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ABSTRACT 

Visual pattern recognition such as reading handwritten 

characters or distinguishing shapes is easily accomplished 

by human beings. When attempted to design information 

processors to do the same, it presents significant 

difficulties. There have been two approaches for machine 

implementation of viusal pattern recognition. The first 

approach considers vision as an abstract problem and attempts 

to design computational algorithms. The second approach 

attempts to study the biological visual system and model its 

behavior for engineering applications. 

Artificial neural networks which are reminiscent of the 

neurons in the brain attempt modeling the function of the 

biological system. They are characterized by their 

nonsymbolic, distributed, fault tolerant computing which are 

very useful for pattern recognition tasks. 

Invisua1,pattern recognition there is a natural factoring 

part of the process that extract information about the 

geometry of the visual pattern and the process that recognizes 

the familiar objects. Preattentive visual processing is a 

parallel, automatic and data driven prozessing which extracts 

geometric properties of the input pattern without using the 

detailed knowledge of the domain. In this work we have 

attempted to develop neural network architectures for 



automatic, data driven extraction of geometric properties 

like straight lines, corners and contour termination points 

from binary images. We also show how these architectures can 

be used in some engineering applications. 

Based on the observations about some aspects of the visual 

perception in the biological visual system, we propose two 

approaches for processing binary images. In the first 

approach, the structural properties of the input pattern like 

straight lines are extracted from the input image. This 

approach is implemented as an oriented filtering and integration network, 

motivated by the orientation specificity shown by certain 

cells in the visual cortex. 

In the second approach, the maximum information points 

of the binary image are located. In the case of simple 

geometric contours these points coincide with the points of 

maximum inflection. In this study, points of maximum 

information are obta ined using directed spreading activation layers. 

We describe two applications of these architectures. The 

first application is recognizing isolated utterances of words 

from images of formant contour patterns. For this we use 

oriented filtering and integration network. The second 

application deals with recognition of objects in binary images 

invariant to translation, rotation and scale. For this the 

directed spreading activation neural architecture is used to 

extract themaximum information points fromthe input pattern. 



A log-polar transformation is described which derives an 

invariant representation fromthe maximum information points. 

This invariant representation can be used for recognition 

using standard methods. 



Chapter 1 

INTRODUCTION 

1.1 MOTIVATION FOR VISUAL PATTERN RECOGNITION RESEARCH 

Since the advent of digital computer there has been an 

effort to expand the domain of computer applications. Some 

of the motivation for this effort comes from important 

practical needs to find more efficient ways of doing things. 

At present, the ability of machines to perceive their 

environment is very limited. A variety .of transducers are 

available for converting light, sound, temperature etc., to 

electrical signals. When the environment is carefully 

controlled and the signals have a simple interpretation, as 

is the case with the standard computer devices, the perceptual 

problems become trivial. But as we move beyond having a 

computer read punch cards or magnetic tapes to having it read 

hand-printed characters or analyze biomedical photographs, 

we move from problems of sensing the data to much more 

difficult problems of interpreting the data. Of the various 

problem areas,,the domain of visual pattern recognition has 

received by far the most attention. 

There are three basic motivations for.trying to achieve 

automatic recognition of visual patterns. The first is simply 

intellectual curiosity. How can machines be organized to 

designate a particular presentation as belonging to the same 



class that a human would specify? This raises intriguing 

questions of systems analysis and design, and it leads to 

sharper appraisal of how living systems process information. 

The second purpose is to provide intelligent aids. There is 

greatutility inmachinewhichcan process optical information 

more quickly or accurately or safely or cheaply than people. 

The automatic reading of postal addresses, classification of 

weather-satellite photographs and terrain maps, recognition 

of bubble chamber tracks, diagnosis of biological cells, and 

monitoring of cardiac performance can substantially relieve 

human drudgery and provide economic advantage. Still other 

uses are in prosthetic aid - for example, in reading and 

mobility devices for the .blind. The third reason for 

developing machines which recognize optical patterns is to 

obtain more effective man-machine interfaces. It is becoming 

increasingly important to provide computers with fluency in 

man's natural languages. With more direct communication 

between man and machine, important gains in flexibility and 

efficiency can be obtained. 

In Section 1.2 a pattern recognition approach to visual 

pattern recognition is discussed. In Section 1.3, advantages 

of neural networks approach to pattern recognition problems 

is discussed. In Section 1.3 an overview of the thesis is 

presented. 



1.2 PATTERN RECOGNITION APPROACH 

The term pattern recognition was introduced in the early 

1960s, and it originally meant detection of simple visual 

patterns like handwritten characters, weather maps and speech 

spectra. Later the domain of application of pattern 

reco(>nition is expanded to almost all disciplines of 

engineering and science. Of the various problem areas in 

pattern recognition research, the domain of visual pattern 

recognition has attracted much attention. Since the human 

experience of vision is effortless, quick and adaptable 

studies have been made on biological visual system. 

Neurophysiological and psychological studies have given us 

several interesting facts about visual perception. But no 

understanding has been sufficient to duplicate their 

performance by computer. This has resulted in a lack of 

complete theory of vision. 

The lack of complete theory has not deterred people from 

attempting modest problems. Many of these involve pattern 

classification - the assignment of a physical object or event 
to one of several prespecified categories. Extensive study 

of classification problems has ledto an abstract mathematical 

model that provides the theoretical basis for classifier 

design. Even though abstract mathematical model is available, 

in any specific application one ultimately must come to grips 

with the special characteristics of the problem in hand. 

These models are applied successfully to the recognition of 



handwritten characters, chromosome types, printed 

characters, Chinese characters, aircraft, machine parts, 

circuit boards, maps, and lung radiographs. 

1.3 NEURAL NETWORKS APPROACH TO PATTERN RECOGNITION 

Though pattern recognition research focussed on solutions 

for modest problems, the ambitious objective has all the time 

been to implement artificial perception, that is, to imitate 

the functions of the biological sensory systems in their most 

complete forms. The first experiments around 1960 were indeed 

based on elementary neural networks, known by names like 

perceptron[44], Adaline[53] and Learning Matrix[50], 

respectively. But it was soon realized that the performance 

of the biological sensory system is very difficult to reach. 

Even high computing capacity, achievable by parallel 

computing circuits, did not solve the problems. For example, 

in image analysis there exists requirements which are very 

difficult to fulfill: Invariance of detection with respect 

to translation, rotation, scale, perspective, partial 

occlusion and modest marring of the objects. 

Artificial neural networks are massively parallel 

interconnected networks of simple adaptive elements. These 

elements are arranged in a hierarchical manner to interact 

with the objects of the real world in the same way as 

biological neural systems do. These simple neuron like 

elements connected together show powerful learning, 



memorization, associative recall capabilities and self 

organization for pattern formatted information[36]. Apart 

from these properties, they have number of other advantages. 

The computation is distributed, fault tolerant and has the 

ability to tolerate distortions in the input pattern. This 

neural network approach differs significantly from the 

earlier approaches by its nonsymbolic processing and 

distributed representation. 

Since these neural networks are conceptually compatible 

with the biological neural networks it is possible to derive 

inspiration from neurobiological or psychological studies, 

even though the objective might be engineering. When the 

engineering model performance mirrors human performance, 

similar model might be applied to biological neural net and 

mutually useful hints can be obtained in this manner. 

Neural network architectures are generally meant to learn 

and recognizethe inputpatterns. Butthere are certain neural 

mechanisms in the initial stages of animal visual and auditory 

system. These neural mechanisms possess very little domain 

specific knowledge and essentially act as data adaptive 

filters. In this work we attempt to design such neural 

architectures for processing visual input patterns. 



1.4 OVERVIEW OF 'THE THESIS 

In this section we introduce the specific research problem 

addressed. In Section 1.4.1 discuss the objective of the 

thesis. Section 1.4.2 discusses the motivation of this work 

and Section 1.4.3 discusses the scope of the study. Section 

1.4.4 presents the overview of research and Section 1.4.5 

discusses the organization of the rest of the thesis. 

1.4.1 Objective of Current Research 

Visual pattern recognition can be considered as 

consisting of two stages: (i)- A low level analysis concerning 

extraction of geometric properties of the input pattern and 

generation of a description of the pattern[32] and (ii) a 

higher level analysis which uses the description together 

with the knowledge of the domain to perform the recognition 

task. Our preattentive visual processing[l4] is a parallel, 

automatic and data driven processing which extracts 

properties of the input pattern based on local data. 

Artificial neural networks, with their collective nonsymbolic 

computational capabilities, are useful to achieve the 

preattentive visual processing. The objective of this thesis 

is to develop neural architectures for automatic extraction 

of geometric properties like straight lines, corners and 

contour termination points from binary input image patterns. 

We also show how these architectures can be used in some 

engineering applications. 



1.4.2 Motivation for Current Research 

There are two different approaches for machine vision. 

The first approach is computational vision approach. In this 

approach vision is studied abstractly independent of any 

particular domain. Pattern recognition and Artificial 

Intelligence follow this approach and attempted to develop 

computational algorithms for vision. The other approach is 

to study the human visual system. Since the human vision is 

rapid and effortless, the objective had been to study human 

vision and design engineering models for practical 

applications. Here, reports from psychological and 

neurophysiological studies on biological visual system are 

used to design engineering models. In this work the .design 

of neural architectures for preattentive visual processing 

is motivated by some aspects of the visual perceptual process 

in biological visual system. 

1.4.3 Scope of the Work 

The focus of the work is on neural network architectures 

for data driven extraction of geometric properties. We assume 

that the input pattern is clean and has a noise free boundary 

contour shape. The issue of pattern recognition is not 

addressed in detail, although in all these cases recognition 

studies have been made using standard neural architectures. 



1.4.4 Overview of the Research 

In this work, we have proposed two approaches for 

processing binary images. We have developed two neural 

network architectures based on these approaches. The first 

approach is implemented through an oriented filtering and 

integration network. The second approach is implemented using 

directed spreading activation layers. We also describe two 

applications of these architectures. 

1.4.5 Organization of the Thesis 

Chapter 2 discusses the motivation and proposes two . 

approaches to preattentive visual processing. Chapter 3 

discusses the design of Oriented filtering and Integration 

Network and the application ofthis architecture for isolated 

word recognition. Chapter 4 discusses the directed spreading 

activation neural architecture and proposes a methodology 

for recognizing transformation invariant binary pattern 

recognition. Chapter 5 concludes the thesis with a summary 

of the work. 



Chapter 2 

APPROACHES FOR PREATI'ENTIVE VISUAL PROCESSING 

2.1 INTRODUCTION 

Numerous approaches are proposed in the literature for 

preprocessing the visual patterns. In Section 2.2, we 

categorize these approaches into four classes and briefly 

review these approaches. Visual pattern recognition has been 

attempted by neural networks also. In Section 2.3 we review 

some of the neural principles and architectures for visual 

pattern recognition. In Section 2u.4 we discuss approaches 

adopted in this work for preattentive visual processing. 

2.2 BACKGROUND 

Visual pattern recognition deals with the analysis of 

visual patterns in order to achieve results similar to those 

obtained by man. A simplified machine paradigm for visual 

pattern recognition consists of two computational stages. 

The first stage is concerned with low level techniques and 

referred in the literature as picture processing or 

preprocessing. When neural networks are used for such initial 

processing it is called preattentive visual processing[l4]. 

The second stage is referred as picture interpretation or 

pattern matching or recognition stage. The focus of this work 

is on the first stage using neural networks. 



Low level analpsis involves aggregation of imperfect edge 

data in the two-dimensional image projection. Here, shape 

attributes of collection of edges are computed and a 

description consisting of the shape attributes and their 

spatial locations are generated. This description serves as 

input to a subsequent process of high level organization and 

understanding. 

There exist many theories of visual pattern or shape 

description and recognition, each attempting to explain some 

specific aspect of the problem. This is so because it is 

possible to conceptualize visual pattern as a high level 

perceptual function. Since there is very little 

neurophysiological evidence about its nature and the basic 

constituents are not known, the field has been open to 

freewheeling hypothesization. These theories can be broadly 

categorized as follows[52]: correlation techniques, 

computational approaches, neurophysiological and 

sensory-motor approaches[33,34]. Amang these correlation and 

computational approaches are engineering approaches. The 

other two approaches are motivated by the studies from 

neurophysiology and visual perception research. These studies 

are especially useful to design artificial neural networks. 

In this section we briefly review these four theories. 

Among the four categories the correlation technique is 

followed in the pattern recognition research. In Section 

2.2.1 we summarize techniques proposed in pattern recognition 

research for visual pattern description and recognition. 



Any visual pattern recognition task must be implemented 

in an algorithm form. Implementation of such algorithm 

requires a computational framework for representing the 

algorithm. In Section 2.2.2 we discuss a framework for 

computational visual processing. 

The sensory-motor approach to visual processing is 

modeled after the oculomotor movements of the eye. In Section 

2.2.3 we briefly describe the oculomotor movements of eye 

and its role in visual perception. 

The biological visual perception is carried out by the 

neural mechanisms in visual cortex and superior colliculus 

of the brain. In Section 2 - 2 . 4  we present some of the reports 

from neurophysiology about visual cortex. 

2.2.1 Pattern RecogniUan Approach 

Pattern Recognition techniques for preprocessing binary 

images can be broadly classified into two approaches, spatial 

domain approach and scalar transform approach. Spatial domain 

approach focuses on aggregating edge data and transform the 

input image into an alternative spatial domain 

representation, The input images are transformed into a 

representative graph which portrays the two-dimensional 

shape. Subsequent recognition of the shapes is accomplished 

by means of syntactic or structural analysis. Among spatial 

domain techniques there have been two approaches. The first 

approach uses a collection of fixed templates of geometric 



features like straight line segments of different 

orientations, corners and T-shapes; The input image is scanned 

for these patterns and a representative graph which portrays 

the two-dimensional shape is generated. 

The other approach is based on information theoretic 

point of view suggested by Attneaverl]. He suggested that a 

shape is segmented by means of dominant points which coincide 

with points of maximum inflection along its contour. Pattern 

recognitionhas proposed a number of techniques for extracting 

dominant points in the input pattern[49]. These techniques 

are mostly an outgrowth of interest in specific applications, 

the most common being the recognition of handwritten 

characters and chromosome types. 

Scalar transform techniques map the image into an 

attribute vector description. The objective here is to 

transform the boundary data into a new representation, one 

in which object translation, rotation, and size are no longer 

factors. The method of moments offer such a possibility. 

There have been many applications of this methodology to 

pattern recognition problems. These have included printed 

characters and numerals[3], hand-printed characters[7], 

chest x-rays[18], aircraft identification[lO], and ship 

recognition[48]. Categorization of shapes with this approach 

is usually achieved by means of classical pattern recognition. 



2.2.2 Computational Framework for Visual Processing 

Since vision is an interdisciplinary research field large 

number of theories are proposed in other disciplines like 

neurophysiology and perceptual psychology. If we want to 

develop artificial visual systems, these theories developed 

in the other disciplines must be tested rigorously. For 

rigorous testing, they must be converted into algorithms. 

Expressing visual theories as algorithms leads to the 

development of computational models. In creating 

computational models, several important issues must be 

addressed. In this section we discuss a framework for 

computational visual processing and isolate functional 

characteristics of an architecture for preprocessing. 

2.2.2.1 Low level versus high level visual processing 

A useful conceptual simplification is to divide the visual 

process into two levels: low level visual processing and high 

level visual processing. Low level processing deals directly 

with the incoming visual stimuli. Simple features may be 

extracted and simple patterns recognized. The high level 

visual processing is concerned with cognitive processing and 

makes use of the knowledge about the world when processing 

the visual information. Which visual cues are to be chosen 

by the lowest levels is an important consideration, as all 

further processing depends on how well this initial stage is 

carried out. 



2.2.2.2 Serial versus parallel processing 

It is useful to distinguish between the type of processing 

used by high and low level visual processes in terms of serial 

versus parallel processing. The low level visual processing 

is primarily performed in parallel. Evidence for this 

assumption comes from four different areas namely 

neurophysiology, psychophysics, machine vision and 

computational theories. Serial processing is more likely'to 

occur at the high levels of visual processing. 

2.2.2.3 Automatic versus selective processing 

Low level visual processing involves parallel 

computations performed simultaneously at many locations on 

the image. Much of this processing is performed automatically 

without intervention from higher levels. High level 

processing is more likely to be serial and require flexible 

control of the operations to be performed. Another way to 

discuss the automatic versus selective issue is in terms of 

bottom-up versus top-down processing. Automatic processing 

can be performed bottom-up without using information from 

higher levels. On the other hand, selective processing might 

require top-down processing where there is feedback between 

the different stages of processing. At the low level, 

bottom-up processing can be done in parallel, automatically 

without flexible control and efficiently. 



2.2.2.4 Signal versus symbols 

Low level processing is closely tied to the image, or 

the visual signal. By contrast, high level processing deals 

with cognitive symbols rather than visual signals. The main 

task of the early stages of visual processing is to extract 

meaningful information from the total visual information and 

to pass it on to the higher levels of proc6ssing. The problem 

is in deciding how the information should be represented. 

There aretwo possibilities, either the useful visual features 

could be labeled and that information transmitted 

symbolically, or else a scheme not requiring the explicit 

labeling of features could be employed. 

2.2.3 Eye Movements and Visual Pattern Perception 

The sensory-motor theory of visual pattern description 

and recognition- is motivated by the oculomotor movement of 

eye. In this section we briefly review the role of 

eye-movement for visual pattern perception. 

The interaction with the world around relies to a major 

extent on the ability to actively look, visually scan, and 

selectively pick up information on the basis of which 

effective, visuallyyuided actioncanbe deployed. Suchvisual 

scanning and deployment of goal-directed behavior in turn 

requires spatial as well as temporal coordination between 

sensory and motor processes. Spatially what is required in 



sensory-motor coupling is that the outer world be projected 

systematically onto a motor map of the body; Much of this 

sensory-motor coupling is reflexive[4,54]. The visual 

perceptual cycle is characterized by (1) the directing of 

sensory apparatus to (2) selectively pick up information 

which serves to (3) modify and update the schemata that in 

turn direct the further pick-up of information[40]. 

