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ABSTRACT

Vi sual pattern recognition such as reading handwitten
characters or distinguishing shapes is easily acconplished
by human beings. Wen attenpted to design information
processors to do the sane, it presents significant
difficulties. There have been two approaches for machi ne
i npl enentation of viusal pattern recognition. The first
appr oach consi ders vi si on as an abstract probl emand attenpts
to design conputational algorithns. The second approach
attenpts to study the biol ogi cal visual systemand nodel its

behavi or for engi neering applications.

Artificial neural networks which are rem niscent of the
neurons in the brain attenpt nodeling the function of the
biological system They are characterized by their
nonsynbol i ¢, distributed, fault tol erant conputi ng which are

very useful for pattern recognition tasks.

In visual patternrecognitionthereis anatural factoring
part of the process that extract information about the
georret ry of the visual pattern and t he processthat recogni zes
the famliar objects. Preattentive visual processing is a
paral | el , autonati c and data dri ven processing whi ch extracts
geonetric properties of the input pattern w thout using the
detail ed know edge of the domain. In this work we have

attenpted to develop neural network architectures for



autonmatic, data driven extraction of geonmetric properties
| i ke straight |lines, corners and contour termnation points
frombinary i mages. V¢ al so show how t hese architectures can

be used in sone engi neering applications.

Based on t he observat i ons about some aspects of t he vi sual
perception in the biological visual system we propose two
approaches for processing binary images. In the first
approach, the structural propertiesof theinput patternlike
straight lines are extracted from the input image. This
approach is inplemented as an oriented filtering and integration network,
notivated by the orientation specificity shown by certain

cells in the visual cortex.

I n the second approach, the naxi muminfornmation points
of the binary inage are located. In the case of sinple
geonetric contours these points coincide with the points of

maxi mum inflection. In this study, points of maximum

i nformati on are obtai ned usi ng directed spreadingactivation layers.

VW descri be two applications of these architectures. The
first applicationis recognizingisolated utterances of words
from images of formant contour patterns. For this we use
oriented filtering and integration network. The second
applicationdeal sw threcognitionof objectsin binary i nages
invariant to translation, rotation and scale. For this the
di rected spreadi ng activation neural architectureis used to

extract t hemaxi mumi nformati on points front he i nput pattern.



A log-polar transformation is described which derives an
invariant representation from he maxi numi nformati on points.
This invariant representation can be used for recognition

usi ng standard net hods.



Chapter 1

INTRODUCTION

1.1 MOTIVATION FOR VISUAL PATTERN RECOGNITION RESEARCH

Since the advent of digital conputer there has been an
effort to expand the donai n of conputer applications. Sone
of the notivation for this effort comes from inportant
practical needs to find nore efficient ways of doi ng things.
At present, the ability of machines to perceive their
environnent is very limted. A variety of transducers are
avai | abl e for converting light, sound, tenperature etc., to
electrical signals. Wen the environment is carefully
controll ed and the signals have a sinple interpretation, as
I sthe casew ththe standard conput er devi ces, t he percept ual
probl ens becone trivial. But as we nove beyond having a
conput er read punch cards or magnetic tapesto having it read
hand-printed characters or anal yze bi onedi cal phot ographs,
we nove from problens of sensing the data to nmuch nore
difficult problens of interpreting the data. O the various
probl em areas,, the domai n of visual pattern recognition has

received by far the nost attention.

There are three basic notivations for trying to achi eve
automati c recognition of visual patterns. The first is sinply
intellectual curiosity. How can nachi nes be organized to

designate a particul ar presentation as bel ongi ngto the sane



class that a human woul d specify? This raises intriguing
questions of systens analysis and design, and it |eads to
shar per apprai sal of howliving systens process i nfornation.
The second purpose is to provide intelligent aids. There is
greatutility i nmachi newhi chcan process optical infornmation
nore qui ckly or accurately or safely or cheaply than peopl e.
The automati c readi ng of postal addresses, classification of
weat her -satel | i t e phot ographs and terrai n naps, recognition
of bubbl e chanber tracks, di agnosis of biol ogical cells, and
noni toring of cardi ac performance can substantially relieve
humman drudgery and provi de econom c advantage. Still other
uses are in prosthetic aid - for exanple, in reading and
mobility devices for the .blind. The third reason for
devel opi ng machi nes whi ch recogni ze optical patterns is to
obtain nore effective man-machine interfaces. It i s becomng
increasingly inportant to provide conputers with fluency in
man’s natural |anguages. Wth nore direct conmmunication
bet ween man and nmachi ne, inportant gains in flexibility and

ef fici ency can be obtai ned.

In Section 1.2 a pattern recognition approach to vi sual
pattern recognitionis discussed. I n Section 1.3, advantages
of neural networks approach to pattern recognition probl ens
is discussed. In Section 1.3 an overview of the thesis is

present ed.



1.2 PATTERN RECOGNITION APPROACH

The termpattern recognition was introduced in the early
1960s, and it originally neant detection of sinple visual
patterns | i ke handwitten characters, weat her maps and speech
spectra. Later the domain of application of pattern
recocnition is expanded to alnmost all disciplines of
engi neering and science. 0 the various problem areas in
pattern recognition research, the domain of visual pattern
recognition has attracted rmuch attention. Since the hunman
experience of vision is effortless, quick and adaptable
studies have been mnade on biological visual system
Neur ophysi ol ogi cal and psychol ogi cal studi es have given us
several interesting facts about visual perception. But no
understanding has been sufficient to duplicate their
performance by conputer. This has resulted in a lack of

conpl ete theory of vision.

The | ack of conpl ete theory has not deterred peopl e from
attenpti ng nodest problens. Many of these involve pattern
classification -the assignnent of a physical object or event
to one of several prespecified categories. Extensive study
of classificationprobl ens has 1ed to an abstract nat henati cal
nodel that provides the theoretical basis for classifier
desi gn. Even t hough abstract mat hemati cal nodel is avail abl e,
in any specific applicationone ultimately nust come to grips
with the special characteristics of the problem in hand.

These nodel s are applied successfully to the recognition of



handwitten characters, chronbsone types, printed
characters, Chinese characters, aircraft, machine parts,

circuit boards, maps, and | ung radi ographs.

1.3 NEURAL NETWORKS APPROACH TO PATTERN RECOGNITION

Though pattern recognitionresearch focussed on sol uti ons
for nodest probl ens, the anbiti ous objective has all the tine
been to i npl enent artificial perception, that is, toimtate
t he functions of the biol ogical sensory systens intheir nost
conpl ete forns. The first experinents around 1960 wer e i ndeed
based on elenentary neural networks, known by names |ike
perceptron[44), Adaline[53] and Learning Matrix(50],
respectively. But it was soon realized that the perfornance
of the biological sensory systemis very difficult to reach.
Even high conputing capacity, achievable by parallel
conputing circuits, did not sol ve the probl ens. For exanpl e,
In image anal ysis there exists requirenents which are very
difficult to fulfill: Invariance of detection wth respect
to translation, rotation, scale, perspective, partial

occl usion and nodest nmarring of the objects.

Artificial neural networks are nassively parallel
i nt erconnect ed networks of sinple adaptive el ements. These
el ements are arranged in a hierarchical manner to interact
wth the objects of the real world in the sanme way as
bi ol ogi cal neural systens do. These sinple neuron |ike

el ements connected together show powerful | ear ni ng,



menori zation, associative recall capabilities and self
organi zation for pattern formatted information[36]. Apart
fromthese properties, they have nunber of ot her advant ages.
The conputation is distributed, fault tolerant and has the
ability to tolerate distortions in the input pattern. This
neural network approach differs significantly from the
earlier approaches by its nonsynbolic processing and

di stributed representati on.

Si nce these neural networks are conceptual |y conpati bl e
with the biological neural networks it is possibleto derive
i nspi ration from neurobi ol ogi cal or psychol ogi cal studies,
even though the objective mght be engineering. Wen the
engi neering nodel performance mrrors human perfornance,
simlar nodel might be applied to biological neural net and

mutual Iy useful hints can be obtained in this nanner.

Neur al network architectures are generally meant tol earn
and r ecogni zet he i nput patterns. But there are certai n neural
nmechanisnsintheinitial stages of animal vi sual and audi tory
system These neural mechani sns possess very little donain
speci fic know edge and essentially act as data adaptive
filters. In this work we attenpt to design such neural

architectures for processing visual input patterns.



1.4 OVERVIEW OF THE THESIS

Inthissectionweintroducethe specificresearch probl em
addressed. In Section 1.4.1 discuss the objective of the
thesis. Section 1.4.2 discusses the notivation of this work
and Section 1.4.3 discusses the scope of the study. Section
1.4.4 presents the overview of research and Section 1.4.5

di scusses the organi zation of the rest of the thesis.

1.4.1 Objective of Current Research

Visual pattern recognition can be considered as
consi sting of two stages: (i). Al owl evel anal ysi s concer ni ng
extraction of geonetric properties of the input pattern and
generation of a description of the pattern(32] and (ii) a
hi gher | evel analysis which uses the description together
wi th t he know edge of the domain to performthe recognition
task. Qur preattentive visual processing[14] is a parallel,
automatic and data driven processing which extracts
properties of the input pattern based on |ocal data.
Artificial neural networks, withtheir coll ective nonsymbolic
conputational capabilities, are wuseful to achieve the
preattentive visual processing. The objective of this thesis
Is to devel op neural architectures for automatic extraction
of geonetric properties like straight |ines, corners and
contour termnation points frombinary i nput i mage patterns.
V¢ al so show how these architectures can be used in sone

engi neeri ng applications.



1.4.2 Motivation for Current Research

There are two different approaches for mnachi ne vision.
The first approach i s conputational vision approach. Inthis
approach vision is studied abstractly independent of any
particular domain. Pattern recognition and Artificial
Intelligence followthis approach and attenpted to devel op
conput ational algorithns for vision. The other approach is
to study the human visual system Since the human visionis
rapid and effortless, the objective had been to study hunman
vision and design engineering nodels for practical
appl i cati ons. Her e, reports from psychol ogi cal and
neur ophysi ol ogi cal studi es on biol ogical visual system are
used to design engineering nmodels. In this work the. design
of neural architectures for preattentive visual processing
i s notivated by sone aspects of t he visual perceptual process

i n biological visual system

1.4.3 Scope of the Work

The focus of the work i s on neural network architectures
for data driven extraction of geonetric properties. W assune
that the input pattern is clean and has a noi se free boundary
contour shape. The issue of pattern recognition is not
addressed in detail, although in all these cases recognition

st udi es have been nmade usi ng standard neural architectures.



1.4.4 Overview of the Research

In this work, we have proposed two approaches for
processing binary inmages. W have devel oped two neural
networ k architectures based on these approaches. The first
approach is inplenmented through an oriented filtering and
i nt egration network. The second approach i s i npl enent ed usi ng
directed spreading activation layers. W al so describe two

appl i cati ons of these architectures.

1.4.5 Organization of the Thesis

Chapter 2 discusses the notivation and proposes two
approaches to preattentive visual processing. Chapter 3
di scusses the design of Oiented filtering and Integration
Net wor k and t he appl i cation of this architecture for isol ated
word recogni tion. Chapter 4 di scusses the directed spreadi ng
activation neural architecture and proposes a nethodol ogy
for recognizing transformation invariant binary pattern
recognition. Chapter 5 concludes the thesis with a summary

of the work.



Chapter 2

APPROACHESFOR PREATTENTIVE VISUAL PROCESSING

2.1 INTRODUCTION

Nurrer ous approaches are proposed in the literature for
preprocessing the visual patterns. In Section 2.2, we
categori ze these approaches into four classes and briefly
revi ewt hese approaches. Vi sual pattern recognition has been
attenpted by neural networks also. In Section 2.3 we review
sone of the neural principles and architectures for visual
pattern recognition. In Section 2.4 we discuss approaches

adopted in this work for preattentive visual processing.

2.2 BACKGROUND

Misual pattern recognition deals with the anal ysis of
visual patterns in order to achieveresults simlar to those
obtained by man. A sinplified nachi ne paradi gm for visual
pattern recognition consists of two conputational stages.
The first stage is concerned with | ow | evel techni ques and
referred in the literature as picture processing or
preprocessi ng. Wen neural networks are used for such initial
processing it is called preattentive visual processing[14].
The second stage is referred as picture interpretation or
pattern mat ching or recognitionstage. The focus of this work

is on the first stage using neural networks.



Lowl evel analysis i nvol ves aggregati on of i nperfect edge
data in the two-dinensional inage projection. Here, shape
attributes of collection of edges are conputed and a
description consisting of the shape attributes and their
spatial |ocations are generated. This description serves as
i nput to a subsequent process of high | evel organizati on and

under st andi ng.

There exist many theories of visual pattern or shape
description and recognition, each attenpting to expl ai n sone
speci fic aspect of the problem This is so because it is
possi bl e to conceptualize visual pattern as a high |evel
per cept ual functi on. Since there is very little
neur ophysi ol ogi cal evi dence about its nature and the basic
constituents are not known, the field has been open to
freewheel i ng hypot hesi zati on. These theori es can be broadly
categorized as follows[52]: correlation techni ques,
conput at i onal appr oaches, neur ophysi ol ogi cal and
sensory- not or approaches([33,34]. Among t hese correl ati on and
conput ati onal approaches are engineering approaches. The
other two approaches are notivated by the studies from
neur ophysi ol ogy and vi sual perceptionresearch. These st udi es
are especially useful to design artificial neural networks.

In this section we briefly reviewthese four theories.

Anong the four categories the correlation technique is
followed in the pattern recognition research. In Section
2.2.1 we summari ze t echni ques proposed i n pattern recognition

research for visual pattern description and recognition.



Any visual pattern recognition task nust be inplemented
in an algorithm form Inplenentation of such algorithm
requires a conputational framework for representing the
algorithm 1In Section 222 we discuss a framework for

conput ati onal vi sual processing.

The sensory-notor approach to visual processing is
nodel ed after t he ocul onot or novenents of the eye. I n Section
2.2.3 we briefly describe the ocul onotor novenents of eye

and its role in visual perception.

The biol ogi cal visual perception is carried out by the
neural nechanisns in visual cortex and superior colliculus
of the brain. In Section2.2.4 we present some of the reports

f rom neur ophysi ol ogy about vi sual cortex.

2.2.1 Pattern Recognition Approach

Pattern Recognition techni ques for preprocessing binary
| mages can be broadly cl assifiedintotwo approaches, spati al
donmai n appr oach and scal ar transfor mapproach. Spatial domain
appr oach focuses on aggregati ng edge data and transformt he
I nput imge into an alternative spatial domai n
representation, The input inmages are transfornmed into a
representative graph which portrays the two-dinensiona
shape. Subsequent recognition of the shapes is acconplished
by neans of syntactic or structural analysis. Amrong spati al
domai n techni ques t here have been two approaches. The first

approach uses a collection of fixed tenplates of geonetric



features |like straight |Iine segnents of different
orientations, cornersand T-shapes; The i nput i magei s scanned
for these patterns and a representati ve graph whi ch portrays

t he two-di nensi onal shape i s generat ed.

The other approach is based on information theoretic
poi nt of view suggested by Attneave[l]. He suggested that a
shape i s segmented by neans of dom nant poi nts whi ch coi nci de
wi th points of maxi muminflectionalongits contour. Pattern
recogni ti onhas proposed a nunber of techni ques for extracting
domnant points in the input pattern{49]. These techni ques
are nostly an outgrowt h of interest in specific applications,
the nost common being the recognition of handwitten

charact ers and chronosone types.

Scalar transform techniques map the inmage into an
attribute vector description. The objective here is to
transformthe boundary data into a new representati on, one
I n whi ch obj ect transl ation, rotation, and si ze are no | onger
factors. The nethod of nonments offer such a possibility.
There have been nany applications of this methodol ogy to
pattern recognition problens. These have included printed
characters and numerals[3], hand-printed characters[7],
chest x-rays[18], aircraft identification[10], and ship
recognition({48]. Categori zati on of shapes with thi s approach

I s usual | y achi eved by neans of cl assical patternrecognition.



2.2.2 Computational Framework for Visual Processing

Sincevisionisaninterdisciplinaryresearchfield | arge
nunber of theories are proposed in other disciplines |ike
neur ophysi ol ogy and perceptual psychology. If we want to
devel op artificial visual systens, these theories devel oped
in the other disciplines nust be tested rigorously. For
rigorous testing, they nust be converted into algorithns.
Expressing visual theories as algorithns leads to the
devel oprrent of conput at i onal nodel s. In creating
conputational nodels, several inportant issues nmust be
addressed. In this section we discuss a framework for
conputational visual processing and isolate functional

characteristics of an architecture for preprocessing.

2.2.2.1 Low level versus high level visual processing

A useful conceptual sinplificationistodividethe visual
process intotwo |l evels: | owlevel visual processing and hi gh
| evel visual processing. Lowlevel processing deals directly
with the incomng visual stimuli. Sinple features nay be
extracted and sinple patterns recognized. The high |evel
vi sual processing is concerned with cognitive processi ng and
nmakes use of the know edge about the world when processing
the visual information. Wich visual cues are to be chosen
by the lowest levels is an inportant consideration, as all
further processing depends on how well this initial stage is

carri ed out.

13



2.2.2.2 Serial versus parallel processing

I't i suseful todistinguishbetweenthetype of processing
used by high and | owl evel visual processes interns of serial
versus parall el processing. The | ow | evel visual processing
is primarily performed in parallel. Evidence for this
assunption comes from four different areas nanely
neur ophysi ol ogy, psychophysi cs, machine vision and
conput ati onal theories. Serial processing is nore likely'to

occur at the high |levels of visual processing.

2.2.2.3 Automatic versus selective processing

Low |evel vi sual processing involves parallel
computations performed sinmultaneously at nany | ocations on
t he i nage. Much of this processing is performed automatically
without intervention from higher levels. Hgh Ievel
processing is nore likely to be serial and require flexible
control of the operations to be performed. Another way to
di scuss the automatic versus selective issue is in terns of
bott om up versus top-down processing. Automati C processing
can be perforned bottomup w thout using information from
hi gher levels. On the other hand, sel ecti ve processi ng m ght
require t op- down processi ng where there is feedback between
the different stages of processing. A the low |evel,
bott om up processing can be done in parallel, automatically

without flexible control and efficiently.

14



2.2.2.4 Signal versus symbols

Low | evel processing is closely tied to the inmage, or
the visual signal. By contrast, high | evel processing deal s
with cognitive synbols rather than visual signals. The nain
task of the early stages of visual processing is to extract
nmeani ngful i nformation fromthe total visual information and
topass it onto the higher | evel s of processing. The probl em
is in deciding how the informati on should be represented.
Ther e are two possi bilities, either the useful visual features
could be labeled and that information transmtted
synbolically, or else a schenme not requiring the explicit

| abel i ng of features could be enpl oyed.

2.2.3 Eye Movements and Visual Pattern Perception

The sensory-notor theory of visual pattern description
and recognition-is notivated by the ocul onotor movement of
eye. In this section we briefly review the role of

eye- novenent for visual pattern perception.

The interaction with the world around relies to a najor
extent on the ability to actively | ook, visually scan, and
selectively pick up information on the basis of which
ef fecti ve, visually guided act i oncanbe depl oyed. Suchvi sual
scanning and depl oyrment of goal -directed behavior in turn
requires spatial as well as tenporal coordination between

sensory and notor processes. Spatially what is required in



sensory-notor coupling is that the outer world be projected
systematically onto a notor map of the body; Mich of this
sensory-nmotor coupling IS reflexive[4,54]. The Vvisua

perceptual cycle is characterized by (1) the directing of
sensory apparatus to (2) selectively pick up information
whi ch serves to (3) modify and update the schemata that in

turn direct the further pick-up of information[40].

The rapid novenent of the sensory apparatus to pick up
information is called ‘saccade’. The saccades are driven
between points of interest in the visual field and play an
essential role in human visual processing, particularly in
t he establishnent of spatial relations[35,54]. Saccades are
controlled by a conplex set of interrelationships between
|l ow | evel and high | evel cues. The superior colliculus of
the brain, which receives both retinal and cortical

proj ections, directs the saccades[4].

2.2.4. Results from Neurophysiology for M std Processing

The neurophysiology approach for visual ©pattern
descriptionis notivated by the reports fromthe results of
bi ol ogi cal neural mnechanisns for vision. In this section we

revi ew t he neural nechani sns for visual perception.

The neural nechani sns involved in the visual perception
seens to be superior colliculus and visual cortex[4]. The
superior colliculusis involved in |ocalizing and detecting

the presence of a visual stimulus which nay be potentially

16



informati ve and behaviorally significant[4]. However, it is
not involved in the detailed qualitative analysis or
i dentificationof thestinulus. By contrast, the visual cortex
seens to be involved primarily in the localization of a

stimul us andi nanal yzi ngi tsqual itati ve and fi gural aspects.

In the visual <cortex four classes of cells are
di stinguished i n a series of ascendi ng complexity[23]. These
are terned as ‘circularly symmetric’,’simple’, ‘complex’ and
‘hypercomplex’. G rcularly symretriccell s showno preference
to any particular orientation of lines and act as contrast
detectors. Sinple cells are the first in the hierarchy to
orientation specificity. A sinple cell responds to an
optinmally oriented line in some narrowy defined position,
even a slight displacenment of the line to a new position
wi t hout change in orientation renders the Iine ineffective.
A conplex cell, on the contrary, is as specific in its
orientationrequirenents as the sinplecell, but is far |ess
particul ar about the exact positioning of the line. Such a
cell will respond wherever a line is projected within a
rectangl e. Hyperconpl ex cells respond to nore specific types
of stimuli than either simple or conpl ex cells. They respond
maxi mal |y t o edges, corners, curves and angl es of particul ar

Si zes.

In the literature neural architectures are reported
simul ati ng sone of the properties of the visual cortex, and

used in visual pattern recognition systems[12,15,24].

17



2.3 REVIEW OF NEURAL NETWORK ARCHITECTURES FOR VISUAL
PATTERN RECOGNITION

Theor et i cal neurodynam c approaches in cognitive
sciences seek to replace synbol-nanipulating forma
conputational rules with a short yet powerful Ilist of
el enmentary neur al principles([17]: 1.Competition
2.Cooperation 3.Shunting inhibition 4 .adaptive feedback
5.Resonance. This short list pf neural principles are the
basis of diverse phenonena encountered in the cognitive
sci ences and neur osci ences. The | ar ge nunber of conput ati onal
neural nodels reported in the literature(s,20,29,30,38] are

found to have based on these el enentary neural principles.

These elenentary neural principles give raise to sone
interesting neural properties |ike associative recall, self
organi zati on, adaptive resonance and conpetitive |earning.
Nunber of architectures are proposed Iin the literature
denonstrating these properties. These architectures include
Hopfield Net[20,21,22], Hamming net[30], Adaptive Resonance
Theory[6], Self organi zing Maps{29], Boltzman machine[36],

perceptron[30] and back propagation[36].

Various neural architectures for visual pattern
recognitiontasks are reported in the literaturef[l12,15,24].
These architectures are designed to solve specific visual
pattern recognition problens |ike handwitten character
recognition, recognition of silhouettes etc. In visual

pattern recognition, in general, the feature distribution of
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theinput is not identical with that of the stored tenpl ate.
Hence a nechanism which can resolve the differences is
necessary. There have been two approaches to this probl em
The first one is to incorporate the mechanisminto feature
extracting stages as neocognitron does{12]. The second
approach regards t he feature extracti on and pattern natchi ng

as separate stages[55].

In the following section we briefly review the
neocognitron[(12] architecture which follows the first
approach. There are other architectures for visual pattern
recognition which follow the second approach([55]. These
architectures use geonetrical or analytical nethods to
extract features fromthe i nput pattern. These architectures
use standard neural architectures |ike multilayer perceptron

for recognition. W do not reviewthese architectures here.

23.1 Neocognitron: An Architecture for Visual Pattern Recognition

Fukushima proposed the cognitron{13] nodel for pattern
recognition. This nodel does not have the capability to
correctly recogni ze the position-shifted or shape-di storted
patterns, Neocognitron which is an inproved version of the
conventi onal cognitron and has the capability to recogni ze
stinulus patterns correctly, evenif the patterns are shifted
in position or distorted in shape. It has a hierarchical

structure. The information of the stinulus pattern given to
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the i nput | ayer of the neocognitronis processed step by step
in each stage of the nmultilayered network. A cell in the
deeper stage generally has a tendency to respond sel ectively
to a nore conplicated feature of the stinulus patterns. At
the same tine it has a larger receptive field and is |ess
sensitive to shifts in position of the input pattern. Thus,
each cell in the deepest stage responds only to a specific
stimulus pattern without being affected by the position or

t he size of the stimulus patterns.

Neocogni tron handl es shifts by replicating the receptive
field of a feature to cover the entire visual field.
Distortions are tolerated by integrating the response from
over | appi ng receptive fields of the previous stages in the
subsequent stages. The successful perfornmance of neocognitron
is due to the gradual steps with which this replicating and
Integrating process is done. However, when this network is
applied to other problem domains it poses a nunber of

pr obl ens.

Since the inner |ayers of neocognitron are trained for
specific patterns, it falls short of the general purpose
vi si on system Each newpatternto belearnt isto be manually
segnented and trained to various | ayers of the network. This
Is a conparatively easy task in the case of nunerals for
whi ch neocogni tron was shown. But desi gni ng such network for
a pattern which has curves and lines as features, like in
the case of inmages of formant contour patterns in speech,

becones extrenel y cunber sone. Moreover the training patterns
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i ke Arabic numeral s thensel ves do not have any noise. If
noise itself is part of the pattern then the first stage of
neocognitron itself filters out such informati on and cannot

be used by subsequent stages.

2.4 PREATTENTIVE VIiSUAL PROCESSING: ISSUES AND APPROACHES

There are two issues to be addressed in the design of
neural architectures for preattentive visual processing. The
first issue is to identify different types of preattentive
vi sual processing. The second issue is to find neural
princi pl es useful for the design of neural architectures. In

this secti on we di scuss these i ssues.

The biological visual process can be functionally
segregated into visual perception and visual cognition[4].
The vi sual perceptual process extracts informati on about the
geonetry of the visual world and t he visual cognitive process
concernswiththerecognitionof famliar objects. The vi sual
perception in biol ogi cal visual systemseens to be aut omati c,
does not use any detail ed know edge of the visual patterns,
and extracts properties of the visual input which are not

i mredi ately used for recognition.

The visual perception is based on two interrelated
processes: parallel processing of visual information carried
out automatically by mechanisns determned by neuronal
organi zation of the retina, lateral genicul ate nucl eus, and

vi sual cortex; and sequential processing is related to i mage
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recogni ti on mechanisns and is controlled by attention[27].
In the first process, detector properties of single neurons
and local neuron nets are of prinmary inportance. Here,
orientation of edges and contour el enents of the input inage
are extracted by these neurons. In the second process, eye
novenents are considered to be an essential factor. As a
result of these novenents, the nost informative parts of
the i mage are sequentially projected onto the fovea for fine

processing[5,54].

