xt) of the acoustic signal are produced by

signal processing routines. MFCCs (Mel Frequency CepstralCoefficients), a typical choice

of representation for speech recognition are used in this work.
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1.0.1 Acoustic Model

The factorPA of Eqn. 1.6 is a model for the acoustics. It can be calculated in several

ways. In Hidden Markov Models (HMM) systems, the distribution at any stateq is modeled

as a Gaussian Mixture Model (GMM). The distribution over each state can be determined

for individual acoustics and phones(P (xt|qj)), the context independent (CI) models; these

estimates are multiplied together to give an overall estimate of the probabilityP (X|Q).

Formally, the output distribution GMM at each stateq is modeled as:

P (xt = x|qj = q) =
K∑

i=1

ci,qN (x, µi,q, Σi,q) (1.7)

whereK is the number of Gaussian components,ci,q, µi,q and Σi,q are the mixture

weight, mean and covariance matrix of theith component of the observation distribution of

stateq, respectively, and each Gaussian is modeled as

N (x, µi,q, Σi,q) =
1

(2πD/2)|Σi,q|1/2
exp{

−1

2
(x − µi,q)

T Σ−1
i,q (x − µi,q)} (1.8)

The state level emission densitiesN and the state transition probabilities are estimated

during the acoustic model training. The data usually available during training is the speech

data and its corresponding transcription. The state level information is assumed to be hidden.

The Forward-Backward algorithm, also called the Baum-Welch algorithm [1] is employed

to compute the model parameters given the training data under the Maximum Likelihood

(ML) criterion. Baum-Welch is an instance of the iterative Expectation Maximization (EM)

algorithm. [2] may be referred for a formal treatment of the EM algorithm.

1.0.2 Language Model

The language model (LM) provides an estimate ofPL of Eqn.1.6. It is typically ann-gram

grammar for large-vocabulary decoders. In general, the probability of a word sequenceW

can be decomposed as follows:

3



PL(w1...wt) = P (wt|wt−1, wt−2..., w1)P (wt−1|wt−2, ..., w1)...P (w1) (1.9)

=
t∏

i=1

P (wi|wi−1, ..., w1) (1.10)

An n-gram grammar makes the assumption that word histories morethann − 1 words

before the current word do not affect the probability:

PL(h1...ht) ≈
t∏

i=1

P (hi|hi−1, .., hi−(n−1)) (1.11)

Language models play an important role in constraining the search space of the decoder.

It also helps in disambiguating between acoustically confusing word sequences (e.g. ‘I

scream’ vs ‘Ice cream’). Smoothed word trigrams with back-off are the most common

LMs nowadays. Recent attempts claim significant improvements by employing higher order

models [3].

1.0.3 Pronunciation Dictionary

For the most part in this thesis, the auditory front-end, theacoustic model and the language

models are assumed as given. This thesis is concerned with the pronunciation model,PP of

Eqn. 1.6. The pronunciation model serves an important role:it acts as an interface between

acoustic and language models, creating mappings between the two. The pronunciation dic-

tionary determines how the acoustic modeling units are concatenated. The HMM phone

models give the distribution and durational constraints for the individual phones.

In most systems, the dictionary is a mere look-up table, providing phonemic representations1

of each word. Words may have more than one representation, inwhich case the table is

called as amultiple pronunciation dictionary. A multiple pronunciation dictionary provides

a model of baseform sequences,PB(B|W ), as part of the overall pronunciation model.

PP (Q|W ) = PD(Q|B)PB(B|W ) (1.12)

1Phonemic representations are in the dictionary are also calledbaseforms
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WherePD(Q|B) is the prior probability on the baseforms. Most dictionaries assume no

prior bias on a baseform, although it may be helpful for some applications. In general, the

baseform pronunciations of a wordPD(Q|B) are assumed to be independent of the word

context.

1.1 DECODING: RECOGNIZING THE SPEECH

The language model can be represented as a Markov chain, and since the acoustic model

itself is HMM-based, the joint model can be realized as a single large HMM. MAP decoding

according to Eqn. 1.6 is employed to search this huge networkfor the most likely path given

the acoustic observations. Usually a form of Viterbi decoding [4] is used to obtain the MAP

hypothesis.

Most formulations of the Viterbi algorithm entail traversal through a HMM graph. The

huge pronunciation network is usually constructed and dynamically replicated at run-time

according to the language model. While traversing along thegraph, each statej at the time

instantt is associated with a likelihood of the best path that ends in the current statej. The

likelihood is computed having seen all observations until the time instantt (the forward

algorithm). Back pointers are also stored to give the most likely state sequence(s) for each

statej. Beam search [5] is often applied to prune candidate paths ateach state for further

processing. Once all frames of speech are processed (t = T ), trace back information of the

maximum scoring state is used to recover the most likely wordsequence. The trace back

information may also be used to produce a compact representation (known as alattice) of

the candidate hypothesis. Ann-best list ofn most likely hypotheses may be generated. The

lattice/list may be rescored using higher knowledge sources to get the best word sequence(s).

Several decoding strategies can be found in the literature [6] [7] [8].

1.1.1 Evaluation Criteria

ASR systems are usually evaluated under the Word Error Rate (WER) criterion. The WER

metric is defined to be the ratio of the number of recognition errors to the number of words

5



in the reference (truth). The number of recognition errors is calculated as the minimum

number of insertion, substitution or deletion operations required to obtain the same string as

the reference from the recognizer output (hypothesis). This WER metric is an instance of

the Levenshtein distance measure [9] computed using dynamic programming techniques.

Human transcriptions are usually taken to be the reference.

WER =
Substitutions + Insertions + Deletions

# words in reference
(1.13)

Based on the associated task, Phone Error Rate (PER) and Lattice Error Rate (LER)

may also be relevant performance measures.

1.1.2 Errors made by speech recognizers

Though ASR research has come a long way, today’s systems are far from being perfect.

Speech recognizers are brittle and make errors due to various causes. [10] attempts a detailed

characterization of errors made by speech recognizers. Accordingly, most errors made by

ASRs fall into one of the following categories:

1. OOV errors2: Current state of the art speech recognizers are closed vocabularies. So,

they are incapable of recognizing words outside the system’s vocabulary. Besides

mis-recognition, the presence of an OOV in an input utterance causes errors to its

neighboring words. In a large vocabulary system, each OOV isknown to cause about

1.2 errors in the decoder’s output [11].

2. Search errors: This class of errors is due to pruning of the candidate hypotheses

by beam search (Sec. 1.1). It may be possible that the correcthypothesis is pruned

because of a low score (this can be caused by multiple reasons).

3. Homophone Substitution: These errors are caused if more than one lexical entry has

the same pronunciation (phone sequence). While decoding, they may be confused

with one another causing errors. In general, the language model disambiguates in the

event of such a confusion.
2Out of Vocabulary words are referred as OOV
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4. Language model bias: Because of an undue bias (effected by high language weight)

towards the language model, the decoder may be forced to reject the true hypothe-

sis in favor of a spurious candidate. These errors may occur along with analogous

acoustic model bias.

5. Multiple acoustic problems: This is a broad category of errors comprising those to

due to bad pronunciation entries; disfluency, mis-pronunciation by the speaker him-

self or confused acoustic models (possibly due to noise, data-model mismatch etc.)

1.2 ISSUES ADDRESSED IN THIS THESIS

The research in this thesis attempts to improve the pronunciation dictionary. In part, the

thesis addresses the last category of errors in the preceding section. As would be elaborated

in the next chapter, earlier attempts to this problem have been sub-optimally implemented

and only a few have shown improvements on complex speech tasks. This thesis addresses

the problem in the context of continuous speech in a fully data-driven fashion. The first

stage is inference of pronunciation from available data andinformation. This is followed by

selection of the right variants for improving the dictionary.

Existing attempts follow a sequential step-by step procedure to inferring pronunciation.

The time complexity in these approaches is a function of the number of variants and the

length of the acoustics, iterated more than once. The current work employs a framework

which infers pronunciation in a time synchronous manner. Thus, significantly reducing the

time complexity, the proposed technique only requires a linear time in the length of the

utterance. In brief, the technical contributions of this thesis are as follows:

• Establishing the significance of orthography as a reliable information source than

acoustic evidence in determination of surface form pronunciations.

• An integrated framework for accurate time synchronous pronunciation inference from

acoustics via the use of a novel combination function to combine and tune the infor-

mation from available knowledge sources.
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• Modifications to the Levenshtein distance to measure distance between phonetic

strings to select suitable pronunciation variants for augmenting to the ASR lexicon.

• Significant reduction of continuous speech recognizer WERson ARCTIC and TIMIT

databases, the largest tasks so far studied for this problem.

1.3 MOTIVATION

There are several reasons that underline the need for automatic data-driven dictionary im-

provement/generation techniques:

• Significance:In a cheating experiment, [12] shows that word error rate on switch-

board corpus dramatically decreased from 40% to 8% if the dictionary pronuncia-

tion matched the actual pronunciation. This proves that dictionary improvement is a

promising direction for significant error rate reductions.

• Adequacy:[13] analyzed a corpus of conversational speech and identified that the

baseform pronunciations are quite inadequate. For instance, the word ‘that’ appears

328 times in the corpus used and has 117 different realizations (variations in pronun-

ciation). Also, the most frequent variant only covers 11% ofall instances. Hence,

there is a need for addition of better representative baseforms of the word pronunci-

ation. Also, variants should be economically added so that improvement is not offset

by the added confusibility due to the new lexical entries.

• Consistency:In [14], the switchboard corpus was phonetically annotatedand human

labelers disagree on more than 20% of the surface forms. Thisalludes to the fact

that manually built dictionaries have a drawback of being inconsistent. This calls for

principled ways for automation to impart more consistency to the dictionary building

process.