The rapid movement of the sensory apparatus to pick up 

information is called 'saccadeJ. The saccades are driven 

between points of interest in the visual field and play an 

essential role in human visual processing, particularly in 

the establishment of spatial relations[35,54]. Saccades are 

controlled by a complex set of interrelationships between 

low level and high level cues. The superior colliculus of 

the brain, which receives both retinal and cortical 

projections, directs the saccades[4]. 

2.2.4. Results from Neurophysiology for Visual Processing 

The neurophysiology approach for visual pattern 

description is motivated by the reports from the results of 

biological neural mechanisms for vision. In this section we 

review the neural mechanisms for visual perception. 

The neural mechanisms involved in the visual perception 

seems to be superior colliculus and visual cortex[4]. The 

superior colliculus is involved in localizing and detecting 

the presence of a visual stimulus which may be potentially 



informative and behaviorally significant[4]. However, it is 

not involved in the detailed qualitative analysis or 

identification ofthe stimulus. By contrast, the visual cortex 

seems to be involved primarily in the localization of a 

stimulus andinanalyzingitsqualitative and figural aspects. 

In the visual cortex four classes of cells are 

distinguished in a series of ascending complexity[23]. These 

are termed as 'circularly ~ymmetric~,~simple~, f ~ ~ m p l e x f  and 

'hypercomplexf. Circularly symmetric cells show no preference 

to any particular orientation of lines and act as contrast 

detectors. Simple cells are the first in the hierarchy to 

orientation specificity. A simple cell responds to an 

optimally oriented line in some narrowly defined position, 

even a slight displacement of the line to a new position 

without change in orientation renders the line ineffective. 

A complex cell, on the contrary, is as specific in its 

orientation requirements as the simple cell, but is far less 

particular abaut the exact positioning of the line. Such a 

cell will respond wherever a line is projected within a 

rectangle. Hypercomplex cells respond to more specific types 

of stimuli than either simple or complex cells. They respond 

maximally to edges, comers, curves and angles of particular 

sizes. 

In the literature neural architectures are reported 

simulating some of the properties of the visual cortex, and 

used in visual pattern recognition systems[12,15,24]. 



2.3 REVIEW OF NEURAL NETWORK ARCHlTECTllRES FOR VISUAL 
PATTERN RECOGNITION 

Theoretical neurodynamic approaches in cognitive 

sciences seek to replace symbol-manipulating formal 

computational rules with a short yet powerful list of 

elementary neural principles[l7]: 1.Competition 

2.Cooperation 3.Shunting inhibition 4.Adaptive feedback 

5.Resonance. This short list pf neural principles are the 

basis of diverse phenomena encountered in the cognitive 

sciences and neurosciences. The large number of computational 

neural models reported in the literature[6,20,29,30,361 are 

found to have based on these elementary neural principles. 

These elementary neural principles give raise to some 

interesting neural properties like associative recall, self 

organization, adaptive resonance and competitive learning. 

Number of architectures are proposed in the literature 

demonstrating these properties. These architectures include 

Hopfield Net[20,21,22], Hamming net[30], Adaptive Resonance 

Theory[6], Self organizing Maps[29], Boltzman machine[36], 

perceptron[30] and back propagation[36]. 

Various neural architectures for visual pattern 

recognition tasks are reported in the literature[12,15,24]. 

These architectures are designed to solve specific visual 

pattern recognition problems like handwritten character 

recognition, recognition of silhouettes etc. In visual 

pattern recognition, in general, the feature distribution of 



the input is not identical with that of the stored template. 

Hence a mechanism which can resolve the differences is 

necessary. There have been two approaches to this problem. 

The first one is to incorporate the mechanism into feature 

extracting stages as neocognitron does[12]. The second 

approach regards the feature extraction and pattern matching 

as separate stages[55]. 

In the following section we briefly review the 

neocognitron[l2] architecture which follows the first 

approach. There are other architectures for visual pattern 

recognition which follow the second approach[55]. These 

architectures use geometrical or analytical methods to 

extract features from the input pattern. These architectures 

use standard neural architectures like multilayer perceptron 

for recognition. We do not review these architectures here. 

23.1 Neocognitrorr. An Architecture for Visual Pattern Recognition 

F'ukushima proposed the cognitron[l3] model for pattern 

recognition. This mode1 does not have the capability to 

correctly recognize the position-shifted or shape-distorted 

patterns, Neo~ognitron which is an improved version of the 

conventional cognitron and has the capability to recognize 

stimulus patterns correctly, even if the patterns are shifted 

in position or distorted in shape. It has a hierarchical 

structure. The information of the stimulus pattern given to 



the input layer of the neocognitron is processed step by step 

in each stage of the multilayered network. A cell in the 

deeper stage generally has a tendency to respond selectively 

to a more complicated feature of the stimulus patterns. At 

the same time it has a larger receptive field and is less 

sensitive to shifts in position of the input pattern. Thus, 

each cell jn the deepest stage responds only to a specific 

stimulus pattern without being affected by the position or 

the size of the stimulus patterns. 

Neocognitron handles shifts by replicating the receptive 

field of a feature to cover the entire visual field. 

Distortions are tolerated by integrating the response from 

overlapping receptive fields of the previous stages in the 

subsequent stages. The successful performance of neocognitron 

is due to the gradual steps with which this replicating and 

integrating process is done. However, when this network is 

applied to other problem domains it poses a number of 

problems. 

Since the inner layers of neocognitron are trained for 

specific patterns, it falls short of the general purpose 

vision system. Each new pattern to be learnt is to be manually 

segmented and trained to various layers of the network. This 

is a comparatively easy task in the case of numerals for 

which neocognitron was shown. But designing such network for 

a pattern which has curves and lines as features, like in 

the case of images of formant contour patterns in speech, 

becomes extremely cumbersome. Moreover the training patterns 



like Arabic numerals themselves do not have any noise. If 

noise itself is part of the pattern then the first stage of 

neocognitron itself filters out such information and cannot 

be used by subsequent stages. 

2.4 PREAITENTIVE ViSUAL PROCESSING: ISSUES AND APPROACHES 

There are two issues to be addressed in the design of 

neural architectures for preattentive visual processing. The 

first issue is to identify different types of preattentive 

visual processing. The second issue is to find neural 

principles useful for the design of neural architectures. In 

this section we discuss these issues. 

The biological visual process can be functionally 

segregated into visual perception and visual cognition[4]. 

The visual perceptual process extracts information about the 

geometry of the visual world and the visual cognitive process 

concerns with the recognition of familiar objects. The visual 

perception in biological visual system seems to be automatic, 

does not use any detailed knowledge of the visual patterns, 

and extracts properties of the visual input which are not 

immediately used for recognition. 

The visual perception is based on two interrelated 

processes: parallel processing of visual information carried 

out automatically by mechanisms determined by neuronal 

organization of the retina, lateral geniculate nucleus, and 

visual cortex; and sequential processing is related to image 



recognition mechanisms and is controlled by attention[27]. 

In the first process, detector properties of single neurons 

and local neuron nets are of primary importance. Here, 

orientation of edges and contour elements of the input image 

are extracted by these neurons. In the second process, eye 

movements are considered to be an essential factor. As a 

result of these movements, the most informative parts of 

the image are sequentially projected onto the fovea for fine 

processing[5,54]. 

Therefore, an adequate computer system forthe processing 

and analysis of visual information should include a 

preprocessor with a neural network architecture, simulating 

parallel information processing at low levels of the visual 

system, and a sequential type neural system tuning the 

preprocessor to obtain necessary information for image 

recognition. Development of the neural network preprocessor 

should be preceded by a study on neuronal organization of 

low level structures of the visual system, their mathematical 

modeling and computer simulation. 

Based on the observations about the visual perception, 

we have considered two possible approaches for processing 

binary images: The first approach extrac.ts primitive line 

segments from an input pattern and retains the spatial 

relationship between the features. In this processing the 

detector properties of individual neurons and their spatial 

locations are important. This architecture is implemented as 

an oriented filtering and integration network. In Chapter 3 



we discuss this architecture and its application for isolated 

word recognition. In the second approach the maximum 

information points from the input pattern are located. This 

is implemented using directed spreading activation layers. 

Spreading activation layers reported in the literature1371 

uses isotropic spreading of activation to carry out early 

vision tasks like feature clustering and feature centroid 

determination. The directed spreading activation layers 

proposed in Chapter 4 uses anisotropic or directed spreading 

of activation followed by maxima detection to locate maximum 

information points from the input image. 

Since preattentive visual processing is parallel, the 

neural network architectures have in their input stage two 

dimensional array of neurons and the input pattern is fed 

directly to this array. Also, since preattentive visual 

processing is purely data driven and does not use any detailed 

knowledge about the patterns, the neural computations must 

be from local data, i. e., each neuron receives its input from . 

local data only. Apart from the computations from local data, 

it is possible to have lateral interactions between neurons. 

In this work we show how neurocomputations from purely local 

data extract structural features, and local data computations 

with lateral interactions between neurons give rise to an 

architecture which extracts maximum information points. 



2.5 SUMMARY 

In this chapter we have discussed four theories about 

visual pattern description and recognition. We have reviewed 

some of the neural network principles and architectures for 

visual pattern recognition. Some aspects of the visual 

perception are presented. Based on these observations we have 

considered two approaches to preatterrtive visual processing. 

In the following chapters we discuss two neural architectures 

and applications based on these two architectures. 



Chapter 3 

ORIENTED FILTERING AND INTEGRATION NETWORK 

FOR STRUCTURAL FEATURE EXTRACTION 

3.1 INTRODUCTION 

In this chapter we present the design of the oriented 

filtering and integration network. This architecture extracts 

the structural features like straight line segments from the 

input image. This is similar to the first stage of 

neocognitron[l2], but differs in the implementation of the 

integrating network. We show how this network can be applied 

for recognizing isolated utterances of words from the images 

of formant contour patterns. Section 3-2 discusses the 

structural organization and functional characteristics of 

the oriented filtering and integration network. In Section 

3.3 we describe the design of a neural architecture for 

recognizing isolated utterances of words. 

3.2 ORIENTED FILTERING AND INTEGRATION NETWORK (ORFIN) 

This is a two stage hierarchical network as shown in 

Fig. 3.1. Each stage consists of a number of two 

dimensional array of neurons and these neurons are of analog 

type, i.e., the input output signals of the cells take 
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Fig3.1 This figure illustrates the structural organization of ORFIN. (a) shows the 
block diagram of ORFIN and (b) illustrates the interconnection between S-planes 
and C-planes. Outputs of two of the S-planes which have the same orientation of 
stimuli but trained differently are fed to corresponding C-planes. This is shown as 
outputs from two S-planes converging into a single C-plane. (c) illustrates examples 
of S-cells whose outputs are fed to corresponding C-cells. 



nonnegative analog values. The first stage is an oriented 

filtering network (also referred to as S-layer) which extracts 

line segments from the input pattern. The second stage is an 

integrating network (also referred to as C-layer) which 

integrates responses from overlapping fields of the output 

of the first stage. The computation in the second stage allows 

small variations in the positions of the line segments. 

In this architecture all the computations are carried 

out from local data only. These two stages are motivated by 

the orientation specificity shown by simple and complex cells 

in the visual cortex[23]. 

Functional characteristics and structural organization 

of this network are described in detail in the following 

sections. 

3.2.1 Design of Oriented Fiftering Metwork 

This network extracts line segments from the input pattern 

by filtering through a number of planes called S-planes. Each 

one of the S-planes consist of two-dimensional array of cells 

and each cell favors a specific orientation of preferred 

stimuli. There are two types of cells in the S-plane, called 

S-cells and Vs-cells. The S-cells receive input from either 

excitatory or inhibitory inputterminals. If the cell receives 

signals from excitatory input terminals the output of the 

cell will increase. On the other hand, a signal from 

inhibitory input terminal will suppress the cutput. Each 



input terminal has its own interconnection coefficient whose 

values are positive. These values determine the preference 

of the orientation of the cell. The output of the S-cell goes 

to a number of input terminals of next C-layer. 

The schematic diagram illustrating-the interconnections 

converging to a S-cell is summarized in Fig.3.2. Each one of 

the S-cells receives its inhibitory signal from the Vs-cell 

which causes the shunting effect. All the S-cells in the 

given S-plane are trained to respond for a specific 

orientation of stimuli. The Vs-cells are trained to recognize 

the absence of the specific orientation of stimuli. So if 

the input stimuli is exactly similar to the trained stimuli, 

then S-cells respond to its maximum and Vs-cells respond to 

its minimum. On the other hand, if the input stimuli is 

completely different then the S-cells respond to its minimum 

and Vs-cells respond to its maximum. 

Both S-cell and Vs-cell receive input interconnection 

from the same spatial distribution. All the other cells in 

the same cell- plane have input interconnection from the same 

spatial distribution and only the positions of the input 

cells to which their terminals are connected are shifted in 

parallel from cell to cell. Fig.3.3 is a schematic diagram 

illustrating the interconnections from this stage to the 

second stage. In this diagram for the sake of simplicity, 

only one cell is shown in each cell-plane. Each of these 

cells receive input interconnection from the cells within 

the area enclosed by circle in its preceding layer. 
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Let u(l),u(2),.,.u(N) be the exci~ator~ inputs and Vs be the 
" 

inhibitory input. Then the S-cell output is computed using 

the following equation: 

where u(n) and b represent the excitatory and inhibitory 

coefficients respectively, i(n) is the fixed weight pattern, 

Vs is the output of the VS cells and r is a constant. The 

characteristic behavior of S-cell is summarized in Fig.3.4. 

The function p ( )  is defined by the following equation: 

for x 2 0 

where is a positive cdnstant which determines the degree of 

saturation of the output. 

The output of Vs-cell is computed using the following 

equation : 

The fixed values of c(n) are determined so as to decrease 

monotonically with respect to the center and to satisfy 

c(n)  = 1.0. (Though c(n) is a two dimensional array for notational 

convenience it is denoted as a single dimensional array). 



Excitatory Inputs 

Inhibitory Input 

Fig. 3.4 Input-to-output characteristics of a S-cell. 



The input area for a S-cell is taken from a 3x3 array. 

In the 3x3 array twelve orientations are possible. These 

twelve orientations are shown in Fig.3.5. 

3.2.2 Design of Integration Network 

This network integrates responses from overlapping fields 

of the output of the first stage to tolerate small variations 

in the positions of the line segments. This network also 

consists of a number of planes called C-planes, and each 

C-plane consists of two dimensional array of cells. There 

are two types of cells, C-cells and Vc-cells in the C-planes. 

Both C-cells and Vc-cells receive input from the S-plane. 

C-cells receive inputs from S-cells and Vc-cells. Each C- 

cell has input interconnections leading from a group of 

S-cells and these interconnections are fixed and 

unmodifiable. All the S-cel'ls in the C-cells' connecting area 

extract the same stimulus feature from a slightly different 

positions on the input layer. The values of the 

interconnection between S-cells and C-cells are determined 

such a way that the C-cell will be activated whenever at 

least one of these S-cells is active. Vc-cells average the 

input from S-cells which have same orientation but trained 

differently. Fig. 3.6 shows some examples of the 

interconnection topology. Even if a stimulus pattern which 

has given a large response from the C-cell is shifted a little 

in position, the C-cell will still keep responding as before. 
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Fig. 3.5 Twelve line segments used to train S-cells. 

Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is 

responsible for handling small shifts in the input visual pattern. 



In other words, a C-cell responds to the same stimulus feature 

as the S-cells, but is less sensitive to the position of the 

stimulus feature. 

There are twelve orientations of stimuli in the S-layer. 

These are connected to the eight C-planes in the C-layer. 

The S-planes which have same orientation of stimuli but 

trained differently are fed to a single C-plane. This is 

illustrated in Fig.3.lb and 3.1~. This figure is illustrated 

for seven S-planes and five C-planes. Fig.3.lb shows how the 

interconnections between S-planes and C- planes are arranged. 

Some examples of S-cellsf outputs feeding C-cells are shown 

in Fig.3.l~. 

The output values of C-cells are computed using the 

following equation: 

where p ( )  is a function def in& by eqn(3.2), d(n) denotes the 

values of the interconnection topalogy, and Vc is the output 

of VC-cells. In this implementation d(n) is assigned a constant 

value. (In neocognitron [ 121 d(n) is assigned monotonically 

- decreasing values with respect to the center. The eqn(3.4) 

is also simplified and differs from neocognitron.) I/, is 

computed using the following equation: 



where k is the number of S-planes connected to a C-plane. 

To summarize the functional behavior, ORFIN extracts 

straight line segments with tolerance in their positions 

while retaining the spatial relationship between them. This 

generates profiles of the input pattern which can be used 

for recognition. In the following section we show how this 

preprocessing is useful for recognizing isolated utterances 

of words from the images of formant contour patterns. 

3.3 APPLICATION OF ORFIN FOR ISOLATED WORD RECOGNITION 

The isolated word recognition(1WR) systems reported in 

the literature consider parameters[42] like spectral 

coefficients, discrete Fourier transformed(DFT) spectrum, 

linear prediction coefficients(LPC) etc. as input for 

recognition. These parameters are extracted from the speech 

signal form the patterns and these patterns, are then matched 

by template matching techniques. The nonlinear temporal 

changes in these patterns are handled by using dynamic 

programming techniques like dynamic time warping[25,46] and 

probabilistic models like hidden markov models[43]. The 

success of the IWR systems depends on the choice of parameters 

and the technique adopted to match these parameters. 

Speaker independent isolated word recognition with these 

parameters has been attempted with partial success[47]. The 

reason for the partial success of the parametric 

representation used for speaker independent IWR systems can 



be ascribed to the parameters' inability to capture the 

features of the word. The utterances of the same word by two 

speakers show little similarity in the parametric form. But 

the same words show significant similarity in the gross 

features level in the spectrogram. Though there is a relative 

shift in the features depending on the speaker, there are 

common features between them. 

Formants are resonances of the vocal tract system. These 

formant values vary slowly and continuously with time. The 

formants carry information relating to the identification of 

the speech sounds. Changes in the formant values with time 

can be traced to obtain a formant contour. This formant 

contour reflects the movements of the articulators positioned 

in sequence. Even though different speakers utter the word, 

the articulatory movements need to be the same. Such formant 

contour represents the speech signal in the form of an image. 