Ther ef or e, an adequat e conput er syst emfor the processi ng
and analysis of wvisual information should include a
preprocessor with a neural network architecture, simlating
parall el information processing at |owlevels of the visual
system and a sequential type neural system tuning the
preprocessor to obtain necessary information for inage
recogni tion. Devel opnent of the neural network preprocessor
shoul d be preceded by a study on neuronal organi zation of
| owl evel structures of the visual system their nat henati cal

nodel i ng and conput er sinul ati on.

Based on the observations about the visual perception,
we have considered two possi bl e approaches for processing
bi nary images: The first approach extracts primtive |line
segnents from an input pattern and retains the spatial
rel ati onship between the features. In this processing the
detector properties of individual neurons and their spatial
| ocations are inportant. This architectureis inplenmented as

an oriented filtering and integrati on network. In Chapter 3
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we di scuss this architectureand its applicationfor isolated
word recognition. In the second approach the naxi num
information points fromthe input pattern are located. This
Is inplenented using directed spreadi ng activation |ayers.

Spreadi ng activation |layers reported in the literature[37]
uses isotropic spreading of activation to carry out early
vision tasks like feature clustering and feature centroid
determnation. The directed spreading activation |ayers
proposed in Chapter 4 uses ani sotropic or directed spreading
of activation followed by maxi na detection to | ocate nmaxi num

i nformation points fromthe input inage.

Since preattentive visual processing is parallel, the
neural network architectures have in their input stage two
di mensi onal array of neurons and the input pattern is fed
directly to this array. Al so, since preattentive visual
processingis purely data driven and does not use any detail ed
know edge about the patterns, the neural conputations nust
be froml ocal data, i.e., each neuron receivesits input from .
| ocal data only. Apart fromt he computations froml ocal data,
It is possibleto have | ateral interactions between neurons.
I n this work we show how neurocomputations frompurely | ocal
dat a extract structural features, and | ocal data conputati ons
with lateral interactions between neurons give rise to an

architecture whi ch extracts naxi num i nformati on points.



2.5 SUMMARY

In this chapter we have discussed four theories about
vi sual pattern description and recognition. W have revi ewed
sone of the neural network principles and architectures for
visual pattern recognition. Sone aspects of the visua
perception are presented. Based on t hese observati ons we have
consi dered two approaches t o preattentive vi sual processi ng.
I nthe foll owi ng chapt ers we di scuss two neural architectures

and appl i cati ons based on these two architectures.
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Chapter 3
ORIENTED FILTERINGAND INTEGRATION NETWORK

FOR STRUCTURAL FEATURE EXTRACTION

3.1 INTRODUCTION

In this chapter we present the design of the oriented
filteringandintegrationnetwork. This architectureextracts
the structural features |like straight |Iine segnents fromthe
input image. This is simlar to the first stage of
neocognitron(12], but differs in the inplenentation of the
i ntegrating network. W show howthis network can be applied
for recogni zi ng i sol ated utterances of words fromthe i nages
of formant contour patterns. Section 3.2 discusses the
structural organization and functional characteristics of
the oriented filtering and integrati on network. In Section
3.3 we describe the design of a neural architecture for

recogni zing i sol ated utterances of words.

3.2 ORIENTED FILTERING AND INTEGRATION NETWORK (ORFIN)

This is a two stage hierarchical network as shown in
Fig.3.1. Each st age consi sts of a nunber of two
di mensi onal array of neurons and t hese neurons are of anal og

type, i.e., the input output signals of the cells take
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Fig.3.1 Thisfigure illustrates the structural organization of ORFIN. (a) shows the
block diagram of ORFIN and (b) illustrates the interconnection between S-planes
and C-planes. Outputs of two of the S-planes which have the same orientation of
stimuli but trained differently are fed to corresponding C-planes. This is shown as
outputs from two S-planes converging into asingle C-plane. (c) illustrates examples
of S-cellswhose outputsare fed to corresponding C-cells.



nonnegati ve anal og values. The first stage is an oriented
filteringnetwork (al soreferredtoas S |ayer) whichextracts
i ne segments fromthe input pattern. The second stage i s an
integrating network (also referred to as Glayer) which
I ntegrates responses from overl appi ng fields of the output
of the first stage. The conputationinthe second stage al | ows

smal |l variations in the positions of the |ine segnents.

In this architecture all the conputations are carried
out fromlocal data only. These two stages are notivated by
the orientation specificity shown by si npl e and conpl ex cel | s

in the visual cortex(23].

Functional characteristics and structural organi zation
of this network are described in detail in the follow ng

secti ons.

3.2.1 Design of Oriented Filtering Network

Thi s network extracts | i nesegnments fromthe input pattern
by filtering through a number of planes call ed s-planes. Each
one of the S pl anes consi st of two-di nensional array of cells
and each cell favors a specific orientation of preferred
stimuli. There are two types of cells in the S plane, called
S-cells and v_-cells. The S-cells receive input from either
excitatory or inhibitoryinputtermnals. If thecell receives
signals from excitatory input terminals the output of the
cell wll increase. On the other hand, a signal from

inhibitory input termnal wll suppress the ocutput. Each
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I nput termnal has its own interconnection coefficient whose
val ues are positive. These values determne the preference
of the orientation of the cell. The output of the S-cell goes

to a nunber of input termnals of next G ayer.

The schematic diagramillustratingthe interconnections
convergingto a S-cell is summarized in Fg.3. 2. Each one of
the S-cells receives its inhibitory signal fromthe v_-cell
whi ch causes the shunting effect. Al the S-cells in the
given S-plane are trained to respond for a specific
orientationof stinuli. The V_-cells are trained to recogni ze
t he absence of the specific orientation of stimuli. So if
the input stimuli is exactly simlar tothe trained stimuli,
then S-cells respond to its nmaxi numand V_-cells respond to
its mninum On the other hand, if the input stinmuli is
conpletely different thenthe S-cells respond to its m ni num

and v_-cells respond to its naxi mum

Both S-cell and Vv_-cell receive input interconnection
fromthe same spatial distribution. Al the other cells in
t he sane cel | - pl ane have i nput i nterconnectionfromthe sane
spatial distribution and only the positions of the input
cellstowiichtheir termnals are connected are shifted in
parallel fromcell tocell. Fig.3.3 is a schematic diagram
illustrating the interconnections fromthis stage to the
second stage. In this diagram for the sake of sinplicity,
only one cell is shown in each cell-plane. Each of these
cells receive input interconnection fromthe cells wthin

the area enclosed by circle in its preceding |ayer.
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Let u(l),u(2),..u(N) be the exciy't'atory I nputs and Vs be the
inhibitory input. Then the S-cell output is conputed using

t he fol |l owi ng equati on:

fr+ ﬁlu(n) +i(n) } (3.1)

Us=r*<p - -1
IT+ap b Vs

where u(m) and b represent the excitatory and inhibitory
coefficients respectively, in) is the fixed weight pattern,
Vi is the output of the vs cells and r is a constant. The
characteristic behavior of S-cell is sumarized in Fg.3.4.

The function ¢() is defined by the foll ow ng equati on:

X S 3.2)
o) = { (@)’ ¥ >0
0, otherwise

where is a positive constant whi ch det erm nes t he degr ee of

saturation of the output.
The output of Vv_-cell is conputed using the follow ng

equat i on:

N
vi={ nz=1c(n)*u2(n)] v2 (3.3)

The fixed val ues of ¢(n) are determned so as t o decrease
nmonotonically with respect to the center and to satisfy
c(n) = 1.0. (Though ¢m) i s a two di mensi onal array for notati onal

convenience it is denoted as a single di nensional array).
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The input area for a S-cell is taken froma 3x3 array.
In the 3x3 array twelve orientations are possible. These

twel ve orientations are shown in Fg.3.5.

3.2.2 Design of Integration Network

Thi s networ k i nt egrat es responses fromover| appi ng fi el ds
of the output of the first stagetotolerate small variations
in the positions of the line segnents. This network al so
consists of a nunber of planes called G planes, and each
G plane consists of two dinensional array of cells. There
are two types of cells, Gcells and v_-cells inthe G planes.
Both Gcells and v_-cells receive input from the S plane.
G cells receive inputs from S-cells and v_-cells. Each G
cell has input interconnections |leading from a group of
Scells and these interconnections are fixed and
unnodi fiable. All the s-cellsinthe Gcells' connecting area
extract the sanme stinulus feature froma slightly different
positions on the input |ayer. The values of the
I nt erconnecti on between S-cells and Gcells are determ ned
such a way that the Gecell will be activated whenever at
| east one of these S-cells is active. Vv_-cells average the
i nput from S-cells which have sanme orientation but trained
differently. Fig.3.6 shows some exanples of t he
i nt erconnection topol ogy. Even if a stinmulus pattern which
has gi ven a | arge response fromthe Gecell isshiftedalittle

inposition, the Gcell will still keep respondi ng as bef ore.
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Fig. 3.5 Twelve line segments used to train S-cells.

Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is

responsible for handling small shifts in the input visual pattern.




Fig. 3.5 Twelve line segments used to train S-cells.

Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is

responsible for handling small shifts in the input visual pattern.
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I n other words, a Gcell respondstothe sanme stinulus feature
asthe Scells, but isless sensitiveto the position of the

stimul us feature.

There are twel ve orientations of stimuli inthe S| ayer.
These are connected to the eight Gplanes in the G|l ayer.
The S planes which have sane orientation of stinmuli but
trained differently are fed to a single Gplane. This is
illustrated in Fig.3.1b and 3.1c. This figureis illustrated
for seven S planes and five G planes. Fig.3.1b shows howt he
I nt er connecti ons bet ween S pl anes and G pl anes ar e arr anged.
Sone exanpl es of s-cells’ outputs feeding Gcells are shown

in Fig.3.1c.

The output values of Gcells are conputed using the
fol |l owi ng equati on:

1+ gld(n) * Us(n) (34)

Uc=(p Vc -1

where ¢ () is a function def ined by eqn(3.2), d(n) denotes t he
val ues of the interconnection topology, and V. i s the out put
of Ve-cells. Inthisinplenentationd()is assigned aconstant
value. (In neocognitron[12] d(n) is assigned nonotonically
decreasing values with respect to the center. The egn(3.4)
Is also sinplified and differs from neocognitron.) V. is
conput ed using the foll owi ng equati on:

Ve = % ngld(n) Us(n) (3:5)



where K is the nunber of S-planes connected to a G pl ane.
To sumarize the functional behavior, ORFIN extracts
straight line segnents with tolerance in their positions
while retaining the spatial relationship between them This
generates profiles of the input pattern which can be used
for recognition. In the followi ng section we show how this
preprocessing i s useful for recognizing isolated utterances

of words fromthe i nages of formant contour patterns.

3.3 APPLICATION OF ORFIN FOR ISOLATED WORD RECOGNITION

The isolated word recognition(IWR) systens reported in
the literature consider parameters[42] |ike spectral
coefficients, discrete Fourier transformed(DFT) Spectrum
| inear prediction coefficients(LPC) etc. as input for
recogni tion. These paraneters are extracted fromthe speech
signal formthe patterns and t hese patterns, are t hen mat ched
by tenplate nmatching techniques. The nonlinear tenporal
changes in these patterns are handled by using dynamc
programm ng t echni ques | i ke dynam c ti ne warping[25,46] and
probabilistic nodels |ike hidden narkov models[43]. The
success of the IWR systens depends on t he choi ce of paraneters

and t he techni que adopted to match these paraneters.

Speaker i ndependent isol ated word recognition with these
paraneters has been attenpted with partial success[47]. The
reason for the partial success of the paranetric

representation used for speaker independent |IWR systens can
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be ascribed to the paraneters' inability to capture the
features of the word. The utterances of the sane word by two
speakers show little simlarity in the paranetric form But
the same words show significant simlarity in the gross
features level inthe spectrogram Thoughthereis arelative
shift in the features depending on the speaker, there are

common features between them

Formants are resonances of the vocal tract system These
formant values vary slowy and continuously with tine. The
formants carry information relating to the identification of
t he speech sounds. Changes in the formant values with tinme
can be traced to obtain a formant contour. This formant
contour reflects the novenents of the articul ators positioned
in sequence. Even though different speakers utter the word,
the articulatory novenents need to be the same. Such formant
contour represents the speech signal inthe formof an inmage.
Fig. 3.7 shows sonme exanpl es of the imges of formant contour
patterns. Inthis work the i mages of formant contour patterns
extracted fromthe speech signal are considered as input to

the isolated word recognition system

In the images of the formant contours, the features are
sinmple lines and curves and they undergo distortions and
shifts depending on the utterance and speaker. Even for the
sanme speaker these formant contour patterns show variations.

Here, both t he absolute |l ocation and the rel ative arrangenent
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of the features are significant. For exanple, dependi ng on
t he vowel , the positions of the |ines representing F1 and F2

f ormant frequenci es change.

The formant contour of the same word undergoes changes
in both time scale and frequency scale. This is reflected
i n changes i nt he shapes and | engt hs of t he curves and strai ght
lines. This results in a significant change in the binary
pattern and a drastic change i n the physical |ocation of the
pi xel s. So the inmage of the formant contour pattern cannot
be used for sinple tenpl ate natching. However, at a higher
| evel the curves and strai ght |ines exist as specific features

of the utterance.

The approach adapted in this work attenpts to preprocess
the images of the formant contour to get an invariant
representation. The distortions and shifts in the input
pattern are processed by the preprocessing technique. Here
we have attenpted to use the oriented filtering and
i ntegration network for preprocessing the i nages of fornmant

contour patterns.

Inthefoll ow ngsectionwe descri be aneural architecture
for recogni zing i sol ated utterances of words fromthe i mages

of formant contours.



3.3.1 Design of Isolated Word Recognition System

The organi zati on of the neural architecture proposed is
shown in the Fig.3.8 This system consists of two stages.
The first stage is called Feature Extraction stage(FE) and
the second stage is caI.I ed Pattern Matching(PM) sStage.
Ciented filtering and integration network is used as FE
stage. The small distortions and shifts of the features of
the formant contours are preprocessed by this network to get

an invariant representation.

Since the formant contour inmage does not have any |ines
w th angl es above 45¢, all the orientations of stimuli above
45" need not be considered. Thiselimnates five of the twel ve
orientations. So the nunber of S-planes in the S layer in
this system is seven responding to seven different
orientations. The outputs of these S planes are fed to five
G planes. The FE stage generates different profiles fromthe
input image which are the outputs of Gplanes of the

I ntegrati on networKk.

The five G pl anes generate five different profiles. These
profiles are input to the PMstage (Fig. 3.9) . The PM st age
is a hierarchical Adaptive Resonance Architecture(6]. It
consi sts of two stages of ARTs in a hierarchy. First stage
consists of five Sinple Adaptive dassifiers called SAG 1.
Each SAC-1 receives one of the profiles as input. It

classifiesthe profileinto a category. Each SAG 1 nakes its
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Fig. 38 Neural architecture for recognizing isolated utterances of words.
First stage extracts structural features using ORFIN. Second stage implements

two-stage Simplé Adaptive Classifiers for recognition.

Classification

SAC-2

SAC-1

Profiles from feature extraction stage

Fig. 3.9 Pattern Matching Stage is a hierarchical adaptive resonance
architecture. SAC-1 categorizes the profiles. SAC-2 classifies based on the

categorization done by SAC-1.
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deci si ons based purely on the specific profile it receives.
The second stage i s al so a Sinple Adaptive Aassifier, called
SAG 2. Al the outputs of the SAG 1 are fed to SACG2 and it
nmerges the classification done by SAG1 and identifies the
i nput pattern. The Sinple Adaptive dassifiers follow the
adapti ve resonance architecture (Fig.3.10) and the salient

points of this architecture are sumrari zed bel ow,

The nmain feature of adaptive resonance architecture is
t he adapti ve resonance t hat occurs between the current i nput
and | earned expectations. In ART the system which carries
out the adaptive resonance is called attenti onal subsystem
whi ch consi sts of bottomup and top-down adaptive filters.
These filters are contained in pathways from a feature
representation field (H) to a category representation field
(F2 whose nodes undergo conpetitive-cooperative

i nt eracti ons.

An auxiliary orienting subsystem controls the self
organi zing and recognizing capability of ART. Wen a new
input is added at any time, the system would search the
establ i shed categories. If an adequate match is found on t he
initial search cycle, the bottom up wei ghts woul d be refined
i f necessary to incorporate the new pattern. If no natch is
found and the full coding capacity is not exhausted a new
cat egory woul d be forned wi th previ ously uncomm tted F2 nodes

encodi ng t he new i nput pattern.
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The auxiliary orienting subsystembecones active when a
bottomup input to H fails to match the |earned top-down
expectation read-out by the active category representation
at F2 Inthis case, the orienting subsystemis activated and
causes rapid reset of the' activecategory representation at
2 This reset event automatically induces the attentional
subsystem to proceed wth a parallel search. Aternative
categories aretested until either an adequate nmatch i s found
or a newcategory i s established. The search proceeds rapi dly
relative to the learning rate. Thus significant changes in
t he bottom up and top-down adapti ve filters occur only when
a search ends and a natched £/ pattern resonates within the

system

The criterion for an adequate match between an i nput
pattern and a chosen category tenplate is adjustable in an
ART architecture. The matching criterion is determned by a
vi gi | ance paraneter that control s activation of the orienting
system All other things being equal, hi gher vigil ancei nposes
a stricter matching criterion, which in turn partitions the
Input set into finer categories. Lower vigilance tolerates
great er top-down/bottom-up m snatches at FI, leading in turn

t o coarser cat egori es.

Fg.310 illustrates the main conponents of ART nodul e
in detail. Fed FI of M nodes, wth output vector

X = (xl,xz,...,xM), registers the input vector [I= (11,12,...,1M). The

bott om up wei ghts are denoted by Ay and t op-down wei ghts are



denoted by Z; The index { is wused for the feature

representati on nodes of the field FI and thg index j i s used
for category nodes in the field F2. In the -current
| npl enentationthe input feature vector Iis atwo di mensi onal
vector for both sac-1 and SAG 2. This is denoted as a single
di mensi onal vector for conveni ence. The size of M for SAG 1

is taken to be 32x32 and for SAG-2 is taken t o be 5x15.

Each FI node can receive input fromthree sources: the
bottom up i nput, nonspecific gain control signals which is
received by all the nodes at FI at the sane tinme, and the
top-down signals from the N nodes of F2 via an top-down
adaptive filter. The nonspecific gain signals in SAG 2 are
activated only after SAG 1 stabilizestheresonance activity.

Therefore SAG-2 i s inactive when SAC-1 is active. A node in
Flissaidto be activeif it generates an out put *si gnal equal

to I. Qutput frominactive nodes equals 0. The 23rule[6) is

realized in its sinplest, dinensionless formas foll ows:

.th

243 Rule Matching: The i~ FI node is active if its net

I nput exceeds a fixed threshold. Specifically,

. M
i = {1 1f1i+g1+2=‘{(,)zji > 1+k (3.6)

otherwise

where term f; is the binary input, termg is the binary

N
nonspeci fic FI gain control signal, term Zlijji I S t he sum of
j=

t op- down si gnal s y; vi a pat hways w th adapti ve wei ghts z;i, and
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k is a constant such that 0 <k <I. Inthis inplenmentationk

i s chosen to be 0.23 which i s the | east val ue conput ed by t he

G cells of the integrating networKk.

Pl aain control: The FI gain control signal g is defined by

1 if F0and F2 areactive 3.7
= |0 otherwise
Since F2 activity inhibits FI gain
e L ifL=1 (3.8)
‘710 otherwise

If only one.of the F2 nodes are active eqgn(3.6) reduces

to the single termzl.,.so

_ {1 ifli=1landzj;>k (3.9)
710 otherwise

The case where two F2 nodes are active at the same tine

has not occurred during our simnulation.

F2 Choice: Let 'I}denotethetotal I nput fromFltofh F2

node, gi ven by

N (3.10)
Tj =2 xizi
i=1

where t he z; denote the bottom up adaptive weights. |f sone
Ty >0, define the F2 choi ce i ndex J by
T, = max(Tj:j = 1,....N)

In the typical case, J is uniquely defined. Then the F2

out put vector y = (y;,...y,) obeys
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1 ifj=J 3.11)
g 0 otherwise

If two or nore indices j share naxi mal input, then they
equally share the total activity. In the simulation this
situation al so never arouse because of the nature of the

di stinct categories of isolated words.

Learning Iaws: The adaptive weights reach their new
asynptote on each input presentation. The learning is gated

by FI activity: that is, the adaptive wei ghts z; and ¢, can

change only when the f" F2 node is active.

Top-down | earni na: Wen t he Yy gate opens then | earning

of top-down wei ghts z; begi ns and z; is attracted towards .

This is called outstar |earning rule(17]. Initially all z;

are set tol. The F2 activity vector can be described as

e I if F2isinactive (3.12)
I+Z;5  ifthe” node is active

Wen nodel is active, | earning causes z, = I+z/(old)—1 where
z,(old) denotes z, at the start of the input presentation. The
first time an F2 node J becomes active, it is said to be

uncoomtted. In this case z,=I during |learning. Thereafter

node is said to be conmmtted.
Bottom up learning: In sinmulations it is convenient to
assign initial values to the bottomup adaptive wei ghts G,

In such a way that F2 nodes first becone active in the order
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j=12..N. This i s done by choosi ng t he bottom up wei ghts smal |

but decreasing order. This is acconplished by letting g, = a.

wher e e JFC . N

Li ke t he t op- down wei ght s vector z,, t he bottom up wei ght
vector g, al so becones proportional to the F2 output vector

X when the F2 node J is active. In addition the bottomup

X.
wei ghts are scaled inversely to |x|, so that =
9 y | x| 9= ET D
where 8 > 0. During learning g, i s conputed by
__ (I+zy (old)-1) (3.13)

B+ |I+zy (old)—1 |
Since |earning depends on the few sanples provided in
theinitial stages of thetrainingthe network, it i s possible
that fromthe training set provided it nay not be possible
for the systemt o generalize for correct recognition. Hence
the network is allowed to | earn conti nuously even during the
recogni tion phase. To facilitate such | earni ng possi bl e, the

vigil ance paraneters are adjusted during recognition.

332 Data Preparation

A nunber of approaches are proposed to extract fornant
contours from the speech signal. Sone of the approaches
proposed extract t he formant frequencies by |i near prediction
anal ysi s or frontepstrum Anot her approacht o extract fornant

frequency fromspeech si gnal i s usi nggroup del ay function[19]
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which is the negative derivative of the Fourier transform
phase. The group delay function derived from the Fourier
transform phase of a signal has two inportant properties,
nanmel y, additive and high resol uti on. Hema[19] has proposed
a techni que for formant extraction fromgroup del ay function
using these properties. From the group delay the fornant
frequenci es are picked using a sinple peak picking nethod.
Inthis work the formant contour is extracted fromt he speech

signal using the above techni que.

The speech si gnal is sanpl ed at 10, 000 sanpl es per second.
These sanpl es are grouped into bl ocks of 256 sanpl es. Each
bl ock i s processed t hrough t he group del ay f or mant extracti on
techni que. The next bl ock is chosen by shifting 32 sanpl es.
Thi s processing generates the i nage of the fornmant contour.
This i mage shoul d be preprocessed before feeding into the
proposed system There are nunber of issues to be addressed

for preprocessing the inages.

The first issueis to normalize the tenporal variations
in the inmage. Depending on the tine taken for uttering the
word the length of the x-axis of the inage changes. Since
the input to the proposed systemis a fixed two-di nensi onal
array of visual pattern, the formant contour should be
nornal i zed before feeding into the system This essentially
involves normalizing the duration of the uttered speech
signal. In this work we have used a sinple nornalizing
t echni que. The ti nme expansi on and conpression is carried out

in vowel regions of the uttered signal. The vowel regionin
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the formant contours contains nearly horizontal lines. In
these locations the formant contours are conpressed or

expanded and normalized to specific size of the input.

The second issue is to renobve the noisy peaks in the
image. A sinple support point technique is used to renove
t he noisy pixels of the image. In this techni que each point
in the imge is retained only if thexe are atleast 20
nei ghboring points. The other issue is to process the
di scontinuities intheinmge. The same support point techni que
whi ch is used above automatically corrects the

di scontinuities.

3.3.3 Implementation Details and Results

Inthe current inplenmentation the S-layer inthe FE stage
consists of seven S-planes. The S-cells in these S-planes
are tuned to seven different orientations. Each S-plane
consi sts of 64x64 array of S-cells. The orientation for which
each S-plane responds is already trained and the val ues are
hard- coded into the program Each pattern is a 3x3 array as
shown in Fig. 3.5. Each S-cell receivesits input froma w ndow
of size 3x3. The adjacent S-cell receives the input from an
overl apping w ndow. A nunber of parameters are used in
eqn(3.1) and (3.2) for conputing the outputs of S-cells.
These paranmeters are fine tuned for a good performance. The

value of r istaken tobe 1.7, b=1, 8 =0.5 anda = 0.333018.
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The G layer in the FE stage consists of five G planes.
Each G pl ane consi sts of 32x32 array of G cells. The outputs
of the S-planes are connected to the G planes through the
I nt er connection topol ogy as shown in F g.3.6. This topol ogy
is a 5x5 matrix for each G plane and hardcoded into the
program Each Gcell receives its input fromoutput of the
S pl ane havi ng a wi ndow of size 5x5. This feature extraction
phase finally generates five different profil es each of size
32x32. These profiles are fed to the PMstage. An exanpl e of

the outputs of Gplanes for the utterance TWD are shown in

Fig. 3. 11

Field F1 of SAG 1l is an array of size 32x32. Field F2
has 15 category nodes for classification. Al the five SACG1
classifiers together generate a two dinensional array of
val ues of size 15x5 which is fed as input for SAG 2. Hence,
in SAC-2 the field F2 has an array 15x5 input nodes. There
are 10 category nodes in field F2 of SAG 2.

