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ABSTRACT

Keywords: automatic speech recognition; pronunciation modelingsdfarm inference;

automatic dictionary generation.

Automatic Speech Recognition (ASR) is a sequential patecognition problem. It
aims to correctly hypothesize a spoken utterance into agstif words. The conventional
statistical framework employed to accomplish the speeetextt conversion comprises three
major components- acoustic models, language model anddhempciation dictionary.

The pronunciation dictionary(or the lexicon) is a mappiaglé, a representation of
the system’s vocabulary in terms of its acoustic modelinigsurin general, while acoustic
and language models are outputs of statistical optimiggtimcedures, lexicons are usu-
ally taken off the shelf. During the training, the system ieypded with speech data, the
corresponding transcription and a pronunciation dicttgn&t the decoding run-time, the
acoustic models and language models trained on the taslsadenhile one of the standard
dictionaries (CMUdict, Pronlex etc.) is used as the lexic8tandard lexicons are manually
built by linguists to provide the most generic pronunciatief the words. However, vari-
ations occur in pronunciation due to a number of factorsudiclg gender, accent, dialect,
mode of speaking etc. While a generic pronunciation dietrgmemains to be the safest bet,
it may not be optimally suited for a test condition. Thusréhis a need to adapt a lexicon
in order to best match the test conditions. This thesis stibassthe lexicon can also be
improved for a task by adding the variants to pronunciatiomgrred using the resources
already provided for acoustic model training.

The focus of pronunciation modeling research has to beendarporate all kinds of
genuine pronunciation variation into the speech recogmithodels. Several approaches
operating at various components of the recognizers have freposed to account for these

kinds of variation. Existing methods fall into two broadegbries. Modeling at the acoustic



level, (including front-end signal processing and modehp@eter adaptation given some
adaptation data) and modeling at the lexical level, modgythe entries in the dictionary.
This thesis falls into the latter category.

The primary contribution of this thesis is a generic framewimr generation of pro-
nunciation variants of words seen in the training data. TTaeéwork is realized by con-
struction of a pronunciation grammar network along whickearch for the variants used in
the acoustics. The network itself is constructed via astiasil model (here decision trees)
built to predict likely candidate phones of the word. Thexfeavork provides for adjusting
the reliability of each source of information about the proaiation: the acoustic evidence,
the orthography and the phone transition patterns in thguage. The three sources are
effectively combined to score each candidate in the segrabes The hidden variant of the
pronunciation is inferred from the network via a Viterbideaback. The thesis presents a
thorough analysis of the nature of the inferred variants jarghoses criteria to select the
best set of variants that when augmented to the lexicon wilhace the system’s tolerance
to such variations, thereby increasing its performance.

The thesis validates the proposed framework and techniguésree different tasks. It
uses an isolated word task, the OGInames corpus for estadgithe importance of orthog-
raphy as the most reliable source of information about tleagnciation. The experiments
involving evaluation of inferred variants are done on singpheaker and multi-speaker con-
tinuous speech tasks, ARCTIC and TIMIT databases respdctivAmong the two, the
largest improvement was seen on the single speaker ARCTigbase, in which the auto-

matically learned pronunciations corrected 14% of thersrmoade by the baseline system.
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CHAPTER 1

Automatic Speech Recognition

The problem of speech recognition is defined as the converdiepoken utterances into
textual sentences by a machine. An utterance that is giverpasto an Automatic Speech
Recognition (ASR) system is digitized and processed usimgas processing algorithms
to extract representational vectaoks = xq, x,...x;, Wheret depends on the length of the
utterance. If the hypotheses space of word sequencethis problem of speech recognition
can be formally stated as

W* = argmax P(W|X) (1.2)
WeC

In other words, an ASR system tries to find a string of wdidsthat has the highest prob-
ability for the given acoustic waveform. The direct compigta of posterior probability

P(W/X) is difficult and hence Bayes' rule is applied to sgiti1’/ X)) into realizable sub-

components:
W* = argmax P(W|X) = argmax PX|W)P(W) (1.2)
WeC w P(X)
= argmax P(X|W)P(W) (1.3)
w

The prior P(X) is constant over all candidates of the hypotheses spaceenu# iImay be
ignored in the denominator of Equation 1.2. From Equati@; it .can be observed that an
ASR system needs to model two probability distributiong:tfie probability of the acous-
tics matching a particular hypothegi§ X |1V), and (2) the prior probability of the candidate
hypotheses? (/). The estimation of likelihood” (X |IV) involves modeling the relation-
ship between the acoustic sequence and all possible wangsstrhich is computationally

expensive.



Since hypothesi®/ is a sequence of word$” = wy, ws...wy,
max P(X/W)P(W) = max P(X/wy,wy..wy) x P(wy, wy...wy) (1.4)

Words in utterances are represented by sub-word unitsdcghenes If w; is a word
model thenP; = p, p2...pa IS corresponding sequence of phones. Each phone may further
be realized as a sequen@eof a defined number of state®, = q1, qz2...qs. Thus models
of utterances are deconstructed into a phone state seq@gndéree different terms that

comprise the entire probability distribution are:

PA(X|Q;): The probability of acoustics given the phone state seqékisown as the
acoustic modél
Pp(Q;|W): The probability of a state sequence given the wordsfthaunciation modgl

P (W): The prior probability of word sequences (tleguage modégl

These three model$),, Pp, Py, are related to Equation 1.4 as follows :

max P(X/W)P(W) = max{P(X/Q:) P(Q:/W)P(W)} (1.5)

= %&X{PAPPPL} (1.6)

Equation 1.5 follows from probability theory and the asstiopthat acoustic likelihood
is independent of word models given the state sequence. ctildehe best state sequence
according to Egn. 1.6, ¥iterbi approximationis often employed. The Viterbi algorithm
tries to find the state sequence which has the highest pmspeabability P4 Pp P, on the
observations. Hence, it is also referred to as the maximynosteriori(MAP) decoding.

The typical ASR system has different components that estiach part of the model.
To begin with, acoustic feature((= xq, X»...x¢) of the acoustic signal are produced by
signal processing routines. MFCCs (Mel Frequency Cep6&inefficients), a typical choice

of representation for speech recognition are used in thi&kwo



1.0.1 Acoustic Model

The factor P, of Eqn. 1.6 is a model for the acoustics. It can be calculatedeiveral
ways. In Hidden Markov Models (HMM) systems, the distribatat any state is modeled

as a Gaussian Mixture Model (GMM). The distribution overteatate can be determined
for individual acoustics and phonég(z;|q;)), the context independent (Cl) models; these
estimates are multiplied together to give an overall eséntd the probabilityP (X |Q).

Formally, the output distribution GMM at each states modeled as:

K
Pz, =zl = q) = Zci,qN(x7/~Li,q> Ziag) 1.7)

i=1
where K is the number of Gaussian components,, i;, and%; , are the mixture

weight, mean and covariance matrix of tile component of the observation distribution of

stateq, respectively, and each Gaussian is modeled as

1 -1 _
N(x, pig, Big) = (2nD/2)|5; |12 €$p{7(37 - ,ui,q)TEzgql (T — pig)} (1.8)

The state level emission densitidsand the state transition probabilities are estimated
during the acoustic model training. The data usually alséelauring training is the speech
data and its corresponding transcription. The state lewetiation is assumed to be hidden.
The Forward-Backward algorithm, also called the Baum-Waeillgorithm [1] is employed
to compute the model parameters given the training dataruhdeMaximum Likelihood
(ML) criterion. Baum-Welch is an instance of the iterativepgctation Maximization (EM)

algorithm. [2] may be referred for a formal treatment of tHe BIgorithm.

1.0.2 Language Model

The language model (LM) provides an estimatePpfof Eqn.1.6. It is typically am-gram
grammar for large-vocabulary decoders. In general, theaiiity of a word sequencld’

can be decomposed as follows:



Pr(wy...wy) = P(wy|w—q1, wy_g..., w1) P(wy_1|wy_g, ..., w1)...P(wq) (2.9)
t
= HP(wi|wi_1,...,w1) (1.10)
i=1

An n-gram grammar makes the assumption that word histories thare: — 1 words

before the current word do not affect the probability:

t
Pr(hy...h) = [ P(hilhiza, - hicnet)) (1.11)
=1

Language models play an important role in constraining daech space of the decoder.
It also helps in disambiguating between acoustically csinfy word sequences (e.g. ‘I
scream’ vs ‘Ice cream’). Smoothed word trigrams with bafikewe the most common
LMs nowadays. Recent attempts claim significant improvemieyemploying higher order

models [3].

1.0.3 Pronunciation Dictionary

For the most part in this thesis, the auditory front-end,abeustic model and the language
models are assumed as given. This thesis is concerned wigiréimunciation model’» of
Eqgn. 1.6. The pronunciation model serves an important rokets as an interface between
acoustic and language models, creating mappings betwedwdth The pronunciation dic-
tionary determines how the acoustic modeling units are at@mated. The HMM phone
models give the distribution and durational constraintgtie individual phones.

In most systems, the dictionary is a mere look-up table,iging phonemic representations
of each word. Words may have more than one representatiomhich case the table is
called as anultiple pronunciation dictionaryA multiple pronunciation dictionary provides

a model of baseform sequencé};,(B|1), as part of the overall pronunciation model.