Adaptation techniques for acoustic and language models arethoroughly researched and

are put to practice in deployed real-time systems. As for thepronunciation model, one of

the standard available dictionaries is plugged into the system, regardless of the task. This is
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because, most earlier techniques have shown only marginal improvements on lexica. Also,

most analysis was limited to isolated speech tasks. [15] argues that improvements in pro-

nunciation modeling research have been elusive because most kinds of variations that were

studied are already captured by context-dependent acoustic modeling. This thesis focuses

solely on understanding the within-word variation in the lexical baseforms relevant to the

task using context independent models.

Another motivation for inference and enrollment techniques is their ability to handle

OOV words. This is in the context of applications which allowcorrective feedback from the

user. In such scenarios, data-derived pronunciations of a new word can be augmented into

ASR lexicon. This enables the system to hypothesize the wordin a subsequent encounter.

The larger implication is the viability of systems supporting open/dynamic vocabularies, a

sought after feature in ASR systems.

1.4 ORGANIZATION OF THE THESIS

The remaining chapters are organized as follows:

• Chapter 2 presents a survey on techniques for capturing variation via pronunciation

modeling. It also discusses the limitations of existing attempts and an overview of

the proposed approach in this thesis.

• Chapter 3 proposes the technique for inferring surface forms3 using lexical and acous-

tic information. The chapter presents the decision tree based technique for capturing

grapheme-to-phoneme relations. This is followed by empirical observations on the

nature of the inferred surface forms with varying weights (confidence) on the differ-

ent information sources, within an isolated word task.

• Chapter 4 presents an integrated framework with adjustableweights to combine the

different information sources. Criteria for improved inference and rejection of spu-

rious candidate variants are also proposed. The performance of the variants is pre-

3This thesis uses the terms surface form and pronunciation variant interchangeably

9



sented on two continuous speech tasks.

• Chapter 5 presents the concluding remarks and outlines the contributions of the the-

sis. The chapter also presents the limitations and assumptions made in the thesis.
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CHAPTER 2

Approaches to Pronunciation Modeling

For humans, knowledge about pronunciation is intuitive andeffortless. To this day, the

faculties that inherently give us this intuition are not completely understood. For inquiry

into pronunciation, linguistics dedicates two related sub-fields: PhoneticsandPhonology.

Phoneticsdeals with the range of vocal sounds that are produced duringspoken language

generation whilePhonologydeals with capturing the variation of pronunciation withinthese

sounds.

In automatic speech recognition systems, information about pronunciation is captured

via the pronunciation dictionary. While alternatives exist, the commonly used representation

of pronunciation in ASR systems is a first order Markov chain of the phonemes. Fig. 2.1

shows example pronunciations of wordsone, two andthree.

Fig. 2.1: Pronunciations as first order Markov chains

Figure 2.1 also shows the realization of the phoneme /th/ as aHMM at the state level,

its acoustic model. As mentioned in chapter 1, the dictionary is an interface between the

acoustic models and the language model. It gives the composition of each word in terms of

the acoustic modeling units.
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2.1 WHAT KIND OF VARIATION IS DEALT IN THE LEXICON?

As an interface between the acoustic and language models, a model for pronunciation must

deal with variation from both sides: variation in pronunciations caused by factors such as

predictable word sequences or increased speaking rate etc.The pronunciation dictionary

together with the acoustic models enables the system to handle pronunciation variation.

Linguistic variation includes a number of factors known to dynamically affect pronuncia-

tion variation, including the surrounding phones, the prosodic/accent context, the identity

and probability of neighboring words and the presence of disfluencies and silence near the

target word. The phone sequences in the lexicon (canonical baseforms) are hence built to be

reflective of most realizations of the word.

In controlled conditions as in isolated speech, variationsrange from gross variations like

those of the word ‘tomato’ in American and British English ([t ow m ey t ow] inAmE& [t

ow m aa t ow] inBrE) to more subtle changes like that in the word ‘all’ ( [aa l] & [ao l]).

Canonical baseforms are expected to cover most variations,which are then complemented

by the context dependent acoustic models to capture the co-articulation effects. Among

other factors, the validity of this assumption weakens withincreasing variation within the

task (isolated speech, carefully read speech, conversational speech, sloppy speech and so

on). An obvious solution to handle this is to have the lexiconcover all possible variations

of the word pronunciations. This technique, however is helpful only to an extent. Recalling

the Viterbi algorithm (Sec. 1.1), since the decoder finds thebest phone string rather than the

best word string, it biases against words with multiple pronunciations. Furthermore, [11]

shows that as the vocabulary size grows, acoustic confusibility among the lexical entries

increases and it becomes a non-negligible source of recognition errors. So, variants have to

be added cautiously, taking into consideration the improvement due to added variants and

also the offset due to the increased confusibility.

Pronunciation dictionaries are generally hand-crafted bylinguists to reflect the most

agreed pronunciations of each word. In theory, sound units are divided into two basic types:

phones and phonemes.Phonesare the fundamental sound categories that describe the range
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of acoustic features found in languages.Phonemeson the other hand are abstract, language-

specific entities that may represent one or more phones.

Phonology is dedicated to capturing the variations in thesurface formsof pronunciation.

It investigates which phone a particular phoneme would assume in a givencontext1. The

various phones that are candidate realizations of a phonemeare referred to asallophones.

For instance, [ah], [ae], [ay] are allophones of the phoneme/ah/ in different contexts. In

ASR literature, several techniques have been proposed for capturing this variation into the

lexicon. Section 2.2 presents an overview of related attempts. Although the section is a

bird’s eye view of earlier attempts, more specific comparisons will be made in the following

chapters as applicable.

2.2 MODELING VARIATION: OVERVIEW OF APPROACHES

An important distinction that is often drawn in modeling pronunciation variation is that

between within-word and cross-word variation. The underlying phonetic mechanisms are

different in the two and hence the need to address them separately. Approaches to handle

cross-word variation have widely employed the use of multi-words [17] [18] [19] [20] [21],

wherein frequent word clusters are concatenated as one lexical entry. This technique can

account only a small portion of cross-word variation, like the variation between words

that occur in very frequent sequences. Due to this limitation, other techniques involving

rewrite rules based on word context etc have also been proposed like those described in

[22] [23] [24] [25].

Within word variation is the kind of variation that can be modeled at the level of the

lexicon by adding pronunciation variants [26] [27] [22] [28] [24] [17] [29] [18]. On similar

lines, this thesis delves into modeling within-word variations. Earlier approaches to this

problem have all employed and differed within two broad phases:

1. Finding the information on variation of pronunciation

2. Integrating this information into ASR

1 [16] elaborates the definition of context as applied to pronunciation modeling
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2.2.1 Information about pronunciation variation

An important step in modeling variation is investigating the sources of information on pro-

nunciation variation. This can be obtained by knowledge-based or data-driven techniques:

2.2.1.1 Knowledge-based approaches to study variation

In knowledge-based approaches, information on pronunciation is mainly derived from sources

that are already available. Existing sources can be pronunciation dictionaries or rules on pro-

nunciation variation from linguistic studies [26] [22] [23] [17] [18] [19]. In general, these

rules are optional phonological rules concerning insertions, deletions and substitution of

phones. A drawback of knowledge-based methods is that thesesources usually only pro-

vide qualitative information about pronunciations (like the possible allophones a phoneme

can assume). It doesn’t provide any quantitative information, which is essential for system

building. Another drawback is that existing knowledge is available from analysis done on

laboratory speech, and may not hold for all testing conditions.

2.2.1.2 Data-driven approaches to study variation

The idea behind the use of data-driven techniques is to simulate the test conditions. Also,

they carry limited or no biases to linguistic theories, relying on the techniques to auto-

matically discover information and rules from the data. Thevarious realizations of word

pronunciations are obtained directly from the speech signals [25] [19] [16] [29] [13] [30]

[31] [20] [32]. The acoustic signals are analyzed in order toobserve the different ways in

which the words are realized. A common stage in the analysis of the signal is the transcrip-

tion of speech which is done either manually [16] [13] [32] or(semi-)automatically [26]

[27] [30] [24] [29] [20] [32]. The latter is usually done using a phoneme recognizer or by

means of forced Viterbi alignment. The transcriptions are either used directly for new word

pronunciations or for formalizations derived from them [27] [24] [29] [18] [20]. This is

done by comparing the transcriptions against canonical transcriptions (using existing base-

forms). The comparison is done by a dynamic programming based alignment. The resulting
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alignments are then used to:

• derive rewrite rules to characterize the variations undergone by the baseforms [27] [24] [18] [20],

• train an artificial neural network to model the phone change process from the canon-

ical form to the transcription [29],

• train decision trees to learn the phone change as per the context in the canonical form

[16] [32] or to

• calculate a phone confusion matrix [33]

2.2.2 Using the information on pronunciation

In Section 2.2.1, an overview of various sources of information used by existing approaches

is given. This section presents an overview of how this information has been used for im-

proving ASR. Adaptation of the lexicon is done by adding pronunciation variants to it. So

the first stage in the process is generation of candidate variants. This is either done manually

[22] [32] or by automatic procedures such as:

• using learnt rules to generate the possible candidates of variants [26] [27] [18] [19] [20],

• artificial neural networks [29],

• grapheme to phoneme converters,

• using a phoneme recognizer [19] [20] [21],

• maximum likelihood optimization [30] and

• decision trees [16] [32]

The variants that are likely to capture relevant variation are selected from those gen-

erated above. The assumption made here is that since multiple pronunciations are present,

the recognizer can select from among the different baseforms to match the acoustics. This

reduces the errors made due to mismatched pronunciations. However, addition of variants

adds to the confusibility within the lexicon, which may leadto degradation of the recognizer

performance. So, variants should be cautiously added to balance the improvement due their
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addition and the offset introduced by the added confusibility. For this purpose, different

criteria for variant selection are used such as:

• frequency of the variant’s occurrence [18] [20] [32],

• a maximum likelihood criterion [30],

• confidence measures [21] and

• degree of confusibility between the variants [21].