There are two isolated word recognition tests conducted
on this system W have selected utterances of the digits
for recognition. Inthe first test the systemis tested with
the utterances of a single speaker. The recognition results
of the systemfor .asingle speaker with 20 utterances of each
digit, are shown in Table 3.1. The systemwas trained with

three utterances of each word.
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Fig. 3.11 Image of a formant contour pattern campressed into 64x64 array
is shown in (a). The output values of five C-Planes are shown for the
example input pattern. The size of the block in (b)-(f) indicates the value of
C-cell at that point.
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Table 3.1 Isolated Word Recognition System Test results
for a single speaker
Words Correctly | Unclassified | Misclassified
(20 each) recognized
Zero 18 2 -
One 20 - -
Two 14 6 -
Three 20 - -
Four 18 2 -
Five 16 - 4 (As Eight)
Seven 17 3 -
Eight 17 3 -
Nine 14 2 4 (As Five)

In the second test

utterances of digits fromtwo Anmerican speakers.
is trained with two utterances each of the two speakers and

tested with five utterances of each speaker.

shown in Tabl e-2 and Tabl e- 3.

the system is tested with isolated

Table 3.2 1solated word recognition systemtest results
for two speakers: Speaker-1

Words Correctly | Unclassified | Misclassified
(S each) | recognized

Zero 5 - -

One 5 - -

Two 3 2 -
Three 4 1 -

Four 5 - -

Five 5 - -
Seven 4 1 - N
Eight 5 - -

Nine 3 2 -
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Tabl e 3.3 Isolated word recognition systemtest results

for two speakers: Speaker-2

Words Correctly | Unclassified | Misclassified

(5 each) recognized
Zero
One
Two

Three
Four
Five

Seven

Eight
Nine

el =l (S B
1

2 (As Five)
1 (As Five)
- 1 (As Five)

BN = [

(NN (W [ (e (&N [
]
1

From the tests conducted we observe that the system
perforns well for a single speaker for distinct words. Wrds
i ke FI VE, EI GHT and N NE have t he sane dom nant vowel s and
f ormant cont our i mage for these words showsi ml ar hori zont al
lines. The systemattenpts to |ocate the distinct features
of these words for classfication and shown good results, for
exanple 16 out of 20 instances of FIVE are identified
correctly. The system misclassifies these words i n Sone cases.
This may be attibuted to the limtation of using ianges of
formant contour patterns which capture only the resonances
of the systemproperly. In the second test al so we observe
misclassifications in those words where there is vowel

dom nat i on.
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3.4 SUMMARY

In this chapter we have presented the design of the
oriented filtering and integrating network for structural
feature extraction. wWe have also described an application of
this architecture. A neural architecture for recognition of
utterances of isolated words from the images of the formant
contour patterns is presented. We have described the
implementation details of the neural architecture' and also

presented the test results.
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Chapter 4
DIRECTED SPREADING ACTIVATION LAYERSFOR

LOCATING MAXIMUM INFORMATION POINTS

4.1 INTRODUCTION

In this chapter we present the design of directed
spreadi ng activation layers. This architecture extracts the
nmaxi num i nformati on points in the input inage. V¢ describe
two applications of this architecture. In the first
appl i cati on we show how | ow | evel features can be extracted
from the nmachine fonts. In the second application we show
how transfornmati on i nvari ant binary pattern recognition can
be achi evedusi ng the maxi num information poi nts gener at ed

by this architecture.

Spreadi ng activation layers[37] has been used to carry
out early vision tasks like feature clustering and feature
centroid determnation. However, studies reported in the
literature use isotropic spreading of activation. In this
chapt er we di scuss the drawbacks of the spreadi ng activation
| ayers for locating maxi mum infornmati on points-and propose
a newdirected spreading activationnodel. I n Section 4.2 we
describe the spreading activation layers. Section 4.3
di scusses the notivation for the directed spreading and

Section 4.4 describes the design of the directed spreading



activation nodel. W discuss the inplenentation details and
exanples in Section 4.5 1In Section 4.6 and 4.7 we show sone

appl i cations of these architectures.

4.2 SPREADING ACTIVATION LAYERS

Evi dence for rapid diffusion | i ke phenonmena are found in
the brightness and color domains of stabilized inage
experiments. Conpel ling evidence is provi ded by Yarbus’s[54]
experiments, in which color fromthe surround rapidly fills
regi ons inwhichstabilizedinmages have faded. These evi dences
arereported inthe brightness donai n. But the di ffusion-I|ike
phenonena are used in both high | evel information processing
models[(2,26] and |low Ilevel visual processing nodels
also[14,15,37]. Spreading activation layers use this

di ffusion |i ke phenonena for early vision tasks.

Di f fusi on enhancenent is a |l owl evel conputational nodel
whi ch has been used in building a neural network vision
system([37]. This nodel is used for |earning and recogni zi ng
t wo- di mensi onal binary patterns invariant of their | ocation,
orientation and scal e. The processingis dividedinto |ayers,
each of whi ch enconpass nany | evel s of neuron-1i ke processi ng
cells. This low level processing nodel carries out early
vision tasks | i ke feature extraction, feature clustering and
feature centroid determnation. Inthe foll owi ng sections we
summari ze the salient features of the spreadi ng activation

| ayers.



4.2.1 Activity DIffusion and Centroid Detection

Consider a region R and an activation function A(R)

defined over it at an initial tine¢. Let the function A(R)

be binary values at ¢, either 4, or 0, corresponding to

| ocat i ons wher e maxi mumi nfornation or the | owl evel features
on the binary image have been detected. The naxi mum
information points are the high curvature points detected by
a t echni que proposed by Rosenfeld[28]. Nowl et t he activation
di ffuses | ocal | yt hr ought her egi on accordi ng to the cl assi cal

di f fusi on equati on:

dA (4.1)

=5 =V IK(R) VAR)]

where k(R) accounts for the density and conductivity of the

region. If kR) =k this reduces to dd4/dt = K*A(R) a constant.
If thetotal activation is held constant, then the | ocations
withinitial activation As beginto |l ose activation, while
adj acent |ocations begin to gain activation. Due to
superposition, areas near activation-rich |ocations gain
activation nore quickly than areas far from the
activation-rich locations. Fig.4.1 plots the activity
distribution surface as it spreads by the sinple diffusion
as descri bed above. Activity spreads as the tine progresses
from t (Fig.4.1a) until a global activity nmaxi num emer ges
(Fig.4.1d), indicating the geonetric centroid of the

features. At an internediate tine various |ocal maxi na can
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Fig. 4.1 The activity distribution of the spreading activation layer is plotted
in three dimensions at four times: (a) at to as diffusion begins; (b) at to*
after a short time; and much later in (c)and (d). In (d) the peak is located
at the geometric centroid of the three features as shown in (a).
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Fig. 41 The activity distribution of the spreading activation layer is plotted
in three dimensions at four times: (a) at to as diffusion begins; (b) at to ™
after a short time; and much later in (c) and (d). In (d) the peak is located
at the geometric centroid of the three features as shown in (a).
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be located. FHg.4.2 shows the tine sequence of two feature
| ocati ons spreadi ng, superinposing their tails, and finally
nmerging at the centroid. This exanple is shown for one
di mensi onal spreadi ng.

The activation distribution in the diffusion |Ievel
defines a surface over a 2D plane. Extrena of activity are
found in areas of positive curvature of the surface. The
maxi num is conputed in neural networks by self-activation
and conpetition. Wsing lateral inhibition, each elenent
suppresses its neighbors according to its activation, while
feeding back an excitatory activation to itself. This is
acconplished wusing an on-center/off-surround recurrent
receptivefield for each elenment. Anong other properties,
t hi stype of network enhances[16] the contrast of the activity
distribution, or in the extrenme case, |eaves only the
maxi mal |y acti-vated el ement on. This type of network al ong
w th spreading activation |l ayers|ocates'thefeaturecentroid

of the given feature points.

4.22 Feature Extraction in Spreading Activation Layers

Curvature along contours are useful for recognition of
shapes from 2D inmages. Spreading activation |ayers may be
used in | ocatingthe curvature along contours. Fig.4.3 shows
the result of using spreading activation |ayers for |ocating
a corner. The figure shows that the areas near hi gh curvature
poi nts al ong t he contour are easily found, sincethey receive

superi nposed activation froma greater nunber of |ocations



After first iteration

-] 10 16 20 25 30 36

— Aclivation value

After 9 iterations

0.26

0.2

016

0.06

[ 10 16 20 26 30 35

"= Activation value

After 17 iterations

AN

-] 10 15 20 25 30 35

—=— Activation value

005[

After 5 iterations

BN ]

5 1Q 16 20 25 30 35

T Activanon value

After 13 iterations

0.2

0086 -

] 0 16 20 26 30 36

T Activalion veiue

After 21 iterations

0.2

5 10 16 20 26 30 35

T Activation value

Fig. 4.2 As time progresses (a) to (f), the activity distributions initially due to
two features spread. As activity spreads the local maxima moves toward

the centroid. The global maximais stable at that point.
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Fig. 4.3 A contour with a corner shownin (a) is diffused in (b)-(d). Activity
accumulates more quickly where the average distance to the features is
least. As the diffusion progresses the activity maxima moves to the global
centroid. Since maxima moves continuously it is difficult to determine when
to stop diffusion to locate the peak at the corner.
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Fig. 4.3 A contour with a comer shown in (a) is diffused m (b)-(d). Activity
accumulates more quickly where the average distance to the features is
least. As the diffusion progresses the activity maxima moves to the global
centroid. Since maxima moves continuously it is difficult to determine when
to stop diffusion to locate the peak at the corner.
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t han areas near straight contours. But a certain anount of
care is required in using diffusion as a corner and contour
term nation points detector. If the diffusion is too short
on a coarsely sanpled imge, then maxima will be detected
for a short tinme. If the diffusion is too long, as the
di ffusi on progresses, the nmaxi ma points nerge together with
real corners, and corners | ocated around smal | features nerge

t oget her.

4.2.3 Centers of Focus of Attention

Since initial activation function corresponds to
| ocati ons where features have been | ocated, the diffusion as
it progresses formfeature clusters. These feature clusters
can be used as a center of focus of the saccadic controller
of any visual system Since the activation |evel of each
maxi ma poi nt depends on the density of features nearby, it
may be used to prioritize the inportance of feature area as
a fixation point. The |level of detail, and thus the size of
t he feature cluster, can be controlled by the extent in tine
of the diffusion process. For instance, if the diffusion
results can be sanpled before extensive feature clustering
occurs, they will reflect small feature clusters and a high
| evel of detail. If recognition using the clusters found at
this fine level of detail is inconplete, the diffusion may
be allowed to proceed, creating |arger feature clusters
Hence, small scal e organization energes before large scale

organi zation in a natural way.
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Fig.4.4 shows an exanple of the feature clustering in a
binary inmage. The figure illustrates how snall scale
organi zation arises naturally before a large scale
organi zation. These snall local clusters are shown in

di fferent stages of spreadi ng.

Feat ur es can be separat ed fromeach ot her by merging i nto
different activity groups. These different groups energing
as a function of time can be processed individually | eadi ng
t 0 pi ecew se support for recogni zi ng a conpl et e obj ect, even

in the presence of noise or occl usions.

4.3 MOTIVATION FOR DIRECTED SPREADING

4.3.1 Drawbacks of the Spreading Activation Layers for Low level Feature
Extraction

The obj ective here is to use spreading acti vation | ayers
for low level features or-.nmaxi mum information points
extraction. I nthis sectionwe discussthe drawbacks of using
spreading activation layers for extracting |ow |evel

f eat ur es.

The spreading activation layers is essentially enploys
an averagi ng process. Wen the input pattern is directly
presented to the spreading activation |layers, as the tine
progresses, the activation val ues of the individual neurons
refl ect the averaging process which takes place over two

di mensi onal space. This kind of averaging is unconstrai ned
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Fig. 4.4 Small scale organization of feature clusters emerges before large
scale organization. (a) shows the continuous process of feature clustering.
(b)-(d) shows different snapshots of feature clustering at different times.
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Fig. 4.4 Small scale organization of feature clusters emerges before large
scale organization. (a) shows the continuous process of feature clustering.
{(b)-(d) shows different snapshots of feature clustering at different times.



becausethereis neither alimtingfactor nor a conpl enentary
nmechani smto constrain the spreading of activation in both
time and space. The | ocal nmaxima formed as tine progresses,
represent various features and feature clusters inthe inage.
Asthereisnoconstraint inthespreadingit isverydifficult
to determne ’a priori’ when to stop the spreading process
and identify features or feature clusters, since the peaks
which are formed during the spreading slowy drift away
towards the gl obal centroi d. Hence t he mai n probl emin using
spreading activation layers for feature extraction is

i dentifying the tenporal event for stopping the spreading.

The location of quasi-static points[37] during the
spreadi ng activati on process has been proposed as a tenpor al
event for determ ningthe feature clusters. This quasi-static
poi nt nmethod cannot be adopted to the low level feature
extraction directly as the feature naxinma tend to nove
continuously towards the global centroid. To overcone this
problem the feature extraction phase and feature cluster
identification phase are isolated in spreading activation
| ayers. The feature points are detected by nonneural
techni ques and the feature map is considered as input for
spreadi ng i nstead of the direct input pattern. But thelines,
curves and contour term nati on poi nts whi ch are not retai ned
are very useful and significant as they contain informnation
useful for invariant pattern recognition. Wen the
eye/camera novenent is used to identify the features | ocat ed

at t he maxi ma poi nts, thelines and contour termnation points



will be mssed. Even though spreading activation |ayers is
not successful in low level feature extraction, it can be
successfully used for saccadi ¢ novenent, once the naximum

I nformati on points on the binary inmages are | ocated.

4.3.2 Basis for Directed Spreading Activation Model

This drawback of the spreading activation |ayers'
inabilitytodetect thelowlevel featureslikelinesegnents,
corners, curves and contour termnation points correctly as
part of the |lowlevel feature extraction can be attributed
to nmainly the wunconstrained nature of spreading both
tenporally and spatially. In this section we discuss the
basis for directed spreadi ng which constrai ns the spreadi ng
spatially. The spreading takes place in specific
predet erm ned directions and the directi ons specified by the
Input pattern. The directed spreading activation nodel
| ocates the mdpoints of Iines of different | engths, curves

and edge termination points in a purely datadriven nmanner.

Wen the input binary pattern is subjected to
unconst rai ned spreadi ng, the nmaxi ma points are formed at the
line segnments, corners, curves and contour termnation
points. If the diffusion is too short then these feature
maxi ma are not formed correctly. On the other hand, if the
diffusionis|longthen they nove t onwards each ot her and ner ge.
The nonstationary nature of the feature maxima i s due to the

| ateral influence of the adjacent feature nmaxina.

66



The straight |ine segnments and the corners may be
consi dered as conpl enentary features. Sincethe spreadingis
unconstrai ned t hese conpl enentary feature peaks spread fast
and becone nonstationary. To avoid this lateral influence it
IS necessary to separate these conplenentary features. In
this directed spreading activation nodel there are two
surfaces which work in parallel and |ocate conplenentary
features. One layer of neurons is sensitive to lines of
different orientations and acts simlar to Boundary Contour
System(BCS) proposed by Grossberg[14]. The second parall el
| ayer of neurons is simlar to Feature Contour System(FCS)
and is sensitive to curves and contour termnations. By
proposi ng constrai ned spreading activation simultaneously
taking place in two functionally conpl enmentary neuron nets,
we isolate the conpl ementary features and hence prevent the

| ateral influence of the feature nmaxi na points.

4.4 DIRECTED SPREADING ACTIVATION (DSA) LAYERS

Inthe directed spreading acti vation | ayers di scussed in
this section there are two layers each wth different
characteristic kR). The first layer has k(R) defined for
specific directions and spreadi ng takes place only in these
directions. It locates the mdpoints of the |ine segnents.
The second | ayer receives its input fromthe first | ayer and
the input binary pattern. In the second | ayer the spreading
activation takes place in the direction specified by the

activation values of the adjacent neurons. Hence the
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conductivity function k£(R) of the region is directed by the
data. This second |ayer detects curve centroids of all
curvatures and contour termnations. Since the spreading in
thesetwo | ayers is spatially constrained thereis nolateral
I nfl uence between peaks, hence these peaks are always
stationary and the noverrent is restricted to the directions
specified within a layer. These two |ayers along with their
nmaxi na detectors |ocate mdpoints of |ines, curves, corners
and contour termnationsin a purely data-driven manner whi ch

can be used for eye/camera novenent.

4.4.1 Organization of DSA Layers

The functional organization of the directed spreadi ng
activation layers is shown in Fig.4.5 It consists of two
| ayers called 11 and L2 each of which consists of two
di mensi onal array of neurons. |In the case of ORFIN t he | ayers
are arranged in a hierarchy. In DSA both the | ayers receive
the input simultaneously and send their outputs to a two
di mensi onal array of neurons which | ocat e t he naxi ma points.
The layer L2 also receives input fromLi. These two | ayers
with their naxi ma | ocati ng network | ocate the conpl enentary
features inthe input i mrage. L1 | ocates the mdpoints of |ine
segnent s and L2 | ocat es ot her maxi numi nfornati on poi nts |ike

corners, curve segnments and contour termnation points.
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4.4.2 Design of DSA Layers

The first layer L1, consists of two di mensi onal array of
hypercolumns[23]. A hypercolumn S a collection of
orientation specific cells. Each cell in a hypercolum
responds to a specific orientation. The collection of cells
I's such that cells responding to all the orientations are
available in a hypercolum. In the current inplenentation
each hypercol um consists of a twelve directional detector
neurons which respond to twelve different directions. A
hypercolum with twelve directional detectors is shown in
Fg.4.6. These hypercolums receive their input from the
i nput binary pattern. The outputs of all the directional
detector neurons are totally connected and t hese |inks have
a small negative value. Hence when the input is presented
each hypercolumm act |i ke a wi nner take all network as shown
inFig.47. Asaresult, eventhoughthedirectional detectors
respond to partial |ine segnents, the one which has the
maxi mum response survives. Al the directional detectors
bel ongi ng to a hypercol umm recei ve their input froma fixed
wi ndow of the input pattern. Adjacent hypercol ums receive

their input fromoverl appi ng w ndows.

The general structure of the directional detectors is
essentially the same as that of the S-cells described in
Section 3.2.1. Each directional detector has two types of
cells, excitatory cells (eEcs) and the inhibitory cells (Ics)

that occur in pairs. Each pair receives the sane i nput set.
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The 1Ics have fixed excitatory weights with val ues such that
the output of the 1¢cs is proportional to the nean intensity
val ue over the input. The activation function of the 1cs that

produces this nean value is a sinple wei ghted sum
v = Sal) IG) (42)
where the c(i) values are determned by a function that

decreases nonotonically with di stance fromthe center of the
connectabl e area and suns to 1. The nean value v, is used as

inhibition to the paired EC, which generates an output
according to the equati on:
N
1+ 3 aii) * u(i) (4.3)

uy=r*g . -1
+
v

where the wei ghts @ and b are nodi fi abl e wei ghts,r represents
the efficacy of the inhibitory synapse and the transfer

function is a piecew se linear function according to:

_ [¥/(a+x) if (x>0) (4.4)
P(x) = { 0  otherwise

The functional characteristics of directional detector

is summari zed in FHg. 4.8.

The di recti onal detectors whi ch have t he sane directi onal
sensitivity of neighboring hypercolums are connected by a
link. An exanpl e of the hypercol ums connected through the
links is illustrated in Fig. 4.9. In the illustration six
hypercolums wth each hypercolum having only four

directional detectors are shown. The directed spreadi ngt akes
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pl ace through these |links. Hence the 4(R) defined for L1 is
sensitive to the direction. The output of the layer L1 is
connected to the naxi ma detector. This network is a sinple
on-center/off-surround network t o det ect naxi ma. Each maxi na
detector cell suppresses the nei ghboring neurons accordi ng
to its activation and feeds back excitatory activation to

itself.

The second layer L2 also consists of two-dinensiona
array of neurons. These cells are connected to all their
nei ghbors by links. Each neuron receives its activation from
the input and the first |ayer according to the follow ng

equat i on:

L2y = Iy — Llxy (4.5)

where L2y is the activation value fed to the neuron of L2,
Ly 1s the input binary pattern and Ll,y is the activation
val ues of Li. Fromthe equation it is clear that the second
| ayer receives conpl enent of the first | ayer output over the
I nput binary pattern. Al the inputs and outputs of a single
neuron in L2 is shown in Hg.4.10. Since the first |ayer
detects all the lines and diffuses them the second |ayer
receives activations at corners, curves of all curvatures
ot her than strai ght lines and contour term nations. In |ayer
L2, the spreading takes place between only the active

nei ghboring neurons. So the corner, curve and contour
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termnation centroi ds are enhanced. The output of L2 is fed
to the maxi ma detector and the maxi na detector |ocates the
enhanced peaks of L2

Rapi d eye novenent § saccades) driven by the | ocati ons of
maxi mum i nformation points play an inportant role in the
est abl i shrrent of spatial relations. The absolute and rel ati ve
positions of the peaks |ocated by L1 and L2 of this system
can be considered as bottomup cues for the eye/camera
novenent to establish the spatial relationships. The peak
strength shows the length of a line or a curve at that
position. The ‘on pixels around t he fixed w ndow of the peak

Is useful for identificationof the feature at the peaks.

4.5 IMPLEMENTATION DETAILS AND EXAMPLES

The i nput visual patternis a 32x32 two-di nensi onal array
of binary values. There are twel ve directional detectors in
the hypercolumn structure as shown in Fg.4.6. These
directional detectors conpute their activation values
following the egn(4.3) . The paraneters for the directiona
detectors are fine tuned and these values arer = 1.7 and b
=10

The 11 layer receives the maxinum value of each
hypercol um. This L1 layer is inplenented in an array of size
31x31, giving an of fset of one for conputing the directional

detectors. The directional spreadi ng takes pl ace in L1 | ayer.
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The spreadi ng activation coefficient k i s taken to be 0. 005.

The L2 | ayer receives the conplenment of L1 over the input

array.

Fig.4.11 shows an exanple of the input binary pattern
for which maxinum information points are generated.
Figs.4.11b to 4.11e show the outputs of different I|ayers.
Fig.4 lla shows the input pattern for which naxinmm
information points are to be located. Fig.4.11b shows the
spreadi ng taken place in specific directions. The centers of
the | i ne segnents have t he naxi numacti vati on whi ch i s shown
inFig.4.11 c. Fig.4.11d shows t he conpl enentary of L1 val ues
totheinput i nage. Sincethe adjacent val ues tothese corners
are very large in 1 | ayer, the com penent becones too smnal |
and hence the adjacent values are not seen in Fig.4.11d. In
this binary pattern the maxi numinformation points are the
corners. These points are autonmatically located by the
architecture and is shown in Fig.4.lle. It can be observed
t hat even though this architecture does not have any corner
or any other tenplate, it |locates the corners and other
maxi mum information points automatically, This is an
advant age for locating |l owlevel features fromnachine fonts
which is illustrated in the next section. F g.4.12 shows
anot her exanpl e of lowlevel feature extraction fromanot her

bi nary pattern.
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Fig. 4.11 Example-l. Outputs of different stages of directed spreading
activation layers for a square.
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Fig. 4.12 Example-2. Outputs of different stages of directed spreading
activation layers for the jeep shown in (a).
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4.6 APPLICATION OF DSA LAYERS TO LOW LEVEL FEATURE
EXTRACTION FROM MACHINE FONTS

Inthis section an application of the directed spreadi ng
activation layers is discussed. The application considered
is low | evel feature.extraction from machine printed fonts
for recognition. This is one of the cases of visual patterns
where | ow | evel feature extraction can carry out significant

amount of data reduction in a purely data-driven nmanner.

Machi ne recognition of characters continues to be a
probl em even when t he nunber of characters is limted, and
the characters are restricted to nachi ne printed characters.
Wen the nachine printed character set involves different
fonts, it becones very difficult to design a recognition
systemwhi ch works for all the fonts. The brute force approach
tothis problemcould be to store all possi bl e characters of
all fonts inthe long termnenory and conpare themwi th the
test i nput one by one. This not only requires a | arge anount
of long term nmenory but al so the conparison tinme increases
exponentially as the nunber of fonts to be recognized

I NCr eases.

In all the previous approaches for nachine font
recognition, the lowlevel features are fixed ’a priori’. In
other words the feature extracti on phase is nodel driven.
Cenerally these features are snall straight |ine and curve
segnent s. Since these low level feat res are fixed,

significant amount of information is lost in the feature
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extraction phase resulting in the reduction of recognition
accuracy. Attenpting to extract all the features with this
approach involves not only manual extraction of |ow |evel
features fromall the fonts but al so | arge anount of storage
space and conparison tine. The ideal case would be to find
a nechanismto evol ve these features fromthe data itself.

Then all the features can be captured w thout any | oss.

The directed spreadi ng activation di scussed in the | ast
section coul d be used successfully for this problem D rected
spreading activation layers locate the |ow |l evel features
i ke straight |ines, curves, corners and contour termnation
points in a purely data-driven manner. Fromthese | ocati ons
the low level features can be extracted. There are other
advantages tothel owlevel feature extraction by the directed
spreadi ng activation. The |low |level feature extraction by
directed spreading activation layers is translation
invariant. Hence the low level features from fonts | ocated
at any part of the input visual pattern can be extracted.
Sone exanpl es of extracting | ow | evel features fromprinted

al phabets are shown in F g.4.13.

The feature map which is generated fromthe | ocati ons of
the low level features can be wused for invariant
representation. Since the feature map is a conpressed
representati on of each one of the characters, this can be
used for scal e, rotation and translation invariant
representation of the character and can be used for

recognition.
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Fig. 4.13 This figure shows examples of low-level features located for
machine fonts. In each row the first block shows the input character. The
second and third blocks show the outputs of layers L1 and L2.
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4.7 APPLICATION OF DSA LAYERS FOR TRANSFORMATION INVARIANT
BINARY PATTERN RECOGNITION

The maxi numinformati on points sinplify the anal ysis of
images by drastically reducing the amobunt of data to be
processed while at the sanme time preserving inportant
i nformati on about t he object[1]. I n this section we describe
a method to recogni ze the binary i mage patterns subjected to
affine transforns, from the nmaximum information points

generated by the directed spreading activation | ayers.

The maxi num information points in the inage space are

denot ed usi ng conpl ex notation as
(4.6)

Z = (x—xc)+i(y—yc) or Z = o’
where (X.Y:) is the location of the centroid, a=|Z|, and
@=argZ. The conformal mapping, In Z, has the effect of
transformng both rotati on and scal e effects to transl ati ons
inthetransformed space. If Zismltiplied by ascalefactor
a, then mZ=(no)+(na)+i0@ and if Z is rotated through an
angle 3, then

In Z = In (@€@*P)y = In o +i(6+B).

Rot ati on around the centroid on the visual field becones
translation with respect to 8. Scaling becones translation
wWith respect to 1n a. Thus, if the centroid in the ¢ and 1n
a directions can be determ ned, then the effects of scaling
and rotation can be elimnated by translating the | og-pol ar
space wth respect to the centroid. The logarithmc
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transformation also has the desirable side effect of
enphasi zing the inportance of the central visual area by
conpressing radially distant features when the input is
uni formy sanpl ed. The centroid in the | og-pol ar space noves
along with the features so that it stays in the same pl ace

with respect to the features.

Thi s transfornati on generates a two di mensi onal array of
poi nt s whi ch can be used for recognition using sinple pattern
nmat chi ng techni que. The pattern natchi ng t echni que nust t ake
care of the small positional errors which arise due to the
quanti zation errors. A possible I[imtation is that, as a
result of rotation, features may nove off the left or right
edges of the | og-polar map. A wappi ng nay occur due to the

2n periodicity of the | og-pol ar mappi ng.