Po(QIW) = Po(Q|B) Py(BIW) (1.12)

!Phonemic representations are in the dictionary are alsediadseforms

4



WherePp(Q|B) is the prior probability on the baseforms. Most dictionadgssume no
prior bias on a baseform, although it may be helpful for sop@iaations. In general, the
baseform pronunciations of a woie,(Q)|B) are assumed to be independent of the word

context.

1.1 DECODING: RECOGNIZING THE SPEECH

The language model can be represented as a Markov chainjrar&dtse acoustic model
itself is HMM-based, the joint model can be realized as alsilegge HMM. MAP decoding
according to Egn. 1.6 is employed to search this huge netfeotke most likely path given
the acoustic observations. Usually a form of Viterbi deogd#] is used to obtain the MAP
hypothesis.

Most formulations of the Viterbi algorithm entail travetsrough a HMM graph. The
huge pronunciation network is usually constructed and dyoally replicated at run-time
according to the language model. While traversing alongythph, each statgat the time
instantt is associated with a likelihood of the best path that endkércurrent statg. The
likelihood is computed having seen all observations uhil time instant (the forward
algorithm). Back pointers are also stored to give the mastyistate sequence(s) for each
statej. Beam search [5] is often applied to prune candidate patbadit state for further
processing. Once all frames of speech are processedl(), trace back information of the
maximum scoring state is used to recover the most likely vemguence. The trace back
information may also be used to produce a compact repragan{&nown as dattice) of
the candidate hypothesis. Arbest list ofn most likely hypotheses may be generated. The
lattice/list may be rescored using higher knowledge saitcget the best word sequence(s).

Several decoding strategies can be found in the literatG}¢7] [8].

1.1.1 Evaluation Criteria

ASR systems are usually evaluated under the Word Error REEER)) criterion. The WER

metric is defined to be the ratio of the number of recognitioors to the number of words

5



in the reference (truth). The number of recognition err@rgalculated as the minimum
number of insertion, substitution or deletion operaticeguired to obtain the same string as
the reference from the recognizer output (hypothesis)s THER metric is an instance of
the Levenshtein distance measure [9] computed using dynpragramming techniques.
Human transcriptions are usually taken to be the reference.

Substitutions + Insertions + Deletions

WER = (1.13)

# words in reference
Based on the associated task, Phone Error Rate (PER) andelLBttor Rate (LER)

may also be relevant performance measures.

1.1.2 Errors made by speech recognizers

Though ASR research has come a long way, today’s systemsuafeoin being perfect.
Speech recognizers are brittle and make errors due to \sacauses. [10] attempts a detailed
characterization of errors made by speech recognizersorflowly, most errors made by

ASRs fall into one of the following categories:

1. OQV errorg: Current state of the art speech recognizers are closedutznéEs. So,
they are incapable of recognizing words outside the systemcabulary. Besides
mis-recognition, the presence of an OOV in an input uttezaceuses errors to its
neighboring words. In a large vocabulary system, each OQ¥asvn to cause about

1.2 errors in the decoder’s output [11].

2. Search errors This class of errors is due to pruning of the candidate hypsés
by beam search (Sec. 1.1). It may be possible that the cdrypdthesis is pruned

because of a low score (this can be caused by multiple reasons

3. Homophone Substitutiohese errors are caused if more than one lexical entry has
the same pronunciation (phone sequence). While decodieg,may be confused
with one another causing errors. In general, the languagiehttisambiguates in the

event of such a confusion.

20ut of Vocabulary words are referred as OOV



4. Language model biaBecause of an undue bias (effected by high language weight)
towards the language model, the decoder may be forced tct tbje true hypothe-
sis in favor of a spurious candidate. These errors may odomgavith analogous

acoustic model bias.

5. Multiple acoustic problemsThis is a broad category of errors comprising those to
due to bad pronunciation entries; disfluency, mis-proratimn by the speaker him-

self or confused acoustic models (possibly due to nois@;chetdel mismatch etc.)

1.2 ISSUES ADDRESSED IN THIS THESIS

The research in this thesis attempts to improve the proatinai dictionary. In part, the
thesis addresses the last category of errors in the pragsdution. As would be elaborated
in the next chapter, earlier attempts to this problem hawnsib-optimally implemented
and only a few have shown improvements on complex speech.tdsks thesis addresses
the problem in the context of continuous speech in a fulladhtven fashion. The first
stage is inference of pronunciation from available dataiafatmation. This is followed by
selection of the right variants for improving the dictiopar

Existing attempts follow a sequential step-by step procetluinferring pronunciation.
The time complexity in these approaches is a function of tn@lver of variants and the
length of the acoustics, iterated more than once. The cuwerk employs a framework
which infers pronunciation in a time synchronous manneusTisignificantly reducing the
time complexity, the proposed technique only requires adirtime in the length of the

utterance. In brief, the technical contributions of thiedls are as follows:

e Establishing the significance of orthography as a reliabfermation source than

acoustic evidence in determination of surface form promations.

e Anintegrated framework for accurate time synchronous pnamtion inference from
acoustics via the use of a novel combination function to damband tune the infor-

mation from available knowledge sources.



e Modifications to the Levenshtein distance to measure distdretween phonetic

strings to select suitable pronunciation variants for aeigtimg to the ASR lexicon.

¢ Significant reduction of continuous speech recognizer W&RARCTIC and TIMIT

databases, the largest tasks so far studied for this problem

1.3 MOTIVATION

There are several reasons that underline the need for atitodada-driven dictionary im-

provement/generation techniques:

¢ Significance:In a cheating experiment, [12] shows that word error rate \witch-
board corpus dramatically decreased from 40% to 8% if th&aiary pronuncia-
tion matched the actual pronunciation. This proves thatatiary improvement is a

promising direction for significant error rate reductions.

e Adequacy13] analyzed a corpus of conversational speech and idemtifiat the
baseform pronunciations are quite inadequate. For instahe word ‘that’ appears
328 times in the corpus used and has 117 different realiza{\ariations in pronun-
ciation). Also, the most frequent variant only covers 11%albfinstances. Hence,
there is a need for addition of better representative basefof the word pronunci-
ation. Also, variants should be economically added so thptovement is not offset

by the added confusibility due to the new lexical entries.

e Consistencylin [14], the switchboard corpus was phonetically annotatedihuman
labelers disagree on more than 20% of the surface forms. alhides to the fact
that manually built dictionaries have a drawback of beirgpimsistent. This calls for
principled ways for automation to impart more consistercthe dictionary building

process.

Adaptation techniques for acoustic and language modelkhareughly researched and
are put to practice in deployed real-time systems. As fompitu@unciation model, one of

the standard available dictionaries is plugged into théesgsregardless of the task. This is

8



because, most earlier techniques have shown only margimmbvements on lexica. Also,
most analysis was limited to isolated speech tasks. [1%jemghat improvements in pro-
nunciation modeling research have been elusive becaudekinds of variations that were
studied are already captured by context-dependent acausiieling. This thesis focuses
solely on understanding the within-word variation in thgi¢al baseforms relevant to the
task using context independent models.

Another motivation for inference and enroliment technigji their ability to handle
OOV words. This is in the context of applications which alloarrective feedback from the
user. In such scenarios, data-derived pronunciations efxaaword can be augmented into
ASR lexicon. This enables the system to hypothesize the woadsubsequent encounter.
The larger implication is the viability of systems suppoegiopen/dynamic vocabularies, a

sought after feature in ASR systems.

1.4 ORGANIZATION OF THE THESIS

The remaining chapters are organized as follows:

e Chapter 2 presents a survey on techniques for capturingti@rivia pronunciation
modeling. It also discusses the limitations of existingrgpts and an overview of

the proposed approach in this thesis.

e Chapter 3 proposes the technique for inferring surface $6trsing lexical and acous-
tic information. The chapter presents the decision treedbéeschnique for capturing
grapheme-to-phoneme relations. This is followed by erogirobservations on the
nature of the inferred surface forms with varying weightsnfidence) on the differ-

ent information sources, within an isolated word task.

e Chapter 4 presents an integrated framework with adjustabights to combine the
different information sources. Criteria for improved irdace and rejection of spu-

rious candidate variants are also proposed. The perforenahthe variants is pre-

3This thesis uses the terms surface form and pronunciatigantanterchangeably



sented on two continuous speech tasks.

e Chapter 5 presents the concluding remarks and outlinesoifiteiloutions of the the-

sis. The chapter also presents the limitations and assongathade in the thesis.

10



CHAPTER 2

Approaches to Pronunciation Modeling

For humans, knowledge about pronunciation is intuitive aeffdrtless. To this day, the
faculties that inherently give us this intuition are not qaetely understood. For inquiry
into pronunciation, linguistics dedicates two related-figlnls: Phoneticsand Phonology
Phoneticsdeals with the range of vocal sounds that are produced dgpogen language
generation whild?honologydeals with capturing the variation of pronunciation withiese
sounds.