Fig. 3.7 shows some examples of the images of formant contour 

patterns. In this work the images of formant contour patterns 

extracted from the speech signal are considered as input to 

the isolated word recognition system. 

In the images of the formant contours, the features are 

simple lines and curves and they undergo distortions and 

shifts depending on the utterance and speaker. Even for the 

same speaker these formant cont~ur patterns show variations. 

Here, both the absolute location and the relative arrangement 
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Fig. 3.7 Some examples of images of formant contour patterns are shown. 



of the features are significant. For example, depending on 

the vowel, the positions of the lines representing F1 and F2 

formant frequencies change. 

The formant contour of the same word undergoes changes 

in both time scale and frequency scale. This is reflected 

in changes in the shapes and lengths of the curves and straight 

lines. This results in a significant change in the binary 

pattern and a drastic change in the physical location of the 

pixels. So the image of the formant contour pattern cannot 

be used for simple template matching. However, at a higher 

level the curves and straight lines exist as specific features 

of the utterance. 

The approach adapted in this work attempts to preprocess 

the images of the formant contour to get an invariant 

representati~n. The distortions and shifts in the input 

pattern are processed by the preprocessing technique. Here 

we have attempted to use the oriented filtering and 

integration network for preprocessing the images of formant 

contour patterns. 

In the following section we describe a neural architecture 

for recognizing isolated utterances of words from the images 

of formant contours. 



3.3.1 Design of Isolated Word Recognition System 

The organization of the neural architecture proposed is 

shown in the Fig. 3.8. This system consists of two stages. 

The first stage is called Feature Extraction stage(FE) and 

the second stage is called Pattern Matching(PM) stage. 

Oriented filtering and integration network is used as FE 

stage. The small distortions and shifts of the features of 

the formant contours are preprocessed by this network to get 

an invariant representation. 

Since the formant contour image does not have any lines 

with angles above 45", all the orientations of stimuli above 

45" need not be considered. This eliminates five of the twelve 

orientations. So the number of S-planes in the S-layer in 

this system is seven responding to seven different 

orientations. The outputs of these S-planes are fed to five 

C-planes. The FE stage generates different profiles from the 

input image which are the outputs of C-planes of the 

integration network. 

The five C-planes generate five different profiles. These 

profiles are input to the PM stage (Fig. 3.9) . The PM stage 
is a hierarchical Adaptive Resonance Architecture[6]. It 

consists of two stages of ARTS in a hierarchy. First stage 

consists of five Simple Adaptive Classifiers called SAC-1. 

Each SAC-1 receives one of the profiles as input. It 

classifies the profile into a category. Each SAC-1 makes its 
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Fig. 3.9 Pattern Matching Stage is a hierarchical adaptive resonance 

architecture. SAC-1 categorizes the profiles. SAC-2 classifies based on the 

categorization done by SAC-1. 



decisions based purely on the specific profile it receives. 

The second stage is also a Simple Adaptive Classifier, called 

SAC-2. All the outputs of the SAC-1 are fed to SAC-2 and it 

merges the classification done by SAC-1 and identifies the 

input pattern. The Simple Adaptive Classifiers follow the 

adaptive resonance architecture (Fig.3.10) and the salient 

points of this architecture are summarized below. 

The main feature of adaptive resonance architecture is 

the adaptive resonance that occurs between the current input 

and learned expectations. In ART the system which carries 

out the adaptive resonance is called attentional subsystem, 

which consists of bottom-up and top-down adaptive filters. 

These filters are contained in pathways from a feature 

representation field (Fl) to a category representation field 

(F2) whose nodes undergo competitive-cooperative 

interactions. 

An auxiliary orienting subsystem controls the self 

organizing and recognizing capability of ART. When a new 

input is added at any time, the system would search the 

established categories. If an adequate match is found on the 

initial search cycle, the bottom-up weights would be refined 

if necessary to incorporate the new pattern. If no match is 

found and the full coding capacity is not exhausted a new 

category would be formed with previously uncommitted F2 nodes 

encoding the new input pattern. 
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The auxiliary orienting subsystem becomes active when a 

bottom-up input to FI fails to match the learned top-down 

expectation read-out by the active category representation 

at F2. In this case, the orienting subsystem is activated and 

causes rapid reset of the'active category representation at 

F2. This reset event automatically induces the attentional 

subsystem to proceed with a parallel search. Alternative 

categories are tested until either an adequate match is found 

or a new category is established. The search proceeds rapidly 

relative to the learning rate. Thus significant changes in 

the bottom-up and top-down adaptive filters occur only when 

a search ends and a matched FI pattern resonates within the 

system. 

The criterion for an adequate match between an input 

pattern and a chosen category template is adjustable in an 

ART architecture. The matching criterion is determined by a 

vigilance parameter that controls activation of the orienting 

system. Allotherth ingsbe ingequal ,  higher vigilance imposes 

a stricter matching criterion, which in turn partitions the 

input set into finer categories. Lower vigilance tolerates 

greater tbp-down/bottom-up mismatches at FI, leading in turn 

to coarser categories. 

Fig.3.10 illustrates the main components of ART module 

in detail. Field Fl of M nodes, with output vector 

X = ( x ~ $ ~  ,... qM), registers the input vector I = (11,12 ,..., IM). The 

bottom-up weights are denoted by q.. and top-down weights are 
'I 



denoted by zij. The index i is used for the feature 

representation nodes of the field Fl  and thg indexj is used 

for category nodes in the field F2. In the current 

implementation the input feature vector1 is a two dimensional 

vector for both SAC-1. and SAC-2. This is denoted as a single 

dimensional vector for convenience. The size of M for SAC-1 

is taken to be 32x32 and for SAC-2 is taken to be 5x15. 

~ a c h  F l  node can receive input from three sources: the 

bottom-up input, nonspecific gain control signals which is 

received by all the nodes at Fl  at the same time, and the 

top-down signals from the N nodes of F2 via an top-down 

adaptive filter. The nonspecific gain signals in SAC-2 are 

activated only after SAC-1 stabilizes the resonance activity. 

Therefore SAC-2 is inactive when SAC-1 is active. A node in 

F l  is said to be active if it generates an output* signal equal 

to 1 .  Output from inactive nodes equals 0. The 2/3 nrk [ 6 3 is 

realized in its simplest, dimensionless form as follows: 

2/3 The ith Fl  node is active if its net 

input exceeds a fixed threshold. Specifically, 

where term I, is the binary input, term gl is the binary 

N 
nonspecific Fl gain control signal, term CyjZji is the sum of 

j =l 

top-down signals yj via pathways with adaptive weights Zji, and 



k  is a constant such that 0 < k  < I .  In this implementation k  

is chosen to be 0.23 which is the least value computed by the 

C-cells of the integrating network. 

F1 aain control: The Fl gain control signal gl is defined by 

= { 1 if FO and I2 are active 
0 otherwise 

Since F2 activity inhibits Fl  gain 

1 if Ii = 1 xi = (3.8) 
0 otherwise 

If only one. of the F2 nodes are active eqn(3.6) reduces 

to the single term z.. so 
I' 

1 i f & =  l a n d z j i > k  
X i  ' (3.9) 

0 otherwise 

The case where two F2 noges are active at the same time 

has not occurred during our simulation. 

F2 U Let T. denote the total input from Fl to F2 
I 

node, given by 

where the zji denote the bottom-up adaptive weights. If some 

T, > 0, define the F2 choice index J by 

T, = max(T -j = I , . . . & )  
i' 

In the typical case, J is uniquely defined. Then the F2 

output vector y = (y1y2,.-..aN) obeys 



If two or more indicesj share maximal input, then they 

equally share the total activity. In the simulation this 

situation also never arouse because of the nature of the 

distinct categories of isolated words. 

The adaptive weights reach their new 

asymptote on each input presentation. The learning is gated 

by FI activity: that is, the adaptive weights z .  and qJ can 
11 

change only when the P F2 node is active. 

n learnina: When the y. gate opens then learning 
I 

of top-down weights z. begins and 2.. is attracted towards x i .  
li 11 

This is called outstar learning rule[l7]. Initially all z.. 
11 

are set to 1. The F2 activity vector can be described as 

I if F2 is inactive 
x ={ I+ZJ if the Sh node i~ active 

When node I is active, learning causes zJ = I+zj(ald)-1 where 

zj(01d) denotes zJ at the start of the input presentation. The 

first time an F2 node J becomes active, it is said to be 

uncommitted. In this case % = I  during learning. Thereafter 

node is said to be committed. 

Pottom - lap learnina. In simulations it is convenient to 
assign initial values to the bottom-up adaptive weights q.. 

I' 

in such a way that F2 nodes first become active in the order 



j =  1,2, ... N. This is done by choosing the bottom-up weights small 

but decreasing order. This is accomplished by letting q.. = a.  
11 I 

where al,al ,..., aN. 

Like the top-down weights vector zJ, the bottom-up weight 

vector qJ also becomes proportional to the F2 output vectoc 

x when the F2 node J is active. In addition the bottom-up 

weights are scaled inversely to 1x1, so that 
qu= (,3+IxI) 

where 0 > 0. During learning qJ is computed by 

I+ZJ (old) - 1 
" = p+( ~I+zJ (old)-'1 I 
Since learning depends on the few samples provided in 

the initial stages of the training the network, it is possible 

that from the training set provided it may not be possible 

for the system to generalize'for correct recognition. Hence 

the network is allowed to learn continuously even during the 

recognition phase. To facilitate such learning possible, the 

vigilance parameters are adjusted during recognition. 

3.3.2 Data Preparation 

A number of approaches are proposed to extract formant 

contours from the speech signal. Some of the approaches 

proposed extract the formant frequencies by linear prediction 

analysis or fromcepstrum. Another approach to extract formant 

frequency from speech signal is usinggroup delay function[l9] 



which is the negative derivative of the Fourier transform 

phase. The group delay function derived from the Fourier 

transform phase of a signal has two important properties, 

namely, additive and high resolution. Hema[l9] has proposed 

a technique for formant extraction from group delay function 

using these properties. From the group delay the formant 

frequencies are picked using a simple peak picking method. 

In this work the formant contour is extracted from the speech 

signal using the above technique. 

The speech signal is sampled at 10,000 samples per second. 

These samples are grouped into blocks of 256 samples. Each 

block is processed through the group delay formant extraction 

technique. The next block is chosen by shifting 32 samples. 

This processing generates the image of the formant contour. 

This image should be preprocessed before feeding into the 

proposed system. There are number of issues to be addressed 

for preprocessing the images. 

The first issue is to normalize the temporal variations 

in the image. Depending on the time taken for uttering the 

word the length of the x-axis of the image changes. Since 

the input to the proposed system is a fixed two-dimensional 

array of visual pattern, the formant contour should be 

normalized before feeding into the system. This essentially 

involves normalizing the duration of the uttered speech 

signal. In this work we have used a simple normalizing 

technique. The time expansion and compression is carried out 

in vowel regions of the uttered signal. The vowel region in 



the formant contours contains nearly horizontal lines. In 

these locations -the formant contours are compressed or 

expanded and normalized to specific size of the input. 

The second issue is to remove the noisy peaks in the 

image. A simple support point technique is used to remove 

the noisy pixels of the image. In this technique each point 

in the image is retained only if thelje are atleast 20 

neighboring points. The other issue is to process the 

discontinuities in the image. The same support point technique 

which is used above automatically corrects the 

discontinuities. 

3.3.3 Implementation Details and Results 

In the current implementation the S-layer in the FE stage 

consists of seven S-planes. The S-cells in these S-planes 

are tuned to seven different orientations. Each S-plane 

consists of 64x64 array of S-cells. The orientation for which 

each S-plane responds is already trained and the values are 

hard-coded into the program. Each pattern is a 3x3 array as 

shown in Fig. 3.5. Each S-cell receives its input from a window 

of size 3x3. The adjacent S-cell receives the input from an 

overlapping window. A number of parameters are used in 

eqn(3.1) and (3.2) for computing the outputs of S-cells. 

These parameters are fine tuned for a good performance. The 

value of r is taken tobe 1.7, b =  1, D = 0.5 anda = 0.333018. 



The C-layer in the FE stage consists of five C-planes. 

Each C-plane consists of 32x32 array of C-cells. The outputs 

of the S-planes are connected to the C-planes through the 

interconnection topology as shown in Fig.3.6. This topology 

is a 5x5 matrix for each C-plane and hardcoded into the 

program. Each C-cell receives its input from output of the 

S-plane having a window of size 5x5. This feature extraction 

phase finally generates five different profiles each of size 

32x32. These profiles are fed to the PM stage. An example of 

the outputs of C-planes for the utterance TWO are shown in 

Fig.3.11. 

Field F1 of SAC-1 is an array of size 32x32. Field F2 

has 15 category nodes for classification. All the five SAC-1 

classifiers together generate a two dimensional array of 

values of size 15x5 which is fed as input for SAC-2. Hence, 

in SAC-2 the field F2 has an array 15x5 input nodes. There 

are 10 category nodes in field F2 of SAC-2. 

There are two isolated word recognition tests conducted 

on this system. We have selected utterances of the digits 

for recognition. In the first test the system is tested with 

the utterances of a single speaker. The recognition results 

of the system for .a single speaker with 20 utterances of each 

digit, are shown in Table 3.1. The system was trained with 

three utterances of each word. 
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Table 3.1. Isolated Word Recognition System Test results 

for a single speaker 

In the second test the system is tested with isolated 

utterances of digits from two American speakers. The system 

is trained with two utterances each of the two speakers and 

tested with five utterances of each speaker. The results are 

shown in Table-2 and Table-3. 

Table 3.2. Isolated word recognition system test results 

for two speakers: Speaker-1 



Table 3.3 Isolated word recognition system test results 

for two speakers: Speaker-2 

From the tests conducted we observe that the system 

performs well for a single speaker for distinct words. Words 

like FIVE, EIGHT and NINE have the same dominant vowels and 

formant contour image for these words show similar horizontal 

lines. The system attempts to locate the distinct features 

of these words for classfication and shown good results, for 

example 16 out of 20 instances of FIVE are identified 

correctly. The s y s t e m m i s c l a s s i f i e s t h e s e w ~ r d s  in some cases. 

This may be attibuted to the limitation of using iamges of 

formant contour patterns which capture only the resonances 

of the system properly. In the second test also we observe 

misclassifications in those words where there is vowel 

domination. 



3.4 SUMMARY 

I n  t h i s  c h a p t e r  w e  have p re sen ted  t h e  d e s i g n  o f  t h e  

o r i e n t e d  f i l t e r i n g  and i n t e g r a t i n g  network f o r  s t r u c t u r a l  

f e a t u r e  e x t r a c t i o n .  W e  have a l s o  desc r ibed  an  a p p l i c a t i o n  of  

t h i s  a r c h i t e c t u r e .  A n e u r a l  a r c h i t e c t u r e  f o r  r e c o g n i t i o n  of  

u t t e r a n c e s  of i s o l a t e d  words from t h e  images o f  t h e  formant 

con tou r  p a t t e r n s  is presen ted .  W e  have d e s c r i b e d  t h e  

implementation d e t a i l s  of t h e  neu ra l  a r c h i t e c t u r e '  and a l s o  

p r e s e n t e d  t h e  test  r e s u l t s .  



Chapter 4 

DIRECTED SPREADING ACTIVATION LAYERS FOR 

LOCATING MAXIMUM INFORMATION POINTS 

4.1 INTRODUCTION 

In this chapter we present the design of directed 

spreading activation layers. This architecture extracts the 

maximum information points in the input image. We describe 

two applications of this architecture. In the first 

application we show how low level features can be extracted 

from the machine fonts. In the second application we show 

how transformation invariant binary pattern recognition can 

be achieved-using the maximum information points generated 

by this architecture. 

Spreading activation layers[37] has been used to carry 

out early vision tasks like feature clustering and feature 

centroid determination. However, studies reported in the 

literature use isotropic spreading of activation. In this 

chapter we discuss the drawbacks of the spreading activation 

layers for locating maximum information points.and propose 

a new directed spreading activation model. In Section 4.2 we 

describe the spreading activation layers. Section 4.3 

discusses the motivation for the directed spreading and 

Section 4.4 describes the design of the directed spreading 



activation model. We discuss the implementation details and 

examples in Section 4.5. In Section 4.6 and 4.7 we show some 

applications of these architectures. 

4.2 SPREADING ACTIVATION LAYERS 

Evidence for rapid diffusion like phenomena are found in 

the brightness and color domains of stabilized image 

experiments. Compelling evidence is provided by Yarbusts[54] 

experiments, in which color from the surround rapidly fills 

regions in which stabilized images have faded. These evidences 

are reported in the brightness domain. Butthe diffusion-like 

phenomena are used in both high level information processing 

models[2,26] and low level visual processing models 

also[14,15,37]. Spreading activation layers use this 

diffusion like phenomena for early vision tasks. 

Diffusion enhancement is a low level computational model 

which has been used in building a neural network vision 

system[37]. This model is used for learning and recognizing 

two-dimensional binary patterns invariant of their location, 

orientation and scale. The processing is divided into layers, 

each of which encompass many levels of neuron-like processing 

cells. This low level processing model carries out early 

vision tasks like feature extraction, feature clustering and 

feature centroid determination. In the following seczions we 

summarize the salient features of the spreading activation 

layers. 



4.2.1 Activity Dlffusion and Centroid Detection 

Consider a region R and an activation function A(R) 

defined over it at an initial time to. Let the function A(R) 

be binary values at to, either A, or 0, corresponding to 

locations where maximum information or the low level features 

on the binary image have been detected. The maximum 

information points are the high curvature points detected by 

a technique proposed by Rosenfeld[28]. Now let the activation 

diffuses locallythroughthe region according tothe classical 

diffusion equation: 

where k(R) accounts for the density and conductivity of the 

region. If k(R) = k this reduces to dA/dt = @A(R) a constant. 