2.3 LIMITATIONS OF EXISTING APPROACHES

Data-driven methods score over knowledge-based methods for the current problem,

since they make use of available evidence. Among the data-driven methods cited above,

the emphasis was put on selecting the right kind of variants from automatically/manually

generated transcriptions. There was not much work in improving the transcription accuracy

itself. So, the errors of transcription persist through thelater steps in the process.

Another limitation is the choice of the candidate variants that different techniques con-

sidered. Since this choice puts a hard bias on the hypothesesevaluated, it is an important

early stage decision. Two closely related works employ techniques as follows-

[30] employs a tree-trellis algorithm based on the A∗-algorithm [34] for finding optimal

path through an elaborate phoneme tree. This effectively has the same exhaustive hypotheses

space and is as error-prone as raw phonetic decoding.

[35] employs a rule based generation of candidates allowingeach phoneme of the

canonical baseform to be optional per candidate. Although,it is stated to be an adhoc set-

ting, the rule is too simplistic and overly biased to the canonical baseform to perform any

commendable inference. Hence, this is not generalizable.

At an implementation level, barring a few exceptions [36] [30] [37], a distinction ear-

lier attempts did not acknowledge is between inference and recognition. While recognition

tries to overlook variations to identify the intended hypothesis, inference aims to capture

the actual phones in the acoustics. So, techniques that are adapted from general recognition
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frameworks (e.g. CDHMM modeling) are incompatible for inference. This may be a pos-

sible justification for marginal improvements in previous attempts. Another disadvantage

of tailoring existing recognition tools for this problem isthe limited control it leaves on the

process, besides the irrelevant time and complexity overhead.

2.4 APPROACH ADOPTED IN THIS THESIS

This thesis proposes improvements at different stages of the process. At the first stage,

techniques are investigated to improve the accuracy of variant inference, rather than relying

on the canonical baseforms or directly the inferred surfaceforms. In the second stage, it

attempts to build better pronunciation dictionaries that improve the ASR accuracy.

As would be shown in Chapter 3, acoustic evidence is sub-optimal for generation of

candidates for further selection; this is invariably done in all earlier data-driven methods.

Rather than considering the exhaustive candidate space of the raw phonetic decoder [30]

or overly pruning the candidates [35], this thesis chooses abalance between the two. This

thesis uses the least error-prone resource, orthography asthe primary information source

for candidate generation and uses acoustics only as an evidence to improve the inference

accuracy.

This thesis employs an exclusive framework for inference ofthe surface form from

acoustics. The integration of knowledge from other information sources is done at the time

of alignment, making the entire process, time and computation efficient. The thesis also

discusses possible techniques to improve agreement among inferred variants, thereby weak-

ening the possible offset due to lexical confusibility. Like few other approaches [35] [18],

findings from error analysis are incorporated in the selection algorithm for further efficiency.

ARCTIC and TIMIT are used as the test sets to validate the proposals made.
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2.5 PERFORMANCE COMPARISON

Although a direct performance comparison of approaches cannot be made due to the varying

assumptions, baselines, vocabulary sizes and test sets in each, this section tries to contrast

the specifics of a few attempts.

[33] uses 200 OGI names as a test set for isolated name recognition task and reports a

19.4% relative WER improvement in a controlled dialog task.they use hybrid techniques

combining both knowledge-based and data-driven strategies. In contrast, the orthography-

driven inference techniques proposed in Ch. 3 show a 21.4% improvement in the phone error

rate on the same task.

[30] employs a maximum likelihood approach for variant selection on the 900 word

task Resource Management database. They note a 18.4% relative improvement over manual

dictionaries, the best performance caused by allowing 1.3 alternatives for each lexical entry.

Another closely related work, [35] employs a rule-based data-driven technique for selection

of pronunciation variants. It shows an 8% relative improvement on a 1288 word Dutch

spontaneous speech allowing 2 variants per word. In this thesis, the inference and selection

are validated for continuous speech on the 2366 vocabulary single speaker ARCTIC data. A

14.6% relative WER improvement at 1.4 variants per word is shown. The same techniques

have shown to give an 8% improvement using 1.6 variants per word on the multi-speaker

TIMIT database.
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CHAPTER 3

Capturing Variants using Lexical and Acoustic Information

3.1 INTRODUCTION

This chapter focuses on improving the quality of the inferred pronunciations from acous-

tic samples. Hence, an investigation of various information sources about pronunciation is

necessary. As seen in the Chap. 2, earlier methods (Sec. 2.2.1) have broadly used either

existing phonological knowledge in the language or have used acoustics to infer pronunci-

ations. This chapter presents techniques to exploit the available knowledge sources further

to infer better pronunciation baseforms in a data-driven fashion. As mentioned earlier, the

inference techniques described here apply at the word level.

3.1.1 Sources of information about pronunciation

It is important to identify the various sources of information relevant to pronunciation before

proceeding to techniques to infer it automatically. This section presents the various sources

of information. It should be noted that these factors and theextent of their roles largely

depend on the language in consideration.

• The knowledge of the language: the phonology, stress patterns etc.

• The spelling of the word (for languages that have a written form).

• Spoken example(s): the direct source of pronunciation.

• Context: at all levels (the effect of neighboring words; discourse context; speaker

emotion etc)
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Depending on the scenario, only a few of these sources are available at disposal for

inference. Table 3.1 gives a few example scenarios and the available information sources

from which to learn about pronunciation.

Table 3.1: Pronunciation knowledge sources available in different scenarios

Example Scenario Available information

Human hearing innate psycho-acoustic faculties

ASR training spelling; acoustics; context

Dictation systems spelling (upon corrective feedback); acoustics; context

Dialog systems acoustics; context

TTS systems spelling; context

Accordingly as per table 3.1, the available knowledge sources vary with the application.

In ASR systems, pronunciation baseforms in dictionary are usually either 1) manually built

or 2) derived from acoustics or 3) generated from the spelling (letter-to-sound rules) or 4)

a combination of these. Acoustics driven methods implementa Viterbi decoding on the

acoustics using sub-phone (arc) acoustic units and a phone transition model to derive one or

more pronunciations for each word [38] [37]. Orthography-based methods widely use finite

state transducers (FST) or decision trees to determine the pronunciation [39] [40]. How-

ever, the quality of orthography based pronunciations depends on the grapheme-phoneme

correspondence of the language. Hence, they cannot be directly used as baseforms in the

ASR lexicon.

Of late, data-driven techniques combining both linguisticand acoustic information have

gained focus owing to the better performance and wide range of application scenarios pro-

viding such a setting. To name a few are automatic lexicon generation [36] and systems

supporting dynamic vocabularies [41] [33]. [33] and [42] for example, use syntactic and se-

mantic information to incorporate dynamic classes allowing OOV detection and enrollment.

Also, [36] applies a letter-to-sound constrainer within the decoder to take advantage of the

spelling of the OOV word.
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However, earlier attempts have only partially exploited the availability of rich informa-

tion sources. This chapter exploits the linguistic information further by efficiently construct-

ing then-best list of pronunciation alternatives and scoring them using decision trees. The

hypotheses are further rescored with costs in acoustic alignment and phone transition, usu-

ally modeled using a phonen-gram model. Thus, this thesis uses all the information sources

presented for ASR training.

3.2 CANDIDATE GENERATION AND RESCORING

This chapter uses tree based letter to sound models to characterize allophonic variations

based on phonemic context. Conventional approaches use theacoustics to generate ann-

best list of possible phone/sub-phone strings. Then-best alternatives are re-ranked using

additional knowledge sources, like a language model, to improve the intelligibility of the

best alternative. Typically the first best alternative is the output of the decoder. Consider the

following schemes-

[30] uses a tree-trellis method for variant generation. It uses a maximum likelihood

criterion to generate the baseforms that maximize the jointprobability of being realized as

the spoken examples instances of the word presented for training. It searches an exhaustive

space of phones which is redundant besides being error-prone.

[35] uses rule based generation of candidates from the canonical baseform where each

phoneme can be optional. The candidates are later Viterbi-aligned and frequency-based

rules for variant selection are investigated. The search space here is too small (in fact equal

to the length of the baseform, one candidate with each phoneme missing).

These cases are on two extremes: one considering an unnecessarily exhaustive space and

the other considering a highly constrained set. In this chapter, a set of potential candidates

is generated from the available information. This chapter shows that as generally employed

in earlier works, acoustic evidence and the canonical baseform are not very informative

for generation of candidate pronunciations. The novelty ofthe method proposed here lies in

inverting the common relationship. This chapter uses the spelling information to generate an
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Fig. 3.1: Schematic diagram for baseform inference

n-best list of pronunciation hypotheses, which can be subsequently rescored using available

acoustic evidence and phone transition costs. Then-best list referred here is analogous to

the same in continuous speech recognition (Sec. 1.1). This thesis presents the superiority

of spelling over a single spoken exemplar in surface form inference. Fig. 3.1 describes the

process of baseform inference employed in this chapter.

The bias towards using orthography for generating then-best list is justified by the

fact that, on an average, spelling can give more informationabout the pronunciation than a

single acoustic exemplar, as borne out by the results in (Sec. 3.4.1, below). The following

subsections present the three information sources: The spelling, the spoken evidence and

known phone transition patterns in the language. Sec. 3.2.1describes the decision-tree based

approach for the generation ofn-best pronunciation hypotheses followed by section 3.2.5 for

subsequent rescoring.

3.2.1 Learning grapheme-to-phoneme rules

Both rule-based techniques (FSTs, mapping tables etc) and statistical methods (decision

trees, discrete HMMs, SVMs etc) are widely used for capturing the grapheme-to-phoneme

(or letter-to-sound) rules. In this work, decision trees are used. Decision trees offer flex-

ibility in choice of the modeling context and hence are chosen as the statistical paradigm
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Fig. 3.2: Letter to sound capture by decision trees

for capturing letter-to-phone rules from a large training lexicon. Separate decision trees are

trained for each letter of the alphabet. The leaves of the tree are discrete probability distribu-

tions of the phones and the internal nodes are questions about the neighboring context (e.g.,

next letter=‘a’? etc.). Fig. 3.2 shows the decision tree format for capturing letter to sound

rules as used in this chapter.