In automatic speech recognition systems, information eijpoanunciation is captured
via the pronunciation dictionary. While alternatives éxise commonly used representation
of pronunciation in ASR systems is a first order Markov chdithe phonemes. Fig. 2.1

shows example pronunciations of womlse two andthree

ong - (w———(w)——(n)
o (7 ———{uw)
THREE @ ® @

Fig. 2.1: Pronunciations as first order Markov chains

Figure 2.1 also shows the realization of the phoneme /th/ldsK at the state level,
its acoustic model. As mentioned in chapter 1, the dictipnsiran interface between the
acoustic models and the language model. It gives the cotnposif each word in terms of

the acoustic modeling units.
11



2.1 WHAT KIND OF VARIATION IS DEALT IN THE LEXICON?

As an interface between the acoustic and language modelgdal fior pronunciation must
deal with variation from both sides: variation in pronurimas caused by factors such as
predictable word sequences or increased speaking rateTag.pronunciation dictionary
together with the acoustic models enables the system toldgmdnunciation variation.
Linguistic variation includes a number of factors known gmdmically affect pronuncia-
tion variation, including the surrounding phones, the pdis/accent context, the identity
and probability of neighboring words and the presence dfidiacies and silence near the
target word. The phone sequences in the lexicon (canoresafbrms) are hence built to be
reflective of most realizations of the word.

In controlled conditions as in isolated speech, variatrange from gross variations like
those of the word ‘tomato’ in American and British Englishd@jv m ey t ow] iInAmME& [t
ow m aa t ow] inBrE) to more subtle changes like that in the word ‘all’ ( [aa I] &[§).
Canonical baseforms are expected to cover most variatemsh are then complemented
by the context dependent acoustic models to capture theticodation effects. Among
other factors, the validity of this assumption weakens wittreasing variation within the
task (isolated speech, carefully read speech, convensdtspeech, sloppy speech and so
on). An obvious solution to handle this is to have the lexicomer all possible variations
of the word pronunciations. This technique, however is fudipnly to an extent. Recalling
the Viterbi algorithm (Sec. 1.1), since the decoder findsoms phone string rather than the
best word string, it biases against words with multiple prociations. Furthermore, [11]
shows that as the vocabulary size grows, acoustic confilgibmong the lexical entries
increases and it becomes a non-negligible source of retogmirrors. So, variants have to
be added cautiously, taking into consideration the impnuset due to added variants and
also the offset due to the increased confusibility.

Pronunciation dictionaries are generally hand-craftedifguists to reflect the most
agreed pronunciations of each word. In theory, sound urgtslizided into two basic types:

phones and phonemd3honesare the fundamental sound categories that describe the rang
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of acoustic features found in languagPfionemesn the other hand are abstract, language-
specific entities that may represent one or more phones.

Phonology is dedicated to capturing the variations irstiréace form®f pronunciation.
It investigates which phone a particular phoneme wouldassim a givencontext. The
various phones that are candidate realizations of a phoreenesferred to aallophones
For instance, [ah], [ae], [ay] are allophones of the phonéahé in different contexts. In
ASR literature, several techniques have been proposedftiugng this variation into the
lexicon. Section 2.2 presents an overview of related attemplthough the section is a
bird’s eye view of earlier attempts, more specific comparsswill be made in the following

chapters as applicable.

2.2 MODELING VARIATION: OVERVIEW OF APPROACHES

An important distinction that is often drawn in modeling pumciation variation is that
between within-word and cross-word variation. The undagyphonetic mechanisms are
different in the two and hence the need to address them gefyarApproaches to handle
cross-word variation have widely employed the use of mutirds [17] [18] [19] [20] [21],
wherein frequent word clusters are concatenated as onealeitry. This technique can
account only a small portion of cross-word variation, like tvariation between words
that occur in very frequent sequences. Due to this limitatmther techniques involving
rewrite rules based on word context etc have also been pedpldee those described in
[22] [23] [24] [25].

Within word variation is the kind of variation that can be netetl at the level of the
lexicon by adding pronunciation variants [26] [27] [22] [424] [17] [29] [18]. On similar
lines, this thesis delves into modeling within-word vapas. Earlier approaches to this

problem have all employed and differed within two broad @sas
1. Finding the information on variation of pronunciation

2. Integrating this information into ASR

1 [16] elaborates the definition of context as applied to prmiation modeling

13



2.2.1 Information about pronunciation variation

An important step in modeling variation is investigating ources of information on pro-

nunciation variation. This can be obtained by knowledgsebaor data-driven techniques:

2.2.1.1 Knowledge-based approaches to study variation

In knowledge-based approaches, information on pronuoaia mainly derived from sources
that are already available. Existing sources can be praatime dictionaries or rules on pro-
nunciation variation from linguistic studies [26] [22] [RRL7] [18] [19]. In general, these
rules are optional phonological rules concerning insegjadeletions and substitution of
phones. A drawback of knowledge-based methods is that smsees usually only pro-
vide gualitative information about pronunciations (likeetpossible allophones a phoneme
can assume). It doesn’t provide any quantitative inforargtivhich is essential for system
building. Another drawback is that existing knowledge isitable from analysis done on

laboratory speech, and may not hold for all testing condgio

2.2.1.2 Data-driven approaches to study variation

The idea behind the use of data-driven techniques is to atetihe test conditions. Also,
they carry limited or no biases to linguistic theories, ety on the techniques to auto-
matically discover information and rules from the data. Maeous realizations of word
pronunciations are obtained directly from the speech $sgfa5] [19] [16] [29] [13] [30]
[31] [20] [32]. The acoustic signals are analyzed in ordeolbserve the different ways in
which the words are realized. A common stage in the analyslsecsignal is the transcrip-
tion of speech which is done either manually [16] [13] [32](semi-)automatically [26]
[27] [30] [24] [29] [20] [32]. The latter is usually done ugjra phoneme recognizer or by
means of forced Viterbi alignment. The transcriptions atieez used directly for new word
pronunciations or for formalizations derived from them [274] [29] [18] [20]. This is
done by comparing the transcriptions against canonicasti@tions (using existing base-

forms). The comparison is done by a dynamic programmingdakgnment. The resulting
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alignments are then used to:

o derive rewrite rules to characterize the variations undeegoy the baseforms [27] [24] [18] [20],

e train an artificial neural network to model the phone changegss from the canon-

ical form to the transcription [29],

e train decision trees to learn the phone change as per thextonthe canonical form
[16] [32] or to

e calculate a phone confusion matrix [33]

2.2.2 Using the information on pronunciation

In Section 2.2.1, an overview of various sources of infoioratised by existing approaches
is given. This section presents an overview of how this imfation has been used for im-
proving ASR. Adaptation of the lexicon is done by adding prociation variants to it. So

the first stage in the process is generation of candidataniati This is either done manually

[22] [32] or by automatic procedures such as:

e using learntrules to generate the possible candidatesiaihg [26] [27] [18] [19] [20],
e artificial neural networks [29],

e grapheme to phoneme converters,

e using a phoneme recognizer [19] [20] [21],

e maximum likelihood optimization [30] and

e decision trees [16] [32]

The variants that are likely to capture relevant variatiom selected from those gen-
erated above. The assumption made here is that since reyftiphunciations are present,
the recognizer can select from among the different basefdéonmatch the acoustics. This
reduces the errors made due to mismatched pronunciatioowevér, addition of variants
adds to the confusibility within the lexicon, which may le¢adlegradation of the recognizer

performance. So, variants should be cautiously added tmbalthe improvement due their

15



addition and the offset introduced by the added confugybilFor this purpose, different

criteria for variant selection are used such as:

e frequency of the variant’'s occurrence [18] [20] [32],
e a maximum likelihood criterion [30],
e confidence measures [21] and

e degree of confusibility between the variants [21].

2.3 LIMITATIONS OF EXISTING APPROACHES

Data-driven methods score over knowledge-based methadshdocurrent problem,
since they make use of available evidence. Among the datardmethods cited above,
the emphasis was put on selecting the right kind of variams fautomatically/manually
generated transcriptions. There was not much work in impgpthe transcription accuracy
itself. So, the errors of transcription persist throughltter steps in the process.

Another limitation is the choice of the candidate variahigt different techniques con-
sidered. Since this choice puts a hard bias on the hypoteesésated, it is an important
early stage decision. Two closely related works employnapies as follows-

[30] employs a tree-trellis algorithm based on theagorithm [34] for finding optimal
path through an elaborate phoneme tree. This effectivedyifeasame exhaustive hypotheses
space and is as error-prone as raw phonetic decoding.

[35] employs a rule based generation of candidates allowimgh phoneme of the
canonical baseform to be optional per candidate. Althoiigh,stated to be an adhoc set-
ting, the rule is too simplistic and overly biased to the caoal baseform to perform any
commendable inference. Hence, this is not generalizable.

At an implementation level, barring a few exceptions [36)][337], a distinction ear-
lier attempts did not acknowledge is between inference andgnition. While recognition
tries to overlook variations to identify the intended hypegis, inference aims to capture

the actual phones in the acoustics. So, techniques thatlapteal from general recognition
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frameworks (e.g. CDHMM modeling) are incompatible for irgiece. This may be a pos-
sible justification for marginal improvements in previougeapts. Another disadvantage
of tailoring existing recognition tools for this problemtise limited control it leaves on the

process, besides the irrelevant time and complexity oweethe

2.4 APPROACH ADOPTED IN THIS THESIS

This thesis proposes improvements at different stageseopthcess. At the first stage,
techniques are investigated to improve the accuracy odmtimference, rather than relying
on the canonical baseforms or directly the inferred surfaces. In the second stage, it
attempts to build better pronunciation dictionaries tingptiove the ASR accuracy.