Fig.4.14 illustrates the |og-polar mapping for scaled
and rotated binary inmages. Figs.4.14a to 4.14c show the
normal , scaled and rotated bi nary images. The correspondi ng
maxi mum i nformation points |located by DSA | ayers are shown
iNn Figs.4.14dt0 4.14f. Figs.4.14gt 0 4.14i showt he | og- pol ar
mappi ng for the maxi numinformation points. In these three
I mages the x-axis is ¢ and y-axis is 1n r. In Fig.4.14h it
can be observed that this output is translated in the y-axis
since the input inage is scaled. Simlar translation can be
observed in Fig.4.14i where the input image is rotated. Here
the transl ati on has taken place with respect to ¢. Fig.4.14j
to 4. 141 showthe | og-pol ar transformed i nages in which the

effects of scalingand rotation are elimnated by transl ati on
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Fig.4.14 Thisfigureshowsthescaleand rotation invafiance achieved by thelog-polar
rotated and scaled binary images. The
corresponding maximum information points generated by directed spreading
activation layers are shown in (d)-(f). The log-polar mapping for the maximum
information pointsof (d)-(f) isshown in (g)-(i). In (g)-(1) thex- axisis 6 and y-axisis
Inr. (j)-(1) show theimagesin which the effects of scaling and rotation areeliminated.

mapping. (a)-(c) show the normal,
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in the correspondi ng axes. Figs.4.15 to 4.17 show sone nore
exanpl es of |og-polar transforned binary inmages. It can be
observed that there are sonme distortions in the final
transl ated i nage. This arises not only due to distortions in
the shape of the input image and but also due to the

quanti zation errors.

4.8 APPLICATION OF DSA LAYERS TO IMAGES OF FORMANT
CONTOUR PATTERNS

DSA layers performwell in the class of patterns where
the low level features are characterized well. In these
situations the output of DSA | ayers can be used directly for
recognition. On the other hand, for the class of patterns
where the features are not characterized well, for exanple
i mges of formant contour patterns, the output generated by
DSA | ayers cannot be inmmedi ately used for recognition. The

ot her knowl edge source about the patterns are required.

Fig.4.18 shows the output of DsA |ayers for an inage of
a formant contour pattern. Fig. 4.18a shows t he f or mant cont our
pattern for an isol ated utterance of the word Two. Fig.4.18b
shows the mdpoints of the straight |ine segnents in the
input pattern and Fig.18c showst hemaxi mumi nf ormati on poi nts
located in the input pattern. It can be observed that
processing carried out by DSA layers reduces the initial
information significantly. But this processing has a nunber
of disadvantages. The spurious formant values in the input

pattern gets reflected as maxi num informati on points whigh
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Fig. 415 Log-polar mapping for a binary inrage: Example-2. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show thelog-polar mappingfor the
maximum information points. (j)-(1) show the log-polar domain images where the
effectsof scaling and rotation are eliminated.
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Fig. 416 Log-polar mapping for a binary image: Example-3. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show the log-polar mapping for the
maximum information points. (j)-(1) show the log-polar domain images where the

effects of scaling and rotation are eliminated.
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Fig. 417 Log-polar mapping for a binary image: Example-4. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show thelog-polar mapping for the
maximum information points. (j)-(1) show the log-polar domain images where the
effectsof scaling and rotation are eliminated.
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(@ Formant Plot: Two (b) Output of Layer L1

-

(c) Output of Layer L2

Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows the
formant contour pattern for the utterance TWO. (b) shows the midpoints of the
straight line segments and (c) shows the maximum information points located by

DSA layers.
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are difficult to elimnate in the later stages. The
discontinuitiesin the line segnents due to m ssing fornant
also affect significantly leading to multiple naximum
information points. Hence it is necessary to get a fornant
contour patternwhichis free fromnoi se and di scontinuiti es.
Thi s requires sone i ssues which need to be addressed at the

time of extraction of formant contour itself.

The probl emin the extraction of formants fromthe speech
signal can be attributed to the block processing. Bl ock
processi ng processes t he speech signal by bl ocks contai ni ng
fixed nunber of sanples. This bl ock processing assunes t hat
the i nput signal isstationary whichinpliesthat the formants
do not change within the block. But speech signal 1is
nonstationary and formant frequencies undergo change in a
much shorter tine especially during formant transitions.
Usi ng smal | er bl ock size | eads to poor frequency resol ution
whi ch af f ect st heaccuracy of the extracted f ormant frequency.
The ot her approach i s to use pitch synchronous anal ysis. Here
we assune that the signal is stationary for one pitch peri od.

But reliable pitch extraction is also very difficult.

In this work we have attenpted processing synthetic
formant contour patterns. Fig.4.19 shows the processing of
synthetic formant contour patterns using DSA |ayers.
Figs.4.19a t0 4.19c show sone synthetic formant contour
patterns. Figs.4.19d t0 4.19e showthe m dpoi nts of straight

line segnents and Figs.4.19f to 4.19h show the naxi nrum
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Fig.4.19 Thisfigure showsthe output of DSA layersfor processing synthetic formant
contour patterns. (a)-(c) show examplesof synthetic formant contour patterns. (d)-(e)
show the midpoints of straight line segments and (f)-(h) show the maximum
information points generated from these synthetic formant patterns. These
information points may be used asfeatures for devel oping a recognizer.



information points generated from the synthetic fornant
pattern. These information points may be used as features

for devel opi ng a recogni zer.

4.9 SUMMARY

I nthischapter we have proposed a newneural architecture
for automatic |ocation of maxi num infornation points. The
spreadi ng activation layers and its utility for early vision
t asks were di scussed. The difficulty in using the spreadi ng
activation layers for low level feature extraction was
expl ai ned. W have poi nted out t he i nportance of the directed
spreading for low level feature extraction, and described a
new di r ect ed spreadi ng activation nodel. Two applications of
the nodel, low level feature extraction for machine fonts
and transformationinvariant binary pattern recognition were

al so di scussed.
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Chapter 5

SUMMARY AND CONCLUSIONS

Visual pattern recognition can be considered as
consisting of two stages: (i) a preprocessing stage which
primarily concerns with the data reduction by extracting
geonetric properties |ike straight |ines and corners and (ii)
a recognition stage which recogni zes the familiar.objects.
Preattentive visual processing concerns wth extracting
geonetric properties from input inmage wth parallel,
autonmatic and data-driven nechanisns. Artificial neural
networks with their parallel, nonsymbolic, fault tolerant.
conputing are wuseful to achieve preattentive visual
processing. In this thesis we have devel oped neural network
architectures for extracti nggeonetric properties frombinary

i mages.

Since artificial neural networks are rem nescent of
bi ol ogical neural mnechanisns they attenpt to derive
notivation frombi ol ogi cal systens and nodel their structural
and functional characteristics. Neurophysiological and
vi sual perceptual evidences reported in the literature are
useful for such nodelling. The nmain notivation of our design
of the neural networks for preattentive visual processing
has conme fromsone aspects of visual perception in biological
visual system Based on the observations we have proposed

t wo approaches for preattentivevisual processi ngand we have
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proposed two architectures based on these two approaches.
Fi rst approach extracts strai ght |ine segnents front he i nput
image and this was inplemented in an oriented filtering and
i ntegrati on(ORFIN) network. Second approach extracts the
maxi mumi nformati on points fromthe i nput i mage and t hi s was

i npl enented in directed spreadi ng activation(Dsa) | ayers.

Though these two architectures are functionally totally
different we have shown in this thesis that these two differ
i na sinpleneuroconputing property |likelateral interaction.
ORFIN i s a two- stage hi erarchi cal network whi ch does not have
any lateral interaction or coopeartion between adjacent
neurons. DSA | ayers have two-stages whi ch receive the input
parallely and have lateral interaction between adjacent
neurons. One of the | ayers has | ateral interaction dependi ng
on the direction and the other | ayer has lateral interaction

dependi ng on t he input dat a.

VW have considered sone applications for these
architectures. The first application is recognizing the
isolated utterances of words from the images of fornmant
contour patterns. Here the problemis to get an invariant
representation from the input binary inage. W have used
ORFIN t O preprocess to get an invariant representation from
the i nput image. The recognition in this case is inplenented
using a two-stage  hierarchical adaptive resonance

architecture. W have tested the system with isolated
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utterances of digits. We have conducted two tests, with a
single speaker and with multiple speakers and the test results

ar e shown.

The other application uses the DSA layers. DSA layers
extract maximum information points from the input image and
at these points there are low level features like corners,
curves and cotour termination points. Hence the output of
DSA layers can be used in two ways. One way is to use the
low level features for recognizing the input pattern. This
approach works successfully in images where the low level
features are characterized well, for example machine fonts.
We have shown examples of such low level feature extraction
from machine fonts. The other way is to use the spatial
relationship between different parts of the image by using
only the locations of the maximum information points. We have
also shown in this thesis a methodology to recognize affine
transformed images from the maximum information points

generated by the DsA layers.
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Thisfigureillustrates the structural organization of ORFIN. (@) shows
the block diagram of ORFIN and (b) illustrates the interconnection
between S-planes and C-planes. Outputs of two of the S-planes which
have the same orientation of stimuli but trained differently arefed to
corresponding C-planes. This is shown as outputs from two S-planes
converging into a single C-plane. (c) illustrates examples of S-cells
whose outputsare fed to corresponding C-cells.

Interconnections convergingto a S-cell.
Schematic diagram illustrating the interconnections between the two
stages.

Input-to-output characteristicsof aS-cell.
Twelve line segments used to train S-cdlls.

Fixed weight pattern between S-cells and C-cells. This pattern is
responsible for handling small shiftsin theinput visual pattern.

Some examplesof imagesof formant contour patterns.

Neural architecture for recognizingisolated utterances of words. First
stage extracts structural features using ORFIN. Second stage
implements two-stage Simple Adaptive Classifiersfor recognition.

Pattern Matching stage is a hierarchical adaptive resonance network.
SAC-1 categorizes the profiles. SAC-2 classifies based on the
categorization done by SAC-1.

ART 1 Schematic diagram

Image of a formant contour pattern compressed into 64x64 array is
shownin (a). The output values of thefive C- planesare shown for the
example input pattern. The size of the block in (b)-(f) indicates the
vaue of C-cell at that point.
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The activity distribution of the spreading activation layersis plotted in
threedimensionsat four times: (a) at t0 +after ashort time; and much
later in (c) and (d). In (d) the peak is located at the geometric centroid
of the threefeatures asshownin (a).

As time progresses (a) to (f), the activity distributions due to two
features spread. Asactivity spreads the local maximamovestoward the
centroid. The global maximaisstable at that point.

A contour with a corner shown in (a) is diffused in (b)-(d). Activity
accumulates more quickly where the average distance to the features
is least. Asthe diffusion progresses the activity maxima moves to the
global centroid. Since maxima moves continuously it is difficult to
determine when to stop locate the peak at the corner.

Small scale organization of feature clusters emerges before largescale
organization. (&) shows the continuous process of feature clustering.
(b)-(d) shows different snapshots of feature clustering at different
times.

Directional spreading neural network
Layer one: Hypercolumn Input

Layer one: Hypercolumn Output
Characteristicsa aDirectional detector
Illustration of links between hypercolumns
Input/output of aneuroninL2.

Example-1: Outputsof different stages of directed spreading activation
layersfor asquare.

Example-2: Outputsdf different stages of directed spreading activation
layersfor ajeep shownin (a).
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Fig. 4.13

Fig. 4.14

Fig. 4.15

Fig. 4.16

Fig. 4.17

Fig. 4.18

This figure shows examples of low-level features located for machine
fonts. Ineach row thefirst block showstheinput character. The second
and third blocks show the outputs of layers L1 and L2.

This figure shows the scale and rotation invariance achieved by the
log-polar mapping. (a)-(c) show the normal, rotated and scaled binary
images. T he corresponding maximum information pointsgenerated by
directed spreading activation layers are shown in (d)-(f). (g)-(i) show
the log-polar mapping for the maximum information pointsof (d)-(f).
In(g)-(i) thex-axisis® and y-axisisInr. (j)-(1) show theimagesin which
the effects of scalingand rotation are eliminated.

Log-polar mapping for a binary image: Example-2. (a)- (c) show the
normal,rotated and scaled imagesand (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and rotation
are eliminated.

Log-polar mapping for a binary image: Example-3. (a)- (c¢)show the
normal,rotated and scaled imagesand (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and'rotation
are eliminated.

Lug-polar mapping for a binary image: Example-4. (a)- (c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and rotation
are eliminated.

Output of DSA layersfor formant contour patternisshown. (a) shows
the formant contour pattern for the utterance TWO. (b) shows the
midpoints of the straight line segments and (c) shows the maximum
information pointslocated by DSA layers.



Fig. 4.19

Table3.1

Table3.2

Table3.3

(1]

This figure shows the output of DSA layers for processing synthetic
formant contour patterns. (a)-(c) show examplesaof synthetic formant
contour patterns. (d)-(e) show the midpointsdof straight line segments
and (f)-(h) show the maximum information points generated from
these syntheticformant patterns. Theseinformation pointsmay be used
asfeaturesfor devel oping a recognizer.

LIST OF TABLES

|solated Word Recognition System test resultsfor asingle speaker.

Isolated Word Recognition System test results for two speakers:
Speaker-1.

Isolated Word Recognition System test results for two speakers:
Speaker-2.

PUBLICATION

A.Arul Valan and B. Yegnanarayana, " Directed Spreading Activationin
Multiple layers For Low level Feature Extraction,” Proceedings of
International symposium on information theory and its applications,
Singapore, pp.563-567, November, 1992.



(1]

[2]

[3]

(4]

(5]

[6]

(7]

(8]

[9]

(10]

(11]

REFERENCES

Attneave, F, "Some informational Aspects of Visual Perception,”
Psychological Review, vol.61, no.3, pp. 183- 193, 1954.

Allan, M. C. and Elizabeth, F. L.,"A Spreading Activation theory of semantic
processing,” Psychological review, Val. 82, pp. 407-428, 1975.

Alt, F, "Digita Pattern Recognition by moments,” Journal of the ACM, Voal.
9, pp. 240-258, 1962.

Breitmeyer, B.G., "Eye movements and visual pattern perception,” In E. C.
Schwab & H. C. Nusbaum (Eds.) Pattern recognition by humansand machines,
Vol.2., pp.65-86, New Y ork: Academic Press, 1986.

Burt, PJ., " Smart sensing within pyramidal vison machine," Proceedings of
the |EEE, Val. 76, pp. 970-981, 1988.

Carpenter, A., and Grossberg, S, "ART 2: Self- organization of stable category
recognition codes for analog input pattern,” Applied optics, Val. 26, No. 23,
pp.4919-4930, December 1987.

Casey, R.G., "Moment normalization of Handprinted Characters,” IBM
Journal of Research and Development,*$p. 548-557, September 1970.

Deborah, K. W. Wdters,"A Computer vision model based on Psychophysical
experiments,” In E. C. Schwab & H. C. Nusbaum (Eds.) Pattern recognition
by humansand machines, Val2 pp.87- 120, New Y ork: Academic Press, 1986.

Didday, R.L., and Arbib, M.A."Eye movementsand Visua Perception: A two
visual system model," International Journal of Man-Machine Studies, Vol. 7,
pp. 547-569, 1975.

Dudani, SA., Breeding, K.J,, and McGhee, R.B., "Aircraft |dentification by
Moment Invariants,” |EEE Transactions on Computers, Val. C-26, No.1,
pp.39-46, January 1977.

Eugene, CF. ,"Knowledge-Mediated Perception,” In E. C. Schwab & H. C.
Nusbaum (Eds.) Pattern recognition by humans and machines, Vol.2.,
pp.219-236, New York: Academic Press, 1986.



[12]

[13]

[14]

(15]

(16]

[17]

[18]

[19]

[20]

[21]

(22]

Fukushima, K., and Miyake S, "NEOCOGNITRON: A new algorithm
tolerant of deformations and shifts in position,” Pattern recognition, Vol.15,
No.6, pp. 445-469, 1982.

Fukushima, K., " Cognitron: a self-organizing multilayered neural network,"
Biological Cybernatics, Val. 20, pp. 121-136, 1975.

Grossberg, S, Mingolla, E., and Todovoric, D.,"A Neural network architecture
for preattentive vision,” | EEE Transactions on Biomedical Engineering, Val.
36, No. 1, pp. 65- 84,January 1989.

Grossberg, S, "Cortical dynamics of three- dimensional form, color, and
brightness perception: I. Monocular Theory," Perception and Psychophysics,

41(2), pp. 87-116, 1987.

Grossberg, S, " Contour enhancement, short time memory, and constanciesin
reverberating neural networks,” Studies in Applied Mathematics, 52, pp.
217-257,1973.

Grossberg, S, The Adaptive Brain, Val. II, Amsterdam: NorthHolland, 1987.

Hall, EL., Crawford, W.O., and Robert, FE., "Computer Classification of
Pneumoconiosis from Radiographs of Coal workers," | EEE Transactions on
Biomedical Engineering, Vol. BME-22, No.6, pp. 518-527, November 1975.

Hema, A M and Y egnanarayana, B., " Formant extraction from group delay
functions,” Speech Communication, vol.10, pp.209-221, Aug. 1991.

Hopfield, JJ.,, "Neural networksand physical systemswith emergent collective
Computational Abilities," Proc. Natl., Acad. Sci. USA, Vol.79, pp. 2554-2558,
April 1982.

Hopfield, J.J.,"Neurons with Graded Response Have Collective
Computational Properties Like Those of Two-State Neurons," Proc. Natl.
Acad. Sci. USA, Val. 81, pp. 3088-3092, May 1984.

Hopfield, J.J.,, and Tank D.W.,"Computing with Neural Circuits: A Model,"
Science, Vol. 233, pp. 625-633, August 1986.

102



(23]

[24]

[25)

[26]

[27)

(28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

Hubel, D. H., and Wiesdl, T. N., "Functional architecture of macague monkey
visual cortex," Proceedings of the Royal Society of London, Series B, 198, pp.
1-59, 1977.

llya, A. R., Natalia, A. S.et d., "A Visua Cortex Domain Model and itsuse for
Visua Information Processing,” Neural Networks, Vol4, pp.3-13, 1991.

Itakura, F, "Minimum prediction residual principle applied to speech
recognition,” |EEE Trans. on ASSP, Vol. ASSP-23, pp. 67-72, 1975.

John, R. A, “A spreading activation theory of memory," in Allan Collins and
Edward E. Smith (Eds.) Readings in Cognitive Science: A perspective from
psychology and Artificial Intelligence, Morgan Kaufman Publishers, 1988.

Julesz, B, "Experiments in the visual perception of texture," Scientific
American, 232, pp. 34-43, 1975.

Kitchen, L., and Rosenfeld A., "Gray level corner detection,” Pattern
Recognition letters, 1(2), pp. 95-102, 1982.

Kohonen, T, Self-organization and Associative Memory, Springer-verlog,
Berlin, 1984.

Lippman, R.R,"An Introductionto Computingwith Neural Nets," | EEE ASSP
Magazine, pp-4-22, April 1982.

Margaret, M., Cognition, CBS College Publishing, 1983.

Marr, D., "Early Processing of Visua Information,” Philosophical
Transactions of the Royal Society, London, ser. B, vol. 275, pp.483-524, 1976.

Martin, A.F., and Firschein O., Intelligence: The Eye, the Brain, and the
Computer, Addison-Wesley Publishing Company, Inc., 1987.

Martin, D. L., Visonin Man and Machine, McGraw-Hill Publishing, 1985.

Mays, L.E., and Sparks, D.L., "Saccades are spatialy, not retinotopically
coded,” Science, Vol. 208, pp. 1163-1165, 1980.

103



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

McClelland, JL., Rumelhart, D.E., and PDP Research Group, Parallel
Distributed Processing: Explorations in the Microstructure of Cognition,
Cambridge, MA: MIT Press,1986.

Michael, S. and Allen M. W,, " Spreading Activation Layers, Visua saccades,
and invariant representations for Neural Pattern recognition systems,” Neural
Networks, Vol.2, pp.9-27, 1989.

Min-Hong, H., and Dongsig, J., " The use of maximum curvature pointsfor the
recognition of partially occuluded objects,” Pattern Recognition, Vol. 23, No.
1/2, pp. 21-33, 1990.

Mishkin, M., Ungerleider, L.G., and Macko, K.A., " Object vision and spatial
vision: two cortical pathways,” Trendsin Neuroscience, 6, pp. 414-417, 1988.

Neisser, U., Cognition and Reality, San Franscisco: Freeman, 1976.

Rabiner, L.R., Rosenberg, A.E., and Levinson, SE., "Considerations in
dynamic time warping algorithm for isolated word recognition,” | EEE Trans.

on ASSP, Vol. ASSP-26, pp. 575- 582, Dec. 1978.

Rabiner, LR., "On creating reference templates for speaker independent
recognition of isolated words," | EEE Trans. on Acoustics, Speech and Signal
Processing, Vol. ASSP-26, pp.34-42, Feb. 1978.

Rabiner, L.R., Levinson, SE., and Sondhi, M.M., "On the use of hidden
Markov models to speaker-independent recognition of isolated wordsfrom a
medium-size vocabulary,” AT&T Tech. J., Vadl. 63, No. 4, pp. 627-642, April,
1984.

Rosenblatt, F, " The perceptron: A probabilistic model for informationstorage
and organization in brain," Psychoanalytic Review, 65, pp. 386-408, 1958.

Rosenblatt, R., Principlesof Neurodynamics, Newyork, Spartan Books, 1959.
Sako, H., and Chiba, S, " Dynamic programming algorithm optimization for

spokenword recognition,”" IEEE Trans. on ASSP, Vol. ASSP-26, pp. 43-49, Feb.
1978.

Sambur, M.R., and Rabiner, L.R.,"A speaker independent digit recognition
system," Bell. system Tech. J., Vol.54, pp.81-102, Jan. 1975.



(48]

[49]

[50]

[51]

(52]

[53]

[54]

[55]

Smith, FW,, and Wright, M.A., “Automatic ship photo interpretation by the
method of moments,” |EEE Transactions on Computers, Val. C-20, no.9,
pp.1089-1095, September 1971.

Song-Tyang, L., and Wen-Hsiang, T., ""Moment preserving corner detection,"
Pattern Recognition, Vad. 23, No. 5, pp. 441-460, 1990.

Steinbuch, " Dielernmatrix," Kybernetik, 1, pp.36-45, 1961.

Steven, P, Visual cognition, The MIT Press, 1986.

Uttal, W.R, “An autocorrelation theory of form detection,” Lawrence
Erlbaum Associates, Hillsdale, N.J., 1975.

Widrow and Hoff, "Adaptive switching Circuits,” WESCON Convention,
Record Part IV, pp. 96-104, 1960.

Yarbus,A.L., " Theroleof eye movementsin vision process," Moscow, USSR:
Nauka, 19609.

Y uzo, H. and Yasuyuki, T.," Position independent Neuro pattern matching and
itsapplication to Handwritten numerical character recognition,” IJCNN, Val.

11, pp.695-702, 1990.

105




r-------' esolBlon s nse

| |

i i ! !

] i :

1 i

l--i------! s cupmev e

L S— !

(&) Input Binary Image (b) Layer L1 output values
(c) Maxima pointsin L1 (d) Layer L2 output values

(e) Maximuminformation points for the input image

Fig. 4.11 Example-l. Outputs of different stages of directed spreading
activation layers for a square.
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Fig. 4.12 Example-2. Outputs of different stages of directed spreading
activation layers for the jeep shown in (a).
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4.6 APPLICATION OF DSA LAYERS TO LOW LEVEL FEATURE
EXTRACTION FROM MACHINE FONTS

Inthis section an application of the directed spreadi ng
activation layers is discussed. The application considered
is low | evel feature.extraction from machine printed fonts
for recognition. This is one of the cases of visual patterns
where | ow | evel feature extraction can carry out significant

amount of data reduction in a purely data-driven nmanner.

Machi ne recognition of characters continues to be a
probl em even when t he nunber of characters is limted, and
the characters are restricted to nachi ne printed characters.
Wen the nachine printed character set involves different
fonts, it becones very difficult to design a recognition
systemwhi ch works for all the fonts. The brute force approach
tothis problemcould be to store all possi bl e characters of
all fonts inthe long termnenory and conpare themwi th the
test i nput one by one. This not only requires a | arge anount
of long term nmenory but al so the conparison tinme increases
exponentially as the nunber of fonts to be recognized

I NCr eases.

In all the previous approaches for nachine font
recognition, the lowlevel features are fixed ’a priori’. In
other words the feature extracti on phase is nodel driven.
Cenerally these features are snall straight |ine and curve
segnent s. Since these low level feat res are fixed,

significant amount of information is lost in the feature
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extraction phase resulting in the reduction of recognition
accuracy. Attenpting to extract all the features with this
approach involves not only manual extraction of |ow |evel
features fromall the fonts but al so | arge anount of storage
space and conparison tine. The ideal case would be to find
a nechanismto evol ve these features fromthe data itself.

Then all the features can be captured w thout any | oss.

The directed spreadi ng activation di scussed in the | ast
section coul d be used successfully for this problem D rected
spreading activation layers locate the |ow |l evel features
i ke straight |ines, curves, corners and contour termnation
points in a purely data-driven manner. Fromthese | ocati ons
the low level features can be extracted. There are other
advantages tothel owlevel feature extraction by the directed
spreadi ng activation. The |low |level feature extraction by
directed spreading activation layers is translation
invariant. Hence the low level features from fonts | ocated
at any part of the input visual pattern can be extracted.
Sone exanpl es of extracting | ow | evel features fromprinted

al phabets are shown in F g.4.13.

The feature map which is generated fromthe | ocati ons of
the low level features can be wused for invariant
representation. Since the feature map is a conpressed
representati on of each one of the characters, this can be
used for scal e, rotation and translation invariant
representation of the character and can be used for

recognition.
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Fig. 4.13 This figure shows examples of low-level features located for
machine fonts. In each row the first block shows the input character. The
second and third blocks show the outputs of layers L1 and L2.
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4.7 APPLICATION OF DSA LAYERS FOR TRANSFORMATION INVARIANT
BINARY PATTERN RECOGNITION

The maxi numinformati on points sinplify the anal ysis of
images by drastically reducing the amobunt of data to be
processed while at the sanme time preserving inportant
i nformati on about t he object[1]. I n this section we describe
a method to recogni ze the binary i mage patterns subjected to
affine transforns, from the nmaximum information points

generated by the directed spreading activation | ayers.

The maxi num information points in the inage space are

denot ed usi ng conpl ex notation as
(4.6)

Z = (x—xc)+i(y—yc) or Z = o’
where (X.Y:) is the location of the centroid, a=|Z|, and
@=argZ. The conformal mapping, In Z, has the effect of
transformng both rotati on and scal e effects to transl ati ons
inthetransformed space. If Zismltiplied by ascalefactor
a, then mZ=(no)+(na)+i0@ and if Z is rotated through an
angle 3, then

In Z = In (@€@*P)y = In o +i(6+B).