For the experiments reported here, training and testing setfeatures for each letter are

extracted from CMUDICT [43] of 130k words. The trees are built using the CART based

letter-to-sound module within the FESTVOX [40] framework.Various context lengths of 1,

2, 3 and 4 letters on either side of the target letter are tried. The performance of the resulting

trees in predicting the phone produced by a letter in an untrained word is studied. 1-letter

context and 4-letter context trees are discarded for being overly general and over-training the

decision trees. Fig. 3.3 shows the relative performance of the 2-letter and 3-letter context

trees on a held-out set, consisting of 10% of the lexicon. As would be expected, 3-letter

context trees outperform 2-letter context trees. Also, it is interesting to note that irrespective

of the context length, relative performance within the letters remains the same in both cases.

Furthermore, letters that produce vowel sounds (a, e, i, o & u) perform significantly worse

than the other consonant letters, which also agrees with intuition.

3.2.2 Orthography based n-best pronunciation generation

Given the grapheme-to-phoneme decision trees, multiple (n-best) hypotheses of pronuncia-

tions for a word are generated as follows: From the spelling of the given word, features are
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Fig. 3.3: Performance of 2-letter and 3-letter context trees on the held-out data

drawn for each letter using the same context length (2 or 3 letters) as that of a chosen set of

trees. When queried with these features, the correspondingG-P trees return a list of phones,

with their probabilities, for each letter in the word. A variant of best first search algorithm

can be used to traverse through all of the phones predicted for each letter, thus generating

several pronunciation alternatives. Each pronunciation also receives a score which is the

product of probabilities of the constituent phones, as given by the decision trees. The prod-

uct is referred to as then-best likelihood. This is a model based on orthography used in the

n-best list rescoring process described further below.

3.2.3 Learning from Acoustic Evidence

While spelling captures the gross aspects of pronunciation, the acoustic instance is the direct

evidence of the pronunciation and hence an important sourceof information. In this work,

acoustic alignment is used as an important factor for determining the surface form. Each

hypothesis in then-best list of pronunciations is aligned (using Viterbi alignment) against

the single speech sample of the word, producing an acoustic likelihood score for the hy-

pothesis. The acoustic likelihood is used in re-ranking then-best list, as will be described

in section 3.4.1. For the alignment in this chapter, acoustic models consisting of three state

context independent phone models with left-to-right topology, and 8 Gaussian mixture com-
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ponents per state are used. The models are trained on the officially designated training set of

the TIMIT data [44]. Thesphinx3align tool from the Sphinx suite [45] is used for Viterbi

alignment.

3.2.4 Phone transition model

Phone transition patterns in the language give important information as to which phone

sequences are acceptable in the language. The function of the phone transition model is

similar to that of a language model (Sec. 1.0.2) in continuous speech recognition. It pro-

vides a prior probability to each hypothesis in then-best list. In this chapter, a phone bigram

model trained on CMUDICT is used. Word beginning and ending markers are also con-

sidered while computing the probabilities. The model was then smoothed with a uniform

distribution, to avoid over-fitting to the training data. The smoothing was done as follows: If

N is the number of phones, andP (p2|p1) the unsmoothed probability of transitioning from

phonep1 to phonep2, the smoothed transition probability is given by:

PInterpolated(p2|p1) = ω ∗ P (p2|p1) + (1 − ω)/N (3.1)

The scaling factor0 < ω < 1 can be chosen according to the reliability and compre-

hensiveness of the dictionary. The cleaner and larger the dictionary, the higherω can be. An

optimal value forω can be determined empirically using the deleted interpolation technique.

ω = 0.5 in the experiments reported here.

3.2.5 N-best rescoring criteria

The n-best list of pronunciations generated according to sec. 3.2.2 is rescored by combining

the three scores:n-best likelihood (sec. 3.2.2), acoustic likelihood 3.2.3,and phone transi-

tion costs (sec. 3.2.4). Since the three have widely differing ranges, a following combination

function is proposed. For each alternative,φ in the n-best list, the functionξ(φ) is computed

where:
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ξ(φ) = (Acoustic likelihood)∗(nbest likelihood)η ∗(Phone transition penalty)γ (3.2)

The exponentiation weightsη andγ are determined empirically (similar to ‘language

weight’ in most speech recognition systems). The highest ranking pronunciation, according

to ξ is chosen as pronunciation for the word.

3.3 EVALUATION

In the experiments reported here, Phone Error Rates (PER) ofthe inferred baseforms are

used as the performance measure. The baseline for our comparison is the PER of the top

hypothesis in the originaln-best list (before rescoring). For the test data, we chose them

to be exclusively proper names, which are a good representative of OOV words in many

applications. Furthermore, the peculiarities of the spoken form of proper names as opposed

to their written form, makes them an appropriate tough test for the current problem. 173

randomly selected first and last names from the OGI names corpus [46] are used, these are

the subset that is publicly available for use (Appendix A). This test set was excluded from

the training data for acoustic, G-P trees, and phone transition probability models. 3-letter

trees are chosen as the decision trees for then-best list generation step.

3.4 EXPERIMENTAL RESULTS

In Table 3.2 the baseline PERs of the top hypothesis of the original n-best list, re-ranked

by each of the three scores individually (i.e., not in combination with any of the others).

The table shows the average error rates obtained on the test data. The table suggests that

orthography determines the pronunciation more reliably than a single instance of the speech.

This may change when more than just a single instance is provided. (Furthermore, relying

solely on phone transition probability to rank then-best list is clearly useless, and is only

included here for the sake of completeness).
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Table 3.2: Baseline phone error rates of the factors contributingto rescoring criterion.

Baseline PER (%)

Orthography based n-best 22.9

Acoustic alignment 37.8

Phone transition 68.6

The orthography-based performance of 22.9% PER is the baseline for comparison in the

following sections, which deal with combining the three sources of information effectively

in re-ranking then-best list of pronunciations.

3.4.1 Use of Spelling and Acoustic Evidence

The effectiveness of combining acoustic likelihood withn-best likelihood inn-best selection,

ignoring phone transition costs is examined here. To study this combination, a wide range of

values forη are tried, measuring the PER from the best re-rankedn-best hypothesis in each

case. Fig. 3.4 shows the performance with varyingη The dotted line represents the baseline

performance of 22.9% PER usingn-best likelihood alone. It can be observed that asη

increases the PER drops rapidly from the acoustic-likelihood baseline of 37.8% (η=0), and

reaches a minimum of approximately 19.5%. The combined information from orthography

and acoustics is able to provide a 3.4% absolute improvement(14.8% relative improvement)

over then-best likelihood baseline performance of 22.9% PER.

3.4.2 Use of Spelling, Acoustic Evidence and Phone Transition penalty

The performance can be further improved by bringing in phonotactic constraints via the

phone transition penalty. To study the effect of this factor, then-best likelihood weightη is

kept constant around the middle of the steady-state region in Fig. 3.4 (η=28 is chosen). The

phone transition penalty weightγ is varied in computingξ(φ) and the error rates from the

re-rankedn-best list are recorded. Fig. 3.5 summarizes the behavior. As shown, a further
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Fig. 3.4: Effect of increasing the Orthographic exponentiationweightη on performance

reduction in PER can achieved, reaching a minimum of around 18%, which is a 21.4%

relative improvement over the orthography baseline of 22.9% PER.

Fig. 3.5: Effect of increasing the Phone transition exponentiation weightγ on performance

3.5 SUMMARY

This chapter introduced a technique for pronunciation of words, employing an orthography-

driven n-best list generation, and rescoring using acoustic and other evidence. The ortho-

graphic information is shown to be more accurate than a single spoken exemplar. Accord-
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ingly the n-best list generation is based on the the richest information available. All other

information is used to re-rank the list. A comprehensive evaluation and analysis of the

approach shows that then-best list likelihoods and phone transition priors can be used to

reduce phone error rates of the inferred pronunciation surface forms significantly.

On the test set employed here, the PER is reduced from the orthographic baseline of

22.9% to about 18%, a 21.4% relative reduction. Obviously, the true error rate is highly task

and application dependent. Chapter 4 validates the extent to which this improvement in PER

translates into WER improvements on continuous speech.
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CHAPTER 4

Improving Pronunciation Dictionaries for Continuous Speech

Recognition

4.1 INTRODUCTION

In Chapter 3, a framework is proposed for baseform inferenceexploiting orthographic and

acoustic information. The performance was measured in terms of Phone Error Rates (PER)

on spoken proper names, an isolated speech task. Often times, a PER decrease may not

be translated into Word Error Rate (WER) improvement. The focus in this chapter is on

application of the inference techniques for improving WERson continuous speech. Single

speaker ARCTIC database and multi-speaker TIMIT database are used as the two continu-

ous speech tasks. Also, Chap. 3 uses a conventional step by step procedure:n-best list gen-

eration, Viterbi alignment followed by rescoring the list using various scores. A possible set

of n-best variants were generated from the spelling using CART performing grapheme-to-

phoneme conversion. Information sources such as the acoustic evidence and phone language

model were used to rescore then-best list to give the highest score to the true variant of pro-

nunciation. The scores from various information sources were effectively combined using a

combination function.

In this chapter, pronunciation inference is applied to continuous speech on TIMIT [44]

corpus. The approach used in the earlier chapter (Fig.3.1) involved Viterbi alignment of each

hypothesis fromn-best pronunciation generator and has a high time complexity involved in

generating the variants. In this chapter, the Viterbi and combination of information sources

are integrated into a single phase as shown in Fig.4.1. A method of selection of variants

based on frequency and a precedence based distance from its baseform is also incorporated.
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The precedence-based distance measure proposed constraints on the addition of variants

into the ASR lexicon. The new scheme is highly time effectivefor continuous speech tasks

which otherwise need an order times more time employing the scheme in Fig. 3.1.