If the total activation is held constant, then the locations 

with initial activation Asat begin to lose activation, while 

adjacent locations begin to gain activation. Due to 

superposition, areas near activation-rich locations gain 

activation more quickly than areas far from the 

activation-rich locations. Fig.4.1 plots the activity 

distribution surface as it spreads by the simple diffusion 

as described above. Activity spreads as the time progresses 

from to (Fig.4.la) until a global activity maximum emerges 

(Fig.4.ld), indicating the geometric centroid of the 

features. At an intermediate time various local maxima can 



Fig. 4.1 The activity distribution of the spreading activation fayer is plotted 
in Wee dimensions at four times: (a) at to as diffusion begins; @) at to', 
after a sbrt time; and much later in (c) a d  (d). In (d) the peak is located 
at the geometric centroid of the three features as shown in (a). 



Fig. 4.1 The activity distribution of the spreading activation layer is plotted 
in three dimensions at four times: (a) at to as diffusion begins; @) at tof. 
after a short time; and much later in (c) and (d). In (d) the peak is located 
at the geometric centroid of the three features as shown in (a). 



be located. Fig.4.2 shows the time sequence of two feature 

locations spreading, superimposing their tails, and finally 

merging at the centroid. This example is shown for one 

dimensional spreading. 

The activation distribution in the diffusion level 

defines a surface over a 2D plane. Extrema of activity are 

found in areas of positive curvature of the surface. The 

maximum is computed in neural networks by self-activation 

and competition. Using lateral inhibition, each element 

suppresses its neighbors according to its activation, while 

feeding back an excitatory activation to itself. This is 

accomplished using an on-center/off-surround recurrent 

receptive-field for each element. Among other properties, 

this type of network enhances[l6] the contrast of the activity 

distribution, or in the extreme case, leaves only the 

maximally acti-vated element on. This type of network along 

with spreading activation layers locates 'the feature centroid 

of the given feature points. 

4.22 Feature Extraction in Spreading Amation Layers 

Curvature along contours are useful for recognition of 

shapes from 2D images. Spreading activation layers may be 

used in locating the curvature along contours. Fig.4.3 shows 

the result of using spreading activation layers for locating 

a corner. The figure shows that the areas near high curvature 

points along the contour are easily found, since they receive 

superimposed activation from a greater number of locations 
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Fig. 4.2 As time progresses (a) to (f), the activrty distributions initially due to 
two features spread. As activity spreads the local maxima moves toward 
the centroid. The global maxima is stable at that point. 
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Fig. 4.3 A contour with a c o r m  shown in (a) is diffused in (b)-(d). Activity 
accumulates more $utdcly where the average distance to the features is 
least. As the diffusion progresses the activity maxima moves to the global 
centroid. Since maxima moves continuously it is difficult to determine when 
to stop diffusion to locate the peak at the comer. 



Fig. 4.3 A contour with a comer shown in (a) is diffused m (b)-(d). Activity 
accumulates more quickly where the average distance to the features is 
least. As the diffusion progresses the activity maxima moves to the global 
centroid. Since maxima moves continuously it is difficult to determine when 
to stop diffusion to locate the peak at the comer. 



than areas near straight contours. But a certain amount of 

care is required in using diffusion as a corner and contour 

termination points detector. If the diffusion is too short 

on a coarsely sampled image, then maxima will be detected 

for a short time. If the diffusion is too long, as the 

diffusion progresses, the maxima points merge together with 

real corners, and corners located around small features merge 

together. 

4.2.3 Centers of Focus of Attention 

Since initial activation function corresponds to 

locations where features have been located, the diffusion as 

it progresses form feature clusters. These feature clusters 

can be used as a center of focus of the saccadic controller 

of any visual system. Since the activation level of each 

maxima point depends on the density of features nearby, it 

may be used to prioritize the importance of feature area as 

a fixation point. The level of detail, and thus the size of 

the feature cluster, can be controlled by the extent in time 

of the diffusion process. For instance, if the diffusion 

results can be sampled before extensive feature clustering 

occurs, they will reflect small feature clusters and a high 

level of detail. If recognition using the clusters found at 

this fine level of detail is incomplete, the diffusion may 

be allowed to proceed, creating larger feature clusters. 

Hence, small scale organization emerges before large scale 

organization in a natural way. 



Fig.4.4 shows an example of the feature clustering in a 

binary image. The figure illustrates how small scale 

organization arises naturally before a large scale 

organization. These small local clusters are shown in 

different stages of spreading. 

Features can be separated from each other by merging into 

different activity groups. These different groups emerging 

as a function of time can be processed individually leading 

to piecewise support for recognizing a complete object, even 

in the presence of noise or occlusions. 

4.3 MOTIVATION FOR DIRECTED SPREADING 

4.3.1 Drawbacks of the Spreading Activation Layers flx Low tevei Feature 
Extraction 

The objective here is to use spreading activation layers 

for low level features or-.maximum information points 

extraction. In this section we discuss the drawbacks of using 

spreading activation layers for extracting low level 

features. 

The spreading activation layers is essentially employs 

an averaging process. When the input pattern is directly 

presented to the spreading activation layers, as the time 

progresses, the activation values of the individual neurons 

reflect the averaging process which takes place over two 

dimensional space. This kind of averaging is unconstrained , 



Fig. 4.4 Small scale organization of feature clusters emerges before large 
scale organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feaiure clustering at different times. 



Fig. 4.4 Small scale organization of feature clusters emerges before large 
scale organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feaiure clustering at different times. 



because there is neither a limiting factor nor a complementary 

mechanism to constrain the spreading of activation in both 

time and space. The local maxima formed as time progresses, 

represent various features and feature clusters in the image. 

As there is no constraint in the spreading it is very difficult 

to determine 'a priori8 when t'o stop the spreading process 

and identify features or feature clusters, since the peaks 

which are formed during the spreading slowly drift away 

towards the global centroid. Hence the main problem in using 

spreading activation layers for feature extraction is 

identifying the temporal event for stopping the spreading. 

The location of quasi-static points[37] during the 

spreading activation process has been proposed as a temporal 

event for determiningthe feature clusters. This quasi-static 

point method cannot be adopted to the low level feature 

extraction directly as the feature maxima tend to move 

continuously towards the global centroid. To overcome this 

problem the feature extraction phase and feature cluster 

identification phase are isolated in spreading activation 

layers. The feature points are detected by nonneural 

techniques and the feature map is considered as input for 

spreading instead of the direct input pattern. But the lines, 

curves and contour termination points which are not retained 

are very useful and significant as they contain information 

useful for invariant pattern recognition. When the 

eye/camera movement is used to identify the features located 

at the maxima points, the lines and contour termination points 



will be missed. Even though spreading activation layers is 

not successful in low level feature extraction, it can be 

successfully used for saccadic movement, once the maximum 

information points on the binary images are located. 

4.3.2 Basis for Directed Spreading Activation Model 

This drawback of the spreading activation layers' 

inability to detect the low level features like line segments, 

corners, curves and contour termination points correctly as 

part of the low level feature extraction can be attributed 

to mainly the unconstrained nature of spreading both 

temporally and spatially. In this section we discuss the 

basis for directed spreading which constrains the spreading 

spatially. The spreading takes place in specific 

predetermined directions and the directions specified by the 

input pattern. The directed spreading activation model 

locates the midpoints of lines of different lengths, curves 

and edge termination points in a purely datadriven manner. 

When the input binary pattern is subjected to 

unconstrained spreading, the maxima points are formed at the 

line segments, corners, curves and contour termination 

points. If the diffusion is too short then these feature 

maxima are not formed correctly. On the other hand, if the 

diffusion is long then they move towards each other and merge. 

The nonstationary nature of the feature maxima is due to the 

lateral influence of the adjacent feature maxima. 



The straight line segments and the corners may be 

considered as complementary features. Since the spreading is 

unconstrained these complementary feature peaks spread fast 

and become nonstationary. To avoid this lateral influence it 

is necessary to separate these complementary features. In 

this directed spreading activation model there are two 

surfaces which work in parallel and locate complementary 

features. One layer of neurons is sensitive to lines of 

different orientations and acts similar to Boundary Contour 

System(BCS) proposed by Grossberg[l4]. The second parallel 

layer of neurons is similar to Feature Contour System(FCS) 

and is sensitive to curves and contour terminations. By 

proposing constrained spreading activation simultaneously 

taking place in two functionally complementary neuron nets, 

we isolate the complementary features and hence prevent the 

lateral influence of the feature maxima points. 

4.4 DIRECTED SPREADING ACTNATLON (DSA) LAYERS 

In the directed spreading activation layers discussed in 

this section there are two layers each with different 

characteristic k(R). The first layer has k(R) defined for 

specific directions and spreading takes place only in these 

directions. It locates the midpoints of the line segments. 

The second layer receives its input from the first layer and 

the input binary pattern. In the second layer the spreading 

activation takes place in the direction specified by the 

activation values of the adjacent neurons. Hence the 



conductivity function k(R) of the region is directed by the 

data. This second layer detects curve centroids of all 

curvatures and contour terminations. Since the spreading in 

these two layers is spatially constrained there is no lateral 

influence between peaks, hence these peaks are always 

stationary and the movement is restricted to the directions 

specified within a layer. These two layers along with their 

maxima detectors locate midpoints of lines, curves, corners 

and contour terminations in a purely data-driven manner which 

can be used for eye/camera movement. 

4.4.1 Organization of DSA Layers 

The functional organization of the directed spreading 

activation layers is shown in Fig.4.5. It consists of two 

layers called L1 and L2 each of which consists of two 

dimensional array of neurons. In the case of ORFIN the layers 

are arranged in a hierarchy. In DSA both the layers receive 

the input simultaneously and send their outputs to a two 

dimensional array of neurons which locate the maxima points. 

The layer L2 also receives input from L1. These two layers 

with their maxima locating network locate the complementary 

features in the input image. L1 locates the midpoints of line 

segments and L2 locates other maximum information points like 

corners, curve segments and contour termination points. 
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4.4.2 Design of DSA Layers 

The first layer L1, consists of two dimensional array of 

hypercolumns[23]. A hypercolumn is a collection of 

orientation specific cells. Each cell in a hypercolumn 

responds to a specific orientation. The collection of cells 

is such that cells responding to all the orientations are 

available in a hypercolumn. In the current implementation 

each hypercolumn consists of a twelve directional detector 

neurons which respond to twelve different directions. A 

hypercolumn with twelve directional detectors is shown in 

Fig.4.6. These hypercolumns receive their input from the 

input binary pattern. The outputs of all the directional 

detector neurons are totally connected and these links have 

a small negative value. Hence when the input is presented 

each hypercolumn act like a winner take all network as shown 

in Fig. 4.7. As a result, even though the directional detectors 

respond to partial line segments, the one which has the 

maximum response survives. All the directional detectors 

belonging to a hypercolumn receive their input from a fixed 

window of the input pattern. Adjacent hypercolumns receive 

their input from overlapping windows. 

The general structure of the directional detectors is 

essentially the same as that of the S-cells described in 

Section 3.2.1. Each directional detector has two types of 

cells, excitatory cells (ECs) and the inhibitory cells (ICs) 

that occur in pairs. Each pair receives the same input set. 
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The ICs have fixed excitatory weights with values such that 

the output of the ICs is proportional to the mean intensity 

value over the input. The activation function of the ICs that 

produces this mean value is a simple weighted sum: 

where the cl(i) values are determined by a function that 

decreases monotonically with distance from the center of the 

connectable area and sums to 1. The mean value vl is used as 

inhibition to the paired EC, which generates an output 

according to the equation: 

where the weights a, and b are modifiable weights, r represents 

the efficacy nf the inhibitory synapse and the transfer 

function is a piecewise linear function according to: 

The functional characteristics of directional detector 

is summarized in Fig.4.8. 

The directional detectors which have the same directional 

sensitivity of neighboring hypercolumns are connected by a 

link. An example of the hypercolumns connected through the 

links is illustrated in Fig. 4.9. In the illustration six 

hypercolumns with each hypercolumn having only four 

directional detectors are shown. The directed spreading takes 



place through these links. Hence the k(R) defined for L1 is 

sensitive to the direction. The output of the layer L1 is 

connected to the maxima detector. This network is a simple 

on-center/off-surround network to detect maxima. Each maxima 

detector cell suppresses the neighboring neurons according 

to its activation and feeds back excitatory activation to 

itself. 

The second layer L2 also consists of two-dimensional 

array of neurons. These cells are connected to all their 

neighbors by links. Each neuron receives its activation from 

the input and the first layer according to the following 

equation: 

L2ry = Ixy - LL;y (4.5) 

where L2x,y is the activation value fed to the neuron of L2, 

I x ,  is the input binary pattern and Llxy  is the activation 

values of L1. From the equation it is clear that the second 

layer receives complement of the first layer output over the 

input binary pattern. All the inputs and outputs of a single 

neuron in L2 is shown in Fig.4.10. Since the first layer 

detects all the lines and diffuses them, the second layer 

receives activations at corners, curves of all curvatures 

other than straight lines and contour terminations. In layer 

L2, the spreading takes place between only the active 

neighboring neurons. So the corner, curve and contour 
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termination centroids are enhanced. The output of L2 is fed 

to the maxima detector and the maxima detector locates the 

enhanced peaks of L2. 

Rapid eye movements (saccades) driven by the locations of 

maximum information points play an important role in the 

establishment of spatial relations. The absolute and relative 

positions of the peaks located by L1 and L2 of this system 

can be considered as bottom-up cues for the eye/camera 

movement to establish the spatial relationships. The peak 

strength shows the length of a line or a curve at that 

position. The onf pixels around the fixed window of the peak 

is useful for identification of the feature at the peaks. 

4.5 IMPLEMENTATION DETAILS AND EXAMPLES 

The input visual pattern is a 32x32 two-dimensional array 

of binary values. There are twelve directional detectors in 

the hypercolumn structure as shown in Fig.4.6. These 

directional detectors compute their activation values 

following the eqn(4.3) . The parameters for the directional 
detectors are fine tuned and these values are r = 1.7 and b 

= 1.0. 

The L1 layer receives the maximum value of each 

hypercolumn. This L1 layer is implemented in an array of size 

31x31, giving an offset of one for computing the directional 

detectors. The directional spreading takes place in L1 layer. 
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The spreading activation coefficient k is taken to be 0.005. 

The L2 layer receives the complement of L1 over the input 

array. 

Fig.4.11 shows an example of the input binary pattern 

for which maximum information points are generated. 

Figs. 4. llb to 4.11e show the outputs of different layers. 

Fig. 4. lla shows the input pattern for which maximum 

information points are to be located. Fig.4.llb shows the 

spreading taken place in specific directions. The centers of 

the line segments have the maximum activation which is shown 

in Fig. 4.11 c. Fig. 4. lld shows the complementary of L1 values 

to the input image. Since the adjacent values to these corners 

are very large in L1 layer, the comlpement becomes too small 

and hence the adjacent values are not seen in Fig.4.lld. In 

this binary pattern the maximum information points are the 

corners. These points are automatically located by the 

architecture and is shown in Fig. 4. lle. It can be observed 

that even though this architecture does not have any corner 

or any other template, it locates the corners and other 

maximum information points automatically, This is an 

advantage for locating low level features from machine fonts 

which is illustrated in the next section. Fig.4.12 shows 

another example of low level feature extraction from another 

binary pattern. 



(a) Input Binary Image (b) Layer L1 output values 

(c) Maxima points in L1 (d) Layer L2 output values 

( e )  Maximum information points for the input image 

Fig. 4.11 Example-I. Outputs of different stages of directed spreading 
activation layers for a square. 
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Fig. 4.12 Example-2. Outputs of different stages of directed spreading 
activation layers for the jeep shown in (a). 



4.6 APPLICATION OF DSA LAYERS TO LOW LEVEL FEATURE 
EXTRACTION FROM MACHINE FONTS 

In this section an application of the directed spreading 

activation layers is discussed. The application considered 

is low level feature. extraction from machine printed fonts 

for recognition. This is one of the cases of visual patterns 

where low level feature extraction can carry out significant 

amount of data reduction in a purely data-driven manner. 

Machine recognition of characters continues to be a 

problem even when the number of characters is limited, and 

the characters are restricted to machine printed characters. 

When the machine printed character set involves different 

fonts, it becomes very difficult to design a recognition 

system which works for all the fonts. The brute force approach 

to this problem could be to store all possible characters of 

all fonts in the long term memory and compare them with the 

test input one by one. This not only requires a large amount 

of long term memory but also the comparison time increases 

exponentially as the number of fonts to be recognized 

increases. 

In all the previous approaches for machine font 

recognition, the low level features are fixed 'a priorit. In 

other words the feature extraction phase is model driven. 

Generally these features are small straight line and curve 

segments. Since these low level feat

u

res are fixed, 

significant amount of information is lost in the feature 



extraction phase resulting in the reduction of recognition 

accuracy. Attempting to extract all the features with this 

approach involves not only manual extraction of low level 

features from all the fonts but also large amount of storage 

space and comparison time. The ideal case would be to find 

a mechanism to evolve these features from the data itself. 

Then all the features can be captured without any loss. 

The directed spreading activation discussed in the last 

section could be used successfully for this problem. Directed 

spreading activation layers locate the low level features 

like straight lines, curves, corners and contour termination 

points in a purely data-driven manner. From these locations 

the low level features can be extracted. There are other 

advantages to the low level feature extraction by the directed 

spreading activation. The low level feature extraction by 

direcged spreading activation layers is translation 

invariant. Hence the low level features from fonts located 

at any part of the input visual pattern can be extracted. 

Some examples of extracting low level features from printed 

alphabets are shown in Fig.4.13. 

The feature map which is generated from the locations of 

the low level features can be used for invariant 

representation. Since the feature map is a compressed 

representation of each one of the characters, this can be 

used for scale, rotation and translation invariant 

representation of the character and can be used for 

recognition. 



Fig. 4.13 This figure shows examples of low-level featr~res located for 
machine fonts. In each row the first block shows the input character. The 
second and third blocks show the outputs of layers L1 and L2. 



4.7 APPLICATION OF DSA L4YERS FOR TRANSFORMATION INVARIANT 
BINARY PATTERN RECOGNITION 

The maximum information points simplify the analysis of 

images by drastically reducing the amount of data to be 

processed while at the same time preserving important 

information about the object[l] . In this section we describe 
a method to recognize the binary image patterns subjected to 

affine transforms, from the maximum information points 

generated by the directed spreading activation layers. 