As would be shown in Chapter 3, acoustic evidence is subvagbtior generation of
candidates for further selection; this is invariably doneall earlier data-driven methods.
Rather than considering the exhaustive candidate spadeeafitv phonetic decoder [30]
or overly pruning the candidates [35], this thesis chooskesalance between the two. This
thesis uses the least error-prone resource, orthograpltyegsrimary information source
for candidate generation and uses acoustics only as anneé@de improve the inference
accuracy.

This thesis employs an exclusive framework for inferencehef surface form from
acoustics. The integration of knowledge from other infdiiorasources is done at the time
of alignment, making the entire process, time and companagificient. The thesis also
discusses possible techniques to improve agreement amf@nged variants, thereby weak-
ening the possible offset due to lexical confusibility. &ifew other approaches [35] [18],
findings from error analysis are incorporated in the setecailgorithm for further efficiency.

ARCTIC and TIMIT are used as the test sets to validate theqwals made.
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2.5 PERFORMANCE COMPARISON

Although a direct performance comparison of approachesatdre made due to the varying
assumptions, baselines, vocabulary sizes and test sedshn this section tries to contrast
the specifics of a few attempts.

[33] uses 200 OGI names as a test set for isolated name reéicogtasisk and reports a
19.4% relative WER improvement in a controlled dialog tadkey use hybrid techniques
combining both knowledge-based and data-driven stragedrecontrast, the orthography-
driven inference techniques proposed in Ch. 3 show a 21.4%owement in the phone error
rate on the same task.

[30] employs a maximum likelihood approach for variant seten on the 900 word
task Resource Management database. They note a 18.4%a aiarovement over manual
dictionaries, the best performance caused by allowing lleBtives for each lexical entry.
Another closely related work, [35] employs a rule-basedédiiven technique for selection
of pronunciation variants. It shows an 8% relative improeatmon a 1288 word Dutch
spontaneous speech allowing 2 variants per word. In thEghthe inference and selection
are validated for continuous speech on the 2366 vocabulaglesspeaker ARCTIC data. A
14.6% relative WER improvement at 1.4 variants per word @sh The same techniques
have shown to give an 8% improvement using 1.6 variants ped wo the multi-speaker
TIMIT database.

18



CHAPTER 3

Capturing Variants using Lexical and Acoustic Information

3.1 INTRODUCTION

This chapter focuses on improving the quality of the inférpgonunciations from acous-
tic samples. Hence, an investigation of various informmasources about pronunciation is
necessary. As seen in the Chap. 2, earlier methods (Set) Ba&e broadly used either
existing phonological knowledge in the language or havel @a®ustics to infer pronunci-
ations. This chapter presents techniques to exploit thigada knowledge sources further
to infer better pronunciation baseforms in a data-driveshian. As mentioned earlier, the

inference techniques described here apply at the word.level

3.1.1 Sources of information about pronunciation

Itis important to identify the various sources of inforntatirelevant to pronunciation before
proceeding to techniques to infer it automatically. Thist&a presents the various sources
of information. It should be noted that these factors andetktent of their roles largely
depend on the language in consideration.

e The knowledge of the language: the phonology, stress patedc.

e The spelling of the word (for languages that have a writtemfo

e Spoken example(s): the direct source of pronunciation.

e Context: at all levels (the effect of neighboring words;adigrse context; speaker

emotion etc)
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Depending on the scenario, only a few of these sources ailalaieaat disposal for
inference. Table 3.1 gives a few example scenarios and titahle information sources

from which to learn about pronunciation.

Table 3.1: Pronunciation knowledge sources available in diffeseenarios

Example Scenario Available information

Human hearing | innate psycho-acoustic faculties

ASR training spelling; acoustics; context

Dictation systems spelling (upon corrective feedback); acoustics; context

Dialog systems | acoustics; context

TTS systems | spelling; context

Accordingly as per table 3.1, the available knowledge seaix@ry with the application.
In ASR systems, pronunciation baseforms in dictionary axeally either 1) manually built
or 2) derived from acoustics or 3) generated from the spgliatter-to-sound rules) or 4)
a combination of these. Acoustics driven methods implenae¥iterbi decoding on the
acoustics using sub-phone (arc) acoustic units and a pham&tion model to derive one or
more pronunciations for each word [38] [37]. Orthograptaséd methods widely use finite
state transducers (FST) or decision trees to determinerthrupciation [39] [40]. How-
ever, the quality of orthography based pronunciations dép@n the grapheme-phoneme
correspondence of the language. Hence, they cannot bdlylivsed as baseforms in the
ASR lexicon.

Of late, data-driven techniques combining both linguiatid acoustic information have
gained focus owing to the better performance and wide rahgemication scenarios pro-
viding such a setting. To nhame a few are automatic lexicoreggion [36] and systems
supporting dynamic vocabularies [41] [33]. [33] and [42] é&xample, use syntactic and se-
mantic information to incorporate dynamic classes allgM@OV detection and enrollment.
Also, [36] applies a letter-to-sound constrainer withie tkecoder to take advantage of the

spelling of the OOV word.
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However, earlier attempts have only partially exploited #vailability of rich informa-
tion sources. This chapter exploits the linguistic infotima further by efficiently construct-
ing then-best list of pronunciation alternatives and scoring thesimg decision trees. The
hypotheses are further rescored with costs in acoustiomlént and phone transition, usu-
ally modeled using a phomegram model. Thus, this thesis uses all the informationcssur

presented for ASR training.

3.2 CANDIDATE GENERATION AND RESCORING

This chapter uses tree based letter to sound models to ¢hazacallophonic variations
based on phonemic context. Conventional approaches usetiustics to generate an
best list of possible phone/sub-phone strings. mHeest alternatives are re-ranked using
additional knowledge sources, like a language model, taorgthe intelligibility of the
best alternative. Typically the first best alternative s tlutput of the decoder. Consider the
following schemes-

[30] uses a tree-trellis method for variant generation. sksia maximum likelihood
criterion to generate the baseforms that maximize the jmiobability of being realized as
the spoken examples instances of the word presented fomgailt searches an exhaustive
space of phones which is redundant besides being erroepron

[35] uses rule based generation of candidates from the cealdraseform where each
phoneme can be optional. The candidates are later Vitéidned and frequency-based
rules for variant selection are investigated. The seareleespere is too small (in fact equal
to the length of the baseform, one candidate with each phemeissing).

These cases are on two extremes: one considering an unaelyesshaustive space and
the other considering a highly constrained set. In this tdrap set of potential candidates
is generated from the available information. This chaptemwss that as generally employed
in earlier works, acoustic evidence and the canonical basefre not very informative
for generation of candidate pronunciations. The novelthefmethod proposed here lies in

inverting the common relationship. This chapter uses tlediag information to generate an
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Fig. 3.1: Schematic diagram for baseform inference

n-best list of pronunciation hypotheses, which can be sulesty rescored using available
acoustic evidence and phone transition costs. ffFbest list referred here is analogous to
the same in continuous speech recognition (Sec. 1.1). k&g presents the superiority
of spelling over a single spoken exemplar in surface forrergrfice. Fig. 3.1 describes the
process of baseform inference employed in this chapter.

The bias towards using orthography for generating riHzest list is justified by the
fact that, on an average, spelling can give more informadioout the pronunciation than a
single acoustic exemplar, as borne out by the results in. (£4cl, below). The following
subsections present the three information sources: Thengpehe spoken evidence and
known phone transition patterns in the language. Sec. 8eadribes the decision-tree based
approach for the generationwbest pronunciation hypotheses followed by section 3@.5 f

subsequent rescoring.

3.2.1 Learning grapheme-to-phoneme rules

Both rule-based techniques (FSTs, mapping tables etc) tatidtieal methods (decision
trees, discrete HMMs, SVMs etc) are widely used for captuthe grapheme-to-phoneme
(or letter-to-sound) rules. In this work, decision trees ased. Decision trees offer flex-

ibility in choice of the modeling context and hence are clhoae the statistical paradigm
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Fig. 3.2: Letter to sound capture by decision trees

for capturing letter-to-phone rules from a large trainiegiton. Separate decision trees are
trained for each letter of the alphabet. The leaves of theedre discrete probability distribu-
tions of the phones and the internal nodes are questions #isneighboring context (e.qg.,
next letter="a’? etc.). Fig. 3.2 shows the decision treenfair for capturing letter to sound
rules as used in this chapter.

For the experiments reported here, training and testindesgtires for each letter are
extracted from CMUDICT [43] of 130k words. The trees are bugding the CART based
letter-to-sound module within the FESTVOX [40] framewoXarious context lengths of 1,
2, 3 and 4 letters on either side of the target letter are.tiié@ performance of the resulting
trees in predicting the phone produced by a letter in an um@daword is studied. 1-letter
context and 4-letter context trees are discarded for bernegygeneral and over-training the
decision trees. Fig. 3.3 shows the relative performancaé®tletter and 3-letter context
trees on a held-out set, consisting of 10% of the lexicon. Asld/be expected, 3-letter
context trees outperform 2-letter context trees. Alsa ihteresting to note that irrespective
of the context length, relative performance within thedettremains the same in both cases.
Furthermore, letters that produce vowel sounds (a, €, i,  feuform significantly worse

than the other consonant letters, which also agrees wititiior.