Fig. 4.1: Time efficient approach for baseform inference

Significant WER reductions have been shown in the recognizer’s performance by aug-

menting the inferred variants to lexicon. Error analysis isalso done on the tasks to under-

stand the phonological processes in continuous speech.

4.2 VARIATION IN CONTINUOUS SPEECH

Variation in pronunciation in continuous speech occurs dueto a number of factors including

speaking style, gender, dialect, etc. Existing attempts toaccount for this variation can be

categorized broadly into two classes: Modeling at the acoustic level (front-end signal pro-

cessing and acoustic model parameters) and at the lexical level (Chap. 2). The current work

falls into the latter category.

Traditional lexicons used in speech recognition are first order Markov chains of the

acoustic modeling units. The lexicon (or the pronunciationdictionary) is a representation

of the recognizer’s vocabulary in terms of its acoustic modeling units. However, several

sources of variation in continuous speech affect the pronunciation of a word. These include

(1) variations that depend on word level features of lexicalitems (e.g. part-of-speech, tense

etc.), (2) variations particular to certain lexical entries, (3) variations that depend on the

stress and syllable position of the phonemes and (4) variations that depend on the local
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phonemic or phonetic context [47]. To account for these variations, several approaches have

been proposed such as including multiple pronunciation variants [26], multi-words [17] and

other hybrid techniques. More complex lexicons using articulatory feature information [48]

and those using tree based dictionaries [47] [39] [16] have also been attempted yielding

promising results. A thorough survey of literature in this context can be found in [31].

4.3 RELATED WORK ON PRONUNCIATION GRAMMAR NETWORKS

Ideally, though raw phonetic decoding is expected to revealthe underlying surface form,

the poor performance of phonetic decoding makes it necessary to constrain the candidate

surface-form hypotheses. Most approaches to add pronunciation variants to the lexicon

(including techniques presented in Chap. 3) follow the conventional ASR pipeline. They

comprise three phases- 1) Variant candidate selection/generation, 2) Forced Viterbi align-

ment, 3) Rescoring using other knowledge sources and 4)Bestcandidate(s)/rule selection.

In this chapter, the candidate selection, Viterbi alignment and rescoring phases are integrated

using a grammar-based decoder framework with token passing. Another advantage of using

such an integrated framework is the time taken to infer the pronunciation variant used in the

acoustics.

Most variant generation/ phonetic graph construction approaches are implemented as

phonetic decoding constrained by a weighted finite state transducer [33] or by a rule-based

generation criterion of alternatives given the baseform [35]. This chapter employs method

similar to the weighted pronunciation network in [39] constructed via trained letter-to sound

decision trees (Sec. 3.2.1). The advantage of using decision trees for phone graph con-

struction for a continuous speech task is multi-fold. Firstly, each letter outputs a discrete

probability density function (PDF) on the phones based on the modeling context (number

of letters on either side of the letter in question); if a hugedictionary is used for train-

ing the trees, the probabilities tend to the reliable likelihoods of the phone distribution;

another useful property of the trees is that each PDF may contain an optionalǫ (null) pro-

duction. This can account for phone deletions, the kind of variation in continuous speech
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that context-dependent phone modeling fails to capture [15]. Following from Chapter 3 the

phone likelihoods at the leaf nodes capture an important relation between the spelling and

the pronunciation. It has been established that orthographic information is more reliable in

determining the underlying variant than the spoken exemplar itself.

While the choice is similar to [39], one of the earliest worksemploying decision trees

for pronunciation modeling, the trees in [39] have been usedas the pronunciations (entries in

the lexicon) themselves. They were used within the framework of context dependent phone

HMM (CDHMM) decoding. Since CDHMM modeling is known to account for a good deal

of pronunciation variation itself [15], it is not suited to infer the actual surface form used

in the acoustics. Hence, this chapter uses context independent acoustic models to decode

through the phonetic graph.

4.3.1 Multiple Acoustic Examples

Since the current chapter deals with continuous speech databases, multiple instances of each

word are evidenced in the training data. The best set of variants for words seen in the training

task can be generated in the two following ways:

• Generating the best pronunciation variant(s) closely matching all the spoken instances

of the word considering them all at once.

• Inferring each instance as a stand-alone variant followed by application of selection

criteria to identify only genuine variations in pronunciation.

While the first method may be faster, it is at a risk of ignoringthe nuances within each

instance that may be important. This thesis employs the latter method, inference from each

instance followed by spurious variant rejection. Each instance is individually processed as

in the Chap. 3, thus justifying the use of spelling as an information source.

The Figure 4.2 shows a sample pronunciation network used to model the different real-

izations of the word ‘above’. The solid lines correspond to the transition from phone alter-

natives of one letter to those of the next. The dotted lines indicate the transitions via theǫ

production (the deletion process). The probability of eachphone alternative associated with
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Fig. 4.2: Pronunciation network for the word ‘above’. Note theǫ productions for the letters.

a grapheme is given under its phone label. This probability,output by the decision trees, is

passed on as an additional token (along with theα score) during the forward computation

along the trellis. As mentioned earlier, advantage of implementing such a pronunciation net-

work is that a number of variants can be evaluated in a single pass of the decoder. Figure 4.2,

for instance, represents 72 different variants of pronunciation for the word ‘above’.

Such representations of the pronunciation network are different from allophone net-

works in that the latter are built from existing phonological knowledge in the language,

which is only qualitative. Also, allophone networks do not necessarily provide forǫ produc-

tions, consequently rendering them incapable to handle phoneme deletion. The networks as

in Figure 4.2 are built from phone predictions of alphabet decision trees trained on a huge

pronunciation dictionary. Hence they automatically capture, and to a good extent, quantify

the phonology of the language besides potentially providing for more variation. Also, they

can be easily altered to any prior knowledge about the task. For example, if it is known

that the speech is sloppy and all kinds of phone deletions arecommon, anǫ can be inserted

among all the alternatives and smoothing can be done to adjust the probabilities.
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4.4 DECODING ALONG THE PRONUNCIATION NETWORK

Sequential connections are made from the phone alternatives of one grapheme to the next as

illustrated in the figure 4.2. Wherever anǫ is encountered, the connections are made to the

productions of the next grapheme and so forth, iteratively.At initialization of the inference

process, phone alternatives of the first grapheme are initialized with the respectiveα scores.

These scores are propagated along all the valid connectionsfrom the current node. This is

recursively done for all frames of the data. WhereE is the emission probability,L is the

probability assigned by the LTS decision tree, andP is the penalty given by a phone bigram

LM to that particular transition,αt
s, theα score of a states at the time framet is computed

as

αt
s = E × Lη × P γ (4.1)

The exponentiation weightsη andγ are scaling factors responsible for balancing the

dynamic ranges of the three factors. This is the same as the rescoring criterion Eqn. 3.2

of the previous chapter. While in Chapter 3, the combinationis applied at the utterance

level, for experiments in this chapter it is applied at the frame level along with the forward

computation. The state scoring the maximumαt
s at the time instantt = T , the final frame, is

selected from among the candidate ending states as suggested by the pronunciation network.

A traceback fromt = T to t = 0 is performed along the network to infer the hidden

state sequence. This hidden sequence is the surface form of the pronunciation in that word

instance.

4.5 DATA AND EXPERIMENTAL SETUP

This chapter has two broad phases- Baseform inference and evaluation. The resources used

in each phase are described below.
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4.5.0.1 Grapheme-to-Phoneme trees

The Grapheme-to-Phoneme decision trees used for the phone graph generation are built

from the 130K word vocabulary CMUdict [43] using the CART based letter-to-sound (LTS)

module within the FESTVOX [40] framework. A phoneset of 39 phones is used in all

experiments reported in this chapter. A 3-letter context oneither side of a grapheme is used

and the trees are built accordingly. The trees are the same asthose in chapter 3. While

in Sec. 3.2.1 the trees are used forn-best list generation, in this chapter they are used for

phonetic graph construction.

4.5.0.2 Speech data and preprocessing

In this work, the evaluation is carried out on two tasks- single speaker ARCTIC and multi-

speaker TIMIT speech databases. The two databases are phonetically segmented using the

EHMM labeler [49] in FESTVOX. In the variant inference phase, 5 state context indepen-

dent HMMs with 2 Gaussian components per state are used as theacoustic models, and

variance normalized MFCCs are used as features. Using the labels and the initial dictionary

used for training, features for words are extracted from each utterance.

Since cross-word effects cause additional variations thatalter pronunciation in contin-

uous speech, word boundaries may be confounding for any pronunciation inference tech-

nique. This is more severe if CI models are employed. To avertthis, the inference is done at

word level in this chapter. Table 4.1 shows the number of training words and the instances

dealt within each training set.

Table 4.1: Number of tokens and unique words in the training sets

Task Tokens Unique words

ARCTIC 7997 2366

TIMIT 39687 4896
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4.5.1 Evaluation

As will be discussed in section 4.6.2, all inferred variantsare not suitable for addition to the

lexicon. So, criteria are proposed for selection of promising candidates. Evaluation of the

inferred variants is done by computing WER of a continuous speech recognizer with and

without the data-derived baseforms. The recognizer’s acoustic models are 5-state context

dependent continuous HMMs with 8 Gaussians per state. Sincethis work aims to study the

effect on performance only due to changes in the lexicon, allother sources of errors [10]

are minimized to the extent possible. To this end, the test transcript is also included into the

language model training, and the WER is computed at the best set of language weight and

word insertion penalty parameters.