The maximum information points in the image space are 

denoted using complex notation as 

Z  = (x-xc) +i(y -yc) or Z  = ae io (4.6) 

where (Xc,Yc) is the location of the centroid, a = (21 , and 

8 = argZ. The conformal mapping, In Z, has the effect of 

transforming both rotation and scale effects to translations 

in the transformed space. If Z is multiplied by a scale factor 

a ,  then l n Z =  (ha)+( lna)  +ie and if Z is rotated through an 

angle D l  then 

In Z = In (ae ' ( O + P ) )  = ln o+i(e+p). 

Rotation around the centroid on the visual field becomes 

translation with respect to 8. Scaling becomes translation 

with respect to In a. Thus, if the centroid in the 8 and In 

a directions can be determined, then the effects of scaling 

and rotation can be eliminated by translating the log-polar 

space with respect to the centroid. The logarithmic 



transformation also has the desirable side effect of 

emphasizing the importance of the central visual area by 

compressing radially distant features when the input is 

uniformly sampled. The centroid in the log-polar space moves 

along with the features so that it stays in the same place 

with respect to the features. ' 

This transformation generates a two dimensional array of 

points which can be used for recognition using simple pattern 

matching technique. The pattern matching technique must take 

care of the small positional errors which arise due to the 

quantization errors. A possible limitation is that, as a 

result of rotation, features may move off the left or right 

edges of the log-polar map. A wrapping may occur due to the 

2n periodicity of the log-polar mapping. 

Fig.4.14 illustrates the log-polar mapping for scaled 

and rotated binary images. Figs.4.14a to 4.14~ show the 

normal, scaled and rotated binary images. The corresponding 

maximum information points located by DSA layers are shown 

in Figs.4.14d to 4.14f. Figs.4.14g to 4.14i show the log-polar 

mapping for the maximum information points. In these three 

images the x-axis is 8 and y-axis is In r. In Fig.4.14h it 

can be observed that this output is translated in the y-axis 

since the input image is scaled. Similar translation can be 

observed in Fig-4.14i where the input image is rotated. Here 

the translation has taken place with respect to 8 .  Fig.4.14j 

to 4.141 show the log-polar transformed images in which the 

effects of scaling and rotation are eliminated by translation 
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Fig. 4.14 This figure shows the scale and rotation invafiance achieved by the log-polar 
mapping. (a)-(c) show the normal, rotated and scaled binary images. The 
corresponding maximum information points generated by directed spreading 
activation layers are shown in (d)-(f). The log-polar mapping for the maximum 
information points of (d)-(f) is shown in (g)-(i). In (g)-(i) the x- axis is 8 and y-axis is 
In r. ($-(I) show the images inwhich the effects of scaling and rotation are eliminated. 



in the corresponding axes. Figs.4.15 to 4.17 show some more 

examples of log-polar transformed binary images. It can be 

observed that there are some distortions in the final 

translated image. This arises not only due to distortions in 

the shape of the input image and but also due to the 

quantization errors. 

4.8 APPLICATION OF DSA LAYERS TO IMAGES OF FORMANT 
CONTOUR PATTERNS 

DSA layers perform well in the class of patterns where 

the low level features are characterized well. In these 

situations the output of DSA layers can be used directly for 

recognition. On the other hand, for the class of patterns 

where the features are not characterized well, for example 

images of formant contour patterns, the output generated by 

DSA layers ca-nnot be immediately used for recognition. The 

other knowledge source about the patterns are required. 

Fig.4.18 shows the output of DSA layers for an image of 

a formant contour pattern. Fig. 4.18a shows the formant contour 

pattern for an isolated utterance of the word TWO. Fig.4.18b 

shows the midpoints of the straight line segments in the 

inputpatternandFig.18~ showsthemaximum information points 

located in the input pattern. It can be observed that 

processing carried out by DSA layers reduces the initial 

information significantly. But this processing has a number 

of disadvantages. The spurious formant values in the input 

pattern gets reflected as maximum information points which 



Fig. 4.15 Log-polar mapping for a binary image: Example-2. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 



Fig. 4.16 Log-polar mapping for a binary image: Example-3. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 



, . 
Fig. 4.17 Log-polar mapping for a binary image: Example-4. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 



(a) Formant Plot:.Two (b) Output of Layer L1 

(c) Output of Layer L2 

Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows the 
formant contour pattern for the utterance TWO. (b) shows the midpoints of the 
straight line segments and (c) shows the maximum information points located by 
DSA layers. 



are difficult to eliminate in the later stages. The 

discontinuities in the line segments due to missing formant 

also affect significantly leading to multiple maximum 

information points. Hence it is necessary to get a formant 

contour pattern which is free from noise and discontinuities. 

This requires some issues which need to be addressed at the 

time of extraction of formant contour itself. 

The problem in the extraction of formants from the speech 

signal can be attributed to the block processing. Block 

processing processes the speech signal by blocks containing 

fixed number of samples. This block processing assumes that 

the input signal is stationary which implies that the formants 

do not change within the block. But speech signal is 

nonstationary and formant frequencies undergo change in a 

much shorter time especially during formant transitions. 

Using smaller block size leads to poor frequency resolution 

which affectsthe accuracy ofthe extracted formant frequency. 

The other approach is to use pitch synchronous analysis. Here 

we assume that the signal is stationary for one pitch period. 

But reliable pitch extraction is also very difficult. 

In this work we have attempted processing synthetic 

formant contour patterns. Fig.4.19 shows the processing of 

synthetic formant contour patterns using DSA layers. 

Figs.4.19a to 4.19~ show some synthetic formant contour 

patterns. Figs.4.19d to 4.19e show the midpoints of straight 

line segments and Figs.4.19f to 4.19h show the maximum 



Fig. 4.19 This figure shows the output of DSA layers for processing synthetic formant 
contour patterns. (a)-(c) show examples of synthetic formant contour patterns. (d)-(e) 
show the midpoints of straight line segments and (f)-(h) show the maximum 
information points generated from these synthetic formant patterns. These 
information points may be used as features for developing a recognizer. 
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information points generated from the synthetic formant 

pattern. These information points may be used as features 

for developing a recognizer. 

4.9 SUMMARY 

In this chapter we have proposed a new neural architecture 

for automatic location of maximum information points. The 

spreading activation layers and its utility for early vision 

tasks were discussed. The difficulty in using the spreading 

activation layers for low level feature extraction was 

explained. We have pointed out the importance of the directed 

spreading for low level feature extraction, and described a 

new directed spreading activation model. Two applications of 

the model, low level feature extraction for machine fonts 

and transformation invariant binary pattern recognition were 

also discussed. 



Chapter 5 

SUMMARY AND CONCLUSIONS 

Visual pattern recognition can be considered as 

consisting of two stages: (i) a preprocessing stage which 

primarily concerns with the data reduction by extracting 

geometric properties like straight lines and corners and (ii) 

a recognition stage which recognizes the familiar.objects. 

Preattentive visual processing concerns with extracting 

geometric properties from input image with parallel, 

automatic and data-driven mechanisms. Artificial neural 

networks with their parallel, nonsymbolic, fault tolerant. 

computing are useful to achieve preattentive visual 

processing. In this thesis we have developed neural network 

architectures for extracting geometric properties from binary 

images. 

Since artificial neural networks are reminescent of 

biological neural mechanisms they attempt to derive 

motivation from biological systems and model their structural 

and functional characteristics. Neurophysiologica1 and 

visual perceptual evidences reported in the literature are 

useful for such modelling. The main motivation of our design 

of the neural networks for preattentive visual processing 

has come from some aspects of visual perception in biological 

visual system. Based on the observations we have proposed 

two approaches for preattentive visual processing and we have 



proposed two architectures based on these two approaches. 

First approach extracts straight line segments fromthe input 

image and this was implemented in an oriented filtering and 

integration (ORFIN) network. Second approach extracts the 

maximum information points from the input image and this was 

implemented in directed spreading activation(DSA) layers. 

Though these two architectures are functionally totally 

different we have shown in this thesis that these two differ 

in a simple neurocomputing property like lateral interaction. 

ORFIN is a two-stage hierarchical network which does not have 

any lateral interaction or coopeartion between adjacent 

neurons. DSA layers have two-stages which receive the input 

parallely and have lateral interaction between adjacent 

neurons. One of the layers has lateral interaction depending 

on the direction and the other layer has lateral interaction 

depending on the input data. 

We have considered some applications for these 

architectures. The first application is recognizing the 

isolated utterances of words from the images of formant 

contour patterns. Here the problem is to get an invariant 

representation from the input binary image. We have used 

ORFIN to preprocess to get an invariant representation from 

the input image. The recognition in this case is implemented 

using a two-stage hierarchical adaptive resonance 

architecture. We have tested the system with isolated 



u t t e r a n c e s  of  d i g i t s .  W e  have conducted two tests, wi th  a  

s i n g l e  speake r  and wi th  m u l t i p l e  speake r s  and t h e  t e s t  r e s u l t s  

a r e  shown. 

The o t h e r  a p p l i c a t i o n  u s e s  t h e  DSA l a y e r s .  DSA l a y e r s  

e x t r a c t  maximum informat ion  p o i n t s  from t h e  i n p u t  image and 

a t  t h e s e  p o i n t s  t h e r e  a r e  low l e v e l  f e a t u r e s  l i k e  c o r n e r s ,  

cu rves  and c o t o u r  t e rmina t ion  p o i n t s .  Hence t h e  o u t p u t  of 

DSA l a y e r s  can  be  used i n  two ways. One way is t o  u s e  t h e  

low l e v e l  f e a t u r e s  f o r  r ecogn iz ing  t h e  i n p u t  p a t t e r n .  Th i s  

approach works s u c c e s s f u l l y  i n  images where t h e  low l e v e l  

f e a t u r e s  a r e  c h a r a c t e r i z e d  w e l l ,  f o r  example machine f o n t s .  

W e  have shown examples of such low l e v e l  f e a t u r e  e x t r a c t i o n  

from machine f o n t s .  The o t h e r  way is t o  u se  t h e  s p a t i a l  

r e l a t i o n s h i p  between d i f f e r e n t  p a r t s  o f  t h e  image by us ing  

on ly  t h e  l o c a t i o n s  of  t h e  maximum informat ion  p o i n t s .  W e  have 

a l s o  shown i n  t h i s  t h e s i s  a  methodology t o  r ecogn ize  a f f i n e  

t ransformed images from t h e  maximum in fo rma t ion  p o i n t s  

gene ra t ed  by t h e  DSA l a y e r s .  



LIST OF FIGURES 

Fig. 3.1 This figure illustrates the structural organization of ORFIN. (a) shows 
the block diagram of ORFIN and (b) illustrates the interconnection 
between S-planes and C-planes. Outputs of two of the S-planes which 
have the same orientation of stimuli but trained differently are fed to 
corresponding C-planes. This is shown as outputs from two S-planes 
converging into a single C-plane. (c) illustrates examples of S-cells 
whose outputs are fed to corresponding C-cells. 

Fig. 3.2 Interconnections converging70 a S-cell. 

Fig. 3.3 Schematic diagram illustrating the interconnections between the two 
stages. 

Fig. 3.4 Input-to-output characteristics of a S-cell. 

Fig. 3.5 Twelve line segments used to train S-cells. 

Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is 
responsible for handling small shifts in the input visual pattern. 

Fig. 3.7 Some examples of images of formant contour patterns. 

Fig. 3.8 Neural architecture for recognizing isolated utterances of words. First 
stage extracts structural features using ORFIN. Second stage 
implements two-stage Simple Adaptive Classifiers for recognition. 

Fig. 3.9, Pattern Matching stage is a hierarchical adaptive resonance network. 
SAC-1 categorizes the profiles. SAC-2 classifies based on the 
categorization done by SAC- 1. 

Fig. 3.10 ART 1 Schematic diagram 

Fig. 3.11 Image of a formant contour pattern compressed into 64x64 array is 
shown in (a). The output values of the five C- planes are shown for the 
example input pattern. The size of the block in (b)-(f) indicates the 
value of C-cell at that point. 



Fig. 4.1 

Fig. 4.2 

Fig. 4.3 

Fig. 4.4 

Fig. 4.5 

Fig. 4.6 

Fig. 4.7 

Fig. 4.8 

Fig. 4.9 

Fig. 4.10 

Fig. 4.11 

Fig. 4.12 

The activity distribution of the spreading activation layers is plotted in 
three dimensions at four times: (a) at to +after a short time; and much 
later in (c) and (d). In (d) the peak is located at the geometric centroid 
of the three features as shown in (a). 

As time progresses (a) to (f), the activity distributions due to two 
features spread: As activity spreads the local maxima moves toward the 
centroid. The global maxima is stable at that point. 

A contour with a corner shown in (a) is diffused in (b)-(d). Activity 
accumulates more quickly where the average distance to the features 
is least. As the diffusion progresses the activity maxima moves to the 
global centroid. Since maxima moves continuously it is difficult to 
determine when to stop locate the peak at the corner. 

Small scale organization of feature clusters emerges before large scale 
organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feature clustering at different 
times. 

Directional spreading neural network 

Layer one: Hypercolumn Input 

Layer one: Hypercolumn Output 

Characteristics of a Directional detector 

Illustration of links between hypercolumns 

Inputloutput of a neuron in L2. 

Example- 1: Outputs of different stages of directed spreading activation 
layers for a square. 

Example-2: Outputs of different stages of directed spreading activation 
layers for a jeep shown in (a). 



Fig. 4.13 This figure shows examples of low-level features located for machine 
fonts. In each row the first block shows the input character. The second 
and third blocks show the outputs of layers L1 and L2. 

Fig. 4.14 This figure shows the scale and rotation invariance achieved by the 
log-polar mapping. (a)-(c) show the normal, rotated and scaled binary 
images. The corresponding maximum information points generated by 
directed spreading activation layers are shown in (d ) - ( f ) .  (g)-(i) show 
the log-polar mapping for the maximum information points of (d)-(f). 
In (g)-(i) the x-axis is 8 and y-axis is In r. 6)-(1) show the images in which 
the effects of scaling and rotation are eliminated. 

Fig. 4.15 Log-polar mapping for a binary image: Example-2. (a)- (c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (f)-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and rotation 
are eliminated. 

Fig. 4.16 Log-polar mapping for a binary image: Example-3. (a)- ( c )  show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (0-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and'rotation 
are eliminated. 

Fig. 4.17 Lug-polar mapping for a binary image: Example-4. (a)- (c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (f)-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and rotation 
are eliminated. 

Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows 
the formant contour pattern for the utterance TWO. (b-) shows the 
midpoints of the straight line segments and (c) shows the maximum 
information points located by DSA layers. 



Fig. 4.19 This figure shows the output of DSA layers for processing synthetic 
formant contour patterns. (a)-(c) show examples of synthetic formant 
contour patterns. (d)-(e) show the midpoints of straight line segments 
and (0-(h) show the maximum information points generated from 
these synthetic formant patterns. These information points may be used 
as features for developing a recognizer. 

LIST OF TABLES 

Table 3.1 Isolated Word Recognition System test results for a single speaker. 

Table 3.2 Isolated Word Recognition System test results for two speakers: 
Speaker-1. 

Table 3.3 isolated Word Recognition System test results for two speakers: 
Speaker-2. 
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(a) input Binary Image 


(c) Maxima points in L1 


I 1 
(b) Layer L1 output values 


(d) Layer L2 output values 


- -- - - 


(e) Maximum information points for the input image 


Fig. 4.1 1 Example-I. Outputs of different stages of directed spreading 
activation layers for a square. 







(a) Input Binary Iniage 


(c) Maxima points in Ll 


(b) Layer L1 output values 


I I 


. (d) Layer L2 output values 


(e) Maximum information points for the input image 


Fig. 4.12 Example-2. Outputs of different stages of directed spreading 
activation layers for the jeep shown in (a). 







4.6 APPLICATION OF DSA LAYERS TO LOW LEVEL FEATURE 
EXTRACTION FROM MACHINE FONTS 


In this section an application of the directed spreading 


activation layers is discussed. The application considered 


is low level feature. extraction from machine printed fonts 


for recognition. This is one of the cases of visual patterns 


where low level feature extraction can carry out significant 


amount of data reduction in a purely data-driven manner. 


Machine recognition of characters continues to be a 


problem even when the number of characters is limited, and 


the characters are restricted to machine printed characters. 


When the machine printed character set involves different 


fonts, it becomes very difficult to design a recognition 


system which works for all the fonts. The brute force approach 


to this problem could be to store all possible characters of 


all fonts in the long term memory and compare them with the 


test input one by one. This not only requires a large amount 


of long term memory but also the comparison time increases 


exponentially as the number of fonts to be recognized 


increases. 


In all the previous approaches for machine font 


recognition, the low level features are fixed 'a priorit. In 


other words the feature extraction phase is model driven. 


Generally these features are small straight line and curve 


segments. Since these low level feat


u


res are fixed, 


significant amount of information is lost in the feature 







extraction phase resulting in the reduction of recognition 


accuracy. Attempting to extract all the features with this 


approach involves not only manual extraction of low level 


features from all the fonts but also large amount of storage 


space and comparison time. The ideal case would be to find 


a mechanism to evolve these features from the data itself. 


Then all the features can be captured without any loss. 


The directed spreading activation discussed in the last 


section could be used successfully for this problem. Directed 


spreading activation layers locate the low level features 


like straight lines, curves, corners and contour termination 


points in a purely data-driven manner. From these locations 


the low level features can be extracted. There are other 


advantages to the low level feature extraction by the directed 


spreading activation. The low level feature extraction by 


direcged spreading activation layers is translation 


invariant. Hence the low level features from fonts located 


at any part of the input visual pattern can be extracted. 


Some examples of extracting low level features from printed 


alphabets are shown in Fig.4.13. 


The feature map which is generated from the locations of 


the low level features can be used for invariant 


representation. Since the feature map is a compressed 


representation of each one of the characters, this can be 


used for scale, rotation and translation invariant 


representation of the character and can be used for 


recognition. 