3.2.2 Orthography based n-best pronunciation generation

Given the grapheme-to-phoneme decision trees, multipbeét) hypotheses of pronuncia-

tions for a word are generated as follows: From the spellindy® given word, features are
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Fig. 3.3: Performance of 2-letter and 3-letter context treesherhield-out data

drawn for each letter using the same context length (2 ornt8rktas that of a chosen set of
trees. When queried with these features, the correspor@iRgrees return a list of phones,
with their probabilities, for each letter in the word. A vanit of best first search algorithm
can be used to traverse through all of the phones predicteebfth letter, thus generating
several pronunciation alternatives. Each pronunciatisn eeceives a score which is the
product of probabilities of the constituent phones, asmylwethe decision trees. The prod-
uct is referred to as the-best likelihood. This is a model based on orthography usd¢hbe

n-best list rescoring process described further below.

3.2.3 Learning from Acoustic Evidence

While spelling captures the gross aspects of pronunciat@acoustic instance is the direct
evidence of the pronunciation and hence an important safrcéormation. In this work,
acoustic alignment is used as an important factor for deteng the surface form. Each
hypothesis in the-best list of pronunciations is aligned (using Viterbi aligent) against
the single speech sample of the word, producing an acouilsgithiood score for the hy-
pothesis. The acoustic likelihood is used in re-rankingrtfixest list, as will be described
in section 3.4.1. For the alignment in this chapter, acoustidels consisting of three state

context independent phone models with left-to-right toggl and 8 Gaussian mixture com-
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ponents per state are used. The models are trained on thalbffitesignated training set of
the TIMIT data [44]. Thesphinx3align tool from the Sphinx suite [45] is used for Viterbi

alignment.

3.2.4 Phone transition model

Phone transition patterns in the language give importaiornmation as to which phone
sequences are acceptable in the language. The functiore gfhitbne transition model is
similar to that of a language model (Sec. 1.0.2) in contirsugpeech recognition. It pro-
vides a prior probability to each hypothesis in thbest list. In this chapter, a phone bigram
model trained on CMUDICT is used. Word beginning and endiregk®rs are also con-
sidered while computing the probabilities. The model wantemoothed with a uniform
distribution, to avoid over-fitting to the training data. &emoothing was done as follows: If
N is the number of phones, are{p;|p;) the unsmoothed probability of transitioning from

phonep; to phonep,, the smoothed transition probability is given by:

Plnterpolated(p2|pl) =Wwx P(p2|p1) + (]- - w)/N (31)

The scaling factof) < w < 1 can be chosen according to the reliability and compre-
hensiveness of the dictionary. The cleaner and larger ttt®dary, the highew can be. An
optimal value forw can be determined empirically using the deleted intermmdechnique.

w = 0.5 in the experiments reported here.

3.2.5 N-best rescoring criteria

The n-best list of pronunciations generated accordingd¢o3e@.2 is rescored by combining
the three scoresr-best likelihood (sec. 3.2.2), acoustic likelihood 3.28d phone transi-
tion costs (sec. 3.2.4). Since the three have widely difteranges, a following combination
function is proposed. For each alternatigen the n-best list, the functiof(¢) is computed

where:
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£(¢) = (Acoustic likelihood) x (nbest likelihood)" x (Phone transition penalty)” (3.2)

The exponentiation weightgs and~ are determined empirically (similar to ‘language
weight’ in most speech recognition systems). The highedting pronunciation, according

to £ is chosen as pronunciation for the word.

3.3 EVALUATION

In the experiments reported here, Phone Error Rates (PER)eohferred baseforms are
used as the performance measure. The baseline for our cismpas the PER of the top
hypothesis in the originai-best list (before rescoring). For the test data, we chosmth
to be exclusively proper names, which are a good represeatat OOV words in many
applications. Furthermore, the peculiarities of the spdieem of proper names as opposed
to their written form, makes them an appropriate tough testtie current problem. 173
randomly selected first and last names from the OGI hamesisof6] are used, these are
the subset that is publicly available for use (Appendix A)isTtest set was excluded from
the training data for acoustic, G-P trees, and phone tiangirobability models. 3-letter

trees are chosen as the decision trees fonthest list generation step.

3.4 EXPERIMENTAL RESULTS

In Table 3.2 the baseline PERs of the top hypothesis of thegnatin-best list, re-ranked
by each of the three scores individually (i.e., not in conaliion with any of the others).
The table shows the average error rates obtained on theatst @ihe table suggests that
orthography determines the pronunciation more reliabdyta single instance of the speech.
This may change when more than just a single instance isgedvi(Furthermore, relying
solely on phone transition probability to rank thebest list is clearly useless, and is only

included here for the sake of completeness).
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Table 3.2: Baseline phone error rates of the factors contributngscoring criterion.

Baseline PER (%)

Orthography based n-best 22.9

Acoustic alignment 37.8

Phone transition 68.6

The orthography-based performance of 22.9% PER is theibagel comparison in the
following sections, which deal with combining the three m®s$ of information effectively

in re-ranking then-best list of pronunciations.

3.4.1 Use of Spelling and Acoustic Evidence

The effectiveness of combining acoustic likelihood withest likelihood im-best selection,
ignoring phone transition costs is examined here. To sthigycobmbination, a wide range of
values fory are tried, measuring the PER from the best re-rankbdst hypothesis in each
case. Fig. 3.4 shows the performance with varyjrithe dotted line represents the baseline
performance of 22.9% PER usingbest likelihood alone. It can be observed thatjas
increases the PER drops rapidly from the acoustic-likelthbaseline of 37.8%€E0), and
reaches a minimum of approximately 19.5%. The combinedmndébion from orthography
and acoustics is able to provide a 3.4% absolute improve(tdr8% relative improvement)

over then-best likelihood baseline performance of 22.9% PER.

3.4.2 Use of Spelling, Acoustic Evidence and Phone Trangifi penalty

The performance can be further improved by bringing in phactic constraints via the
phone transition penalty. To study the effect of this factioe n-best likelihood weight is

kept constant around the middle of the steady-state regiéigi 3.4 (=28 is chosen). The
phone transition penalty weightis varied in computing(¢) and the error rates from the

re-rankedn-best list are recorded. Fig. 3.5 summarizes the behaviershown, a further
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reduction in PER can achieved, reaching a minimum of arou8#,Iwhich is a 21.4%

relative improvement over the orthography baseline of 22FER.
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Fig. 3.5: Effect of increasing the Phone transition exponeiotiatveighty on performance

3.5 SUMMARY

This chapter introduced a technique for pronunciation afdgpemploying an orthography-
driven n-best list generation, and rescoring using acoustic andratidence. The ortho-

graphic information is shown to be more accurate than a sisgbken exemplar. Accord-
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ingly the n-best list generation is based on the the richest informadiailable. All other
information is used to re-rank the list. A comprehensivel@ton and analysis of the
approach shows that thebest list likelihoods and phone transition priors can bedut®
reduce phone error rates of the inferred pronunciatioreserforms significantly.

On the test set employed here, the PER is reduced from thegraphic baseline of
22.9% to about 18%, a 21.4% relative reduction. Obvioukkyttue error rate is highly task
and application dependent. Chapter 4 validates the extevittich this improvementin PER

translates into WER improvements on continuous speech.
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CHAPTER 4

Improving Pronunciation Dictionaries for Continuous Speech

Recognition

4.1 INTRODUCTION

In Chapter 3, a framework is proposed for baseform inferengaoiting orthographic and
acoustic information. The performance was measured ind@fhone Error Rates (PER)
on spoken proper names, an isolated speech task. Often, @f@SR decrease may not
be translated into Word Error Rate (WER) improvement. Thauoin this chapter is on
application of the inference techniques for improving WERscontinuous speech. Single
speaker ARCTIC database and multi-speaker TIMIT databasased as the two continu-
ous speech tasks. Also, Chap. 3 uses a conventional stepprsicedurer-best list gen-
eration, Viterbi alignment followed by rescoring the listing various scores. A possible set
of n-best variants were generated from the spelling using CARMopring grapheme-to-
phoneme conversion. Information sources such as the aceuitence and phone language
model were used to rescore thévest list to give the highest score to the true variant of pro-
nunciation. The scores from various information sourcesevedfectively combined using a
combination function.

In this chapter, pronunciation inference is applied to sardus speech on TIMIT [44]
corpus. The approach used in the earlier chapter (Fig 8vb)ved Viterbi alignment of each
hypothesis froom-best pronunciation generator and has a high time complaxiblved in
generating the variants. In this chapter, the Viterbi analoimation of information sources
are integrated into a single phase as shown in Fig.4.1. A odeth selection of variants

based on frequency and a precedence based distance fromséf®obm is also incorporated.
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The precedence-based distance measure proposed casstraithe addition of variants
into the ASR lexicon. The new scheme is highly time effecfarecontinuous speech tasks

which otherwise need an order times more time employing¢herse in Fig. 3.1.

Phonetic
. LM Acoustic

Evidence(s)

Y l Selection

Pronuncial_tion — Based on | Selected
Word | N-Best Graph with Viterbi L) Distance =
—»| Pronunciation —  Transtion —» Alignment from |\ wiants
Strngs|  Generators Weightg from Base-form
) Phonetic LM

Fig. 4.1: Time efficient approach for baseform inference

Significant WER reductions have been shown in the recogaiperformance by aug-
menting the inferred variants to lexicon. Error analysislso done on the tasks to under-

stand the phonological processes in continuous speech.