4.6 EXPERIMENTS AND RESULTS

4.6.1 Baselines

• The acoustic models are built using the officially designated training set (4620 ut-

terances) of the TIMIT corpus. The performance is reported on the test set (1680

utterances) for the TIMIT baseline. The language model for this test set is built on

the entire transcription (training and test) transcript. As mentioned earlier, this is a

deliberate setting employed to isolate the changes in performance only due to the

baseforms in the pronunciation dictionary.

• For the single speaker (American English) ARCTIC data, 80% (904 utterances) of

the data is used as the training set for baseform inference. Testing is done on the

remaining 20% of the data using TIMIT CD acoustic models. Thelanguage model

in this case is built from the entire ARCTIC transcription. CMUdict is used as the

lexicon in both cases, an LTS suggested pronunciation is used for the OOV words.

Table 4.2 presents the baseline performance of the recognizer on ARCTIC and TIMIT test

sets.
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Table 4.2: Baseline WERs on TIMIT and ARCTIC test sets

Task Vocabulary Performance (WER %)

ARCTIC 2770 9.006

TIMIT 6122 6.057

Interestingly, though ARCTIC seems to be a smaller (vocabulary wise) and simpler

(single speaker) task than TIMIT, the WER is significantly higher. The justification to this

seemingly aberrant behavior lies in the perplexity values of the test data. Table 4.3 shows that

the perplexity of the ARCTIC test set with respect to a model built on the whole ARCTIC

data is much more than that of the TIMIT test set.

Table 4.3: Perplexities of the testing transcripts

Modeled data Testing Data Perplexity

TIMIT (test+train) TIMIT test 5.81

ARCTIC(test+train) ARCTIC test 24.94

4.6.2 Baseform Inference and selection

The inference technique described in section 4.4 is appliedon all word instances of the

training set utterances of ARCTIC and TIMIT. Table 4.4 showsthe number of words and

the number of unique variants identified by the inference algorithm1.

Table 4.4: Number of unique surface forms

Speech Corpus #words #unique surface forms

ARCTIC 2366 3584

TIMIT 4896 12784

It is noteworthy from the numbers in Table 4.4 that a fair amount of agreement (1.5

variants/word) exists among the inferred variants in ARCTIC data while a relatively much

1The parametersη = 0 andγ = 1 are used, effect of higher values are discussed in later sections
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lower agreement (2.6 variants/word) is seen in the TIMIT data. This is justified by the fact

that ARCTIC is a single speaker database and the variations in pronunciation are consistent

with the training set. TIMIT data, on the other hand, is a collection of speech from 630

speakers (10 utterances per speaker) of 8 different dialects. So, it has more variation and

little representative data to train on.

The inferred surface forms are variants of pronunciation inspecific instances of words.

They cannot substitute the canonical baseforms present in the dictionary, but only be added

as alternative baseforms [50]. They may not all be genuine pronunciation variants and can-

not directly qualify to be enrolled as baseforms. Some of them could have been ‘acciden-

tally’ inferred due to an unknown algorithmic artifact or due to a disfluency or unintended

mispronunciation by the speaker himself. Since, it is a known fact that increasing the num-

ber of baseforms may hurt the system performance due to addedconfusibility among the

lexical entries, it is essential to filter out unwanted (unlikely) variants among the inferred

surface forms.

The auto-generated dictionaries are randomly sampled and the kind of changes under-

gone to the baseform are noted. Appendix B presents the observation from this study. As

mentioned earlier, all the changes noted in the Appendix B are not genuine. So, techniques

are needed to select the best variants. Briefly, selection isdone using the following criteria-

1. Frequency of a surface form.

2. Levenshtein distance of a surface form from the canonicalbaseform.

As a first stage elimination, only the most frequent variantsare considered as candidates

for further evaluation, since absolute frequency of a variant is the most reliable rule for its

acceptability [35]. Among the frequent variants, those that are phonetically similar to the

canonical baseform are selected for addition into the lexicon. The similarity is computed

using the Levenshtein distance measure, a dynamic programming based string matching

algorithm. The Levenshtein distance2 is a measure of the minimum number of operations

needed to transform one string into another. In the current context, the operations involve the

2Levenshtein edit distance comes from Information Theory and is widely applied in Computer Science
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insertion, deletion or substitution of a single phone (e.g., The Levenshtein distance between

phone strings [t ow m aa t ow] and [t ow m ey t o] is 1).

Figure 4.3 illustrates the decrease in the error rate with pronunciation alternatives (vari-

ants) added per increasing Levenshtein distance. The dotted line is the baseline WER

(9.006%) on the ARCTIC test set. The rate of decrease in WER gradually comes down

with increasing number of variants before reaching an optimum (7.88% due to 2100 addi-

tional variants). This decrease in improvement rate is because of the added confusibility

and due to the fact that with increasing Levenshtein distance, the new variants selected are

farther from the canonical baseform.

Fig. 4.3: Recognizer performance on ARCTIC test data with variants added as per increas-

ing Levenshtein distance

4.6.2.1 Analysis of the improvement

The effect of additional baseforms on the ASR output is as follows:

• Of all the changes (improvements + degradations) caused to the new decoder hy-

potheses, 75.4% improved the hypotheses and the rest 24.6% detrimental with respect

to the reference transcription.
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• 82.5% of the improvements were caused due to the use of an inferred variant (known

from the Viterbi traceback). This may be compared to [35], where only about 33%

of the improvements are due their data-derived rules.

• 46.2% of the degradations caused did not use a variant duringdecoding. This means

that a sizable portion of the newly introduced errors are dueto confusibility than the

variants themselves.

To analyze the specific kind of variations that are causing the 1.12% absolute (12.5%

relative) improvement, the Viterbi traceback path of the improved hypotheses are examined.

The variant causing the improvement in each case is identified. This is done for each im-

proved hypothesis of the test set. The results of this analysis are as summarized in Table 4.5,

Table 4.5: Phone changes involved in the improvement-causing variants

Phone change Relative incidence (%)

Vowel Substitution 70.5

Consonant Deletion 17.6

Consonant Substitution 5.8

Vowel Deletion 5.8

Accordingly, the precedence order of phone change for genuine pronunciation variation

is :

V D >=< CS < CD < V S (4.2)

Vowel substitutions are the most likely genuine variationsfollowed in order by conso-

nant deletions, consonant substitutions and vowel deletions (VD and CS are found to be

equally likely). Where CS, VD, CD, VS stand for Consonant Substitution, Vowel Dele-

tion, Consonant Deletion and Vowel Substitution, respectively. This conforms with intuition

about pronunciation variation except for vowel deletions3. It is to be mentioned here that

since a 39-phoneme English phoneset is used in the experiments, reduced vowels (ax, ix

3vowel deletion may be phonologically likely in conversational speech but not in carefully read speech.
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etc) are not among the phones. The lack of baseforms with vowel reductions has forced

the inference technique to accept an unlikely phone change,Vowel Deletion. This is ar-

rived at by examining the word instances undergoing by the VDphone change. Table 4.6

shows examples of VD affected words. The variant is also compared against reduced form

pronunciation provided in TIMIT dictionary:

Table 4.6: Example instances of words undergoing vowel deletion.

Word Inferred variant Reduced baseform

PROBABLY p r aa b b l iy p r aa b ax b l iy

ARRIVAL r ay v ah l ax r ay v el

This ability of the framework to automatically discover behavior patterns of the data

is useful to compare phonological processes across different tasks, although this charac-

terization is not attempted in this chapter. Since VD is merely an implementation artifact

of this setup, the equivalence of VD and CS in the precedence order is discounted in the

experiments below.

4.6.2.2 Modified Levenshtein distance metric

Using the incidence order suggested in the previous section, a modified distance metric is

developed to penalize each phone change in order of its precedence. This is in contrast

with the standard Levenshtein distance metric which equally penalizes all phone changes,

regardless of the kind of change. The modified metric is used to calculate the distance of a

variant from the canonical baseform, and lexicons with the selected variants are again tested

on the test set.

Although not as a significant WER reduction, the use of modified metric did prove to be

judicious. Since the new distance metric accepts only reasonable phone changes, the number

of selected variants is reduced, at no cost of performance loss. This is important considering

that the size of the lexicon directly increases the confusibility and also the decoding time

of the system. For the ARCTIC test set, while Levenshtein distance required about 2100
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additional variants to bring about the 12.5% relative improvement shown in the Fig. 4.3, the

use of modified distance metric has given the same improvement selecting 1900 variants.

The plot in Fig. 4.4 shows the number of selected variants with increasing distance from

the canonical baseform. The broken line plot is that of the Levenshtein distance and the solid

line represents modified Levenshtein distance modified according to the precedence order.

Fig. 4.4: The number of selected variants with increasing distance from canonical baseform.

4.6.2.3 Tuning the Inference decoder

This section presents tuning techniques to improve the variants inferred and reducing their

number. For all experiments presented so far, inference hasbeen done withη = 0 andγ = 1

in Equation 4.1, making it equivalent to inference in a standard finite state transducer frame-

work. In this section, the effect ofη (orthographic exponentiation weight in Eqn. 4.1) on

the inferred variants and on the recognizer performance is shown. Conceptually, increasing

the parameterη corresponds to averaging out certain acoustic detail and relying more on the

spelling (the decision tree probability) for decoding the hidden surface form. Each value of

η gives a unique set of variants inferred from the training data. Adding these variants to the

baseline dictionary (after frequency and distance based selection), the best possible WER

on the test data is empirically obtained. Figure 4.5 shows the best performance of different

variant sets inferred using increasing values ofη. The dotted line is the best performance of
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variants generated with no explicit information from the spelling, η = 0 in Eqn. 4.1, 7.88%

on the ARCTIC test set.

Fig. 4.5: Recognizer performance on ARCTIC test data with increasingη

It can be seen from figure 4.5 that spelling does help improving the inference of the

right kind of variants. The least error rate (7.68% WER) is obtained by augmenting the

variants inferred withη = 3 in equation 4.1. Asη increases further, there is an undue bias of

score towards the decision tree probabilities, downplaying the acoustic scores to the extent

of being neglected. This makes the variants biased to the information from the spelling

and not reflective of the true variation in pronunciation. This explains the increasing WERs

beyondη = 4 in figure 4.5.