Fig. 4.13 This figure shows examples of low-level featr~res located for 
machine fonts. In each row the first block shows the input character. The 
second and third blocks show the outputs of layers L1 and L2. 







4.7 APPLICATION OF DSA L4YERS FOR TRANSFORMATION INVARIANT 
BINARY PATTERN RECOGNITION 


The maximum information points simplify the analysis of 


images by drastically reducing the amount of data to be 


processed while at the same time preserving important 


information about the object[l] . In this section we describe 
a method to recognize the binary image patterns subjected to 


affine transforms, from the maximum information points 


generated by the directed spreading activation layers. 


The maximum information points in the image space are 


denoted using complex notation as 


Z  = (x-xc) +i(y -yc) or Z  = ae io (4.6) 


where (Xc,Yc) is the location of the centroid, a = (21 , and 


8 = argZ. The conformal mapping, In Z, has the effect of 


transforming both rotation and scale effects to translations 


in the transformed space. If Z is multiplied by a scale factor 


a ,  then l n Z =  (ha)+( lna)  +ie and if Z is rotated through an 


angle D l  then 


In Z = In (ae ' ( O + P ) )  = ln o+i(e+p). 


Rotation around the centroid on the visual field becomes 


translation with respect to 8. Scaling becomes translation 


with respect to In a. Thus, if the centroid in the 8 and In 


a directions can be determined, then the effects of scaling 


and rotation can be eliminated by translating the log-polar 


space with respect to the centroid. The logarithmic 







transformation also has the desirable side effect of 


emphasizing the importance of the central visual area by 


compressing radially distant features when the input is 


uniformly sampled. The centroid in the log-polar space moves 


along with the features so that it stays in the same place 


with respect to the features. ' 


This transformation generates a two dimensional array of 


points which can be used for recognition using simple pattern 


matching technique. The pattern matching technique must take 


care of the small positional errors which arise due to the 


quantization errors. A possible limitation is that, as a 


result of rotation, features may move off the left or right 


edges of the log-polar map. A wrapping may occur due to the 


2n periodicity of the log-polar mapping. 


Fig.4.14 illustrates the log-polar mapping for scaled 


and rotated binary images. Figs.4.14a to 4.14~ show the 


normal, scaled and rotated binary images. The corresponding 


maximum information points located by DSA layers are shown 


in Figs.4.14d to 4.14f. Figs.4.14g to 4.14i show the log-polar 


mapping for the maximum information points. In these three 


images the x-axis is 8 and y-axis is In r. In Fig.4.14h it 


can be observed that this output is translated in the y-axis 


since the input image is scaled. Similar translation can be 


observed in Fig-4.14i where the input image is rotated. Here 


the translation has taken place with respect to 8 .  Fig.4.14j 


to 4.141 show the log-polar transformed images in which the 


effects of scaling and rotation are eliminated by translation 







I"; 
fl 


I-; 


Fig. 4.14 This figure shows the scale and rotation invafiance achieved by the log-polar 
mapping. (a)-(c) show the normal, rotated and scaled binary images. The 
corresponding maximum information points generated by directed spreading 
activation layers are shown in (d)-(f). The log-polar mapping for the maximum 
information points of (d)-(f) is shown in (g)-(i). In (g)-(i) the x- axis is 8 and y-axis is 
In r. ($-(I) show the images inwhich the effects of scaling and rotation are eliminated. 







in the corresponding axes. Figs.4.15 to 4.17 show some more 


examples of log-polar transformed binary images. It can be 


observed that there are some distortions in the final 


translated image. This arises not only due to distortions in 


the shape of the input image and but also due to the 


quantization errors. 


4.8 APPLICATION OF DSA LAYERS TO IMAGES OF FORMANT 
CONTOUR PATTERNS 


DSA layers perform well in the class of patterns where 


the low level features are characterized well. In these 


situations the output of DSA layers can be used directly for 


recognition. On the other hand, for the class of patterns 


where the features are not characterized well, for example 


images of formant contour patterns, the output generated by 


DSA layers ca-nnot be immediately used for recognition. The 


other knowledge source about the patterns are required. 


Fig.4.18 shows the output of DSA layers for an image of 


a formant contour pattern. Fig. 4.18a shows the formant contour 


pattern for an isolated utterance of the word TWO. Fig.4.18b 


shows the midpoints of the straight line segments in the 


inputpatternandFig.18~ showsthemaximum information points 


located in the input pattern. It can be observed that 


processing carried out by DSA layers reduces the initial 


information significantly. But this processing has a number 


of disadvantages. The spurious formant values in the input 


pattern gets reflected as maximum information points which 







Fig. 4.15 Log-polar mapping for a binary image: Example-2. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 







Fig. 4.16 Log-polar mapping for a binary image: Example-3. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 







, . 
Fig. 4.17 Log-polar mapping for a binary image: Example-4. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 







(a) Formant Plot:.Two (b) Output of Layer L1 


(c) Output of Layer L2 


Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows the 
formant contour pattern for the utterance TWO. (b) shows the midpoints of the 
straight line segments and (c) shows the maximum information points located by 
DSA layers. 







are difficult to eliminate in the later stages. The 


discontinuities in the line segments due to missing formant 


also affect significantly leading to multiple maximum 


information points. Hence it is necessary to get a formant 


contour pattern which is free from noise and discontinuities. 


This requires some issues which need to be addressed at the 


time of extraction of formant contour itself. 


The problem in the extraction of formants from the speech 


signal can be attributed to the block processing. Block 


processing processes the speech signal by blocks containing 


fixed number of samples. This block processing assumes that 


the input signal is stationary which implies that the formants 


do not change within the block. But speech signal is 


nonstationary and formant frequencies undergo change in a 


much shorter time especially during formant transitions. 


Using smaller block size leads to poor frequency resolution 


which affectsthe accuracy ofthe extracted formant frequency. 


The other approach is to use pitch synchronous analysis. Here 


we assume that the signal is stationary for one pitch period. 


But reliable pitch extraction is also very difficult. 


In this work we have attempted processing synthetic 


formant contour patterns. Fig.4.19 shows the processing of 


synthetic formant contour patterns using DSA layers. 


Figs.4.19a to 4.19~ show some synthetic formant contour 


patterns. Figs.4.19d to 4.19e show the midpoints of straight 


line segments and Figs.4.19f to 4.19h show the maximum 







Fig. 4.19 This figure shows the output of DSA layers for processing synthetic formant 
contour patterns. (a)-(c) show examples of synthetic formant contour patterns. (d)-(e) 
show the midpoints of straight line segments and (f)-(h) show the maximum 
information points generated from these synthetic formant patterns. These 
information points may be used as features for developing a recognizer. 
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information points generated from the synthetic formant 


pattern. These information points may be used as features 


for developing a recognizer. 


4.9 SUMMARY 


In this chapter we have proposed a new neural architecture 


for automatic location of maximum information points. The 


spreading activation layers and its utility for early vision 


tasks were discussed. The difficulty in using the spreading 


activation layers for low level feature extraction was 


explained. We have pointed out the importance of the directed 


spreading for low level feature extraction, and described a 


new directed spreading activation model. Two applications of 


the model, low level feature extraction for machine fonts 


and transformation invariant binary pattern recognition were 


also discussed. 







Chapter 5 


SUMMARY AND CONCLUSIONS 


Visual pattern recognition can be considered as 


consisting of two stages: (i) a preprocessing stage which 


primarily concerns with the data reduction by extracting 


geometric properties like straight lines and corners and (ii) 


a recognition stage which recognizes the familiar.objects. 


Preattentive visual processing concerns with extracting 


geometric properties from input image with parallel, 


automatic and data-driven mechanisms. Artificial neural 


networks with their parallel, nonsymbolic, fault tolerant. 


computing are useful to achieve preattentive visual 


processing. In this thesis we have developed neural network 


architectures for extracting geometric properties from binary 


images. 


Since artificial neural networks are reminescent of 


biological neural mechanisms they attempt to derive 


motivation from biological systems and model their structural 


and functional characteristics. Neurophysiologica1 and 


visual perceptual evidences reported in the literature are 


useful for such modelling. The main motivation of our design 


of the neural networks for preattentive visual processing 


has come from some aspects of visual perception in biological 


visual system. Based on the observations we have proposed 


two approaches for preattentive visual processing and we have 







proposed two architectures based on these two approaches. 


First approach extracts straight line segments fromthe input 


image and this was implemented in an oriented filtering and 


integration (ORFIN) network. Second approach extracts the 


maximum information points from the input image and this was 


implemented in directed spreading activation(DSA) layers. 


Though these two architectures are functionally totally 


different we have shown in this thesis that these two differ 


in a simple neurocomputing property like lateral interaction. 


ORFIN is a two-stage hierarchical network which does not have 


any lateral interaction or coopeartion between adjacent 


neurons. DSA layers have two-stages which receive the input 


parallely and have lateral interaction between adjacent 


neurons. One of the layers has lateral interaction depending 


on the direction and the other layer has lateral interaction 


depending on the input data. 


We have considered some applications for these 


architectures. The first application is recognizing the 


isolated utterances of words from the images of formant 


contour patterns. Here the problem is to get an invariant 


representation from the input binary image. We have used 


ORFIN to preprocess to get an invariant representation from 


the input image. The recognition in this case is implemented 


using a two-stage hierarchical adaptive resonance 


architecture. We have tested the system with isolated 







u t t e r a n c e s  of  d i g i t s .  W e  have conducted two tests, wi th  a  


s i n g l e  speake r  and wi th  m u l t i p l e  speake r s  and t h e  t e s t  r e s u l t s  


a r e  shown. 


The o t h e r  a p p l i c a t i o n  u s e s  t h e  DSA l a y e r s .  DSA l a y e r s  


e x t r a c t  maximum informat ion  p o i n t s  from t h e  i n p u t  image and 


a t  t h e s e  p o i n t s  t h e r e  a r e  low l e v e l  f e a t u r e s  l i k e  c o r n e r s ,  


cu rves  and c o t o u r  t e rmina t ion  p o i n t s .  Hence t h e  o u t p u t  of 


DSA l a y e r s  can  be  used i n  two ways. One way is t o  u s e  t h e  


low l e v e l  f e a t u r e s  f o r  r ecogn iz ing  t h e  i n p u t  p a t t e r n .  Th i s  


approach works s u c c e s s f u l l y  i n  images where t h e  low l e v e l  


f e a t u r e s  a r e  c h a r a c t e r i z e d  w e l l ,  f o r  example machine f o n t s .  


W e  have shown examples of such low l e v e l  f e a t u r e  e x t r a c t i o n  


from machine f o n t s .  The o t h e r  way is t o  u se  t h e  s p a t i a l  


r e l a t i o n s h i p  between d i f f e r e n t  p a r t s  o f  t h e  image by us ing  


on ly  t h e  l o c a t i o n s  of  t h e  maximum informat ion  p o i n t s .  W e  have 


a l s o  shown i n  t h i s  t h e s i s  a  methodology t o  r ecogn ize  a f f i n e  


t ransformed images from t h e  maximum in fo rma t ion  p o i n t s  


gene ra t ed  by t h e  DSA l a y e r s .  







LIST OF FIGURES 


Fig. 3.1 This figure illustrates the structural organization of ORFIN. (a) shows 
the block diagram of ORFIN and (b) illustrates the interconnection 
between S-planes and C-planes. Outputs of two of the S-planes which 
have the same orientation of stimuli but trained differently are fed to 
corresponding C-planes. This is shown as outputs from two S-planes 
converging into a single C-plane. (c) illustrates examples of S-cells 
whose outputs are fed to corresponding C-cells. 


Fig. 3.2 Interconnections converging70 a S-cell. 


Fig. 3.3 Schematic diagram illustrating the interconnections between the two 
stages. 


Fig. 3.4 Input-to-output characteristics of a S-cell. 


Fig. 3.5 Twelve line segments used to train S-cells. 


Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is 
responsible for handling small shifts in the input visual pattern. 


Fig. 3.7 Some examples of images of formant contour patterns. 


Fig. 3.8 Neural architecture for recognizing isolated utterances of words. First 
stage extracts structural features using ORFIN. Second stage 
implements two-stage Simple Adaptive Classifiers for recognition. 


Fig. 3.9, Pattern Matching stage is a hierarchical adaptive resonance network. 
SAC-1 categorizes the profiles. SAC-2 classifies based on the 
categorization done by SAC- 1. 


Fig. 3.10 ART 1 Schematic diagram 


Fig. 3.11 Image of a formant contour pattern compressed into 64x64 array is 
shown in (a). The output values of the five C- planes are shown for the 
example input pattern. The size of the block in (b)-(f) indicates the 
value of C-cell at that point. 







Fig. 4.1 


Fig. 4.2 


Fig. 4.3 


Fig. 4.4 


Fig. 4.5 


Fig. 4.6 


Fig. 4.7 


Fig. 4.8 


Fig. 4.9 


Fig. 4.10 


Fig. 4.11 


Fig. 4.12 


The activity distribution of the spreading activation layers is plotted in 
three dimensions at four times: (a) at to +after a short time; and much 
later in (c) and (d). In (d) the peak is located at the geometric centroid 
of the three features as shown in (a). 


As time progresses (a) to (f), the activity distributions due to two 
features spread: As activity spreads the local maxima moves toward the 
centroid. The global maxima is stable at that point. 


A contour with a corner shown in (a) is diffused in (b)-(d). Activity 
accumulates more quickly where the average distance to the features 
is least. As the diffusion progresses the activity maxima moves to the 
global centroid. Since maxima moves continuously it is difficult to 
determine when to stop locate the peak at the corner. 


Small scale organization of feature clusters emerges before large scale 
organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feature clustering at different 
times. 


Directional spreading neural network 


Layer one: Hypercolumn Input 


Layer one: Hypercolumn Output 


Characteristics of a Directional detector 


Illustration of links between hypercolumns 


Inputloutput of a neuron in L2. 


Example- 1: Outputs of different stages of directed spreading activation 
layers for a square. 


Example-2: Outputs of different stages of directed spreading activation 
layers for a jeep shown in (a). 







Fig. 4.13 This figure shows examples of low-level features located for machine 
fonts. In each row the first block shows the input character. The second 
and third blocks show the outputs of layers L1 and L2. 


Fig. 4.14 This figure shows the scale and rotation invariance achieved by the 
log-polar mapping. (a)-(c) show the normal, rotated and scaled binary 
images. The corresponding maximum information points generated by 
directed spreading activation layers are shown in (d ) - ( f ) .  (g)-(i) show 
the log-polar mapping for the maximum information points of (d)-(f). 
In (g)-(i) the x-axis is 8 and y-axis is In r. 6)-(1) show the images in which 
the effects of scaling and rotation are eliminated. 


Fig. 4.15 Log-polar mapping for a binary image: Example-2. (a)- (c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (f)-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and rotation 
are eliminated. 


Fig. 4.16 Log-polar mapping for a binary image: Example-3. (a)- ( c )  show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (0-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and'rotation 
are eliminated. 


Fig. 4.17 Lug-polar mapping for a binary image: Example-4. (a)- (c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (f)-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and rotation 
are eliminated. 


Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows 
the formant contour pattern for the utterance TWO. (b-) shows the 
midpoints of the straight line segments and (c) shows the maximum 
information points located by DSA layers. 







Fig. 4.19 This figure shows the output of DSA layers for processing synthetic 
formant contour patterns. (a)-(c) show examples of synthetic formant 
contour patterns. (d)-(e) show the midpoints of straight line segments 
and (0-(h) show the maximum information points generated from 
these synthetic formant patterns. These information points may be used 
as features for developing a recognizer. 
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Table 3.1 Isolated Word Recognition System test results for a single speaker. 


Table 3.2 Isolated Word Recognition System test results for two speakers: 
Speaker-1. 


Table 3.3 isolated Word Recognition System test results for two speakers: 
Speaker-2. 
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(a) input Binary Image 


(c) Maxima points in L1 


I 1 
(b) Layer L1 output values 


(d) Layer L2 output values 


- -- - - 


(e) Maximum information points for the input image 


Fig. 4.1 1 Example-I. Outputs of different stages of directed spreading 
activation layers for a square. 







(a) Input Binary Iniage 


(c) Maxima points in Ll 


(b) Layer L1 output values 


I I 


. (d) Layer L2 output values 


(e) Maximum information points for the input image 


Fig. 4.12 Example-2. Outputs of different stages of directed spreading 
activation layers for the jeep shown in (a). 







4.6 APPLICATION OF DSA LAYERS TO LOW LEVEL FEATURE 
EXTRACTION FROM MACHINE FONTS 


In this section an application of the directed spreading 


activation layers is discussed. The application considered 


is low level feature. extraction from machine printed fonts 


for recognition. This is one of the cases of visual patterns 


where low level feature extraction can carry out significant 


amount of data reduction in a purely data-driven manner. 


Machine recognition of characters continues to be a 


problem even when the number of characters is limited, and 


the characters are restricted to machine printed characters. 


When the machine printed character set involves different 


fonts, it becomes very difficult to design a recognition 


system which works for all the fonts. The brute force approach 


to this problem could be to store all possible characters of 


all fonts in the long term memory and compare them with the 


test input one by one. This not only requires a large amount 


of long term memory but also the comparison time increases 


exponentially as the number of fonts to be recognized 


increases. 


In all the previous approaches for machine font 


recognition, the low level features are fixed 'a priorit. In 


other words the feature extraction phase is model driven. 


Generally these features are small straight line and curve 


segments. Since these low level feat


u


res are fixed, 


significant amount of information is lost in the feature 







extraction phase resulting in the reduction of recognition 


accuracy. Attempting to extract all the features with this 


approach involves not only manual extraction of low level 


features from all the fonts but also large amount of storage 


space and comparison time. The ideal case would be to find 


a mechanism to evolve these features from the data itself. 


Then all the features can be captured without any loss. 


The directed spreading activation discussed in the last 


section could be used successfully for this problem. Directed 


spreading activation layers locate the low level features 


like straight lines, curves, corners and contour termination 


points in a purely data-driven manner. From these locations 


the low level features can be extracted. There are other 


advantages to the low level feature extraction by the directed 


spreading activation. The low level feature extraction by 


direcged spreading activation layers is translation 


invariant. Hence the low level features from fonts located 


at any part of the input visual pattern can be extracted. 