4.2 VARIATION IN CONTINUOUS SPEECH

Variation in pronunciation in continuous speech occurstduenumber of factors including
speaking style, gender, dialect, etc. Existing attemp@&ctount for this variation can be
categorized broadly into two classes: Modeling at the atolesvel (front-end signal pro-
cessing and acoustic model parameters) and at the lexiedl(léhap. 2). The current work
falls into the latter category.

Traditional lexicons used in speech recognition are firsteoiMarkov chains of the
acoustic modeling units. The lexicon (or the pronunciatiactionary) is a representation
of the recognizer’s vocabulary in terms of its acoustic mimgeunits. However, several
sources of variation in continuous speech affect the proiation of a word. These include
(1) variations that depend on word level features of lexikehs (e.g. part-of-speech, tense
etc.), (2) variations particular to certain lexical ens;i€3) variations that depend on the

stress and syllable position of the phonemes and (4) vanstihat depend on the local
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phonemic or phonetic context [47]. To account for theseatems, several approaches have
been proposed such as including multiple pronunciatioramgs [26], multi-words [17] and
other hybrid techniques. More complex lexicons using alétory feature information [48]
and those using tree based dictionaries [47] [39] [16] hdse heen attempted yielding

promising results. A thorough survey of literature in thagtext can be found in [31].

4.3 RELATED WORK ON PRONUNCIATION GRAMMAR NETWORKS

Ideally, though raw phonetic decoding is expected to retlalunderlying surface form,
the poor performance of phonetic decoding makes it necg$saronstrain the candidate
surface-form hypotheses. Most approaches to add prortiorcigariants to the lexicon
(including techniques presented in Chap. 3) follow the emtional ASR pipeline. They
comprise three phases- 1) Variant candidate selectioarggan, 2) Forced Viterbi align-
ment, 3) Rescoring using other knowledge sources and 4)2estidate(s)/rule selection.
In this chapter, the candidate selection, Viterbi alignhaerd rescoring phases are integrated
using a grammar-based decoder framework with token pas8imgther advantage of using
such an integrated framework is the time taken to infer tl@pnciation variant used in the
acoustics.

Most variant generation/ phonetic graph construction aggines are implemented as
phonetic decoding constrained by a weighted finite statesthacer [33] or by a rule-based
generation criterion of alternatives given the baseforrb].[3 his chapter employs method
similar to the weighted pronunciation network in [39] cansted via trained letter-to sound
decision trees (Sec. 3.2.1). The advantage of using decisees for phone graph con-
struction for a continuous speech task is multi-fold. Hystach letter outputs a discrete
probability density function (PDF) on the phones based ennttodeling context (number
of letters on either side of the letter in question); if a hutietionary is used for train-
ing the trees, the probabilities tend to the reliable likebds of the phone distribution;
another useful property of the trees is that each PDF mayagoan optionak (null) pro-

duction. This can account for phone deletions, the kind oftian in continuous speech
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that context-dependent phone modeling fails to capturg B&lowing from Chapter 3 the
phone likelihoods at the leaf nodes capture an importaatiozl between the spelling and
the pronunciation. It has been established that orthograpformation is more reliable in
determining the underlying variant than the spoken exemigelf.

While the choice is similar to [39], one of the earliest woddaploying decision trees
for pronunciation modeling, the trees in [39] have been @setthe pronunciations (entries in
the lexicon) themselves. They were used within the framkwbrcontext dependent phone
HMM (CDHMM) decoding. Since CDHMM modeling is known to aceddior a good deal
of pronunciation variation itself [15], it is not suited tofer the actual surface form used
in the acoustics. Hence, this chapter uses context indepérdoustic models to decode

through the phonetic graph.

4.3.1 Multiple Acoustic Examples

Since the current chapter deals with continuous speecbatsga, multiple instances of each
word are evidenced in the training data. The best set of marfar words seen in the training

task can be generated in the two following ways:

e Generating the best pronunciation variant(s) closely matgall the spoken instances

of the word considering them all at once.

¢ Inferring each instance as a stand-alone variant followedgplication of selection

criteria to identify only genuine variations in pronunaodt.

While the first method may be faster, it is at a risk of ignorthg nuances within each
instance that may be important. This thesis employs therlatethod, inference from each
instance followed by spurious variant rejection. Eachanse is individually processed as
in the Chap. 3, thus justifying the use of spelling as an imfation source.

The Figure 4.2 shows a sample pronunciation network usedtiehthe different real-
izations of the word ‘above’. The solid lines correspondte transition from phone alter-
natives of one letter to those of the next. The dotted lindgate the transitions via the

production (the deletion process). The probability of eplsbne alternative associated with
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Fig. 4.2: Pronunciation network for the word ‘above’. Note theroductions for the letters.

a grapheme is given under its phone label. This probabdityput by the decision trees, is
passed on as an additional token (along withdhgcore) during the forward computation
along the trellis. As mentioned earlier, advantage of imy@ating such a pronunciation net-
work is that a number of variants can be evaluated in a sirags pf the decoder. Figure 4.2,
for instance, represents 72 different variants of pronatimn for the word ‘above’.

Such representations of the pronunciation network areedifft from allophone net-
works in that the latter are built from existing phonolodi&aowledge in the language,
which is only qualitative. Also, allophone networks do netassarily provide for produc-
tions, consequently rendering them incapable to handlegine deletion. The networks as
in Figure 4.2 are built from phone predictions of alphabetisien trees trained on a huge
pronunciation dictionary. Hence they automatically captand to a good extent, quantify
the phonology of the language besides potentially progidam more variation. Also, they
can be easily altered to any prior knowledge about the task.ekample, if it is known
that the speech is sloppy and all kinds of phone deletions@renon, arx can be inserted

among all the alternatives and smoothing can be done totatipiprobabilities.

34



4.4 DECODING ALONG THE PRONUNCIATION NETWORK

Sequential connections are made from the phone altersaifvane grapheme to the next as
illustrated in the figure 4.2. Wherever ats encountered, the connections are made to the
productions of the next grapheme and so forth, iterativ&tyinitialization of the inference
process, phone alternatives of the first grapheme arelinéthwith the respective scores.
These scores are propagated along all the valid connedtimmsthe current node. This is
recursively done for all frames of the data. Whéefas the emission probabilityi, is the
probability assigned by the LTS decision tree, @b the penalty given by a phone bigram
LM to that particular transitiony’, the« score of a state at the time frame is computed

as

al = Ex L"x PY (4.1)

The exponentiation weights and~ are scaling factors responsible for balancing the
dynamic ranges of the three factors. This is the same as Hwenrag criterion Eqn. 3.2
of the previous chapter. While in Chapter 3, the combinaisoapplied at the utterance
level, for experiments in this chapter it is applied at theaie level along with the forward
computation. The state scoring the maximairat the time instant = T', the final frame, is
selected from among the candidate ending states as sugggstes pronunciation network.
A traceback fromt = T tot = 0 is performed along the network to infer the hidden
state sequence. This hidden sequence is the surface folme pfanunciation in that word

instance.

4.5 DATA AND EXPERIMENTAL SETUP

This chapter has two broad phases- Baseform inference ahgaéion. The resources used

in each phase are described below.
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4.5.0.1 Grapheme-to-Phoneme trees

The Grapheme-to-Phoneme decision trees used for the phapl generation are built
from the 130K word vocabulary CMUdict [43] using the CART bddetter-to-sound (LTS)
module within the FESTVOX [40] framework. A phoneset of 3%pbs is used in all
experiments reported in this chapter. A 3-letter contex¢ibimer side of a grapheme is used
and the trees are built accordingly. The trees are the santleoas in chapter 3. While

in Sec. 3.2.1 the trees are used fbest list generation, in this chapter they are used for

phonetic graph construction.

4.5.0.2 Speech data and preprocessing

In this work, the evaluation is carried out on two tasks- krgpeaker ARCTIC and multi-
speaker TIMIT speech databases. The two databases aretiphtipsegmented using the
EHMM labeler [49] in FESTVOX. In the variant inference phaSestate context indepen-
dent HMMs with 2 Gaussian components per state are used axthstic models, and
variance normalized MFCCs are used as features. Usinglleésland the initial dictionary
used for training, features for words are extracted fromhasterance.

Since cross-word effects cause additional variationsahat pronunciation in contin-
uous speech, word boundaries may be confounding for anyupmation inference tech-
nique. This is more severe if Cl models are employed. To dkestthe inference is done at
word level in this chapter. Table 4.1 shows the number ohingi words and the instances

dealt within each training set.

Table 4.1: Number of tokens and unique words in the training sets

Task | Tokens| Unique words
ARCTIC | 7997 2366
TIMIT | 39687 4896
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45.1 Evaluation

As will be discussed in section 4.6.2, all inferred variaares not suitable for addition to the
lexicon. So, criteria are proposed for selection of prongstandidates. Evaluation of the
inferred variants is done by computing WER of a continuousesp recognizer with and
without the data-derived baseforms. The recognizer’s stitomodels are 5-state context
dependent continuous HMMs with 8 Gaussians per state. Sicw/ork aims to study the
effect on performance only due to changes in the lexiconpthker sources of errors [10]
are minimized to the extent possible. To this end, the tasstript is also included into the
language model training, and the WER is computed at the eéstf $(anguage weight and

word insertion penalty parameters.