Another advantage due to the averaging out of certain acoustic detail mentioned above

is the increasing agreement among inferred variants, amounting to a decrease in the number

of variants to be added to the lexicon. In section 4.6.2.1, a relative improvement of 12.5%

is shown by the addition of 2100 variants (atη = 0). While atη = 3, only 1200 variants are

added to get a 14% relative improvement.

In summary, Table 4.7 compares the performances on the ARCTIC and TIMIT systems

in each of the schemes described above (Sections 4.6.1, 4.6.2, 4.6.2.2 and 4.6.2.3). As can

be seen, relatively, there is only a modest improvement on the TIMIT test set. This may
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be attributed to the wide variation in the TIMIT database andinsufficient training data to

exhibit all of it. Table 4.7 summarizes the improved performances on TIMIT and ARCTIC.

Table 4.7: Final WERs on TIMIT and ARCTIC test sets

Technique of ARCTIC TIMIT

Variant addition Vocabulary WER Vocabulary WER

Baseline 2770 9.006 6122 6.05

Frequency+

Levenshtein 4870 7.88 9005 5.84

Frequency+

Modified Levensh. 4670 7.88 8928 5.85

Spelling+Frequency+

Modified Levensh. 2970 7.68 7831 5.63

4.7 SUMMARY

This chapter has introduced a grammar based decoder framework for inferring surface forms

of words seen in the training data. The framework is realizedby construction of a pronun-

ciation grammar network along which to search for the pronunciation variant of the word

used in the acoustics. The network itself is constructed viaa statistical model (here deci-

sion trees) built to predict likely candidate pronunciations of the word. The scores from

other information sources are integrated into the network as tokens to be passed on during

the forward computation of the Viterbi alignment. The framework provides for adjusting

the reliability of each source of information about the pronunciation- the acoustic evidence

and the orthography. These are effectively combined to score each candidate in the search

space. The hidden variant of the pronunciation is inferred from the network via a Viterbi

traceback. The proposed framework has an advantage of computation over the standard

procedure employed for this problem. The framework is capable to discover processes in
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continuous speech, like vowel deletion. The chapter also proposes distance based selection

criteria to identify the genuine variants in pronunciationfor augmenting to the ASR lexicon.
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CHAPTER 5

Summary and Conclusions

To improve the performance of speech recognition systems, pronunciation modeling is one

of the important issues to be addressed. Typically it involves inferring pronunciation variants

and careful selection of variants into the speech recognition system. This thesis has explored

data-driven methods for improving pronunciation modelingin ASR.

A systematic study has been performed on different information sources such as or-

thography, acoustics, phone language model and their usefulness for inferring pronuncia-

tion variants. A method to combine these information sources has been proposed to gener-

ate appropriate pronunciation variants and has been validated on the task of isolated word

recognition. It was observed that the orthography carried significant information about the

pronunciation than the other sources.

In order to further evaluate the combination of different information sources for pro-

nunciation inference on large vocabulary ASR tasks, the proposed scheme was optimized

with respect to the time complexity with out any loss of accuracy. The modified method in-

volves generation of a pronunciation network for each word using orthographic information.

The various sources of information about pronunciation areeffectively combined within the

standard Viterbi decoding framework to infer the variants from the pronunciation network.

To improve the performance of an ASR system, it is not only sufficient to infer variants

but it is also important to perform careful selection of variants. Different criteria for selecting

the right kind of variants have been studied for continuous speech. The performance of

decoders with different variant sets are compared to understand which knowledge source is

more informative about the word pronunciation. Detailed performance analysis of the best

recognizer hypotheses has been done to understand the phonological processes in continuous

speech. The conclusions from this study are corroborated byimproved performance of
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variants thus obtained. The propositions made in this thesis are validated by significant

WER reductions on continuous speech tasks.

The following are the important conclusions of this work:

• Lexicons generally used for speech recognition are suboptimal, and can be improved

with just the training data provided for acoustic model training.

• Our experiments have shown that orthography is significant information source for

inferring the pronunciation variants than the other information sources such as acous-

tics and phone language model.

• To improve the performance of large vocabulary continuous speech recognition sys-

tems it is not only sufficient to infer pronunciation variants, but it also requires a

careful selection of variants. In the selection process thebaseforms can be used.

• The usually employed Levenshtein distance metric is not generic for computing pho-

netic distance between baseforms; knowledge of the pertinent task could be exploited

to device a more appropriate distance measure.

5.1 DIRECTIONS FOR FUTURE WORK

• In the current work, the initial bootstrapping dictionary has to be large for reliable

grapheme-to-phoneme likelihood capture by the decision trees. Future work can fo-

cus on circumventing this problem by devising alternative approaches to efficient

pronunciation network generation.

• The techniques in this thesislearn the variations only when they are frequent and

expressibly large (as a phone change). There is no other means of prioritizing the

variations. Future work may focus on establishing the hierarchy of phonological

events that occur within pronunciation that describe pronunciation variation at the

phoneme level.

• It would be also useful to see how the pronunciation variantscould be applicable in

the case of conversational speech synthesis.
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APPENDIX A

OGI Names

The subset of the OGI names corpus used for the inference in Chapter 3 is presented below-

abby alicia annette

arthur barron becky

beverly bill billy

bogg bradshaw bryant

bunches campbell canzee

carl carol carolyn

carter catherine cecilia

chris cindy collins

cortijos cramer cruise

curtis cyndie dana

daniel danny dan

darmal darr davis

diane dowling ekblad

eletto elizabeth emily

federson ferrell fujimura

gail garito garner

garry gene glenn

grace graham halkowiez



hall hansen harman

harper harris hartfield

harvey hasler hattie

heath hill hollins

holton homes horton

hughes inman jackie

janet jan jason

jay jeanette jeanne

jennifer jensen jerry

jessen jessica john

jonathan joseph joyce

karen kathy kaye

kelly kelton kendall

leslie lichens lisa

lori louvier mahoney

majorie margaret mary

mayorga melanee melanie

melissa michelle montgomery

moore morgan muir

mulholland nagel nancy

neddy neilson newman

olds packham patrick

paul pearl peggy

polly porter purtyman

rachel ralph randy

raymond reichman richard

roberts rogers ronald

rosell rosemary rose

rousche sam sanchez
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sara scott shane

shanna smithman snow

stephanie steth stevens

steven stonehawker sue

suggs summers suzanne

suzy tannenbaum terri

thompson torres tracy

trobinino vaughan vicki

von waltmeirs waters

wells wempy wilbur

wilmede wood
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APPENDIX B

Observations on Random sampling of Auto-generated dictionaries

The following are the phone changes observed in the inferredsurface forms of TIMIT

database. They are compared against the canonical baseforms of the TIMIT dictionary.

Type of change Sample inferred variants Frequency Comments

BEHIND(1) b ih hh ay n

Consonant Deletion LARGE(2) l aa zh Often Plosives, semivowels,

word ending consonants most

affected.

VIRTUE(1) f r ch y uw

Consonant Substitution ASIDE ah s ay t Often Usual substitutions are within

the voiced/unvoiced pairs of

stops and fricatives; substitu-

tions among nasals.

LONG(1) l ao ng g

Consonant Substitution WITH(11) hh w iy t th Rare -

Vowel Deletion SHUFFLED sh ah f l d Rare The phoneset used does’nt

have reduced phones (IX,

AX) leading to some vowels

being omitted.

Contd...



ABOUT(2) ah b aa aw t

Vowel Insertion CLAIM k l ey iy m Often Frames seem to be shared be-

tween more than one vowels

where unwanted.

ADDED(2) ae d ih d

Vowel Substituted ACROSS ah k r aa s Often Usual substitutions between

short/long vowels. Possi-

ble substituions within front/

mid/back vowels.

53



REFERENCES

[1] L. E. Baum, “An inequality and associated maximization technique in statistical estimation for
probabilistic functions of markov processes,”Inequalities, vol. 3, pp. pp. 1–8, 1970.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via
the EM algorithm,”Journal of the Royal Statistical Society, vol. 39(1), pp. pp. 1–39, 1977.

[3] P. J. Jang and A. G. Hauptmann, “Hierarchical cluster language modeling with statistical rule
extraction for rescoring n-best hypotheses during speech decoding,” inProc. of ICSLP, (Sydney,
Australia), 1998.

[4] A. J. Viterbi, “Error bounds for convolutional codes andan asymptotically optimum decoding
algorithm,” IEEE Trans. Information Theory, vol. IT-13, pp. pp. 260–269, 1967.

[5] B. T. Lowerre,The harpy speech recognition system.PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, USA, 1976.

[6] M. Ravishankar,Efficient Algorithms for Speech Recognition. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1996.

[7] M. Woszczyna,Fast Speaker Independent Large Vocabulary Continuous Speech Recognition.
PhD thesis, University of Karlsruhe, Germany, 1998.

[8] V. Venkataramani,Code breaking for automatic speech recognition. PhD thesis, Johns Hopkins
University, Baltimore, MD, USA, 2005.

[9] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,”
Soviet Physics Doklady, vol. 10, no. 8, pp. 707–710, 1966.

[10] L. L. Chase, “Blame assignment for errors made by large vocabulary speech recognizers,” in
Proc. Eurospeech ’97, (Rhodes, Greece), pp. 1563–1566, 1997.

[11] R. Rosenfeld, “Optimizing lexical and n-gram coveragevia judicious use of linguistic data,” in
Proc. Eurospeech, (Madrid), 1995.

[12] D. McAllaster, L. Gillick, F. Scattone, and M. Newman, “Fabricating conversational speech
data with acoustic models: a program to examine model-data mismatch,” inProc. ICSLP ’98,
(Sydney, Australia), 1998.