Rot ati on around the centroid on the visual field becones
translation with respect to 8. Scaling becones translation
wWith respect to 1n a. Thus, if the centroid in the ¢ and 1n
a directions can be determ ned, then the effects of scaling
and rotation can be elimnated by translating the | og-pol ar
space wth respect to the centroid. The logarithmc
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transformation also has the desirable side effect of
enphasi zing the inportance of the central visual area by
conpressing radially distant features when the input is
uni formy sanpl ed. The centroid in the | og-pol ar space noves
along with the features so that it stays in the same pl ace

with respect to the features.

Thi s transfornati on generates a two di mensi onal array of
poi nt s whi ch can be used for recognition using sinple pattern
nmat chi ng techni que. The pattern natchi ng t echni que nust t ake
care of the small positional errors which arise due to the
quanti zation errors. A possible I[imtation is that, as a
result of rotation, features may nove off the left or right
edges of the | og-polar map. A wappi ng nay occur due to the

2n periodicity of the | og-pol ar mappi ng.

Fig.4.14 illustrates the |og-polar mapping for scaled
and rotated binary inmages. Figs.4.14a to 4.14c show the
normal , scaled and rotated bi nary images. The correspondi ng
maxi mum i nformation points |located by DSA | ayers are shown
iNn Figs.4.14dt0 4.14f. Figs.4.14gt 0 4.14i showt he | og- pol ar
mappi ng for the maxi numinformation points. In these three
I mages the x-axis is ¢ and y-axis is 1n r. In Fig.4.14h it
can be observed that this output is translated in the y-axis
since the input inage is scaled. Simlar translation can be
observed in Fig.4.14i where the input image is rotated. Here
the transl ati on has taken place with respect to ¢. Fig.4.14j
to 4. 141 showthe | og-pol ar transformed i nages in which the

effects of scalingand rotation are elimnated by transl ati on
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Fig.4.14 Thisfigureshowsthescaleand rotation invafiance achieved by thelog-polar
rotated and scaled binary images. The
corresponding maximum information points generated by directed spreading
activation layers are shown in (d)-(f). The log-polar mapping for the maximum
information pointsof (d)-(f) isshown in (g)-(i). In (g)-(1) thex- axisis 6 and y-axisis
Inr. (j)-(1) show theimagesin which the effects of scaling and rotation areeliminated.

mapping. (a)-(c) show the normal,
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in the correspondi ng axes. Figs.4.15 to 4.17 show sone nore
exanpl es of |og-polar transforned binary inmages. It can be
observed that there are sonme distortions in the final
transl ated i nage. This arises not only due to distortions in
the shape of the input image and but also due to the

quanti zation errors.

4.8 APPLICATION OF DSA LAYERS TO IMAGES OF FORMANT
CONTOUR PATTERNS

DSA layers performwell in the class of patterns where
the low level features are characterized well. In these
situations the output of DSA | ayers can be used directly for
recognition. On the other hand, for the class of patterns
where the features are not characterized well, for exanple
i mges of formant contour patterns, the output generated by
DSA | ayers cannot be inmmedi ately used for recognition. The

ot her knowl edge source about the patterns are required.

Fig.4.18 shows the output of DsA |ayers for an inage of
a formant contour pattern. Fig. 4.18a shows t he f or mant cont our
pattern for an isol ated utterance of the word Two. Fig.4.18b
shows the mdpoints of the straight |ine segnents in the
input pattern and Fig.18c showst hemaxi mumi nf ormati on poi nts
located in the input pattern. It can be observed that
processing carried out by DSA layers reduces the initial
information significantly. But this processing has a nunber
of disadvantages. The spurious formant values in the input

pattern gets reflected as maxi num informati on points whigh
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Fig. 415 Log-polar mapping for a binary inrage: Example-2. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show thelog-polar mappingfor the
maximum information points. (j)-(1) show the log-polar domain images where the
effectsof scaling and rotation are eliminated.
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Fig. 416 Log-polar mapping for a binary image: Example-3. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show the log-polar mapping for the
maximum information points. (j)-(1) show the log-polar domain images where the

effects of scaling and rotation are eliminated.
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Fig. 417 Log-polar mapping for a binary image: Example-4. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show thelog-polar mapping for the
maximum information points. (j)-(1) show the log-polar domain images where the
effectsof scaling and rotation are eliminated.
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(@ Formant Plot: Two (b) Output of Layer L1

-

(c) Output of Layer L2

Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows the
formant contour pattern for the utterance TWO. (b) shows the midpoints of the
straight line segments and (c) shows the maximum information points located by

DSA layers.
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are difficult to elimnate in the later stages. The
discontinuitiesin the line segnents due to m ssing fornant
also affect significantly leading to multiple naximum
information points. Hence it is necessary to get a fornant
contour patternwhichis free fromnoi se and di scontinuiti es.
Thi s requires sone i ssues which need to be addressed at the

time of extraction of formant contour itself.

The probl emin the extraction of formants fromthe speech
signal can be attributed to the block processing. Bl ock
processi ng processes t he speech signal by bl ocks contai ni ng
fixed nunber of sanples. This bl ock processing assunes t hat
the i nput signal isstationary whichinpliesthat the formants
do not change within the block. But speech signal 1is
nonstationary and formant frequencies undergo change in a
much shorter tine especially during formant transitions.
Usi ng smal | er bl ock size | eads to poor frequency resol ution
whi ch af f ect st heaccuracy of the extracted f ormant frequency.
The ot her approach i s to use pitch synchronous anal ysis. Here
we assune that the signal is stationary for one pitch peri od.

But reliable pitch extraction is also very difficult.

In this work we have attenpted processing synthetic
formant contour patterns. Fig.4.19 shows the processing of
synthetic formant contour patterns using DSA |ayers.
Figs.4.19a t0 4.19c show sone synthetic formant contour
patterns. Figs.4.19d t0 4.19e showthe m dpoi nts of straight

line segnents and Figs.4.19f to 4.19h show the naxi nrum
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Fig.4.19 Thisfigure showsthe output of DSA layersfor processing synthetic formant
contour patterns. (a)-(c) show examplesof synthetic formant contour patterns. (d)-(e)
show the midpoints of straight line segments and (f)-(h) show the maximum
information points generated from these synthetic formant patterns. These
information points may be used asfeatures for devel oping a recognizer.





information points generated from the synthetic fornant
pattern. These information points may be used as features

for devel opi ng a recogni zer.

4.9 SUMMARY

I nthischapter we have proposed a newneural architecture
for automatic |ocation of maxi num infornation points. The
spreadi ng activation layers and its utility for early vision
t asks were di scussed. The difficulty in using the spreadi ng
activation layers for low level feature extraction was
expl ai ned. W have poi nted out t he i nportance of the directed
spreading for low level feature extraction, and described a
new di r ect ed spreadi ng activation nodel. Two applications of
the nodel, low level feature extraction for machine fonts
and transformationinvariant binary pattern recognition were

al so di scussed.
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Chapter 5

SUMMARY AND CONCLUSIONS

Visual pattern recognition can be considered as
consisting of two stages: (i) a preprocessing stage which
primarily concerns with the data reduction by extracting
geonetric properties |ike straight |ines and corners and (ii)
a recognition stage which recogni zes the familiar.objects.
Preattentive visual processing concerns wth extracting
geonetric properties from input inmage wth parallel,
autonmatic and data-driven nechanisns. Artificial neural
networks with their parallel, nonsymbolic, fault tolerant.
conputing are wuseful to achieve preattentive visual
processing. In this thesis we have devel oped neural network
architectures for extracti nggeonetric properties frombinary

i mages.

Since artificial neural networks are rem nescent of
bi ol ogical neural mnechanisns they attenpt to derive
notivation frombi ol ogi cal systens and nodel their structural
and functional characteristics. Neurophysiological and
vi sual perceptual evidences reported in the literature are
useful for such nodelling. The nmain notivation of our design
of the neural networks for preattentive visual processing
has conme fromsone aspects of visual perception in biological
visual system Based on the observations we have proposed

t wo approaches for preattentivevisual processi ngand we have
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proposed two architectures based on these two approaches.
Fi rst approach extracts strai ght |ine segnents front he i nput
image and this was inplemented in an oriented filtering and
i ntegrati on(ORFIN) network. Second approach extracts the
maxi mumi nformati on points fromthe i nput i mage and t hi s was

i npl enented in directed spreadi ng activation(Dsa) | ayers.

Though these two architectures are functionally totally
different we have shown in this thesis that these two differ
i na sinpleneuroconputing property |likelateral interaction.
ORFIN i s a two- stage hi erarchi cal network whi ch does not have
any lateral interaction or coopeartion between adjacent
neurons. DSA | ayers have two-stages whi ch receive the input
parallely and have lateral interaction between adjacent
neurons. One of the | ayers has | ateral interaction dependi ng
on the direction and the other | ayer has lateral interaction

dependi ng on t he input dat a.

VW have considered sone applications for these
architectures. The first application is recognizing the
isolated utterances of words from the images of fornmant
contour patterns. Here the problemis to get an invariant
representation from the input binary inage. W have used
ORFIN t O preprocess to get an invariant representation from
the i nput image. The recognition in this case is inplenented
using a two-stage  hierarchical adaptive resonance

architecture. W have tested the system with isolated
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utterances of digits. We have conducted two tests, with a
single speaker and with multiple speakers and the test results

ar e shown.

The other application uses the DSA layers. DSA layers
extract maximum information points from the input image and
at these points there are low level features like corners,
curves and cotour termination points. Hence the output of
DSA layers can be used in two ways. One way is to use the
low level features for recognizing the input pattern. This
approach works successfully in images where the low level
features are characterized well, for example machine fonts.
We have shown examples of such low level feature extraction
from machine fonts. The other way is to use the spatial
relationship between different parts of the image by using
only the locations of the maximum information points. We have
also shown in this thesis a methodology to recognize affine
transformed images from the maximum information points

generated by the DsA layers.
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Fig.3.8

Fig. 39,
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Fig. 3.11

LIST OF FIGURES

Thisfigureillustrates the structural organization of ORFIN. (@) shows
the block diagram of ORFIN and (b) illustrates the interconnection
between S-planes and C-planes. Outputs of two of the S-planes which
have the same orientation of stimuli but trained differently arefed to
corresponding C-planes. This is shown as outputs from two S-planes
converging into a single C-plane. (c) illustrates examples of S-cells
whose outputsare fed to corresponding C-cells.

Interconnections convergingto a S-cell.
Schematic diagram illustrating the interconnections between the two
stages.

Input-to-output characteristicsof aS-cell.
Twelve line segments used to train S-cdlls.

Fixed weight pattern between S-cells and C-cells. This pattern is
responsible for handling small shiftsin theinput visual pattern.

Some examplesof imagesof formant contour patterns.

Neural architecture for recognizingisolated utterances of words. First
stage extracts structural features using ORFIN. Second stage
implements two-stage Simple Adaptive Classifiersfor recognition.

Pattern Matching stage is a hierarchical adaptive resonance network.
SAC-1 categorizes the profiles. SAC-2 classifies based on the
categorization done by SAC-1.

ART 1 Schematic diagram

Image of a formant contour pattern compressed into 64x64 array is
shownin (a). The output values of thefive C- planesare shown for the
example input pattern. The size of the block in (b)-(f) indicates the
vaue of C-cell at that point.
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Fig. 4.1

Fig. 4.2

Fig.4.3

Fig. 4.4

Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10

Fig. 4.11

Fig. 4.12

The activity distribution of the spreading activation layersis plotted in
threedimensionsat four times: (a) at t0 +after ashort time; and much
later in (c) and (d). In (d) the peak is located at the geometric centroid
of the threefeatures asshownin (a).

As time progresses (a) to (f), the activity distributions due to two
features spread. Asactivity spreads the local maximamovestoward the
centroid. The global maximaisstable at that point.

A contour with a corner shown in (a) is diffused in (b)-(d). Activity
accumulates more quickly where the average distance to the features
is least. Asthe diffusion progresses the activity maxima moves to the
global centroid. Since maxima moves continuously it is difficult to
determine when to stop locate the peak at the corner.

Small scale organization of feature clusters emerges before largescale
organization. (&) shows the continuous process of feature clustering.
(b)-(d) shows different snapshots of feature clustering at different
times.

Directional spreading neural network
Layer one: Hypercolumn Input

Layer one: Hypercolumn Output
Characteristicsa aDirectional detector
Illustration of links between hypercolumns
Input/output of aneuroninL2.

Example-1: Outputsof different stages of directed spreading activation
layersfor asquare.

Example-2: Outputsdf different stages of directed spreading activation
layersfor ajeep shownin (a).
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Fig. 4.13

Fig. 4.14

Fig. 4.15

Fig. 4.16

Fig. 4.17

Fig. 4.18

This figure shows examples of low-level features located for machine
fonts. Ineach row thefirst block showstheinput character. The second
and third blocks show the outputs of layers L1 and L2.

This figure shows the scale and rotation invariance achieved by the
log-polar mapping. (a)-(c) show the normal, rotated and scaled binary
images. T he corresponding maximum information pointsgenerated by
directed spreading activation layers are shown in (d)-(f). (g)-(i) show
the log-polar mapping for the maximum information pointsof (d)-(f).
In(g)-(i) thex-axisis® and y-axisisInr. (j)-(1) show theimagesin which
the effects of scalingand rotation are eliminated.

Log-polar mapping for a binary image: Example-2. (a)- (c) show the
normal,rotated and scaled imagesand (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and rotation
are eliminated.

Log-polar mapping for a binary image: Example-3. (a)- (c¢)show the
normal,rotated and scaled imagesand (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and'rotation
are eliminated.

Lug-polar mapping for a binary image: Example-4. (a)- (c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and rotation
are eliminated.

Output of DSA layersfor formant contour patternisshown. (a) shows
the formant contour pattern for the utterance TWO. (b) shows the
midpoints of the straight line segments and (c) shows the maximum
information pointslocated by DSA layers.





Fig. 4.19

Table3.1

Table3.2

Table3.3

(1]

This figure shows the output of DSA layers for processing synthetic
formant contour patterns. (a)-(c) show examplesaof synthetic formant
contour patterns. (d)-(e) show the midpointsdof straight line segments
and (f)-(h) show the maximum information points generated from
these syntheticformant patterns. Theseinformation pointsmay be used
asfeaturesfor devel oping a recognizer.
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|solated Word Recognition System test resultsfor asingle speaker.

Isolated Word Recognition System test results for two speakers:
Speaker-1.

Isolated Word Recognition System test results for two speakers:
Speaker-2.
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(e) Maximuminformation points for the input image

Fig. 4.11 Example-l. Outputs of different stages of directed spreading
activation layers for a square.
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Fig. 4.12 Example-2. Outputs of different stages of directed spreading
activation layers for the jeep shown in (a).
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4.6 APPLICATION OF DSA LAYERS TO LOW LEVEL FEATURE
EXTRACTION FROM MACHINE FONTS

Inthis section an application of the directed spreadi ng
activation layers is discussed. The application considered
is low | evel feature.extraction from machine printed fonts
for recognition. This is one of the cases of visual patterns
where | ow | evel feature extraction can carry out significant

amount of data reduction in a purely data-driven nmanner.

Machi ne recognition of characters continues to be a
probl em even when t he nunber of characters is limted, and
the characters are restricted to nachi ne printed characters.
Wen the nachine printed character set involves different
fonts, it becones very difficult to design a recognition
systemwhi ch works for all the fonts. The brute force approach
tothis problemcould be to store all possi bl e characters of
all fonts inthe long termnenory and conpare themwi th the
test i nput one by one. This not only requires a | arge anount
of long term nmenory but al so the conparison tinme increases
exponentially as the nunber of fonts to be recognized

I NCr eases.

In all the previous approaches for nachine font
recognition, the lowlevel features are fixed ’a priori’. In
other words the feature extracti on phase is nodel driven.
Cenerally these features are snall straight |ine and curve
segnent s. Since these low level feat res are fixed,

significant amount of information is lost in the feature
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extraction phase resulting in the reduction of recognition
accuracy. Attenpting to extract all the features with this
approach involves not only manual extraction of |ow |evel
features fromall the fonts but al so | arge anount of storage
space and conparison tine. The ideal case would be to find
a nechanismto evol ve these features fromthe data itself.

Then all the features can be captured w thout any | oss.

The directed spreadi ng activation di scussed in the | ast
section coul d be used successfully for this problem D rected
spreading activation layers locate the |ow |l evel features
i ke straight |ines, curves, corners and contour termnation
points in a purely data-driven manner. Fromthese | ocati ons
the low level features can be extracted. There are other
advantages tothel owlevel feature extraction by the directed
spreadi ng activation. The |low |level feature extraction by
directed spreading activation layers is translation
invariant. Hence the low level features from fonts | ocated
at any part of the input visual pattern can be extracted.
Sone exanpl es of extracting | ow | evel features fromprinted

al phabets are shown in F g.4.13.

The feature map which is generated fromthe | ocati ons of
the low level features can be wused for invariant
representation. Since the feature map is a conpressed
representati on of each one of the characters, this can be
used for scal e, rotation and translation invariant
representation of the character and can be used for

recognition.
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Fig. 4.13 This figure shows examples of low-level features located for
machine fonts. In each row the first block shows the input character. The
second and third blocks show the outputs of layers L1 and L2.
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4.7 APPLICATION OF DSA LAYERS FOR TRANSFORMATION INVARIANT
BINARY PATTERN RECOGNITION

The maxi numinformati on points sinplify the anal ysis of
images by drastically reducing the amobunt of data to be
processed while at the sanme time preserving inportant
i nformati on about t he object[1]. I n this section we describe
a method to recogni ze the binary i mage patterns subjected to
affine transforns, from the nmaximum information points

generated by the directed spreading activation | ayers.

The maxi num information points in the inage space are

denot ed usi ng conpl ex notation as
(4.6)

Z = (x—xc)+i(y—yc) or Z = o’
where (X.Y:) is the location of the centroid, a=|Z|, and
@=argZ. The conformal mapping, In Z, has the effect of
transformng both rotati on and scal e effects to transl ati ons
inthetransformed space. If Zismltiplied by ascalefactor
a, then mZ=(no)+(na)+i0@ and if Z is rotated through an
angle 3, then

In Z = In (@€@*P)y = In o +i(6+B).

Rot ati on around the centroid on the visual field becones
translation with respect to 8. Scaling becones translation
wWith respect to 1n a. Thus, if the centroid in the ¢ and 1n
a directions can be determ ned, then the effects of scaling
and rotation can be elimnated by translating the | og-pol ar
space wth respect to the centroid. The logarithmc
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transformation also has the desirable side effect of
enphasi zing the inportance of the central visual area by
conpressing radially distant features when the input is
uni formy sanpl ed. The centroid in the | og-pol ar space noves
along with the features so that it stays in the same pl ace

with respect to the features.

Thi s transfornati on generates a two di mensi onal array of
poi nt s whi ch can be used for recognition using sinple pattern
nmat chi ng techni que. The pattern natchi ng t echni que nust t ake
care of the small positional errors which arise due to the
quanti zation errors. A possible I[imtation is that, as a
result of rotation, features may nove off the left or right
edges of the | og-polar map. A wappi ng nay occur due to the

2n periodicity of the | og-pol ar mappi ng.

Fig.4.14 illustrates the |og-polar mapping for scaled
and rotated binary inmages. Figs.4.14a to 4.14c show the
normal , scaled and rotated bi nary images. The correspondi ng
maxi mum i nformation points |located by DSA | ayers are shown
iNn Figs.4.14dt0 4.14f. Figs.4.14gt 0 4.14i showt he | og- pol ar
mappi ng for the maxi numinformation points. In these three
I mages the x-axis is ¢ and y-axis is 1n r. In Fig.4.14h it
can be observed that this output is translated in the y-axis
since the input inage is scaled. Simlar translation can be
observed in Fig.4.14i where the input image is rotated. Here
the transl ati on has taken place with respect to ¢. Fig.4.14j
to 4. 141 showthe | og-pol ar transformed i nages in which the

effects of scalingand rotation are elimnated by transl ati on
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Fig.4.14 Thisfigureshowsthescaleand rotation invafiance achieved by thelog-polar
rotated and scaled binary images. The
corresponding maximum information points generated by directed spreading
activation layers are shown in (d)-(f). The log-polar mapping for the maximum
information pointsof (d)-(f) isshown in (g)-(i). In (g)-(1) thex- axisis 6 and y-axisis
Inr. (j)-(1) show theimagesin which the effects of scaling and rotation areeliminated.

mapping. (a)-(c) show the normal,
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in the correspondi ng axes. Figs.4.15 to 4.17 show sone nore
exanpl es of |og-polar transforned binary inmages. It can be
observed that there are sonme distortions in the final
transl ated i nage. This arises not only due to distortions in
the shape of the input image and but also due to the

quanti zation errors.

4.8 APPLICATION OF DSA LAYERS TO IMAGES OF FORMANT
CONTOUR PATTERNS

DSA layers performwell in the class of patterns where
the low level features are characterized well. In these
situations the output of DSA | ayers can be used directly for
recognition. On the other hand, for the class of patterns
where the features are not characterized well, for exanple
i mges of formant contour patterns, the output generated by
DSA | ayers cannot be inmmedi ately used for recognition. The

ot her knowl edge source about the patterns are required.

Fig.4.18 shows the output of DsA |ayers for an inage of
a formant contour pattern. Fig. 4.18a shows t he f or mant cont our
pattern for an isol ated utterance of the word Two. Fig.4.18b
shows the mdpoints of the straight |ine segnents in the
input pattern and Fig.18c showst hemaxi mumi nf ormati on poi nts
located in the input pattern. It can be observed that
processing carried out by DSA layers reduces the initial
information significantly. But this processing has a nunber
of disadvantages. The spurious formant values in the input

pattern gets reflected as maxi num informati on points whigh
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Fig. 415 Log-polar mapping for a binary inrage: Example-2. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show thelog-polar mappingfor the
maximum information points. (j)-(1) show the log-polar domain images where the
effectsof scaling and rotation are eliminated.
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Fig. 416 Log-polar mapping for a binary image: Example-3. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show the log-polar mapping for the
maximum information points. (j)-(1) show the log-polar domain images where the

effects of scaling and rotation are eliminated.
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Fig. 417 Log-polar mapping for a binary image: Example-4. (a)-(c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding maximum
information pointslocated by DSA layers. (f)-(h) show thelog-polar mapping for the
maximum information points. (j)-(1) show the log-polar domain images where the
effectsof scaling and rotation are eliminated.
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(@ Formant Plot: Two (b) Output of Layer L1

-

(c) Output of Layer L2

Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows the
formant contour pattern for the utterance TWO. (b) shows the midpoints of the
straight line segments and (c) shows the maximum information points located by

DSA layers.
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are difficult to elimnate in the later stages. The
discontinuitiesin the line segnents due to m ssing fornant
also affect significantly leading to multiple naximum
information points. Hence it is necessary to get a fornant
contour patternwhichis free fromnoi se and di scontinuiti es.
Thi s requires sone i ssues which need to be addressed at the

time of extraction of formant contour itself.

The probl emin the extraction of formants fromthe speech
signal can be attributed to the block processing. Bl ock
processi ng processes t he speech signal by bl ocks contai ni ng
fixed nunber of sanples. This bl ock processing assunes t hat
the i nput signal isstationary whichinpliesthat the formants
do not change within the block. But speech signal 1is
nonstationary and formant frequencies undergo change in a
much shorter tine especially during formant transitions.
Usi ng smal | er bl ock size | eads to poor frequency resol ution
whi ch af f ect st heaccuracy of the extracted f ormant frequency.
The ot her approach i s to use pitch synchronous anal ysis. Here
we assune that the signal is stationary for one pitch peri od.

But reliable pitch extraction is also very difficult.

In this work we have attenpted processing synthetic
formant contour patterns. Fig.4.19 shows the processing of
synthetic formant contour patterns using DSA |ayers.
Figs.4.19a t0 4.19c show sone synthetic formant contour
patterns. Figs.4.19d t0 4.19e showthe m dpoi nts of straight

line segnents and Figs.4.19f to 4.19h show the naxi nrum

91





Ca)

(b

(c)

<>

Ced

C£)

(g

)

i)

Fig.4.19 Thisfigure showsthe output of DSA layersfor processing synthetic formant
contour patterns. (a)-(c) show examplesof synthetic formant contour patterns. (d)-(e)
show the midpoints of straight line segments and (f)-(h) show the maximum
information points generated from these synthetic formant patterns. These
information points may be used asfeatures for devel oping a recognizer.





information points generated from the synthetic fornant
pattern. These information points may be used as features

for devel opi ng a recogni zer.

4.9 SUMMARY

I nthischapter we have proposed a newneural architecture
for automatic |ocation of maxi num infornation points. The
spreadi ng activation layers and its utility for early vision
t asks were di scussed. The difficulty in using the spreadi ng
activation layers for low level feature extraction was
expl ai ned. W have poi nted out t he i nportance of the directed
spreading for low level feature extraction, and described a
new di r ect ed spreadi ng activation nodel. Two applications of
the nodel, low level feature extraction for machine fonts
and transformationinvariant binary pattern recognition were

al so di scussed.
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Chapter 5

SUMMARY AND CONCLUSIONS

Visual pattern recognition can be considered as
consisting of two stages: (i) a preprocessing stage which
primarily concerns with the data reduction by extracting
geonetric properties |ike straight |ines and corners and (ii)
a recognition stage which recogni zes the familiar.objects.
Preattentive visual processing concerns wth extracting
geonetric properties from input inmage wth parallel,
autonmatic and data-driven nechanisns. Artificial neural
networks with their parallel, nonsymbolic, fault tolerant.
conputing are wuseful to achieve preattentive visual
processing. In this thesis we have devel oped neural network
architectures for extracti nggeonetric properties frombinary

i mages.

Since artificial neural networks are rem nescent of
bi ol ogical neural mnechanisns they attenpt to derive
notivation frombi ol ogi cal systens and nodel their structural
and functional characteristics. Neurophysiological and
vi sual perceptual evidences reported in the literature are
useful for such nodelling. The nmain notivation of our design
of the neural networks for preattentive visual processing
has conme fromsone aspects of visual perception in biological
visual system Based on the observations we have proposed

t wo approaches for preattentivevisual processi ngand we have
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proposed two architectures based on these two approaches.
Fi rst approach extracts strai ght |ine segnents front he i nput
image and this was inplemented in an oriented filtering and
i ntegrati on(ORFIN) network. Second approach extracts the
maxi mumi nformati on points fromthe i nput i mage and t hi s was

i npl enented in directed spreadi ng activation(Dsa) | ayers.

Though these two architectures are functionally totally
different we have shown in this thesis that these two differ
i na sinpleneuroconputing property |likelateral interaction.
ORFIN i s a two- stage hi erarchi cal network whi ch does not have
any lateral interaction or coopeartion between adjacent
neurons. DSA | ayers have two-stages whi ch receive the input
parallely and have lateral interaction between adjacent
neurons. One of the | ayers has | ateral interaction dependi ng
on the direction and the other | ayer has lateral interaction

dependi ng on t he input dat a.