4.6 EXPERIMENTS AND RESULTS

4.6.1 Baselines

e The acoustic models are built using the officially desigddtaining set (4620 ut-
terances) of the TIMIT corpus. The performance is reportedhe test set (1680
utterances) for the TIMIT baseline. The language modeltits test set is built on
the entire transcription (training and test) transcripts entioned earlier, this is a
deliberate setting employed to isolate the changes in pedoce only due to the

baseforms in the pronunciation dictionary.

e For the single speaker (American English) ARCTIC data, 80%#(utterances) of
the data is used as the training set for baseform inferenesting is done on the
remaining 20% of the data using TIMIT CD acoustic models. Emguage model
in this case is built from the entire ARCTIC transcriptionMOdict is used as the

lexicon in both cases, an LTS suggested pronunciation i fiasehe OOV words.

Table 4.2 presents the baseline performance of the recagoizARCTIC and TIMIT test

sets.

37



Table 4.2: Baseline WERs on TIMIT and ARCTIC test sets

Task | Vocabulary| Performance (WER %
ARCTIC 2770 9.006
TIMIT 6122 6.057

Interestingly, though ARCTIC seems to be a smaller (vocayulvise) and simpler
(single speaker) task than TIMIT, the WER s significantlgter. The justification to this
seemingly aberrant behavior lies in the perplexity valdé¢b®test data. Table 4.3 shows that
the perplexity of the ARCTIC test set with respect to a modgitlon the whole ARCTIC

data is much more than that of the TIMIT test set.

Table 4.3: Perplexities of the testing transcripts
Modeled data Testing Data| Perplexity

TIMIT (test+train) | TIMIT test 5.81
ARCTIC(test+train)| ARCTIC test| 24.94

4.6.2 Baseform Inference and selection

The inference technique described in section 4.4 is apmieall word instances of the
training set utterances of ARCTIC and TIMIT. Table 4.4 shaiaxes number of words and

the number of unique variants identified by the inferencertigm'.

Table 4.4: Number of unique surface forms
Speech Corpus #words| #unique surface forms

ARCTIC 2366 3584
TIMIT 4896 12784

It is noteworthy from the numbers in Table 4.4 that a fair amtoof agreement (1.5

variants/word) exists among the inferred variants in ARCTiata while a relatively much

1The parameters = 0 andvy = 1 are used, effect of higher values are discussed in lateinssct
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lower agreement (2.6 variants/word) is seen in the TIMITadathis is justified by the fact

that ARCTIC is a single speaker database and the variatiopinunciation are consistent
with the training set. TIMIT data, on the other hand, is a@dilbn of speech from 630

speakers (10 utterances per speaker) of 8 different d&leé, it has more variation and
little representative data to train on.

The inferred surface forms are variants of pronunciatiosgacific instances of words.
They cannot substitute the canonical baseforms preseheidittionary, but only be added
as alternative baseforms [50]. They may not all be genuinayprciation variants and can-
not directly qualify to be enrolled as baseforms. Some oirtlveuld have been ‘acciden-
tally’ inferred due to an unknown algorithmic artifact orelto a disfluency or unintended
mispronunciation by the speaker himself. Since, it is a kméaet that increasing the num-
ber of baseforms may hurt the system performance due to adm@dsibility among the
lexical entries, it is essential to filter out unwanted (kely) variants among the inferred
surface forms.

The auto-generated dictionaries are randomly sampledreniind of changes under-
gone to the baseform are noted. Appendix B presents thewaiser from this study. As
mentioned earlier, all the changes noted in the AppendixeBnat genuine. So, techniques

are needed to select the best variants. Briefly, selectidans using the following criteria-

1. Frequency of a surface form.

2. Levenshtein distance of a surface form from the canohias&form.

As a first stage elimination, only the most frequent varianésconsidered as candidates
for further evaluation, since absolute frequency of a varia the most reliable rule for its
acceptability [35]. Among the frequent variants, thosd #ra phonetically similar to the
canonical baseform are selected for addition into the t@xicThe similarity is computed
using the Levenshtein distance measure, a dynamic progragnipased string matching
algorithm. The Levenshtein distarfds a measure of the minimum number of operations

needed to transform one string into another. In the currentisxt, the operations involve the

2Levenshtein edit distance comes from Information Theoryiarwidely applied in Computer Science
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insertion, deletion or substitution of a single phone (€le Levenshtein distance between
phone strings [tow maatow]and [towmeyto]is 1).

Figure 4.3 illustrates the decrease in the error rate witmpnciation alternatives (vari-
ants) added per increasing Levenshtein distance. Theddbtte is the baseline WER
(9.006%) on the ARCTIC test set. The rate of decrease in WERuglly comes down
with increasing number of variants before reaching an optn{7.88% due to 2100 addi-
tional variants). This decrease in improvement rate is beeaf the added confusibility
and due to the fact that with increasing Levenshtein digtatiee new variants selected are

farther from the canonical baseform.
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Fig. 4.3: Recognizer performance on ARCTIC test data with vasiadded as per increas-

ing Levenshtein distance

4.6.2.1 Analysis of the improvement

The effect of additional baseforms on the ASR output is ds\ic:

e Of all the changes (improvements + degradations) causeldetméw decoder hy-
potheses, 75.4% improved the hypotheses and the rest 246t ental with respect

to the reference transcription.
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e 82.5% of the improvements were caused due to the use of angdfeariant (known
from the Viterbi traceback). This may be compared to [35]ewhonly about 33%

of the improvements are due their data-derived rules.

e 46.2% of the degradations caused did not use a variant ddeogding. This means
that a sizable portion of the newly introduced errors aretdumnfusibility than the

variants themselves.

To analyze the specific kind of variations that are causimglti2% absolute (12.5%
relative) improvement, the Viterbi traceback path of th@roved hypotheses are examined.
The variant causing the improvement in each case is identifidis is done for each im-

proved hypothesis of the test set. The results of this aisadys as summarized in Table 4.5,

Table 4.5: Phone changes involved in the improvement-causingmar

Phone change Relative incidence (%
Vowel Substitution 70.5
Consonant Deletion 17.6

Consonant Substitution 5.8
Vowel Deletion 5.8

Accordingly, the precedence order of phone change for genpiionunciation variation

VD >=<(CS<CD<VS (4.2)

Vowel substitutions are the most likely genuine variatitwibbwed in order by conso-
nant deletions, consonant substitutions and vowel delet(t'D and CS are found to be
equally likely). Where CS, VD, CD, VS stand for Consonant Sitbtion, Vowel Dele-
tion, Consonant Deletion and Vowel Substitution, respeti This conforms with intuition
about pronunciation variation except for vowel deletiéndt is to be mentioned here that

since a 39-phoneme English phoneset is used in the expdagnreduced vowels (ax, ix

3vowel deletion may be phonologically likely in conversaiibspeech but not in carefully read speech.
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etc) are not among the phones. The lack of baseforms with Iv@gections has forced
the inference technique to accept an unlikely phone chavigeel Deletion. This is ar-

rived at by examining the word instances undergoing by thep¥ibne change. Table 4.6
shows examples of VD affected words. The variant is also @stpagainst reduced form

pronunciation provided in TIMIT dictionary:

Table 4.6: Example instances of words undergoing vowel deletion.

Word Inferred variant| Reduced baseform
PROBABLY | praabbliy | praabaxbliy

ARRIVAL rayvahl axrayv el

This ability of the framework to automatically discover lagior patterns of the data
is useful to compare phonological processes across ditfeasks, although this charac-
terization is not attempted in this chapter. Since VD is riyea® implementation artifact
of this setup, the equivalence of VD and CS in the precederaer ¢s discounted in the

experiments below.

4.6.2.2 Modified Levenshtein distance metric

Using the incidence order suggested in the previous sediomodified distance metric is
developed to penalize each phone change in order of its geace. This is in contrast
with the standard Levenshtein distance metric which egymhalizes all phone changes,
regardless of the kind of change. The modified metric is usadkculate the distance of a
variant from the canonical baseform, and lexicons with #leced variants are again tested
on the test set.

Although not as a significant WER reduction, the use of madiifireetric did prove to be
judicious. Since the new distance metric accepts only rese phone changes, the number
of selected variants is reduced, at no cost of performargse [bhis is important considering
that the size of the lexicon directly increases the conflisitand also the decoding time
of the system. For the ARCTIC test set, while Levenshteitadise required about 2100
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additional variants to bring about the 12.5% relative inyerment shown in the Fig. 4.3, the

use of modified distance metric has given the same improvesedgcting 1900 variants.
The plot in Fig. 4.4 shows the number of selected variants initreasing distance from

the canonical baseform. The broken line plot is that of theebshtein distance and the solid

line represents modified Levenshtein distance modifiedrdougto the precedence order.
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Fig. 4.4: The number of selected variants with increasing degdrom canonical baseform.