Some examples of extracting low level features from printed 


alphabets are shown in Fig.4.13. 


The feature map which is generated from the locations of 


the low level features can be used for invariant 


representation. Since the feature map is a compressed 


representation of each one of the characters, this can be 


used for scale, rotation and translation invariant 


representation of the character and can be used for 


recognition. 







Fig. 4.13 This figure shows examples of low-level featr~res located for 
machine fonts. In each row the first block shows the input character. The 
second and third blocks show the outputs of layers L1 and L2. 







4.7 APPLICATION OF DSA L4YERS FOR TRANSFORMATION INVARIANT 
BINARY PATTERN RECOGNITION 


The maximum information points simplify the analysis of 


images by drastically reducing the amount of data to be 


processed while at the same time preserving important 


information about the object[l] . In this section we describe 
a method to recognize the binary image patterns subjected to 


affine transforms, from the maximum information points 


generated by the directed spreading activation layers. 


The maximum information points in the image space are 


denoted using complex notation as 


Z  = (x-xc) +i(y -yc) or Z  = ae io (4.6) 


where (Xc,Yc) is the location of the centroid, a = (21 , and 


8 = argZ. The conformal mapping, In Z, has the effect of 


transforming both rotation and scale effects to translations 


in the transformed space. If Z is multiplied by a scale factor 


a ,  then l n Z =  (ha)+( lna)  +ie and if Z is rotated through an 


angle D l  then 


In Z = In (ae ' ( O + P ) )  = ln o+i(e+p). 


Rotation around the centroid on the visual field becomes 


translation with respect to 8. Scaling becomes translation 


with respect to In a. Thus, if the centroid in the 8 and In 


a directions can be determined, then the effects of scaling 


and rotation can be eliminated by translating the log-polar 


space with respect to the centroid. The logarithmic 







transformation also has the desirable side effect of 


emphasizing the importance of the central visual area by 


compressing radially distant features when the input is 


uniformly sampled. The centroid in the log-polar space moves 


along with the features so that it stays in the same place 


with respect to the features. ' 


This transformation generates a two dimensional array of 


points which can be used for recognition using simple pattern 


matching technique. The pattern matching technique must take 


care of the small positional errors which arise due to the 


quantization errors. A possible limitation is that, as a 


result of rotation, features may move off the left or right 


edges of the log-polar map. A wrapping may occur due to the 


2n periodicity of the log-polar mapping. 


Fig.4.14 illustrates the log-polar mapping for scaled 


and rotated binary images. Figs.4.14a to 4.14~ show the 


normal, scaled and rotated binary images. The corresponding 


maximum information points located by DSA layers are shown 


in Figs.4.14d to 4.14f. Figs.4.14g to 4.14i show the log-polar 


mapping for the maximum information points. In these three 


images the x-axis is 8 and y-axis is In r. In Fig.4.14h it 


can be observed that this output is translated in the y-axis 


since the input image is scaled. Similar translation can be 


observed in Fig-4.14i where the input image is rotated. Here 


the translation has taken place with respect to 8 .  Fig.4.14j 


to 4.141 show the log-polar transformed images in which the 


effects of scaling and rotation are eliminated by translation 







I"; 
fl 


I-; 


Fig. 4.14 This figure shows the scale and rotation invafiance achieved by the log-polar 
mapping. (a)-(c) show the normal, rotated and scaled binary images. The 
corresponding maximum information points generated by directed spreading 
activation layers are shown in (d)-(f). The log-polar mapping for the maximum 
information points of (d)-(f) is shown in (g)-(i). In (g)-(i) the x- axis is 8 and y-axis is 
In r. ($-(I) show the images inwhich the effects of scaling and rotation are eliminated. 







in the corresponding axes. Figs.4.15 to 4.17 show some more 


examples of log-polar transformed binary images. It can be 


observed that there are some distortions in the final 


translated image. This arises not only due to distortions in 


the shape of the input image and but also due to the 


quantization errors. 


4.8 APPLICATION OF DSA LAYERS TO IMAGES OF FORMANT 
CONTOUR PATTERNS 


DSA layers perform well in the class of patterns where 


the low level features are characterized well. In these 


situations the output of DSA layers can be used directly for 


recognition. On the other hand, for the class of patterns 


where the features are not characterized well, for example 


images of formant contour patterns, the output generated by 


DSA layers ca-nnot be immediately used for recognition. The 


other knowledge source about the patterns are required. 


Fig.4.18 shows the output of DSA layers for an image of 


a formant contour pattern. Fig. 4.18a shows the formant contour 


pattern for an isolated utterance of the word TWO. Fig.4.18b 


shows the midpoints of the straight line segments in the 


inputpatternandFig.18~ showsthemaximum information points 


located in the input pattern. It can be observed that 


processing carried out by DSA layers reduces the initial 


information significantly. But this processing has a number 


of disadvantages. The spurious formant values in the input 


pattern gets reflected as maximum information points which 







Fig. 4.15 Log-polar mapping for a binary image: Example-2. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 







Fig. 4.16 Log-polar mapping for a binary image: Example-3. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 







, . 
Fig. 4.17 Log-polar mapping for a binary image: Example-4. (a)-(c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding maximum 
information points located by DSA layers. (f)-(h) show the log-polar mapping for the 
maximum information points. 0')-(1) show the log-polar domain images where the 
effects of scaling and rotation are eliminated. 







(a) Formant Plot:.Two (b) Output of Layer L1 


(c) Output of Layer L2 


Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows the 
formant contour pattern for the utterance TWO. (b) shows the midpoints of the 
straight line segments and (c) shows the maximum information points located by 
DSA layers. 







are difficult to eliminate in the later stages. The 


discontinuities in the line segments due to missing formant 


also affect significantly leading to multiple maximum 


information points. Hence it is necessary to get a formant 


contour pattern which is free from noise and discontinuities. 


This requires some issues which need to be addressed at the 


time of extraction of formant contour itself. 


The problem in the extraction of formants from the speech 


signal can be attributed to the block processing. Block 


processing processes the speech signal by blocks containing 


fixed number of samples. This block processing assumes that 


the input signal is stationary which implies that the formants 


do not change within the block. But speech signal is 


nonstationary and formant frequencies undergo change in a 


much shorter time especially during formant transitions. 


Using smaller block size leads to poor frequency resolution 


which affectsthe accuracy ofthe extracted formant frequency. 


The other approach is to use pitch synchronous analysis. Here 


we assume that the signal is stationary for one pitch period. 


But reliable pitch extraction is also very difficult. 


In this work we have attempted processing synthetic 


formant contour patterns. Fig.4.19 shows the processing of 


synthetic formant contour patterns using DSA layers. 


Figs.4.19a to 4.19~ show some synthetic formant contour 


patterns. Figs.4.19d to 4.19e show the midpoints of straight 


line segments and Figs.4.19f to 4.19h show the maximum 







Fig. 4.19 This figure shows the output of DSA layers for processing synthetic formant 
contour patterns. (a)-(c) show examples of synthetic formant contour patterns. (d)-(e) 
show the midpoints of straight line segments and (f)-(h) show the maximum 
information points generated from these synthetic formant patterns. These 
information points may be used as features for developing a recognizer. 
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information points generated from the synthetic formant 


pattern. These information points may be used as features 


for developing a recognizer. 


4.9 SUMMARY 


In this chapter we have proposed a new neural architecture 


for automatic location of maximum information points. The 


spreading activation layers and its utility for early vision 


tasks were discussed. The difficulty in using the spreading 


activation layers for low level feature extraction was 


explained. We have pointed out the importance of the directed 


spreading for low level feature extraction, and described a 


new directed spreading activation model. Two applications of 


the model, low level feature extraction for machine fonts 


and transformation invariant binary pattern recognition were 


also discussed. 







Chapter 5 


SUMMARY AND CONCLUSIONS 


Visual pattern recognition can be considered as 


consisting of two stages: (i) a preprocessing stage which 


primarily concerns with the data reduction by extracting 


geometric properties like straight lines and corners and (ii) 


a recognition stage which recognizes the familiar.objects. 


Preattentive visual processing concerns with extracting 


geometric properties from input image with parallel, 


automatic and data-driven mechanisms. Artificial neural 


networks with their parallel, nonsymbolic, fault tolerant. 


computing are useful to achieve preattentive visual 


processing. In this thesis we have developed neural network 


architectures for extracting geometric properties from binary 


images. 


Since artificial neural networks are reminescent of 


biological neural mechanisms they attempt to derive 


motivation from biological systems and model their structural 


and functional characteristics. Neurophysiologica1 and 


visual perceptual evidences reported in the literature are 


useful for such modelling. The main motivation of our design 


of the neural networks for preattentive visual processing 


has come from some aspects of visual perception in biological 


visual system. Based on the observations we have proposed 


two approaches for preattentive visual processing and we have 







proposed two architectures based on these two approaches. 


First approach extracts straight line segments fromthe input 


image and this was implemented in an oriented filtering and 


integration (ORFIN) network. Second approach extracts the 


maximum information points from the input image and this was 


implemented in directed spreading activation(DSA) layers. 


Though these two architectures are functionally totally 


different we have shown in this thesis that these two differ 


in a simple neurocomputing property like lateral interaction. 


ORFIN is a two-stage hierarchical network which does not have 


any lateral interaction or coopeartion between adjacent 


neurons. DSA layers have two-stages which receive the input 


parallely and have lateral interaction between adjacent 


neurons. One of the layers has lateral interaction depending 


on the direction and the other layer has lateral interaction 


depending on the input data. 


We have considered some applications for these 


architectures. The first application is recognizing the 


isolated utterances of words from the images of formant 


contour patterns. Here the problem is to get an invariant 


representation from the input binary image. We have used 


ORFIN to preprocess to get an invariant representation from 


the input image. The recognition in this case is implemented 


using a two-stage hierarchical adaptive resonance 


architecture. We have tested the system with isolated 







u t t e r a n c e s  of  d i g i t s .  W e  have conducted two tests, wi th  a  


s i n g l e  speake r  and wi th  m u l t i p l e  speake r s  and t h e  t e s t  r e s u l t s  


a r e  shown. 


The o t h e r  a p p l i c a t i o n  u s e s  t h e  DSA l a y e r s .  DSA l a y e r s  


e x t r a c t  maximum informat ion  p o i n t s  from t h e  i n p u t  image and 


a t  t h e s e  p o i n t s  t h e r e  a r e  low l e v e l  f e a t u r e s  l i k e  c o r n e r s ,  


cu rves  and c o t o u r  t e rmina t ion  p o i n t s .  Hence t h e  o u t p u t  of 


DSA l a y e r s  can  be  used i n  two ways. One way is t o  u s e  t h e  


low l e v e l  f e a t u r e s  f o r  r ecogn iz ing  t h e  i n p u t  p a t t e r n .  Th i s  


approach works s u c c e s s f u l l y  i n  images where t h e  low l e v e l  


f e a t u r e s  a r e  c h a r a c t e r i z e d  w e l l ,  f o r  example machine f o n t s .  


W e  have shown examples of such low l e v e l  f e a t u r e  e x t r a c t i o n  


from machine f o n t s .  The o t h e r  way is t o  u se  t h e  s p a t i a l  


r e l a t i o n s h i p  between d i f f e r e n t  p a r t s  o f  t h e  image by us ing  


on ly  t h e  l o c a t i o n s  of  t h e  maximum informat ion  p o i n t s .  W e  have 


a l s o  shown i n  t h i s  t h e s i s  a  methodology t o  r ecogn ize  a f f i n e  


t ransformed images from t h e  maximum in fo rma t ion  p o i n t s  


gene ra t ed  by t h e  DSA l a y e r s .  







LIST OF FIGURES 


Fig. 3.1 This figure illustrates the structural organization of ORFIN. (a) shows 
the block diagram of ORFIN and (b) illustrates the interconnection 
between S-planes and C-planes. Outputs of two of the S-planes which 
have the same orientation of stimuli but trained differently are fed to 
corresponding C-planes. This is shown as outputs from two S-planes 
converging into a single C-plane. (c) illustrates examples of S-cells 
whose outputs are fed to corresponding C-cells. 


Fig. 3.2 Interconnections converging70 a S-cell. 


Fig. 3.3 Schematic diagram illustrating the interconnections between the two 
stages. 


Fig. 3.4 Input-to-output characteristics of a S-cell. 


Fig. 3.5 Twelve line segments used to train S-cells. 


Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is 
responsible for handling small shifts in the input visual pattern. 


Fig. 3.7 Some examples of images of formant contour patterns. 


Fig. 3.8 Neural architecture for recognizing isolated utterances of words. First 
stage extracts structural features using ORFIN. Second stage 
implements two-stage Simple Adaptive Classifiers for recognition. 


Fig. 3.9, Pattern Matching stage is a hierarchical adaptive resonance network. 
SAC-1 categorizes the profiles. SAC-2 classifies based on the 
categorization done by SAC- 1. 


Fig. 3.10 ART 1 Schematic diagram 


Fig. 3.11 Image of a formant contour pattern compressed into 64x64 array is 
shown in (a). The output values of the five C- planes are shown for the 
example input pattern. The size of the block in (b)-(f) indicates the 
value of C-cell at that point. 







Fig. 4.1 


Fig. 4.2 


Fig. 4.3 


Fig. 4.4 


Fig. 4.5 


Fig. 4.6 


Fig. 4.7 


Fig. 4.8 


Fig. 4.9 


Fig. 4.10 


Fig. 4.11 


Fig. 4.12 


The activity distribution of the spreading activation layers is plotted in 
three dimensions at four times: (a) at to +after a short time; and much 
later in (c) and (d). In (d) the peak is located at the geometric centroid 
of the three features as shown in (a). 


As time progresses (a) to (f), the activity distributions due to two 
features spread: As activity spreads the local maxima moves toward the 
centroid. The global maxima is stable at that point. 


A contour with a corner shown in (a) is diffused in (b)-(d). Activity 
accumulates more quickly where the average distance to the features 
is least. As the diffusion progresses the activity maxima moves to the 
global centroid. Since maxima moves continuously it is difficult to 
determine when to stop locate the peak at the corner. 


Small scale organization of feature clusters emerges before large scale 
organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feature clustering at different 
times. 


Directional spreading neural network 


Layer one: Hypercolumn Input 


Layer one: Hypercolumn Output 


Characteristics of a Directional detector 


Illustration of links between hypercolumns 


Inputloutput of a neuron in L2. 


Example- 1: Outputs of different stages of directed spreading activation 
layers for a square. 


Example-2: Outputs of different stages of directed spreading activation 
layers for a jeep shown in (a). 







Fig. 4.13 This figure shows examples of low-level features located for machine 
fonts. In each row the first block shows the input character. The second 
and third blocks show the outputs of layers L1 and L2. 


Fig. 4.14 This figure shows the scale and rotation invariance achieved by the 
log-polar mapping. (a)-(c) show the normal, rotated and scaled binary 
images. The corresponding maximum information points generated by 
directed spreading activation layers are shown in (d ) - ( f ) .  (g)-(i) show 
the log-polar mapping for the maximum information points of (d)-(f). 
In (g)-(i) the x-axis is 8 and y-axis is In r. 6)-(1) show the images in which 
the effects of scaling and rotation are eliminated. 


Fig. 4.15 Log-polar mapping for a binary image: Example-2. (a)- (c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (f)-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and rotation 
are eliminated. 


Fig. 4.16 Log-polar mapping for a binary image: Example-3. (a)- ( c )  show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (0-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and'rotation 
are eliminated. 


Fig. 4.17 Lug-polar mapping for a binary image: Example-4. (a)- (c) show the 
norma1,rotated and scaled images and (d)-(e) show the corresponding 
maximum information points located by DSA layers. (f)-(h) show the 
log-polar mapping for the maximum information points. 6)-(1) show 
the log-polar domain images where the effects of scaling and rotation 
are eliminated. 


Fig. 4.18 Output of DSA layers for formant contour pattern is shown. (a) shows 
the formant contour pattern for the utterance TWO. (b-) shows the 
midpoints of the straight line segments and (c) shows the maximum 
information points located by DSA layers. 







Fig. 4.19 This figure shows the output of DSA layers for processing synthetic 
formant contour patterns. (a)-(c) show examples of synthetic formant 
contour patterns. (d)-(e) show the midpoints of straight line segments 
and (0-(h) show the maximum information points generated from 
these synthetic formant patterns. These information points may be used 
as features for developing a recognizer. 
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Table 3.1 Isolated Word Recognition System test results for a single speaker. 


Table 3.2 Isolated Word Recognition System test results for two speakers: 
Speaker-1. 


Table 3.3 isolated Word Recognition System test results for two speakers: 
Speaker-2. 
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ABSTRACT 


Visual pattern recognition such as reading handwritten 


characters or distinguishing shapes is easily accomplished 


by human beings. When attempted to design information 


processors to do the same, it presents significant 


difficulties. There have been two approaches for machine 


implementation of viusal pattern recognition. The first 


approach considers vision as an abstract problem and attempts 


to design computational algorithms. The second approach 


attempts to study the biological visual system and model its 


behavior for engineering applications. 


Artificial neural networks which are reminiscent of the 


neurons in the brain attempt modeling the function of the 


biological system. They are characterized by their 


nonsymbolic, distributed, fault tolerant computing which are 


very useful for pattern recognition tasks. 


Invisua1,pattern recognition there is a natural factoring 


part of the process that extract information about the 


geometry of the visual pattern and the process that recognizes 


the familiar objects. Preattentive visual processing is a 


parallel, automatic and data driven prozessing which extracts 


geometric properties of the input pattern without using the 


detailed knowledge of the domain. In this work we have 


attempted to develop neural network architectures for 







automatic, data driven extraction of geometric properties 


like straight lines, corners and contour termination points 


from binary images. We also show how these architectures can 


be used in some engineering applications. 


Based on the observations about some aspects of the visual 


perception in the biological visual system, we propose two 


approaches for processing binary images. In the first 


approach, the structural properties of the input pattern like 


straight lines are extracted from the input image. This 


approach is implemented as an oriented filtering and integration network, 


motivated by the orientation specificity shown by certain 


cells in the visual cortex. 