VW have considered sone applications for these
architectures. The first application is recognizing the
isolated utterances of words from the images of fornmant
contour patterns. Here the problemis to get an invariant
representation from the input binary inage. W have used
ORFIN t O preprocess to get an invariant representation from
the i nput image. The recognition in this case is inplenented
using a two-stage  hierarchical adaptive resonance

architecture. W have tested the system with isolated
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utterances of digits. We have conducted two tests, with a
single speaker and with multiple speakers and the test results

ar e shown.

The other application uses the DSA layers. DSA layers
extract maximum information points from the input image and
at these points there are low level features like corners,
curves and cotour termination points. Hence the output of
DSA layers can be used in two ways. One way is to use the
low level features for recognizing the input pattern. This
approach works successfully in images where the low level
features are characterized well, for example machine fonts.
We have shown examples of such low level feature extraction
from machine fonts. The other way is to use the spatial
relationship between different parts of the image by using
only the locations of the maximum information points. We have
also shown in this thesis a methodology to recognize affine
transformed images from the maximum information points

generated by the DsA layers.
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corresponding C-planes. This is shown as outputs from two S-planes
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whose outputsare fed to corresponding C-cells.

Interconnections convergingto a S-cell.
Schematic diagram illustrating the interconnections between the two
stages.

Input-to-output characteristicsof aS-cell.
Twelve line segments used to train S-cdlls.

Fixed weight pattern between S-cells and C-cells. This pattern is
responsible for handling small shiftsin theinput visual pattern.

Some examplesof imagesof formant contour patterns.

Neural architecture for recognizingisolated utterances of words. First
stage extracts structural features using ORFIN. Second stage
implements two-stage Simple Adaptive Classifiersfor recognition.

Pattern Matching stage is a hierarchical adaptive resonance network.
SAC-1 categorizes the profiles. SAC-2 classifies based on the
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ART 1 Schematic diagram

Image of a formant contour pattern compressed into 64x64 array is
shownin (a). The output values of thefive C- planesare shown for the
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vaue of C-cell at that point.
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The activity distribution of the spreading activation layersis plotted in
threedimensionsat four times: (a) at t0 +after ashort time; and much
later in (c) and (d). In (d) the peak is located at the geometric centroid
of the threefeatures asshownin (a).

As time progresses (a) to (f), the activity distributions due to two
features spread. Asactivity spreads the local maximamovestoward the
centroid. The global maximaisstable at that point.

A contour with a corner shown in (a) is diffused in (b)-(d). Activity
accumulates more quickly where the average distance to the features
is least. Asthe diffusion progresses the activity maxima moves to the
global centroid. Since maxima moves continuously it is difficult to
determine when to stop locate the peak at the corner.

Small scale organization of feature clusters emerges before largescale
organization. (&) shows the continuous process of feature clustering.
(b)-(d) shows different snapshots of feature clustering at different
times.

Directional spreading neural network
Layer one: Hypercolumn Input

Layer one: Hypercolumn Output
Characteristicsa aDirectional detector
Illustration of links between hypercolumns
Input/output of aneuroninL2.

Example-1: Outputsof different stages of directed spreading activation
layersfor asquare.

Example-2: Outputsdf different stages of directed spreading activation
layersfor ajeep shownin (a).
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This figure shows examples of low-level features located for machine
fonts. Ineach row thefirst block showstheinput character. The second
and third blocks show the outputs of layers L1 and L2.

This figure shows the scale and rotation invariance achieved by the
log-polar mapping. (a)-(c) show the normal, rotated and scaled binary
images. T he corresponding maximum information pointsgenerated by
directed spreading activation layers are shown in (d)-(f). (g)-(i) show
the log-polar mapping for the maximum information pointsof (d)-(f).
In(g)-(i) thex-axisis® and y-axisisInr. (j)-(1) show theimagesin which
the effects of scalingand rotation are eliminated.

Log-polar mapping for a binary image: Example-2. (a)- (c) show the
normal,rotated and scaled imagesand (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and rotation
are eliminated.

Log-polar mapping for a binary image: Example-3. (a)- (c¢)show the
normal,rotated and scaled imagesand (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and'rotation
are eliminated.

Lug-polar mapping for a binary image: Example-4. (a)- (c) show the
normal,rotated and scaled images and (d)-(e) show the corresponding
maximum information points located by DSA layers. (f)-(h) show the
log-polar mapping for the maximum information points. (j)-(1) show
the log-polar domain images where the effects of scaling and rotation
are eliminated.

Output of DSA layersfor formant contour patternisshown. (a) shows
the formant contour pattern for the utterance TWO. (b) shows the
midpoints of the straight line segments and (c) shows the maximum
information pointslocated by DSA layers.
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Table3.2

Table3.3
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This figure shows the output of DSA layers for processing synthetic
formant contour patterns. (a)-(c) show examplesaof synthetic formant
contour patterns. (d)-(e) show the midpointsdof straight line segments
and (f)-(h) show the maximum information points generated from
these syntheticformant patterns. Theseinformation pointsmay be used
asfeaturesfor devel oping a recognizer.
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ABSTRACT

Vi sual pattern recognition such as reading handwitten
characters or distinguishing shapes is easily acconplished
by human beings. Wen attenpted to design information
processors to do the sane, it presents significant
difficulties. There have been two approaches for machi ne
i npl enentation of viusal pattern recognition. The first
appr oach consi ders vi si on as an abstract probl emand attenpts
to design conputational algorithns. The second approach
attenpts to study the biol ogi cal visual systemand nodel its

behavi or for engi neering applications.

Artificial neural networks which are rem niscent of the
neurons in the brain attenpt nodeling the function of the
biological system They are characterized by their
nonsynbol i ¢, distributed, fault tol erant conputi ng which are

very useful for pattern recognition tasks.

In visual patternrecognitionthereis anatural factoring
part of the process that extract information about the
georret ry of the visual pattern and t he processthat recogni zes
the famliar objects. Preattentive visual processing is a
paral | el , autonati c and data dri ven processing whi ch extracts
geonetric properties of the input pattern w thout using the
detail ed know edge of the domain. In this work we have

attenpted to develop neural network architectures for





autonmatic, data driven extraction of geonmetric properties
| i ke straight |lines, corners and contour termnation points
frombinary i mages. V¢ al so show how t hese architectures can

be used in sone engi neering applications.

Based on t he observat i ons about some aspects of t he vi sual
perception in the biological visual system we propose two
approaches for processing binary images. In the first
approach, the structural propertiesof theinput patternlike
straight lines are extracted from the input image. This
approach is inplemented as an oriented filtering and integration network,
notivated by the orientation specificity shown by certain

cells in the visual cortex.

I n the second approach, the naxi muminfornmation points
of the binary inage are located. In the case of sinple
geonetric contours these points coincide with the points of

maxi mum inflection. In this study, points of maximum

i nformati on are obtai ned usi ng directed spreadingactivation layers.

VW descri be two applications of these architectures. The
first applicationis recognizingisolated utterances of words
from images of formant contour patterns. For this we use
oriented filtering and integration network. The second
applicationdeal sw threcognitionof objectsin binary i nages
invariant to translation, rotation and scale. For this the
di rected spreadi ng activation neural architectureis used to

extract t hemaxi mumi nformati on points front he i nput pattern.





A log-polar transformation is described which derives an
invariant representation from he maxi numi nformati on points.
This invariant representation can be used for recognition

usi ng standard net hods.





Chapter 1

INTRODUCTION

1.1 MOTIVATION FOR VISUAL PATTERN RECOGNITION RESEARCH

Since the advent of digital conputer there has been an
effort to expand the donai n of conputer applications. Sone
of the notivation for this effort comes from inportant
practical needs to find nore efficient ways of doi ng things.
At present, the ability of machines to perceive their
environnent is very limted. A variety of transducers are
avai | abl e for converting light, sound, tenperature etc., to
electrical signals. Wen the environment is carefully
controll ed and the signals have a sinple interpretation, as
I sthe casew ththe standard conput er devi ces, t he percept ual
probl ens becone trivial. But as we nove beyond having a
conput er read punch cards or magnetic tapesto having it read
hand-printed characters or anal yze bi onedi cal phot ographs,
we nove from problens of sensing the data to nmuch nore
difficult problens of interpreting the data. O the various
probl em areas,, the domai n of visual pattern recognition has

received by far the nost attention.

There are three basic notivations for trying to achi eve
automati c recognition of visual patterns. The first is sinply
intellectual curiosity. How can nachi nes be organized to

designate a particul ar presentation as bel ongi ngto the sane





class that a human woul d specify? This raises intriguing
questions of systens analysis and design, and it |eads to
shar per apprai sal of howliving systens process i nfornation.
The second purpose is to provide intelligent aids. There is
greatutility i nmachi newhi chcan process optical infornmation
nore qui ckly or accurately or safely or cheaply than peopl e.
The automati c readi ng of postal addresses, classification of
weat her -satel | i t e phot ographs and terrai n naps, recognition
of bubbl e chanber tracks, di agnosis of biol ogical cells, and
noni toring of cardi ac performance can substantially relieve
humman drudgery and provi de econom c advantage. Still other
uses are in prosthetic aid - for exanple, in reading and
mobility devices for the .blind. The third reason for
devel opi ng machi nes whi ch recogni ze optical patterns is to
obtain nore effective man-machine interfaces. It i s becomng
increasingly inportant to provide conputers with fluency in
man’s natural |anguages. Wth nore direct conmmunication
bet ween man and nmachi ne, inportant gains in flexibility and

ef fici ency can be obtai ned.

In Section 1.2 a pattern recognition approach to vi sual
pattern recognitionis discussed. I n Section 1.3, advantages
of neural networks approach to pattern recognition probl ens
is discussed. In Section 1.3 an overview of the thesis is

present ed.





1.2 PATTERN RECOGNITION APPROACH

The termpattern recognition was introduced in the early
1960s, and it originally neant detection of sinple visual
patterns | i ke handwitten characters, weat her maps and speech
spectra. Later the domain of application of pattern
recocnition is expanded to alnmost all disciplines of
engi neering and science. 0 the various problem areas in
pattern recognition research, the domain of visual pattern
recognition has attracted rmuch attention. Since the hunman
experience of vision is effortless, quick and adaptable
studies have been mnade on biological visual system
Neur ophysi ol ogi cal and psychol ogi cal studi es have given us
several interesting facts about visual perception. But no
understanding has been sufficient to duplicate their
performance by conputer. This has resulted in a lack of

conpl ete theory of vision.

The | ack of conpl ete theory has not deterred peopl e from
attenpti ng nodest problens. Many of these involve pattern
classification -the assignnent of a physical object or event
to one of several prespecified categories. Extensive study
of classificationprobl ens has 1ed to an abstract nat henati cal
nodel that provides the theoretical basis for classifier
desi gn. Even t hough abstract mat hemati cal nodel is avail abl e,
in any specific applicationone ultimately nust come to grips
with the special characteristics of the problem in hand.

These nodel s are applied successfully to the recognition of





handwitten characters, chronbsone types, printed
characters, Chinese characters, aircraft, machine parts,

circuit boards, maps, and | ung radi ographs.

1.3 NEURAL NETWORKS APPROACH TO PATTERN RECOGNITION

Though pattern recognitionresearch focussed on sol uti ons
for nodest probl ens, the anbiti ous objective has all the tine
been to i npl enent artificial perception, that is, toimtate
t he functions of the biol ogical sensory systens intheir nost
conpl ete forns. The first experinents around 1960 wer e i ndeed
based on elenentary neural networks, known by names |ike
perceptron[44), Adaline[53] and Learning Matrix(50],
respectively. But it was soon realized that the perfornance
of the biological sensory systemis very difficult to reach.
Even high conputing capacity, achievable by parallel
conputing circuits, did not sol ve the probl ens. For exanpl e,
In image anal ysis there exists requirenents which are very
difficult to fulfill: Invariance of detection wth respect
to translation, rotation, scale, perspective, partial

occl usion and nodest nmarring of the objects.

Artificial neural networks are nassively parallel
i nt erconnect ed networks of sinple adaptive el ements. These
el ements are arranged in a hierarchical manner to interact
wth the objects of the real world in the sanme way as
bi ol ogi cal neural systens do. These sinple neuron |ike

el ements connected together show powerful | ear ni ng,





menori zation, associative recall capabilities and self
organi zation for pattern formatted information[36]. Apart
fromthese properties, they have nunber of ot her advant ages.
The conputation is distributed, fault tolerant and has the
ability to tolerate distortions in the input pattern. This
neural network approach differs significantly from the
earlier approaches by its nonsynbolic processing and

di stributed representati on.

Si nce these neural networks are conceptual |y conpati bl e
with the biological neural networks it is possibleto derive
i nspi ration from neurobi ol ogi cal or psychol ogi cal studies,
even though the objective mght be engineering. Wen the
engi neering nodel performance mrrors human perfornance,
simlar nodel might be applied to biological neural net and

mutual Iy useful hints can be obtained in this nanner.

Neur al network architectures are generally meant tol earn
and r ecogni zet he i nput patterns. But there are certai n neural
nmechanisnsintheinitial stages of animal vi sual and audi tory
system These neural mechani sns possess very little donain
speci fic know edge and essentially act as data adaptive
filters. In this work we attenpt to design such neural

architectures for processing visual input patterns.





1.4 OVERVIEW OF THE THESIS

Inthissectionweintroducethe specificresearch probl em
addressed. In Section 1.4.1 discuss the objective of the
thesis. Section 1.4.2 discusses the notivation of this work
and Section 1.4.3 discusses the scope of the study. Section
1.4.4 presents the overview of research and Section 1.4.5

di scusses the organi zation of the rest of the thesis.

1.4.1 Objective of Current Research

Visual pattern recognition can be considered as
consi sting of two stages: (i). Al owl evel anal ysi s concer ni ng
extraction of geonetric properties of the input pattern and
generation of a description of the pattern(32] and (ii) a
hi gher | evel analysis which uses the description together
wi th t he know edge of the domain to performthe recognition
task. Qur preattentive visual processing[14] is a parallel,
automatic and data driven processing which extracts
properties of the input pattern based on |ocal data.
Artificial neural networks, withtheir coll ective nonsymbolic
conputational capabilities, are wuseful to achieve the
preattentive visual processing. The objective of this thesis
Is to devel op neural architectures for automatic extraction
of geonetric properties like straight |ines, corners and
contour termnation points frombinary i nput i mage patterns.
V¢ al so show how these architectures can be used in sone

engi neeri ng applications.





1.4.2 Motivation for Current Research

There are two different approaches for mnachi ne vision.
The first approach i s conputational vision approach. Inthis
approach vision is studied abstractly independent of any
particular domain. Pattern recognition and Artificial
Intelligence followthis approach and attenpted to devel op
conput ational algorithns for vision. The other approach is
to study the human visual system Since the human visionis
rapid and effortless, the objective had been to study hunman
vision and design engineering nodels for practical
appl i cati ons. Her e, reports from psychol ogi cal and
neur ophysi ol ogi cal studi es on biol ogical visual system are
used to design engineering nmodels. In this work the. design
of neural architectures for preattentive visual processing
i s notivated by sone aspects of t he visual perceptual process

i n biological visual system

1.4.3 Scope of the Work

The focus of the work i s on neural network architectures
for data driven extraction of geonetric properties. W assune
that the input pattern is clean and has a noi se free boundary
contour shape. The issue of pattern recognition is not
addressed in detail, although in all these cases recognition

st udi es have been nmade usi ng standard neural architectures.





1.4.4 Overview of the Research

In this work, we have proposed two approaches for
processing binary inmages. W have devel oped two neural
networ k architectures based on these approaches. The first
approach is inplenmented through an oriented filtering and
i nt egration network. The second approach i s i npl enent ed usi ng
directed spreading activation layers. W al so describe two

appl i cati ons of these architectures.

1.4.5 Organization of the Thesis

Chapter 2 discusses the notivation and proposes two
approaches to preattentive visual processing. Chapter 3
di scusses the design of Oiented filtering and Integration
Net wor k and t he appl i cation of this architecture for isol ated
word recogni tion. Chapter 4 di scusses the directed spreadi ng
activation neural architecture and proposes a nethodol ogy
for recognizing transformation invariant binary pattern
recognition. Chapter 5 concludes the thesis with a summary

of the work.





Chapter 2

APPROACHESFOR PREATTENTIVE VISUAL PROCESSING

2.1 INTRODUCTION

Nurrer ous approaches are proposed in the literature for
preprocessing the visual patterns. In Section 2.2, we
categori ze these approaches into four classes and briefly
revi ewt hese approaches. Vi sual pattern recognition has been
attenpted by neural networks also. In Section 2.3 we review
sone of the neural principles and architectures for visual
pattern recognition. In Section 2.4 we discuss approaches

adopted in this work for preattentive visual processing.

2.2 BACKGROUND

Misual pattern recognition deals with the anal ysis of
visual patterns in order to achieveresults simlar to those
obtained by man. A sinplified nachi ne paradi gm for visual
pattern recognition consists of two conputational stages.
The first stage is concerned with | ow | evel techni ques and
referred in the literature as picture processing or
preprocessi ng. Wen neural networks are used for such initial
processing it is called preattentive visual processing[14].
The second stage is referred as picture interpretation or
pattern mat ching or recognitionstage. The focus of this work

is on the first stage using neural networks.





Lowl evel analysis i nvol ves aggregati on of i nperfect edge
data in the two-dinensional inage projection. Here, shape
attributes of collection of edges are conputed and a
description consisting of the shape attributes and their
spatial |ocations are generated. This description serves as
i nput to a subsequent process of high | evel organizati on and

under st andi ng.

There exist many theories of visual pattern or shape
description and recognition, each attenpting to expl ai n sone
speci fic aspect of the problem This is so because it is
possi bl e to conceptualize visual pattern as a high |evel
per cept ual functi on. Since there is very little
neur ophysi ol ogi cal evi dence about its nature and the basic
constituents are not known, the field has been open to
freewheel i ng hypot hesi zati on. These theori es can be broadly
categorized as follows[52]: correlation techni ques,
conput at i onal appr oaches, neur ophysi ol ogi cal and
sensory- not or approaches([33,34]. Among t hese correl ati on and
conput ati onal approaches are engineering approaches. The
other two approaches are notivated by the studies from
neur ophysi ol ogy and vi sual perceptionresearch. These st udi es
are especially useful to design artificial neural networks.

In this section we briefly reviewthese four theories.

Anong the four categories the correlation technique is
followed in the pattern recognition research. In Section
2.2.1 we summari ze t echni ques proposed i n pattern recognition

research for visual pattern description and recognition.





Any visual pattern recognition task nust be inplemented
in an algorithm form Inplenentation of such algorithm
requires a conputational framework for representing the
algorithm 1In Section 222 we discuss a framework for

conput ati onal vi sual processing.

The sensory-notor approach to visual processing is
nodel ed after t he ocul onot or novenents of the eye. I n Section
2.2.3 we briefly describe the ocul onotor novenents of eye

and its role in visual perception.

The biol ogi cal visual perception is carried out by the
neural nechanisns in visual cortex and superior colliculus
of the brain. In Section2.2.4 we present some of the reports

f rom neur ophysi ol ogy about vi sual cortex.

2.2.1 Pattern Recognition Approach

Pattern Recognition techni ques for preprocessing binary
| mages can be broadly cl assifiedintotwo approaches, spati al
donmai n appr oach and scal ar transfor mapproach. Spatial domain
appr oach focuses on aggregati ng edge data and transformt he
I nput imge into an alternative spatial domai n
representation, The input inmages are transfornmed into a
representative graph which portrays the two-dinensiona
shape. Subsequent recognition of the shapes is acconplished
by neans of syntactic or structural analysis. Amrong spati al
domai n techni ques t here have been two approaches. The first

approach uses a collection of fixed tenplates of geonetric





features |like straight |Iine segnents of different
orientations, cornersand T-shapes; The i nput i magei s scanned
for these patterns and a representati ve graph whi ch portrays

t he two-di nensi onal shape i s generat ed.

The other approach is based on information theoretic
poi nt of view suggested by Attneave[l]. He suggested that a
shape i s segmented by neans of dom nant poi nts whi ch coi nci de
wi th points of maxi muminflectionalongits contour. Pattern
recogni ti onhas proposed a nunber of techni ques for extracting
domnant points in the input pattern{49]. These techni ques
are nostly an outgrowt h of interest in specific applications,
the nost common being the recognition of handwitten

charact ers and chronosone types.

Scalar transform techniques map the inmage into an
attribute vector description. The objective here is to
transformthe boundary data into a new representati on, one
I n whi ch obj ect transl ation, rotation, and si ze are no | onger
factors. The nethod of nonments offer such a possibility.
There have been nany applications of this methodol ogy to
pattern recognition problens. These have included printed
characters and numerals[3], hand-printed characters[7],
chest x-rays[18], aircraft identification[10], and ship
recognition({48]. Categori zati on of shapes with thi s approach

I s usual | y achi eved by neans of cl assical patternrecognition.





2.2.2 Computational Framework for Visual Processing

Sincevisionisaninterdisciplinaryresearchfield | arge
nunber of theories are proposed in other disciplines |ike
neur ophysi ol ogy and perceptual psychology. If we want to
devel op artificial visual systens, these theories devel oped
in the other disciplines nust be tested rigorously. For
rigorous testing, they nust be converted into algorithns.
Expressing visual theories as algorithns leads to the
devel oprrent of conput at i onal nodel s. In creating
conputational nodels, several inportant issues nmust be
addressed. In this section we discuss a framework for
conputational visual processing and isolate functional

characteristics of an architecture for preprocessing.

2.2.2.1 Low level versus high level visual processing

A useful conceptual sinplificationistodividethe visual
process intotwo |l evels: | owlevel visual processing and hi gh
| evel visual processing. Lowlevel processing deals directly
with the incomng visual stimuli. Sinple features nay be
extracted and sinple patterns recognized. The high |evel
vi sual processing is concerned with cognitive processi ng and
nmakes use of the know edge about the world when processing
the visual information. Wich visual cues are to be chosen
by the lowest levels is an inportant consideration, as all
further processing depends on how well this initial stage is

carri ed out.
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2.2.2.2 Serial versus parallel processing

I't i suseful todistinguishbetweenthetype of processing
used by high and | owl evel visual processes interns of serial
versus parall el processing. The | ow | evel visual processing
is primarily performed in parallel. Evidence for this
assunption comes from four different areas nanely
neur ophysi ol ogy, psychophysi cs, machine vision and
conput ati onal theories. Serial processing is nore likely'to

occur at the high |levels of visual processing.

2.2.2.3 Automatic versus selective processing

Low |evel vi sual processing involves parallel
computations performed sinmultaneously at nany | ocations on
t he i nage. Much of this processing is performed automatically
without intervention from higher levels. Hgh Ievel
processing is nore likely to be serial and require flexible
control of the operations to be performed. Another way to
di scuss the automatic versus selective issue is in terns of
bott om up versus top-down processing. Automati C processing
can be perforned bottomup w thout using information from
hi gher levels. On the other hand, sel ecti ve processi ng m ght
require t op- down processi ng where there is feedback between
the different stages of processing. A the low |evel,
bott om up processing can be done in parallel, automatically

without flexible control and efficiently.
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2.2.2.4 Signal versus symbols

Low | evel processing is closely tied to the inmage, or
the visual signal. By contrast, high | evel processing deal s
with cognitive synbols rather than visual signals. The nain
task of the early stages of visual processing is to extract
nmeani ngful i nformation fromthe total visual information and
topass it onto the higher | evel s of processing. The probl em
is in deciding how the informati on should be represented.
Ther e are two possi bilities, either the useful visual features
could be labeled and that information transmtted
synbolically, or else a schenme not requiring the explicit

| abel i ng of features could be enpl oyed.

2.2.3 Eye Movements and Visual Pattern Perception

The sensory-notor theory of visual pattern description
and recognition-is notivated by the ocul onotor movement of
eye. In this section we briefly review the role of

eye- novenent for visual pattern perception.

The interaction with the world around relies to a najor
extent on the ability to actively | ook, visually scan, and
selectively pick up information on the basis of which
ef fecti ve, visually guided act i oncanbe depl oyed. Suchvi sual
scanning and depl oyrment of goal -directed behavior in turn
requires spatial as well as tenporal coordination between

sensory and notor processes. Spatially what is required in





sensory-notor coupling is that the outer world be projected
systematically onto a notor map of the body; Mich of this
sensory-nmotor coupling IS reflexive[4,54]. The Vvisua

perceptual cycle is characterized by (1) the directing of
sensory apparatus to (2) selectively pick up information
whi ch serves to (3) modify and update the schemata that in

turn direct the further pick-up of information[40].

The rapid novenent of the sensory apparatus to pick up
information is called ‘saccade’. The saccades are driven
between points of interest in the visual field and play an
essential role in human visual processing, particularly in
t he establishnent of spatial relations[35,54]. Saccades are
controlled by a conplex set of interrelationships between
|l ow | evel and high | evel cues. The superior colliculus of
the brain, which receives both retinal and cortical

proj ections, directs the saccades[4].

2.2.4. Results from Neurophysiology for M std Processing

The neurophysiology approach for visual ©pattern
descriptionis notivated by the reports fromthe results of
bi ol ogi cal neural mnechanisns for vision. In this section we

revi ew t he neural nechani sns for visual perception.

The neural nechani sns involved in the visual perception
seens to be superior colliculus and visual cortex[4]. The
superior colliculusis involved in |ocalizing and detecting

the presence of a visual stimulus which nay be potentially
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informati ve and behaviorally significant[4]. However, it is
not involved in the detailed qualitative analysis or
i dentificationof thestinulus. By contrast, the visual cortex
seens to be involved primarily in the localization of a

stimul us andi nanal yzi ngi tsqual itati ve and fi gural aspects.

In the visual <cortex four classes of cells are
di stinguished i n a series of ascendi ng complexity[23]. These
are terned as ‘circularly symmetric’,’simple’, ‘complex’ and
‘hypercomplex’. G rcularly symretriccell s showno preference
to any particular orientation of lines and act as contrast
detectors. Sinple cells are the first in the hierarchy to
orientation specificity. A sinple cell responds to an
optinmally oriented line in some narrowy defined position,
even a slight displacenment of the line to a new position
wi t hout change in orientation renders the Iine ineffective.
A conplex cell, on the contrary, is as specific in its
orientationrequirenents as the sinplecell, but is far |ess
particul ar about the exact positioning of the line. Such a
cell will respond wherever a line is projected within a
rectangl e. Hyperconpl ex cells respond to nore specific types
of stimuli than either simple or conpl ex cells. They respond
maxi mal |y t o edges, corners, curves and angl es of particul ar

Si zes.

In the literature neural architectures are reported
simul ati ng sone of the properties of the visual cortex, and

used in visual pattern recognition systems[12,15,24].
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2.3 REVIEW OF NEURAL NETWORK ARCHITECTURES FOR VISUAL
PATTERN RECOGNITION

Theor et i cal neurodynam c approaches in cognitive
sciences seek to replace synbol-nanipulating forma
conputational rules with a short yet powerful Ilist of
el enmentary neur al principles([17]: 1.Competition
2.Cooperation 3.Shunting inhibition 4 .adaptive feedback
5.Resonance. This short list pf neural principles are the
basis of diverse phenonena encountered in the cognitive
sci ences and neur osci ences. The | ar ge nunber of conput ati onal
neural nodels reported in the literature(s,20,29,30,38] are

found to have based on these el enentary neural principles.