4.6.2.3 Tuning the Inference decoder

This section presents tuning techniques to improve thentgiinferred and reducing their
number. For all experiments presented so far, inferencéé&as done withy = 0 andy = 1

in Equation 4.1, making it equivalent to inference in a staddinite state transducer frame-
work. In this section, the effect of (orthographic exponentiation weight in Eqn. 4.1) on
the inferred variants and on the recognizer performanchag/a. Conceptually, increasing
the parametey corresponds to averaging out certain acoustic detail dgshgemore on the
spelling (the decision tree probability) for decoding theéden surface form. Each value of
n gives a unique set of variants inferred from the trainingad#tdding these variants to the
baseline dictionary (after frequency and distance baskdtszn), the best possible WER
on the test data is empirically obtained. Figure 4.5 showd#st performance of different

variant sets inferred using increasing valueg.of he dotted line is the best performance of
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variants generated with no explicit information from thelipg, » = 0 in Egn. 4.1, 7.88%
on the ARCTIC test set.
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Fig. 4.5: Recognizer performance on ARCTIC test data with insires,;

It can be seen from figure 4.5 that spelling does help impWe inference of the
right kind of variants. The least error rate (7.68% WER) igased by augmenting the
variants inferred with) = 3 in equation 4.1. Ag increases further, there is an undue bias of
score towards the decision tree probabilities, downplgyie acoustic scores to the extent
of being neglected. This makes the variants biased to ttfwnration from the spelling
and not reflective of the true variation in pronunciationisiéxplains the increasing WERsS
beyondy = 4 in figure 4.5.

Another advantage due to the averaging out of certain aicodestail mentioned above
is the increasing agreement among inferred variants, atmgto a decrease in the number
of variants to be added to the lexicon. In section 4.6.2.E|aive improvement of 12.5%
is shown by the addition of 2100 variants gt 0). While atn = 3, only 1200 variants are
added to get a 14% relative improvement.

In summary, Table 4.7 compares the performances on the AR@md TIMIT systems
in each of the schemes described above (Sections 4.6.2, 4.6.2.2 and 4.6.2.3). As can

be seen, relatively, there is only a modest improvement enTiMIT test set. This may
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be attributed to the wide variation in the TIMIT database armifficient training data to

exhibit all of it. Table 4.7 summarizes the improved perfamoes on TIMIT and ARCTIC.

Table 4.7: Final WERs on TIMIT and ARCTIC test sets

Technique of ARCTIC TIMIT
Variant addition | Vocabulary| WER | Vocabulary| WER
Baseline 2770 9.006 6122 6.05
Frequency+
Levenshtein 4870 7.88 9005 5.84
Frequency+
Modified Levensh. 4670 7.88 8928 5.85
Spelling+Frequency+
Modified Levensh. 2970 7.68 7831 5.63

4.7 SUMMARY

This chapter has introduced a grammar based decoder fratk&wvinferring surface forms
of words seen in the training data. The framework is realizg@onstruction of a pronun-
ciation grammar network along which to search for the pramation variant of the word
used in the acoustics. The network itself is constructedavstatistical model (here deci-
sion trees) built to predict likely candidate pronunciasmof the word. The scores from
other information sources are integrated into the netwarkoéens to be passed on during
the forward computation of the Viterbi alignment. The framoek provides for adjusting
the reliability of each source of information about the proaiation- the acoustic evidence
and the orthography. These are effectively combined toeseach candidate in the search
space. The hidden variant of the pronunciation is inferrethfthe network via a Viterbi
traceback. The proposed framework has an advantage of datigguover the standard

procedure employed for this problem. The framework is cépéd discover processes in
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continuous speech, like vowel deletion. The chapter alspgses distance based selection

criteria to identify the genuine variants in pronunciatfonaugmenting to the ASR lexicon.
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CHAPTER 5

Summary and Conclusions

To improve the performance of speech recognition systemsuynciation modeling is one
of the important issues to be addressed. Typically it inesiwmferring pronunciation variants
and careful selection of variants into the speech recagngystem. This thesis has explored
data-driven methods for improving pronunciation modeim@éSR.

A systematic study has been performed on different infolwnasources such as or-
thography, acoustics, phone language model and their lngskifor inferring pronuncia-
tion variants. A method to combine these information sosittas been proposed to gener-
ate appropriate pronunciation variants and has been vatidan the task of isolated word
recognition. It was observed that the orthography carrigdiicant information about the
pronunciation than the other sources.

In order to further evaluate the combination of differerformation sources for pro-
nunciation inference on large vocabulary ASR tasks, th@@sed scheme was optimized
with respect to the time complexity with out any loss of aeayr The modified method in-
volves generation of a pronunciation network for each waidg orthographic information.
The various sources of information about pronunciatiorediectively combined within the
standard Viterbi decoding framework to infer the variamtsi the pronunciation network.

To improve the performance of an ASR system, it is not onljigeht to infer variants
butitis also important to perform careful selection of watis. Different criteria for selecting
the right kind of variants have been studied for continugusesh. The performance of
decoders with different variant sets are compared to utatleisvhich knowledge source is
more informative about the word pronunciation. Detailedq@enance analysis of the best
recognizer hypotheses has been done to understand thelpbiosabprocesses in continuous

speech. The conclusions from this study are corroboratetnpyoved performance of
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variants thus obtained. The propositions made in this shass validated by significant
WER reductions on continuous speech tasks.

The following are the important conclusions of this work:

e Lexicons generally used for speech recognition are submgptiand can be improved

with just the training data provided for acoustic modelriag.

e Our experiments have shown that orthography is signifiaafiorination source for
inferring the pronunciation variants than the other infatimn sources such as acous-

tics and phone language model.

e To improve the performance of large vocabulary continuguesesh recognition sys-
tems it is not only sufficient to infer pronunciation varignbut it also requires a

careful selection of variants. In the selection procesdtseforms can be used.

e The usually employed Levenshtein distance metric is no¢gefor computing pho-
netic distance between baseforms; knowledge of the pattiask could be exploited

to device a more appropriate distance measure.

5.1 DIRECTIONS FOR FUTURE WORK

¢ In the current work, the initial bootstrapping dictionargshto be large for reliable
grapheme-to-phoneme likelihood capture by the decisiegstr Future work can fo-
cus on circumventing this problem by devising alternatippraaches to efficient

pronunciation network generation.

e The techniques in this theslisarn the variations only when they are frequent and
expressibly large (as a phone change). There is no othergvadgurioritizing the
variations. Future work may focus on establishing the hara of phonological
events that occur within pronunciation that describe prmmtion variation at the

phoneme level.

¢ It would be also useful to see how the pronunciation variantdd be applicable in

the case of conversational speech synthesis.
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APPENDIX A

OGI Names

The subset of the OGI names corpus used for the inferenceapt€h3 is presented below-

abby alicia annette
arthur barron becky
beverly bill billy
bogg bradshaw bryant
bunches campbell canzee
carl carol carolyn
carter catherine cecilia
chris cindy collins
cortijos cramer cruise
curtis cyndie dana
daniel danny dan
darmal darr davis
diane dowling ekblad
eletto elizabeth emily
federson ferrell fujimura
gail garito garner
garry gene glenn
grace graham halkowiez



hall
harper
harvey
heath
holton
hughes
janet

jay
jennifer
jessen
jonathan
karen
kelly
leslie

lori
majorie
mayorga
melissa
moore
mulholland
neddy
olds

paul
polly
rachel
raymond
roberts
rosell

rousche

hansen
harris
hasler
hill
homes
inman
jan
jeanette
jensen
jessica
joseph
kathy
kelton
lichens
louvier
margaret
melanee
michelle
morgan
nagel
neilson
packham
pearl
porter

ralph

reichman

rogers

rosemary

sam

harman
hartfield
hattie
hollins
horton
jackie
jason
jeanne
jerry
john
joyce
kaye
kendall
lisa
mahoney
mary
melanie
montgomery
muir
nancy
newman
patrick
peggy
purtyman
randy
richard
ronald
rose

sanchez



sara
shanna
stephanie
steven
suggs
suzy
thompson
trobinino
von

wells

wilmede

scott
smithman
steth
stonehawker
summers
tannenbaum
torres
vaughan
waltmeirs
wempy

wood
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shane
snow
stevens
sue
suzanne
terri
tracy
vicki
waters

wilbur



APPENDIX B

Observations on Random sampling of Auto-generated dicticaries

The following are the phone changes observed in the infestethce forms of TIMIT

database. They are compared against the canonical basafbthe TIMIT dictionary.

Type of change Sample inferred variants| Frequency] Comments
BEHIND(1) | bihhhayn
Consonant Deletion | LARGE(2) | aa zh Often Plosives, semivowels
word ending consonants most
affected.
VIRTUE(1) | frchyuw
Consonant Substitution ASIDE ahsayt Often Usual substitutions are withi
the voiced/unvoiced pairs @
stops and fricatives; substitu
tions among nasals.
LONG(1) laong g
Consonant Substitution WITH(11) | hhwiytth Rare -
Vowel Deletion SHUFFLED| shahfld Rare The phoneset used does’

have reduced phones (I

AX) leading to some vowels

=

—

L)

U7

being omitted.

Contd...



ABOUT(2) | ahbaaawt
Vowel Insertion CLAIM kleyiym | Often | Frames seem to be shared be-
tween more than one vowels

where unwanted.

ADDED(2) | aedihd
Vowel Substituted ACROSS | ah kraas | Often| Usual substitutions betwean

short/long vowels.  Poss

ble substituions within front

mid/back vowels.
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