[13] S. Greenberg, “Speaking in shorthand– a syllable-centric perspective for understanding pro-
nunciation variation,” inProc. of the ESCA Workshop on Modeling Pronunciation Variation for
Automatic Speech Recognition, (Kekrade, Netherlands, May 1998. ESCA.), 1998.

[14] M. Saraclar,Pronunciation Modeling for Conversational Speech Recognition. PhD thesis,
Johns Hopkins University, Baltimore, MD, USA, 2000.

54



[15] D. Jurafsky, “What kind of pronunciation variation is hard for triphones to model,” inProc.
ICASSP, (Salt Lake City, UT, May 2001), 2001.

[16] Eric John Fosler-Lussier , “Dynamic Pronunciation Models for Automatic Speech Recogni-
tion,” Tech. Rep. TR-99-015, University of California, Berkeley, Berkeley, CA, 1999.

[17] Finke Michael and Waibel Alex, “Speaking mode dependent pronunciation modeling in large
vocabulary conversational speech recognition,” inProc. Eurospeech, 1995.

[18] J. M. Kessens, M. Wester, and H. Strik, “Improving the performance of a dutch csr by model-
ing within-word and cross-word pronunciation variation,”Speech Commun., vol. 29, no. 2-4,
pp. 193–207, 1999.

[19] H. J. Nock and S. J. Young, “Detecting and improving poorpronunciations for multiwords.”

[20] M. Ravishankar and M. Eskenazi, “Automatic generationof context-dependent pronunciations,”
in Proc. Eurospeech ’97, (Rhodes, Greece), pp. 2467–2470, 1997.

[21] T. Sloboda and A. Waibel, “Dictionary learning for spontaneous speech recognition,” inProc.
ICSLP ’96, (Philadelphia), pp. 2328–2331, 1996.

[22] A. Xavier and D. Christian, “Improved acoustic-phonetic modeling in Philips’ dictation system
by handling liaisons and multiple pronunciations,” inProc. Eurospeech ’95, (Madrid), pp. 767–
770, 1995.

[23] P. S. Cohen and R. L. Mercer, “The phonological component of an automatic speech-
recognition system,”Reddy, D.R. (Ed) Speech Recognition. Invited Papers Presentedat the
1974 IEEE Symposium., pp. 275–319, 1975.

[24] N. Cremelie and J.-P. Martens, “In search of better pronunciation models for speech recogni-
tion,” Speech Communication, vol. 29, no. 2-4, pp. 115–136, 1999.

[25] B. C.S. and Y. S.J., “Pseudo-articulatory speech synthesis for recognition using automatic fea-
ture extraction from x-ray data,” inProc. ICSLP ’96, (Philadelphia), pp. 969–972, 1996.

[26] Adda-Decker M. and Lamel L., “Pronunciation variants across system configuration,”Speech
Communication, 1999.

[27] I. Amdal, F. Korkmazskiy, and A. C. Surendran, “Joint pronunciation modeling of non-native
speakers using data-driven methods,” inProc. ICSLP ’00, (Beijing, China), pp. 622–625, 2000.

[28] M. Bacchiani and M. Ostendorf, “Joint lexicon, acoustic unit inventory and model design,”
Speech Commun., vol. 29, no. 2-4, pp. 99–114, 1999.

[29] T. Fukada, T. Yoshimura, and Y. Sagisaka, “Automatic generation of multiple pronunciations
based on neural networks,”Speech Commun., vol. 27, no. 1, pp. 63–73, 1999.

[30] T. Holter and T. Svendsen, “Maximum likelihood modelling of pronunciation variation,”Speech
Commun., vol. 29, no. 2-4, pp. 177–191, 1999.

[31] H. Strik and C. Cucchiarini, “Modeling pronunciation variation for ASR: a survey of the liter-
ature,”Speech Commun., vol. 29, no. 2-4, pp. 225–246, 1999.

55



[32] M. Riley, W. Byrne, M. Finke, S. Khudanpur, A. Ljolje, J.McDonough, H. Nock, M. Saraclar,
C. Wooters, and G. Zavaliagkos, “Stochastic pronunciationmodelling from hand-labelled pho-
netic corpora,”Speech Commun., vol. 29, no. 2-4, pp. 209–224, 1999.

[33] Grace Chung and Staphanie Seneff and Chao Wang and I. Hetherington, “A dynamic vocab-
ulary spoken dialogue interface,” inProc. ICSLP, (Jeju Island), 2004.

[34] H. T.Svendsen, F.K.Soong, “Optimizing baseforms for HMM-base speech recognition,” in
Proc. Eurospeech, 1995.

[35] J. M. Kessens, C. Cucchiarini, and H. Strik, “A data-driven method for modeling pronunciation
variation,” Speech Commun., vol. 40, no. 4, pp. 517–534, 2003.

[36] G. Chung, C. Wang, S. Seneff, E. Filisko, and M. Tang, “Combining linguistic knowledge and
acoustic information in automatic pronunciation lexicon generation,” inProc. of ICSLP, (Jeju
Island, Korea), 2004.

[37] S. Deligne and L. Mangu, “On the use of lattices for automatic generation of pronunciation,” in
Proc. ICASSP, (Hongkong, China), 2003.

[38] B.Ramabhadran, L.R.Bahl, P. DeSouza, and M. Padmanabhan, “Acoustics-only based auto-
matic phonetic baseform generation,” inProc. ICASSP, (Seattle, USA), 1998.

[39] M. Riley and A. Ljolje, “Automatic generation of detailed pronunciation lexicons,”Automatic
Speech and Speaker Recognition: Advanced Topics. Kluwer., 1995.

[40] A. W. Black, “Festvox: Building New Synthetic Voices.”http://www.festvox.org.

[41] S. Deligne and B. Maison and R. Gopinath, “Automatic generation and selection of multiple
pronunciations for dynamic vocabularies,” inProc. ICASSP, (Salt Lake City, UT), 2001.

[42] I. Bazzi and J. Glass, “A multi-class approach for modelling out-of-vocabulary words,” inProc.
ICSLP, (Denver, Colorado), 2002.

[43] “CMUDICT: CMU pronunciation dictionary.” http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

[44] John S Garofolo, “TIMIT acoustic-phonetic continuousspeech corpus,” 1993. Linguistic Data
Consortium, Philadelphia.

[45] “CMUsphinx, The Carnegie Mellon Sphinx Project.” http://cmusphinx.sourceforge.net.

[46] “Names v1.3, the CSLU OGI names corpus.” http://cslu.cse.ogi.edu/corpora/names/.

[47] T. Hazen, I. Hetherington, H. Shu, and K. Livescu, “Pronunciation modeling using a finite-state
transducer representation,” PMLA, 2002.

[48] Deng L. and Sun D., “A statistical approach to automaticspeech recognition using the atomic
speech units constructed from overlapping articulatory features,”J. Acoust. Soc. Amer., 1994.

[49] K. Prahallad, A. Black, and R. Mosur, “Sub-phonetic modeling for capturing pronunciation
variations for conversational speech synthesis,” inInternational Conference on Acoustics,
Speech and Signal Processing (ICASSP), (Toulouse, France), 2006.

56



[50] M. Magimai.-Doss and H. Bourlard, “On the adequacy of baseform pronunciations and pro-
nunciation variants,” IDIAP-RR 27, IDIAP, 2004.

57



LIST OF PUBLICATIONS

The work done during my masters has been disseminated to the following confer-

ences/journals:

1. Gopala Krishna Anumanchipalli, Mosur Ravishankar and Raj Reddy, ”Improving

Pronunciation Inference using N-Best list, Acoustics and Orthography ”, in Proceed-

ings of IEEE Intl. Conf. on Acoustics, Speech and Signal Processing(ICASSP),

Honolulu, USA, 2007.

2. D. Bohus, S. Grau, D. Huggins-Daines, V. Keri, G. Krishna,R. Kumar, A. Raux,

and S. Tomko, ”Conquest - an Open-Source Dialog System for Conferences”, in

Proceedings ofHLT-NAACL ’07, Rochester, NY, USA, 2007.

3. Gopala Krishna Anumanchipalli, Kishore Prahallad and Mosur Ravishankar, ”Pro-

nunciation Modeling Using Lexical and Acoustic Information for Speech Recogni-

tion”, Under Review atIEEE Intl. Conf. of Acoustics, Speech and Signal Processing

(ICASSP), Las Vegas, USA, 2008.

4. Gopala Krishna Anumanchipalli, Kishore Prahallad and Alan W Black, ”Significance

of Early Tagged Contextual Graphemes in Grapheme Based Speech Synthesis and

Recognition Systems”, Under Review atIEEE Intl. Conf. on Acoustics, Speech and

Signal Processing (ICASSP), Las Vegas, USA, 2008.

5. Gopala Krishna Anumanchipalli, Kishore Prahallad and Mosur Ravishankar, ”Data-

driven Lexical Modeling for Continuous Speech Recognition”, In Preparation for

Speech Communication.

58



CURRICULUM VITAE

1. NAME: Gopala Krishna Anumanchipalli

2. DATE OF BIRTH: 24 June 1984

3. PERMANENT ADDRESS:

Gopala Krishna Anumanchipalli

S/O: A.V.S. Narayana

43-9-9 Rly. New Colony

Visakhapatnam 530016

Andhra Pradesh, India

4. EDUCATIONAL QUALIFICATIONS:

• June 2006: Bachelor of Technology in Computer Science and Engineering

(Hons.), IIIT Hyderabad

• November 2007: Master of Science (by Research) in Computer Science and

Engineering, IIIT Hyderabad

59



THESIS COMMITTEE

1. GUIDES:

• Mr. S. Prahallad Kishore

• Dr. Ravishankar Mosur

2. MEMBERS:

• Prof. B. Yegnanarayana

• Dr. G. Ramamurthy

60