These elenentary neural principles give raise to sone
interesting neural properties |ike associative recall, self
organi zati on, adaptive resonance and conpetitive |earning.
Nunber of architectures are proposed Iin the literature
denonstrating these properties. These architectures include
Hopfield Net[20,21,22], Hamming net[30], Adaptive Resonance
Theory[6], Self organi zing Maps{29], Boltzman machine[36],

perceptron[30] and back propagation[36].

Various neural architectures for visual pattern
recognitiontasks are reported in the literaturef[l12,15,24].
These architectures are designed to solve specific visual
pattern recognition problens |ike handwitten character
recognition, recognition of silhouettes etc. In visual

pattern recognition, in general, the feature distribution of
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theinput is not identical with that of the stored tenpl ate.
Hence a nechanism which can resolve the differences is
necessary. There have been two approaches to this probl em
The first one is to incorporate the mechanisminto feature
extracting stages as neocognitron does{12]. The second
approach regards t he feature extracti on and pattern natchi ng

as separate stages[55].

In the following section we briefly review the
neocognitron[(12] architecture which follows the first
approach. There are other architectures for visual pattern
recognition which follow the second approach([55]. These
architectures use geonetrical or analytical nethods to
extract features fromthe i nput pattern. These architectures
use standard neural architectures |ike multilayer perceptron

for recognition. W do not reviewthese architectures here.

23.1 Neocognitron: An Architecture for Visual Pattern Recognition

Fukushima proposed the cognitron{13] nodel for pattern
recognition. This nodel does not have the capability to
correctly recogni ze the position-shifted or shape-di storted
patterns, Neocognitron which is an inproved version of the
conventi onal cognitron and has the capability to recogni ze
stinulus patterns correctly, evenif the patterns are shifted
in position or distorted in shape. It has a hierarchical

structure. The information of the stinulus pattern given to
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the i nput | ayer of the neocognitronis processed step by step
in each stage of the nmultilayered network. A cell in the
deeper stage generally has a tendency to respond sel ectively
to a nore conplicated feature of the stinulus patterns. At
the same tine it has a larger receptive field and is |ess
sensitive to shifts in position of the input pattern. Thus,
each cell in the deepest stage responds only to a specific
stimulus pattern without being affected by the position or

t he size of the stimulus patterns.

Neocogni tron handl es shifts by replicating the receptive
field of a feature to cover the entire visual field.
Distortions are tolerated by integrating the response from
over | appi ng receptive fields of the previous stages in the
subsequent stages. The successful perfornmance of neocognitron
is due to the gradual steps with which this replicating and
Integrating process is done. However, when this network is
applied to other problem domains it poses a nunber of

pr obl ens.

Since the inner |ayers of neocognitron are trained for
specific patterns, it falls short of the general purpose
vi si on system Each newpatternto belearnt isto be manually
segnented and trained to various | ayers of the network. This
Is a conparatively easy task in the case of nunerals for
whi ch neocogni tron was shown. But desi gni ng such network for
a pattern which has curves and lines as features, like in
the case of inmages of formant contour patterns in speech,

becones extrenel y cunber sone. Moreover the training patterns

20





i ke Arabic numeral s thensel ves do not have any noise. If
noise itself is part of the pattern then the first stage of
neocognitron itself filters out such informati on and cannot

be used by subsequent stages.

2.4 PREATTENTIVE VIiSUAL PROCESSING: ISSUES AND APPROACHES

There are two issues to be addressed in the design of
neural architectures for preattentive visual processing. The
first issue is to identify different types of preattentive
vi sual processing. The second issue is to find neural
princi pl es useful for the design of neural architectures. In

this secti on we di scuss these i ssues.

The biological visual process can be functionally
segregated into visual perception and visual cognition[4].
The vi sual perceptual process extracts informati on about the
geonetry of the visual world and t he visual cognitive process
concernswiththerecognitionof famliar objects. The vi sual
perception in biol ogi cal visual systemseens to be aut omati c,
does not use any detail ed know edge of the visual patterns,
and extracts properties of the visual input which are not

i mredi ately used for recognition.

The visual perception is based on two interrelated
processes: parallel processing of visual information carried
out automatically by mechanisns determned by neuronal
organi zation of the retina, lateral genicul ate nucl eus, and

vi sual cortex; and sequential processing is related to i mage
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recogni ti on mechanisns and is controlled by attention[27].
In the first process, detector properties of single neurons
and local neuron nets are of prinmary inportance. Here,
orientation of edges and contour el enents of the input inage
are extracted by these neurons. In the second process, eye
novenents are considered to be an essential factor. As a
result of these novenents, the nost informative parts of
the i mage are sequentially projected onto the fovea for fine

processing[5,54].

Ther ef or e, an adequat e conput er syst emfor the processi ng
and analysis of wvisual information should include a
preprocessor with a neural network architecture, simlating
parall el information processing at |owlevels of the visual
system and a sequential type neural system tuning the
preprocessor to obtain necessary information for inage
recogni tion. Devel opnent of the neural network preprocessor
shoul d be preceded by a study on neuronal organi zation of
| owl evel structures of the visual system their nat henati cal

nodel i ng and conput er sinul ati on.

Based on the observations about the visual perception,
we have considered two possi bl e approaches for processing
bi nary images: The first approach extracts primtive |line
segnents from an input pattern and retains the spatial
rel ati onship between the features. In this processing the
detector properties of individual neurons and their spatial
| ocations are inportant. This architectureis inplenmented as

an oriented filtering and integrati on network. In Chapter 3

22





we di scuss this architectureand its applicationfor isolated
word recognition. In the second approach the naxi num
information points fromthe input pattern are located. This
Is inplenented using directed spreadi ng activation |ayers.

Spreadi ng activation |layers reported in the literature[37]
uses isotropic spreading of activation to carry out early
vision tasks like feature clustering and feature centroid
determnation. The directed spreading activation |ayers
proposed in Chapter 4 uses ani sotropic or directed spreading
of activation followed by maxi na detection to | ocate nmaxi num

i nformation points fromthe input inage.

Since preattentive visual processing is parallel, the
neural network architectures have in their input stage two
di mensi onal array of neurons and the input pattern is fed
directly to this array. Al so, since preattentive visual
processingis purely data driven and does not use any detail ed
know edge about the patterns, the neural conputations nust
be froml ocal data, i.e., each neuron receivesits input from .
| ocal data only. Apart fromt he computations froml ocal data,
It is possibleto have | ateral interactions between neurons.
I n this work we show how neurocomputations frompurely | ocal
dat a extract structural features, and | ocal data conputati ons
with lateral interactions between neurons give rise to an

architecture whi ch extracts naxi num i nformati on points.





2.5 SUMMARY

In this chapter we have discussed four theories about
vi sual pattern description and recognition. W have revi ewed
sone of the neural network principles and architectures for
visual pattern recognition. Sone aspects of the visua
perception are presented. Based on t hese observati ons we have
consi dered two approaches t o preattentive vi sual processi ng.
I nthe foll owi ng chapt ers we di scuss two neural architectures

and appl i cati ons based on these two architectures.
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Chapter 3
ORIENTED FILTERINGAND INTEGRATION NETWORK

FOR STRUCTURAL FEATURE EXTRACTION

3.1 INTRODUCTION

In this chapter we present the design of the oriented
filteringandintegrationnetwork. This architectureextracts
the structural features |like straight |Iine segnents fromthe
input image. This is simlar to the first stage of
neocognitron(12], but differs in the inplenentation of the
i ntegrating network. W show howthis network can be applied
for recogni zi ng i sol ated utterances of words fromthe i nages
of formant contour patterns. Section 3.2 discusses the
structural organization and functional characteristics of
the oriented filtering and integrati on network. In Section
3.3 we describe the design of a neural architecture for

recogni zing i sol ated utterances of words.

3.2 ORIENTED FILTERING AND INTEGRATION NETWORK (ORFIN)

This is a two stage hierarchical network as shown in
Fig.3.1. Each st age consi sts of a nunber of two
di mensi onal array of neurons and t hese neurons are of anal og

type, i.e., the input output signals of the cells take
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IC~-Cell C-Cell

Fig.3.1 Thisfigure illustrates the structural organization of ORFIN. (a) shows the
block diagram of ORFIN and (b) illustrates the interconnection between S-planes
and C-planes. Outputs of two of the S-planes which have the same orientation of
stimuli but trained differently are fed to corresponding C-planes. This is shown as
outputs from two S-planes converging into asingle C-plane. (c) illustrates examples
of S-cellswhose outputsare fed to corresponding C-cells.





nonnegati ve anal og values. The first stage is an oriented
filteringnetwork (al soreferredtoas S |ayer) whichextracts
i ne segments fromthe input pattern. The second stage i s an
integrating network (also referred to as Glayer) which
I ntegrates responses from overl appi ng fields of the output
of the first stage. The conputationinthe second stage al | ows

smal |l variations in the positions of the |ine segnents.

In this architecture all the conputations are carried
out fromlocal data only. These two stages are notivated by
the orientation specificity shown by si npl e and conpl ex cel | s

in the visual cortex(23].

Functional characteristics and structural organi zation
of this network are described in detail in the follow ng

secti ons.

3.2.1 Design of Oriented Filtering Network

Thi s network extracts | i nesegnments fromthe input pattern
by filtering through a number of planes call ed s-planes. Each
one of the S pl anes consi st of two-di nensional array of cells
and each cell favors a specific orientation of preferred
stimuli. There are two types of cells in the S plane, called
S-cells and v_-cells. The S-cells receive input from either
excitatory or inhibitoryinputtermnals. If thecell receives
signals from excitatory input terminals the output of the
cell wll increase. On the other hand, a signal from

inhibitory input termnal wll suppress the ocutput. Each
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I nput termnal has its own interconnection coefficient whose
val ues are positive. These values determne the preference
of the orientation of the cell. The output of the S-cell goes

to a nunber of input termnals of next G ayer.

The schematic diagramillustratingthe interconnections
convergingto a S-cell is summarized in Fg.3. 2. Each one of
the S-cells receives its inhibitory signal fromthe v_-cell
whi ch causes the shunting effect. Al the S-cells in the
given S-plane are trained to respond for a specific
orientationof stinuli. The V_-cells are trained to recogni ze
t he absence of the specific orientation of stimuli. So if
the input stimuli is exactly simlar tothe trained stimuli,
then S-cells respond to its nmaxi numand V_-cells respond to
its mninum On the other hand, if the input stinmuli is
conpletely different thenthe S-cells respond to its m ni num

and v_-cells respond to its naxi mum

Both S-cell and Vv_-cell receive input interconnection
fromthe same spatial distribution. Al the other cells in
t he sane cel | - pl ane have i nput i nterconnectionfromthe sane
spatial distribution and only the positions of the input
cellstowiichtheir termnals are connected are shifted in
parallel fromcell tocell. Fig.3.3 is a schematic diagram
illustrating the interconnections fromthis stage to the
second stage. In this diagram for the sake of sinplicity,
only one cell is shown in each cell-plane. Each of these
cells receive input interconnection fromthe cells wthin

the area enclosed by circle in its preceding |ayer.
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Let u(l),u(2),..u(N) be the exciy't'atory I nputs and Vs be the
inhibitory input. Then the S-cell output is conputed using

t he fol |l owi ng equati on:

fr+ ﬁlu(n) +i(n) } (3.1)

Us=r*<p - -1
IT+ap b Vs

where u(m) and b represent the excitatory and inhibitory
coefficients respectively, in) is the fixed weight pattern,
Vi is the output of the vs cells and r is a constant. The
characteristic behavior of S-cell is sumarized in Fg.3.4.

The function ¢() is defined by the foll ow ng equati on:

X S 3.2)
o) = { (@)’ ¥ >0
0, otherwise

where is a positive constant whi ch det erm nes t he degr ee of

saturation of the output.
The output of Vv_-cell is conputed using the follow ng

equat i on:

N
vi={ nz=1c(n)*u2(n)] v2 (3.3)

The fixed val ues of ¢(n) are determned so as t o decrease
nmonotonically with respect to the center and to satisfy
c(n) = 1.0. (Though ¢m) i s a two di mensi onal array for notati onal

convenience it is denoted as a single di nensional array).
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Fig. 3.4 Input-to-output characteristics of a S-cell.






The input area for a S-cell is taken froma 3x3 array.
In the 3x3 array twelve orientations are possible. These

twel ve orientations are shown in Fg.3.5.

3.2.2 Design of Integration Network

Thi s networ k i nt egrat es responses fromover| appi ng fi el ds
of the output of the first stagetotolerate small variations
in the positions of the line segnents. This network al so
consists of a nunber of planes called G planes, and each
G plane consists of two dinensional array of cells. There
are two types of cells, Gcells and v_-cells inthe G planes.
Both Gcells and v_-cells receive input from the S plane.
G cells receive inputs from S-cells and v_-cells. Each G
cell has input interconnections |leading from a group of
Scells and these interconnections are fixed and
unnodi fiable. All the s-cellsinthe Gcells' connecting area
extract the sanme stinulus feature froma slightly different
positions on the input |ayer. The values of the
I nt erconnecti on between S-cells and Gcells are determ ned
such a way that the Gecell will be activated whenever at
| east one of these S-cells is active. Vv_-cells average the
i nput from S-cells which have sanme orientation but trained
differently. Fig.3.6 shows some exanples of t he
i nt erconnection topol ogy. Even if a stinmulus pattern which
has gi ven a | arge response fromthe Gecell isshiftedalittle

inposition, the Gcell will still keep respondi ng as bef ore.





(x) ()

Fig. 3.5 Twelve line segments used to train S-cells.

Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is

responsible for handling small shifts in the input visual pattern.






Fig. 3.5 Twelve line segments used to train S-cells.

Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is

responsible for handling small shifts in the input visual pattern.
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I n other words, a Gcell respondstothe sanme stinulus feature
asthe Scells, but isless sensitiveto the position of the

stimul us feature.

There are twel ve orientations of stimuli inthe S| ayer.
These are connected to the eight Gplanes in the G|l ayer.
The S planes which have sane orientation of stinmuli but
trained differently are fed to a single Gplane. This is
illustrated in Fig.3.1b and 3.1c. This figureis illustrated
for seven S planes and five G planes. Fig.3.1b shows howt he
I nt er connecti ons bet ween S pl anes and G pl anes ar e arr anged.
Sone exanpl es of s-cells’ outputs feeding Gcells are shown

in Fig.3.1c.

The output values of Gcells are conputed using the
fol |l owi ng equati on:

1+ gld(n) * Us(n) (34)

Uc=(p Vc -1

where ¢ () is a function def ined by eqn(3.2), d(n) denotes t he
val ues of the interconnection topology, and V. i s the out put
of Ve-cells. Inthisinplenentationd()is assigned aconstant
value. (In neocognitron[12] d(n) is assigned nonotonically
decreasing values with respect to the center. The egn(3.4)
Is also sinplified and differs from neocognitron.) V. is
conput ed using the foll owi ng equati on:

Ve = % ngld(n) Us(n) (3:5)





where K is the nunber of S-planes connected to a G pl ane.
To sumarize the functional behavior, ORFIN extracts
straight line segnents with tolerance in their positions
while retaining the spatial relationship between them This
generates profiles of the input pattern which can be used
for recognition. In the followi ng section we show how this
preprocessing i s useful for recognizing isolated utterances

of words fromthe i nages of formant contour patterns.

3.3 APPLICATION OF ORFIN FOR ISOLATED WORD RECOGNITION

The isolated word recognition(IWR) systens reported in
the literature consider parameters[42] |ike spectral
coefficients, discrete Fourier transformed(DFT) Spectrum
| inear prediction coefficients(LPC) etc. as input for
recogni tion. These paraneters are extracted fromthe speech
signal formthe patterns and t hese patterns, are t hen mat ched
by tenplate nmatching techniques. The nonlinear tenporal
changes in these patterns are handled by using dynamc
programm ng t echni ques | i ke dynam c ti ne warping[25,46] and
probabilistic nodels |ike hidden narkov models[43]. The
success of the IWR systens depends on t he choi ce of paraneters

and t he techni que adopted to match these paraneters.

Speaker i ndependent isol ated word recognition with these
paraneters has been attenpted with partial success[47]. The
reason for the partial success of the paranetric

representation used for speaker independent |IWR systens can
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be ascribed to the paraneters' inability to capture the
features of the word. The utterances of the sane word by two
speakers show little simlarity in the paranetric form But
the same words show significant simlarity in the gross
features level inthe spectrogram Thoughthereis arelative
shift in the features depending on the speaker, there are

common features between them

Formants are resonances of the vocal tract system These
formant values vary slowy and continuously with tine. The
formants carry information relating to the identification of
t he speech sounds. Changes in the formant values with tinme
can be traced to obtain a formant contour. This formant
contour reflects the novenents of the articul ators positioned
in sequence. Even though different speakers utter the word,
the articulatory novenents need to be the same. Such formant
contour represents the speech signal inthe formof an inmage.
Fig. 3.7 shows sonme exanpl es of the imges of formant contour
patterns. Inthis work the i mages of formant contour patterns
extracted fromthe speech signal are considered as input to

the isolated word recognition system

In the images of the formant contours, the features are
sinmple lines and curves and they undergo distortions and
shifts depending on the utterance and speaker. Even for the
sanme speaker these formant contour patterns show variations.

Here, both t he absolute |l ocation and the rel ative arrangenent
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of the features are significant. For exanple, dependi ng on
t he vowel , the positions of the |ines representing F1 and F2

f ormant frequenci es change.

The formant contour of the same word undergoes changes
in both time scale and frequency scale. This is reflected
i n changes i nt he shapes and | engt hs of t he curves and strai ght
lines. This results in a significant change in the binary
pattern and a drastic change i n the physical |ocation of the
pi xel s. So the inmage of the formant contour pattern cannot
be used for sinple tenpl ate natching. However, at a higher
| evel the curves and strai ght |ines exist as specific features

of the utterance.

The approach adapted in this work attenpts to preprocess
the images of the formant contour to get an invariant
representation. The distortions and shifts in the input
pattern are processed by the preprocessing technique. Here
we have attenpted to use the oriented filtering and
i ntegration network for preprocessing the i nages of fornmant

contour patterns.

Inthefoll ow ngsectionwe descri be aneural architecture
for recogni zing i sol ated utterances of words fromthe i mages

of formant contours.





3.3.1 Design of Isolated Word Recognition System

The organi zati on of the neural architecture proposed is
shown in the Fig.3.8 This system consists of two stages.
The first stage is called Feature Extraction stage(FE) and
the second stage is caI.I ed Pattern Matching(PM) sStage.
Ciented filtering and integration network is used as FE
stage. The small distortions and shifts of the features of
the formant contours are preprocessed by this network to get

an invariant representation.

Since the formant contour inmage does not have any |ines
w th angl es above 45¢, all the orientations of stimuli above
45" need not be considered. Thiselimnates five of the twel ve
orientations. So the nunber of S-planes in the S layer in
this system is seven responding to seven different
orientations. The outputs of these S planes are fed to five
G planes. The FE stage generates different profiles fromthe
input image which are the outputs of Gplanes of the

I ntegrati on networKk.

The five G pl anes generate five different profiles. These
profiles are input to the PMstage (Fig. 3.9) . The PM st age
is a hierarchical Adaptive Resonance Architecture(6]. It
consi sts of two stages of ARTs in a hierarchy. First stage
consists of five Sinple Adaptive dassifiers called SAG 1.
Each SAC-1 receives one of the profiles as input. It

classifiesthe profileinto a category. Each SAG 1 nakes its





Category

o ®
! T : ® T Nodes
! ; |
Pattern Matching Stage
(2-Stage Simple Adaptive Classifiers)

1

Feature Extraction Stage
(Oriented Filtering and Integration Network)

1

Q ﬁ_ Input Image

Fig. 38 Neural architecture for recognizing isolated utterances of words.
First stage extracts structural features using ORFIN. Second stage implements

two-stage Simplé Adaptive Classifiers for recognition.

Classification

SAC-2

SAC-1

Profiles from feature extraction stage

Fig. 3.9 Pattern Matching Stage is a hierarchical adaptive resonance
architecture. SAC-1 categorizes the profiles. SAC-2 classifies based on the

categorization done by SAC-1.
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deci si ons based purely on the specific profile it receives.
The second stage i s al so a Sinple Adaptive Aassifier, called
SAG 2. Al the outputs of the SAG 1 are fed to SACG2 and it
nmerges the classification done by SAG1 and identifies the
i nput pattern. The Sinple Adaptive dassifiers follow the
adapti ve resonance architecture (Fig.3.10) and the salient

points of this architecture are sumrari zed bel ow,

The nmain feature of adaptive resonance architecture is
t he adapti ve resonance t hat occurs between the current i nput
and | earned expectations. In ART the system which carries
out the adaptive resonance is called attenti onal subsystem
whi ch consi sts of bottomup and top-down adaptive filters.
These filters are contained in pathways from a feature
representation field (H) to a category representation field
(F2 whose nodes undergo conpetitive-cooperative

i nt eracti ons.

An auxiliary orienting subsystem controls the self
organi zing and recognizing capability of ART. Wen a new
input is added at any time, the system would search the
establ i shed categories. If an adequate match is found on t he
initial search cycle, the bottom up wei ghts woul d be refined
i f necessary to incorporate the new pattern. If no natch is
found and the full coding capacity is not exhausted a new
cat egory woul d be forned wi th previ ously uncomm tted F2 nodes

encodi ng t he new i nput pattern.
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The auxiliary orienting subsystembecones active when a
bottomup input to H fails to match the |earned top-down
expectation read-out by the active category representation
at F2 Inthis case, the orienting subsystemis activated and
causes rapid reset of the' activecategory representation at
2 This reset event automatically induces the attentional
subsystem to proceed wth a parallel search. Aternative
categories aretested until either an adequate nmatch i s found
or a newcategory i s established. The search proceeds rapi dly
relative to the learning rate. Thus significant changes in
t he bottom up and top-down adapti ve filters occur only when
a search ends and a natched £/ pattern resonates within the

system

The criterion for an adequate match between an i nput
pattern and a chosen category tenplate is adjustable in an
ART architecture. The matching criterion is determned by a
vi gi | ance paraneter that control s activation of the orienting
system All other things being equal, hi gher vigil ancei nposes
a stricter matching criterion, which in turn partitions the
Input set into finer categories. Lower vigilance tolerates
great er top-down/bottom-up m snatches at FI, leading in turn

t o coarser cat egori es.

Fg.310 illustrates the main conponents of ART nodul e
in detail. Fed FI of M nodes, wth output vector

X = (xl,xz,...,xM), registers the input vector [I= (11,12,...,1M). The

bott om up wei ghts are denoted by Ay and t op-down wei ghts are





denoted by Z; The index { is wused for the feature

representati on nodes of the field FI and thg index j i s used
for category nodes in the field F2. In the -current
| npl enentationthe input feature vector Iis atwo di mensi onal
vector for both sac-1 and SAG 2. This is denoted as a single
di mensi onal vector for conveni ence. The size of M for SAG 1

is taken to be 32x32 and for SAG-2 is taken t o be 5x15.

Each FI node can receive input fromthree sources: the
bottom up i nput, nonspecific gain control signals which is
received by all the nodes at FI at the sane tinme, and the
top-down signals from the N nodes of F2 via an top-down
adaptive filter. The nonspecific gain signals in SAG 2 are
activated only after SAG 1 stabilizestheresonance activity.

Therefore SAG-2 i s inactive when SAC-1 is active. A node in
Flissaidto be activeif it generates an out put *si gnal equal

to I. Qutput frominactive nodes equals 0. The 23rule[6) is

realized in its sinplest, dinensionless formas foll ows:

.th

243 Rule Matching: The i~ FI node is active if its net

I nput exceeds a fixed threshold. Specifically,

. M
i = {1 1f1i+g1+2=‘{(,)zji > 1+k (3.6)

otherwise

where term f; is the binary input, termg is the binary

N
nonspeci fic FI gain control signal, term Zlijji I S t he sum of
j=

t op- down si gnal s y; vi a pat hways w th adapti ve wei ghts z;i, and
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k is a constant such that 0 <k <I. Inthis inplenmentationk

i s chosen to be 0.23 which i s the | east val ue conput ed by t he

G cells of the integrating networKk.

Pl aain control: The FI gain control signal g is defined by

1 if F0and F2 areactive 3.7
= |0 otherwise
Since F2 activity inhibits FI gain
e L ifL=1 (3.8)
‘710 otherwise

If only one.of the F2 nodes are active eqgn(3.6) reduces

to the single termzl.,.so

_ {1 ifli=1landzj;>k (3.9)
710 otherwise

The case where two F2 nodes are active at the same tine

has not occurred during our simnulation.

F2 Choice: Let 'I}denotethetotal I nput fromFltofh F2

node, gi ven by

N (3.10)
Tj =2 xizi
i=1

where t he z; denote the bottom up adaptive weights. |f sone
Ty >0, define the F2 choi ce i ndex J by
T, = max(Tj:j = 1,....N)

In the typical case, J is uniquely defined. Then the F2

out put vector y = (y;,...y,) obeys
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1 ifj=J 3.11)
g 0 otherwise

If two or nore indices j share naxi mal input, then they
equally share the total activity. In the simulation this
situation al so never arouse because of the nature of the

di stinct categories of isolated words.

Learning Iaws: The adaptive weights reach their new
asynptote on each input presentation. The learning is gated

by FI activity: that is, the adaptive wei ghts z; and ¢, can

change only when the f" F2 node is active.

Top-down | earni na: Wen t he Yy gate opens then | earning

of top-down wei ghts z; begi ns and z; is attracted towards .

This is called outstar |earning rule(17]. Initially all z;

are set tol. The F2 activity vector can be described as

e I if F2isinactive (3.12)
I+Z;5  ifthe” node is active

Wen nodel is active, | earning causes z, = I+z/(old)—1 where
z,(old) denotes z, at the start of the input presentation. The
first time an F2 node J becomes active, it is said to be

uncoomtted. In this case z,=I during |learning. Thereafter

node is said to be conmmtted.
Bottom up learning: In sinmulations it is convenient to
assign initial values to the bottomup adaptive wei ghts G,

In such a way that F2 nodes first becone active in the order
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j=12..N. This i s done by choosi ng t he bottom up wei ghts smal |

but decreasing order. This is acconplished by letting g, = a.

wher e e JFC . N

Li ke t he t op- down wei ght s vector z,, t he bottom up wei ght
vector g, al so becones proportional to the F2 output vector

X when the F2 node J is active. In addition the bottomup

X.
wei ghts are scaled inversely to |x|, so that =
9 y | x| 9= ET D
where 8 > 0. During learning g, i s conputed by
__ (I+zy (old)-1) (3.13)

B+ |I+zy (old)—1 |
Since |earning depends on the few sanples provided in
theinitial stages of thetrainingthe network, it i s possible
that fromthe training set provided it nay not be possible
for the systemt o generalize for correct recognition. Hence
the network is allowed to | earn conti nuously even during the
recogni tion phase. To facilitate such | earni ng possi bl e, the

vigil ance paraneters are adjusted during recognition.

332 Data Preparation

A nunber of approaches are proposed to extract fornant
contours from the speech signal. Sone of the approaches
proposed extract t he formant frequencies by |i near prediction
anal ysi s or frontepstrum Anot her approacht o extract fornant

frequency fromspeech si gnal i s usi nggroup del ay function[19]
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which is the negative derivative of the Fourier transform
phase. The group delay function derived from the Fourier
transform phase of a signal has two inportant properties,
nanmel y, additive and high resol uti on. Hema[19] has proposed
a techni que for formant extraction fromgroup del ay function
using these properties. From the group delay the fornant
frequenci es are picked using a sinple peak picking nethod.
Inthis work the formant contour is extracted fromt he speech

signal using the above techni que.

The speech si gnal is sanpl ed at 10, 000 sanpl es per second.
These sanpl es are grouped into bl ocks of 256 sanpl es. Each
bl ock i s processed t hrough t he group del ay f or mant extracti on
techni que. The next bl ock is chosen by shifting 32 sanpl es.
Thi s processing generates the i nage of the fornmant contour.
This i mage shoul d be preprocessed before feeding into the
proposed system There are nunber of issues to be addressed

for preprocessing the inages.

The first issueis to normalize the tenporal variations
in the inmage. Depending on the tine taken for uttering the
word the length of the x-axis of the inage changes. Since
the input to the proposed systemis a fixed two-di nensi onal
array of visual pattern, the formant contour should be
nornal i zed before feeding into the system This essentially
involves normalizing the duration of the uttered speech
signal. In this work we have used a sinple nornalizing
t echni que. The ti nme expansi on and conpression is carried out

in vowel regions of the uttered signal. The vowel regionin
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the formant contours contains nearly horizontal lines. In
these locations the formant contours are conpressed or

expanded and normalized to specific size of the input.

The second issue is to renobve the noisy peaks in the
image. A sinple support point technique is used to renove
t he noisy pixels of the image. In this techni que each point
in the imge is retained only if thexe are atleast 20
nei ghboring points. The other issue is to process the
di scontinuities intheinmge. The same support point techni que
whi ch is used above automatically corrects the

di scontinuities.

3.3.3 Implementation Details and Results

Inthe current inplenmentation the S-layer inthe FE stage
consists of seven S-planes. The S-cells in these S-planes
are tuned to seven different orientations. Each S-plane
consi sts of 64x64 array of S-cells. The orientation for which
each S-plane responds is already trained and the val ues are
hard- coded into the program Each pattern is a 3x3 array as
shown in Fig. 3.5. Each S-cell receivesits input froma w ndow
of size 3x3. The adjacent S-cell receives the input from an
overl apping w ndow. A nunber of parameters are used in
eqn(3.1) and (3.2) for conputing the outputs of S-cells.
These paranmeters are fine tuned for a good performance. The

value of r istaken tobe 1.7, b=1, 8 =0.5 anda = 0.333018.
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The G layer in the FE stage consists of five G planes.
Each G pl ane consi sts of 32x32 array of G cells. The outputs
of the S-planes are connected to the G planes through the
I nt er connection topol ogy as shown in F g.3.6. This topol ogy
is a 5x5 matrix for each G plane and hardcoded into the
program Each Gcell receives its input fromoutput of the
S pl ane havi ng a wi ndow of size 5x5. This feature extraction
phase finally generates five different profil es each of size
32x32. These profiles are fed to the PMstage. An exanpl e of

the outputs of Gplanes for the utterance TWD are shown in

Fig. 3. 11

Field F1 of SAG 1l is an array of size 32x32. Field F2
has 15 category nodes for classification. Al the five SACG1
classifiers together generate a two dinensional array of
val ues of size 15x5 which is fed as input for SAG 2. Hence,
in SAC-2 the field F2 has an array 15x5 input nodes. There
are 10 category nodes in field F2 of SAG 2.

There are two isolated word recognition tests conducted
on this system W have selected utterances of the digits
for recognition. Inthe first test the systemis tested with
the utterances of a single speaker. The recognition results
of the systemfor .asingle speaker with 20 utterances of each
digit, are shown in Table 3.1. The systemwas trained with

three utterances of each word.
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Fig. 3.11 Image of a formant contour pattern campressed into 64x64 array
is shown in (a). The output values of five C-Planes are shown for the
example input pattern. The size of the block in (b)-(f) indicates the value of
C-cell at that point.
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Table 3.1 Isolated Word Recognition System Test results
for a single speaker
Words Correctly | Unclassified | Misclassified
(20 each) recognized
Zero 18 2 -
One 20 - -
Two 14 6 -
Three 20 - -
Four 18 2 -
Five 16 - 4 (As Eight)
Seven 17 3 -
Eight 17 3 -
Nine 14 2 4 (As Five)

In the second test

utterances of digits fromtwo Anmerican speakers.
is trained with two utterances each of the two speakers and

tested with five utterances of each speaker.

shown in Tabl e-2 and Tabl e- 3.

the system is tested with isolated

Table 3.2 1solated word recognition systemtest results
for two speakers: Speaker-1

Words Correctly | Unclassified | Misclassified
(S each) | recognized

Zero 5 - -

One 5 - -

Two 3 2 -
Three 4 1 -

Four 5 - -

Five 5 - -
Seven 4 1 - N
Eight 5 - -

Nine 3 2 -
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The results are






Tabl e 3.3 Isolated word recognition systemtest results

for two speakers: Speaker-2

Words Correctly | Unclassified | Misclassified

(5 each) recognized
Zero
One
Two

Three
Four
Five

Seven

Eight
Nine

el =l (S B
1

2 (As Five)
1 (As Five)
- 1 (As Five)

BN = [

(NN (W [ (e (&N [
]
1

From the tests conducted we observe that the system
perforns well for a single speaker for distinct words. Wrds
i ke FI VE, EI GHT and N NE have t he sane dom nant vowel s and
f ormant cont our i mage for these words showsi ml ar hori zont al
lines. The systemattenpts to |ocate the distinct features
of these words for classfication and shown good results, for
exanple 16 out of 20 instances of FIVE are identified
correctly. The system misclassifies these words i n Sone cases.
This may be attibuted to the limtation of using ianges of
formant contour patterns which capture only the resonances
of the systemproperly. In the second test al so we observe
misclassifications in those words where there is vowel

dom nat i on.
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3.4 SUMMARY

In this chapter we have presented the design of the
oriented filtering and integrating network for structural
feature extraction. wWe have also described an application of
this architecture. A neural architecture for recognition of
utterances of isolated words from the images of the formant
contour patterns is presented. We have described the
implementation details of the neural architecture' and also

presented the test results.
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Chapter 4
DIRECTED SPREADING ACTIVATION LAYERSFOR

LOCATING MAXIMUM INFORMATION POINTS

4.1 INTRODUCTION

In this chapter we present the design of directed
spreadi ng activation layers. This architecture extracts the
nmaxi num i nformati on points in the input inage. V¢ describe
two applications of this architecture. In the first
appl i cati on we show how | ow | evel features can be extracted
from the nmachine fonts. In the second application we show
how transfornmati on i nvari ant binary pattern recognition can
be achi evedusi ng the maxi num information poi nts gener at ed

by this architecture.

Spreadi ng activation layers[37] has been used to carry
out early vision tasks like feature clustering and feature
centroid determnation. However, studies reported in the
literature use isotropic spreading of activation. In this
chapt er we di scuss the drawbacks of the spreadi ng activation
| ayers for locating maxi mum infornmati on points-and propose
a newdirected spreading activationnodel. I n Section 4.2 we
describe the spreading activation layers. Section 4.3
di scusses the notivation for the directed spreading and

Section 4.4 describes the design of the directed spreading





activation nodel. W discuss the inplenentation details and
exanples in Section 4.5 1In Section 4.6 and 4.7 we show sone

appl i cations of these architectures.

4.2 SPREADING ACTIVATION LAYERS

Evi dence for rapid diffusion | i ke phenonmena are found in
the brightness and color domains of stabilized inage
experiments. Conpel ling evidence is provi ded by Yarbus’s[54]
experiments, in which color fromthe surround rapidly fills
regi ons inwhichstabilizedinmages have faded. These evi dences
arereported inthe brightness donai n. But the di ffusion-I|ike
phenonena are used in both high | evel information processing
models[(2,26] and |low Ilevel visual processing nodels
also[14,15,37]. Spreading activation layers use this

di ffusion |i ke phenonena for early vision tasks.

Di f fusi on enhancenent is a |l owl evel conputational nodel
whi ch has been used in building a neural network vision
system([37]. This nodel is used for |earning and recogni zi ng
t wo- di mensi onal binary patterns invariant of their | ocation,
orientation and scal e. The processingis dividedinto |ayers,
each of whi ch enconpass nany | evel s of neuron-1i ke processi ng
cells. This low level processing nodel carries out early
vision tasks | i ke feature extraction, feature clustering and
feature centroid determnation. Inthe foll owi ng sections we
summari ze the salient features of the spreadi ng activation

| ayers.





4.2.1 Activity DIffusion and Centroid Detection

Consider a region R and an activation function A(R)

defined over it at an initial tine¢. Let the function A(R)

be binary values at ¢, either 4, or 0, corresponding to

| ocat i ons wher e maxi mumi nfornation or the | owl evel features
on the binary image have been detected. The naxi mum
information points are the high curvature points detected by
a t echni que proposed by Rosenfeld[28]. Nowl et t he activation
di ffuses | ocal | yt hr ought her egi on accordi ng to the cl assi cal

di f fusi on equati on:

dA (4.1)

=5 =V IK(R) VAR)]

where k(R) accounts for the density and conductivity of the

region. If kR) =k this reduces to dd4/dt = K*A(R) a constant.
If thetotal activation is held constant, then the | ocations
withinitial activation As beginto |l ose activation, while
adj acent |ocations begin to gain activation. Due to
superposition, areas near activation-rich |ocations gain
activation nore quickly than areas far from the
activation-rich locations. Fig.4.1 plots the activity
distribution surface as it spreads by the sinple diffusion
as descri bed above. Activity spreads as the tine progresses
from t (Fig.4.1a) until a global activity nmaxi num emer ges
(Fig.4.1d), indicating the geonetric centroid of the

features. At an internediate tine various |ocal maxi na can
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Fig. 4.1 The activity distribution of the spreading activation layer is plotted
in three dimensions at four times: (a) at to as diffusion begins; (b) at to*
after a short time; and much later in (c)and (d). In (d) the peak is located
at the geometric centroid of the three features as shown in (a).
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Fig. 41 The activity distribution of the spreading activation layer is plotted
in three dimensions at four times: (a) at to as diffusion begins; (b) at to ™
after a short time; and much later in (c) and (d). In (d) the peak is located
at the geometric centroid of the three features as shown in (a).
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be located. FHg.4.2 shows the tine sequence of two feature
| ocati ons spreadi ng, superinposing their tails, and finally
nmerging at the centroid. This exanple is shown for one
di mensi onal spreadi ng.

The activation distribution in the diffusion |Ievel
defines a surface over a 2D plane. Extrena of activity are
found in areas of positive curvature of the surface. The
maxi num is conputed in neural networks by self-activation
and conpetition. Wsing lateral inhibition, each elenent
suppresses its neighbors according to its activation, while
feeding back an excitatory activation to itself. This is
acconplished wusing an on-center/off-surround recurrent
receptivefield for each elenment. Anong other properties,
t hi stype of network enhances[16] the contrast of the activity
distribution, or in the extrenme case, |eaves only the
maxi mal |y acti-vated el ement on. This type of network al ong
w th spreading activation |l ayers|ocates'thefeaturecentroid

of the given feature points.

4.22 Feature Extraction in Spreading Activation Layers

Curvature along contours are useful for recognition of
shapes from 2D inmages. Spreading activation |ayers may be
used in | ocatingthe curvature along contours. Fig.4.3 shows
the result of using spreading activation |ayers for |ocating
a corner. The figure shows that the areas near hi gh curvature
poi nts al ong t he contour are easily found, sincethey receive

superi nposed activation froma greater nunber of |ocations
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Fig. 4.2 As time progresses (a) to (f), the activity distributions initially due to
two features spread. As activity spreads the local maxima moves toward

the centroid. The global maximais stable at that point.

60





Wi
A

i

A

1
K0\

o"\‘\"!
,;'t““l‘:o"i/ i

4 \ 0'!]/" ’:‘“ X

wezis d)
S

'a‘c‘ \.‘-‘ "‘! ,'I

Fig. 4.3 A contour with a corner shownin (a) is diffused in (b)-(d). Activity
accumulates more quickly where the average distance to the features is
least. As the diffusion progresses the activity maxima moves to the global
centroid. Since maxima moves continuously it is difficult to determine when
to stop diffusion to locate the peak at the corner.
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Fig. 4.3 A contour with a comer shown in (a) is diffused m (b)-(d). Activity
accumulates more quickly where the average distance to the features is
least. As the diffusion progresses the activity maxima moves to the global
centroid. Since maxima moves continuously it is difficult to determine when
to stop diffusion to locate the peak at the corner.
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t han areas near straight contours. But a certain anount of
care is required in using diffusion as a corner and contour
term nation points detector. If the diffusion is too short
on a coarsely sanpled imge, then maxima will be detected
for a short tinme. If the diffusion is too long, as the
di ffusi on progresses, the nmaxi ma points nerge together with
real corners, and corners | ocated around smal | features nerge

t oget her.

4.2.3 Centers of Focus of Attention

Since initial activation function corresponds to
| ocati ons where features have been | ocated, the diffusion as
it progresses formfeature clusters. These feature clusters
can be used as a center of focus of the saccadic controller
of any visual system Since the activation |evel of each
maxi ma poi nt depends on the density of features nearby, it
may be used to prioritize the inportance of feature area as
a fixation point. The |level of detail, and thus the size of
t he feature cluster, can be controlled by the extent in tine
of the diffusion process. For instance, if the diffusion
results can be sanpled before extensive feature clustering
occurs, they will reflect small feature clusters and a high
| evel of detail. If recognition using the clusters found at
this fine level of detail is inconplete, the diffusion may
be allowed to proceed, creating |arger feature clusters
Hence, small scal e organization energes before large scale

organi zation in a natural way.
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Fig.4.4 shows an exanple of the feature clustering in a
binary inmage. The figure illustrates how snall scale
organi zation arises naturally before a large scale
organi zation. These snall local clusters are shown in

di fferent stages of spreadi ng.

Feat ur es can be separat ed fromeach ot her by merging i nto
different activity groups. These different groups energing
as a function of time can be processed individually | eadi ng
t 0 pi ecew se support for recogni zi ng a conpl et e obj ect, even

in the presence of noise or occl usions.

4.3 MOTIVATION FOR DIRECTED SPREADING

4.3.1 Drawbacks of the Spreading Activation Layers for Low level Feature
Extraction

The obj ective here is to use spreading acti vation | ayers
for low level features or-.nmaxi mum information points
extraction. I nthis sectionwe discussthe drawbacks of using
spreading activation layers for extracting |ow |evel

f eat ur es.

The spreading activation layers is essentially enploys
an averagi ng process. Wen the input pattern is directly
presented to the spreading activation |layers, as the tine
progresses, the activation val ues of the individual neurons
refl ect the averaging process which takes place over two

di mensi onal space. This kind of averaging is unconstrai ned
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Fig. 4.4 Small scale organization of feature clusters emerges before large
scale organization. (a) shows the continuous process of feature clustering.
(b)-(d) shows different snapshots of feature clustering at different times.
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Fig. 4.4 Small scale organization of feature clusters emerges before large
scale organization. (a) shows the continuous process of feature clustering.
{(b)-(d) shows different snapshots of feature clustering at different times.





becausethereis neither alimtingfactor nor a conpl enentary
nmechani smto constrain the spreading of activation in both
time and space. The | ocal nmaxima formed as tine progresses,
represent various features and feature clusters inthe inage.
Asthereisnoconstraint inthespreadingit isverydifficult
to determne ’a priori’ when to stop the spreading process
and identify features or feature clusters, since the peaks
which are formed during the spreading slowy drift away
towards the gl obal centroi d. Hence t he mai n probl emin using
spreading activation layers for feature extraction is

i dentifying the tenporal event for stopping the spreading.

The location of quasi-static points[37] during the
spreadi ng activati on process has been proposed as a tenpor al
event for determ ningthe feature clusters. This quasi-static
poi nt nmethod cannot be adopted to the low level feature
extraction directly as the feature naxinma tend to nove
continuously towards the global centroid. To overcone this
problem the feature extraction phase and feature cluster
identification phase are isolated in spreading activation
| ayers. The feature points are detected by nonneural
techni ques and the feature map is considered as input for
spreadi ng i nstead of the direct input pattern. But thelines,
curves and contour term nati on poi nts whi ch are not retai ned
are very useful and significant as they contain informnation
useful for invariant pattern recognition. Wen the
eye/camera novenent is used to identify the features | ocat ed

at t he maxi ma poi nts, thelines and contour termnation points





will be mssed. Even though spreading activation |ayers is
not successful in low level feature extraction, it can be
successfully used for saccadi ¢ novenent, once the naximum

I nformati on points on the binary inmages are | ocated.

4.3.2 Basis for Directed Spreading Activation Model

This drawback of the spreading activation |ayers'
inabilitytodetect thelowlevel featureslikelinesegnents,
corners, curves and contour termnation points correctly as
part of the |lowlevel feature extraction can be attributed
to nmainly the wunconstrained nature of spreading both
tenporally and spatially. In this section we discuss the
basis for directed spreadi ng which constrai ns the spreadi ng
spatially. The spreading takes place in specific
predet erm ned directions and the directi ons specified by the
Input pattern. The directed spreading activation nodel
| ocates the mdpoints of Iines of different | engths, curves

and edge termination points in a purely datadriven nmanner.

Wen the input binary pattern is subjected to
unconst rai ned spreadi ng, the nmaxi ma points are formed at the
line segnments, corners, curves and contour termnation
points. If the diffusion is too short then these feature
maxi ma are not formed correctly. On the other hand, if the
diffusionis|longthen they nove t onwards each ot her and ner ge.
The nonstationary nature of the feature maxima i s due to the

| ateral influence of the adjacent feature nmaxina.
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The straight |ine segnments and the corners may be
consi dered as conpl enentary features. Sincethe spreadingis
unconstrai ned t hese conpl enentary feature peaks spread fast
and becone nonstationary. To avoid this lateral influence it
IS necessary to separate these conplenentary features. In
this directed spreading activation nodel there are two
surfaces which work in parallel and |ocate conplenentary
features. One layer of neurons is sensitive to lines of
different orientations and acts simlar to Boundary Contour
System(BCS) proposed by Grossberg[14]. The second parall el
| ayer of neurons is simlar to Feature Contour System(FCS)
and is sensitive to curves and contour termnations. By
proposi ng constrai ned spreading activation simultaneously
taking place in two functionally conpl enmentary neuron nets,
we isolate the conpl ementary features and hence prevent the

| ateral influence of the feature nmaxi na points.

4.4 DIRECTED SPREADING ACTIVATION (DSA) LAYERS

Inthe directed spreading acti vation | ayers di scussed in
this section there are two layers each wth different
characteristic kR). The first layer has k(R) defined for
specific directions and spreadi ng takes place only in these
directions. It locates the mdpoints of the |ine segnents.
The second | ayer receives its input fromthe first | ayer and
the input binary pattern. In the second | ayer the spreading
activation takes place in the direction specified by the

activation values of the adjacent neurons. Hence the
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conductivity function k£(R) of the region is directed by the
data. This second |ayer detects curve centroids of all
curvatures and contour termnations. Since the spreading in
thesetwo | ayers is spatially constrained thereis nolateral
I nfl uence between peaks, hence these peaks are always
stationary and the noverrent is restricted to the directions
specified within a layer. These two |ayers along with their
nmaxi na detectors |ocate mdpoints of |ines, curves, corners
and contour termnationsin a purely data-driven manner whi ch

can be used for eye/camera novenent.

4.4.1 Organization of DSA Layers

The functional organization of the directed spreadi ng
activation layers is shown in Fig.4.5 It consists of two
| ayers called 11 and L2 each of which consists of two
di mensi onal array of neurons. |In the case of ORFIN t he | ayers
are arranged in a hierarchy. In DSA both the | ayers receive
the input simultaneously and send their outputs to a two
di mensi onal array of neurons which | ocat e t he naxi ma points.
The layer L2 also receives input fromLi. These two | ayers
with their naxi ma | ocati ng network | ocate the conpl enentary
features inthe input i mrage. L1 | ocates the mdpoints of |ine
segnent s and L2 | ocat es ot her maxi numi nfornati on poi nts |ike

corners, curve segnments and contour termnation points.
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4.4.2 Design of DSA Layers

The first layer L1, consists of two di mensi onal array of
hypercolumns[23]. A hypercolumn S a collection of
orientation specific cells. Each cell in a hypercolum
responds to a specific orientation. The collection of cells
I's such that cells responding to all the orientations are
available in a hypercolum. In the current inplenentation
each hypercol um consists of a twelve directional detector
neurons which respond to twelve different directions. A
hypercolum with twelve directional detectors is shown in
Fg.4.6. These hypercolums receive their input from the
i nput binary pattern. The outputs of all the directional
detector neurons are totally connected and t hese |inks have
a small negative value. Hence when the input is presented
each hypercolumm act |i ke a wi nner take all network as shown
inFig.47. Asaresult, eventhoughthedirectional detectors
respond to partial |ine segnents, the one which has the
maxi mum response survives. Al the directional detectors
bel ongi ng to a hypercol umm recei ve their input froma fixed
wi ndow of the input pattern. Adjacent hypercol ums receive

their input fromoverl appi ng w ndows.

The general structure of the directional detectors is
essentially the same as that of the S-cells described in
Section 3.2.1. Each directional detector has two types of
cells, excitatory cells (eEcs) and the inhibitory cells (Ics)

that occur in pairs. Each pair receives the sane i nput set.
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The 1Ics have fixed excitatory weights with val ues such that
the output of the 1¢cs is proportional to the nean intensity
val ue over the input. The activation function of the 1cs that

produces this nean value is a sinple wei ghted sum
v = Sal) IG) (42)
where the c(i) values are determned by a function that

decreases nonotonically with di stance fromthe center of the
connectabl e area and suns to 1. The nean value v, is used as

inhibition to the paired EC, which generates an output
according to the equati on:
N
1+ 3 aii) * u(i) (4.3)

uy=r*g . -1
+
v

where the wei ghts @ and b are nodi fi abl e wei ghts,r represents
the efficacy of the inhibitory synapse and the transfer

function is a piecew se linear function according to:

_ [¥/(a+x) if (x>0) (4.4)
P(x) = { 0  otherwise

The functional characteristics of directional detector

is summari zed in FHg. 4.8.

The di recti onal detectors whi ch have t he sane directi onal
sensitivity of neighboring hypercolums are connected by a
link. An exanpl e of the hypercol ums connected through the
links is illustrated in Fig. 4.9. In the illustration six
hypercolums wth each hypercolum having only four

directional detectors are shown. The directed spreadi ngt akes
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pl ace through these |links. Hence the 4(R) defined for L1 is
sensitive to the direction. The output of the layer L1 is
connected to the naxi ma detector. This network is a sinple
on-center/off-surround network t o det ect naxi ma. Each maxi na
detector cell suppresses the nei ghboring neurons accordi ng
to its activation and feeds back excitatory activation to

itself.

The second layer L2 also consists of two-dinensiona
array of neurons. These cells are connected to all their
nei ghbors by links. Each neuron receives its activation from
the input and the first |ayer according to the follow ng

equat i on:

L2y = Iy — Llxy (4.5)

where L2y is the activation value fed to the neuron of L2,
Ly 1s the input binary pattern and Ll,y is the activation
val ues of Li. Fromthe equation it is clear that the second
| ayer receives conpl enent of the first | ayer output over the
I nput binary pattern. Al the inputs and outputs of a single
neuron in L2 is shown in Hg.4.10. Since the first |ayer
detects all the lines and diffuses them the second |ayer
receives activations at corners, curves of all curvatures
ot her than strai ght lines and contour term nations. In |ayer
L2, the spreading takes place between only the active

nei ghboring neurons. So the corner, curve and contour
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Fig. 4.8 Characteristics of a Directional detector

Fig. 4.9 lllustration of links between hypercolumns
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termnation centroi ds are enhanced. The output of L2 is fed
to the maxi ma detector and the maxi na detector |ocates the
enhanced peaks of L2

Rapi d eye novenent § saccades) driven by the | ocati ons of
maxi mum i nformation points play an inportant role in the
est abl i shrrent of spatial relations. The absolute and rel ati ve
positions of the peaks |ocated by L1 and L2 of this system
can be considered as bottomup cues for the eye/camera
novenent to establish the spatial relationships. The peak
strength shows the length of a line or a curve at that
position. The ‘on pixels around t he fixed w ndow of the peak

Is useful for identificationof the feature at the peaks.

4.5 IMPLEMENTATION DETAILS AND EXAMPLES

The i nput visual patternis a 32x32 two-di nensi onal array
of binary values. There are twel ve directional detectors in
the hypercolumn structure as shown in Fg.4.6. These
directional detectors conpute their activation values
following the egn(4.3) . The paraneters for the directiona
detectors are fine tuned and these values arer = 1.7 and b
=10

The 11 layer receives the maxinum value of each
hypercol um. This L1 layer is inplenented in an array of size
31x31, giving an of fset of one for conputing the directional

detectors. The directional spreadi ng takes pl ace in L1 | ayer.
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The spreadi ng activation coefficient k i s taken to be 0. 005.

The L2 | ayer receives the conplenment of L1 over the input

array.

Fig.4.11 shows an exanple of the input binary pattern
for which maxinum information points are generated.
Figs.4.11b to 4.11e show the outputs of different I|ayers.
Fig.4 lla shows the input pattern for which naxinmm
information points are to be located. Fig.4.11b shows the
spreadi ng taken place in specific directions. The centers of
the | i ne segnents have t he naxi numacti vati on whi ch i s shown
inFig.4.11 c. Fig.4.11d shows t he conpl enentary of L1 val ues
totheinput i nage. Sincethe adjacent val ues tothese corners
are very large in 1 | ayer, the com penent becones too smnal |
and hence the adjacent values are not seen in Fig.4.11d. In
this binary pattern the maxi numinformation points are the
corners. These points are autonmatically located by the
architecture and is shown in Fig.4.lle. It can be observed
t hat even though this architecture does not have any corner
or any other tenplate, it |locates the corners and other
maxi mum information points automatically, This is an
advant age for locating |l owlevel features fromnachine fonts
which is illustrated in the next section. F g.4.12 shows
anot her exanpl e of lowlevel feature extraction fromanot her

bi nary pattern.
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