In the second approach, the maximum information points 


of the binary image are located. In the case of simple 


geometric contours these points coincide with the points of 


maximum inflection. In this study, points of maximum 


information are obta ined using directed spreading activation layers. 


We describe two applications of these architectures. The 


first application is recognizing isolated utterances of words 


from images of formant contour patterns. For this we use 


oriented filtering and integration network. The second 


application deals with recognition of objects in binary images 


invariant to translation, rotation and scale. For this the 


directed spreading activation neural architecture is used to 


extract themaximum information points fromthe input pattern. 







A log-polar transformation is described which derives an 


invariant representation fromthe maximum information points. 


This invariant representation can be used for recognition 


using standard methods. 







Chapter 1 


INTRODUCTION 


1.1 MOTIVATION FOR VISUAL PATTERN RECOGNITION RESEARCH 


Since the advent of digital computer there has been an 


effort to expand the domain of computer applications. Some 


of the motivation for this effort comes from important 


practical needs to find more efficient ways of doing things. 


At present, the ability of machines to perceive their 


environment is very limited. A variety .of transducers are 


available for converting light, sound, temperature etc., to 


electrical signals. When the environment is carefully 


controlled and the signals have a simple interpretation, as 


is the case with the standard computer devices, the perceptual 


problems become trivial. But as we move beyond having a 


computer read punch cards or magnetic tapes to having it read 


hand-printed characters or analyze biomedical photographs, 


we move from problems of sensing the data to much more 


difficult problems of interpreting the data. Of the various 


problem areas,,the domain of visual pattern recognition has 


received by far the most attention. 


There are three basic motivations for.trying to achieve 


automatic recognition of visual patterns. The first is simply 


intellectual curiosity. How can machines be organized to 


designate a particular presentation as belonging to the same 







class that a human would specify? This raises intriguing 


questions of systems analysis and design, and it leads to 


sharper appraisal of how living systems process information. 


The second purpose is to provide intelligent aids. There is 


greatutility inmachinewhichcan process optical information 


more quickly or accurately or safely or cheaply than people. 


The automatic reading of postal addresses, classification of 


weather-satellite photographs and terrain maps, recognition 


of bubble chamber tracks, diagnosis of biological cells, and 


monitoring of cardiac performance can substantially relieve 


human drudgery and provide economic advantage. Still other 


uses are in prosthetic aid - for example, in reading and 


mobility devices for the .blind. The third reason for 


developing machines which recognize optical patterns is to 


obtain more effective man-machine interfaces. It is becoming 


increasingly important to provide computers with fluency in 


man's natural languages. With more direct communication 


between man and machine, important gains in flexibility and 


efficiency can be obtained. 


In Section 1.2 a pattern recognition approach to visual 


pattern recognition is discussed. In Section 1.3, advantages 


of neural networks approach to pattern recognition problems 


is discussed. In Section 1.3 an overview of the thesis is 


presented. 







1.2 PATTERN RECOGNITION APPROACH 


The term pattern recognition was introduced in the early 


1960s, and it originally meant detection of simple visual 


patterns like handwritten characters, weather maps and speech 


spectra. Later the domain of application of pattern 


reco(>nition is expanded to almost all disciplines of 


engineering and science. Of the various problem areas in 


pattern recognition research, the domain of visual pattern 


recognition has attracted much attention. Since the human 


experience of vision is effortless, quick and adaptable 


studies have been made on biological visual system. 


Neurophysiological and psychological studies have given us 


several interesting facts about visual perception. But no 


understanding has been sufficient to duplicate their 


performance by computer. This has resulted in a lack of 


complete theory of vision. 


The lack of complete theory has not deterred people from 


attempting modest problems. Many of these involve pattern 


classification - the assignment of a physical object or event 
to one of several prespecified categories. Extensive study 


of classification problems has ledto an abstract mathematical 


model that provides the theoretical basis for classifier 


design. Even though abstract mathematical model is available, 


in any specific application one ultimately must come to grips 


with the special characteristics of the problem in hand. 


These models are applied successfully to the recognition of 







handwritten characters, chromosome types, printed 


characters, Chinese characters, aircraft, machine parts, 


circuit boards, maps, and lung radiographs. 


1.3 NEURAL NETWORKS APPROACH TO PATTERN RECOGNITION 


Though pattern recognition research focussed on solutions 


for modest problems, the ambitious objective has all the time 


been to implement artificial perception, that is, to imitate 


the functions of the biological sensory systems in their most 


complete forms. The first experiments around 1960 were indeed 


based on elementary neural networks, known by names like 


perceptron[44], Adaline[53] and Learning Matrix[50], 


respectively. But it was soon realized that the performance 


of the biological sensory system is very difficult to reach. 


Even high computing capacity, achievable by parallel 


computing circuits, did not solve the problems. For example, 


in image analysis there exists requirements which are very 


difficult to fulfill: Invariance of detection with respect 


to translation, rotation, scale, perspective, partial 


occlusion and modest marring of the objects. 


Artificial neural networks are massively parallel 


interconnected networks of simple adaptive elements. These 


elements are arranged in a hierarchical manner to interact 


with the objects of the real world in the same way as 


biological neural systems do. These simple neuron like 


elements connected together show powerful learning, 







memorization, associative recall capabilities and self 


organization for pattern formatted information[36]. Apart 


from these properties, they have number of other advantages. 


The computation is distributed, fault tolerant and has the 


ability to tolerate distortions in the input pattern. This 


neural network approach differs significantly from the 


earlier approaches by its nonsymbolic processing and 


distributed representation. 


Since these neural networks are conceptually compatible 


with the biological neural networks it is possible to derive 


inspiration from neurobiological or psychological studies, 


even though the objective might be engineering. When the 


engineering model performance mirrors human performance, 


similar model might be applied to biological neural net and 


mutually useful hints can be obtained in this manner. 


Neural network architectures are generally meant to learn 


and recognizethe inputpatterns. Butthere are certain neural 


mechanisms in the initial stages of animal visual and auditory 


system. These neural mechanisms possess very little domain 


specific knowledge and essentially act as data adaptive 


filters. In this work we attempt to design such neural 


architectures for processing visual input patterns. 







1.4 OVERVIEW OF 'THE THESIS 


In this section we introduce the specific research problem 


addressed. In Section 1.4.1 discuss the objective of the 


thesis. Section 1.4.2 discusses the motivation of this work 


and Section 1.4.3 discusses the scope of the study. Section 


1.4.4 presents the overview of research and Section 1.4.5 


discusses the organization of the rest of the thesis. 


1.4.1 Objective of Current Research 


Visual pattern recognition can be considered as 


consisting of two stages: (i)- A low level analysis concerning 


extraction of geometric properties of the input pattern and 


generation of a description of the pattern[32] and (ii) a 


higher level analysis which uses the description together 


with the knowledge of the domain to perform the recognition 


task. Our preattentive visual processing[l4] is a parallel, 


automatic and data driven processing which extracts 


properties of the input pattern based on local data. 


Artificial neural networks, with their collective nonsymbolic 


computational capabilities, are useful to achieve the 


preattentive visual processing. The objective of this thesis 


is to develop neural architectures for automatic extraction 


of geometric properties like straight lines, corners and 


contour termination points from binary input image patterns. 


We also show how these architectures can be used in some 


engineering applications. 







1.4.2 Motivation for Current Research 


There are two different approaches for machine vision. 


The first approach is computational vision approach. In this 


approach vision is studied abstractly independent of any 


particular domain. Pattern recognition and Artificial 


Intelligence follow this approach and attempted to develop 


computational algorithms for vision. The other approach is 


to study the human visual system. Since the human vision is 


rapid and effortless, the objective had been to study human 


vision and design engineering models for practical 


applications. Here, reports from psychological and 


neurophysiological studies on biological visual system are 


used to design engineering models. In this work the .design 


of neural architectures for preattentive visual processing 


is motivated by some aspects of the visual perceptual process 


in biological visual system. 


1.4.3 Scope of the Work 


The focus of the work is on neural network architectures 


for data driven extraction of geometric properties. We assume 


that the input pattern is clean and has a noise free boundary 


contour shape. The issue of pattern recognition is not 


addressed in detail, although in all these cases recognition 


studies have been made using standard neural architectures. 







1.4.4 Overview of the Research 


In this work, we have proposed two approaches for 


processing binary images. We have developed two neural 


network architectures based on these approaches. The first 


approach is implemented through an oriented filtering and 


integration network. The second approach is implemented using 


directed spreading activation layers. We also describe two 


applications of these architectures. 


1.4.5 Organization of the Thesis 


Chapter 2 discusses the motivation and proposes two . 


approaches to preattentive visual processing. Chapter 3 


discusses the design of Oriented filtering and Integration 


Network and the application ofthis architecture for isolated 


word recognition. Chapter 4 discusses the directed spreading 


activation neural architecture and proposes a methodology 


for recognizing transformation invariant binary pattern 


recognition. Chapter 5 concludes the thesis with a summary 


of the work. 







Chapter 2 


APPROACHES FOR PREATI'ENTIVE VISUAL PROCESSING 


2.1 INTRODUCTION 


Numerous approaches are proposed in the literature for 


preprocessing the visual patterns. In Section 2.2, we 


categorize these approaches into four classes and briefly 


review these approaches. Visual pattern recognition has been 


attempted by neural networks also. In Section 2.3 we review 


some of the neural principles and architectures for visual 


pattern recognition. In Section 2u.4 we discuss approaches 


adopted in this work for preattentive visual processing. 


2.2 BACKGROUND 


Visual pattern recognition deals with the analysis of 


visual patterns in order to achieve results similar to those 


obtained by man. A simplified machine paradigm for visual 


pattern recognition consists of two computational stages. 


The first stage is concerned with low level techniques and 


referred in the literature as picture processing or 


preprocessing. When neural networks are used for such initial 


processing it is called preattentive visual processing[l4]. 


The second stage is referred as picture interpretation or 


pattern matching or recognition stage. The focus of this work 


is on the first stage using neural networks. 







Low level analpsis involves aggregation of imperfect edge 


data in the two-dimensional image projection. Here, shape 


attributes of collection of edges are computed and a 


description consisting of the shape attributes and their 


spatial locations are generated. This description serves as 


input to a subsequent process of high level organization and 


understanding. 


There exist many theories of visual pattern or shape 


description and recognition, each attempting to explain some 


specific aspect of the problem. This is so because it is 


possible to conceptualize visual pattern as a high level 


perceptual function. Since there is very little 


neurophysiological evidence about its nature and the basic 


constituents are not known, the field has been open to 


freewheeling hypothesization. These theories can be broadly 


categorized as follows[52]: correlation techniques, 


computational approaches, neurophysiological and 


sensory-motor approaches[33,34]. Amang these correlation and 


computational approaches are engineering approaches. The 


other two approaches are motivated by the studies from 


neurophysiology and visual perception research. These studies 


are especially useful to design artificial neural networks. 


In this section we briefly review these four theories. 


Among the four categories the correlation technique is 


followed in the pattern recognition research. In Section 


2.2.1 we summarize techniques proposed in pattern recognition 


research for visual pattern description and recognition. 







Any visual pattern recognition task must be implemented 


in an algorithm form. Implementation of such algorithm 


requires a computational framework for representing the 


algorithm. In Section 2.2.2 we discuss a framework for 


computational visual processing. 


The sensory-motor approach to visual processing is 


modeled after the oculomotor movements of the eye. In Section 


2.2.3 we briefly describe the oculomotor movements of eye 


and its role in visual perception. 


The biological visual perception is carried out by the 


neural mechanisms in visual cortex and superior colliculus 


of the brain. In Section 2 - 2 . 4  we present some of the reports 


from neurophysiology about visual cortex. 


2.2.1 Pattern RecogniUan Approach 


Pattern Recognition techniques for preprocessing binary 


images can be broadly classified into two approaches, spatial 


domain approach and scalar transform approach. Spatial domain 


approach focuses on aggregating edge data and transform the 


input image into an alternative spatial domain 


representation, The input images are transformed into a 


representative graph which portrays the two-dimensional 


shape. Subsequent recognition of the shapes is accomplished 


by means of syntactic or structural analysis. Among spatial 


domain techniques there have been two approaches. The first 


approach uses a collection of fixed templates of geometric 







features like straight line segments of different 


orientations, corners and T-shapes; The input image is scanned 


for these patterns and a representative graph which portrays 


the two-dimensional shape is generated. 


The other approach is based on information theoretic 


point of view suggested by Attneaverl]. He suggested that a 


shape is segmented by means of dominant points which coincide 


with points of maximum inflection along its contour. Pattern 


recognitionhas proposed a number of techniques for extracting 


dominant points in the input pattern[49]. These techniques 


are mostly an outgrowth of interest in specific applications, 


the most common being the recognition of handwritten 


characters and chromosome types. 


Scalar transform techniques map the image into an 


attribute vector description. The objective here is to 


transform the boundary data into a new representation, one 


in which object translation, rotation, and size are no longer 


factors. The method of moments offer such a possibility. 


There have been many applications of this methodology to 


pattern recognition problems. These have included printed 


characters and numerals[3], hand-printed characters[7], 


chest x-rays[18], aircraft identification[lO], and ship 


recognition[48]. Categorization of shapes with this approach 


is usually achieved by means of classical pattern recognition. 







2.2.2 Computational Framework for Visual Processing 


Since vision is an interdisciplinary research field large 


number of theories are proposed in other disciplines like 


neurophysiology and perceptual psychology. If we want to 


develop artificial visual systems, these theories developed 


in the other disciplines must be tested rigorously. For 


rigorous testing, they must be converted into algorithms. 


Expressing visual theories as algorithms leads to the 


development of computational models. In creating 


computational models, several important issues must be 


addressed. In this section we discuss a framework for 


computational visual processing and isolate functional 


characteristics of an architecture for preprocessing. 


2.2.2.1 Low level versus high level visual processing 


A useful conceptual simplification is to divide the visual 


process into two levels: low level visual processing and high 


level visual processing. Low level processing deals directly 


with the incoming visual stimuli. Simple features may be 


extracted and simple patterns recognized. The high level 


visual processing is concerned with cognitive processing and 


makes use of the knowledge about the world when processing 


the visual information. Which visual cues are to be chosen 


by the lowest levels is an important consideration, as all 


further processing depends on how well this initial stage is 


carried out. 







2.2.2.2 Serial versus parallel processing 


It is useful to distinguish between the type of processing 


used by high and low level visual processes in terms of serial 


versus parallel processing. The low level visual processing 


is primarily performed in parallel. Evidence for this 


assumption comes from four different areas namely 


neurophysiology, psychophysics, machine vision and 


computational theories. Serial processing is more likely'to 


occur at the high levels of visual processing. 


2.2.2.3 Automatic versus selective processing 


Low level visual processing involves parallel 


computations performed simultaneously at many locations on 


the image. Much of this processing is performed automatically 


without intervention from higher levels. High level 


processing is more likely to be serial and require flexible 


control of the operations to be performed. Another way to 


discuss the automatic versus selective issue is in terms of 


bottom-up versus top-down processing. Automatic processing 


can be performed bottom-up without using information from 


higher levels. On the other hand, selective processing might 


require top-down processing where there is feedback between 


the different stages of processing. At the low level, 


bottom-up processing can be done in parallel, automatically 


without flexible control and efficiently. 







2.2.2.4 Signal versus symbols 


Low level processing is closely tied to the image, or 


the visual signal. By contrast, high level processing deals 


with cognitive symbols rather than visual signals. The main 


task of the early stages of visual processing is to extract 


meaningful information from the total visual information and 


to pass it on to the higher levels of proc6ssing. The problem 


is in deciding how the information should be represented. 


There aretwo possibilities, either the useful visual features 


could be labeled and that information transmitted 


symbolically, or else a scheme not requiring the explicit 


labeling of features could be employed. 


2.2.3 Eye Movements and Visual Pattern Perception 


The sensory-motor theory of visual pattern description 


and recognition- is motivated by the oculomotor movement of 


eye. In this section we briefly review the role of 


eye-movement for visual pattern perception. 


The interaction with the world around relies to a major 


extent on the ability to actively look, visually scan, and 


selectively pick up information on the basis of which 


effective, visuallyyuided actioncanbe deployed. Suchvisual 


scanning and deployment of goal-directed behavior in turn 


requires spatial as well as temporal coordination between 


sensory and motor processes. Spatially what is required in 







sensory-motor coupling is that the outer world be projected 


systematically onto a motor map of the body; Much of this 


sensory-motor coupling is reflexive[4,54]. The visual 


perceptual cycle is characterized by (1) the directing of 


sensory apparatus to (2) selectively pick up information 


which serves to (3) modify and update the schemata that in 


turn direct the further pick-up of information[40]. 


The rapid movement of the sensory apparatus to pick up 


information is called 'saccadeJ. The saccades are driven 


between points of interest in the visual field and play an 


essential role in human visual processing, particularly in 


the establishment of spatial relations[35,54]. Saccades are 


controlled by a complex set of interrelationships between 


low level and high level cues. The superior colliculus of 


the brain, which receives both retinal and cortical 


projections, directs the saccades[4]. 


2.2.4. Results from Neurophysiology for Visual Processing 


The neurophysiology approach for visual pattern 


description is motivated by the reports from the results of 


biological neural mechanisms for vision. In this section we 


review the neural mechanisms for visual perception. 


The neural mechanisms involved in the visual perception 


seems to be superior colliculus and visual cortex[4]. The 


superior colliculus is involved in localizing and detecting 


the presence of a visual stimulus which may be potentially 







informative and behaviorally significant[4]. However, it is 


not involved in the detailed qualitative analysis or 


identification ofthe stimulus. By contrast, the visual cortex 


seems to be involved primarily in the localization of a 


stimulus andinanalyzingitsqualitative and figural aspects. 


In the visual cortex four classes of cells are 


distinguished in a series of ascending complexity[23]. These 


are termed as 'circularly ~ymmetric~,~simple~, f ~ ~ m p l e x f  and 


'hypercomplexf. Circularly symmetric cells show no preference 


to any particular orientation of lines and act as contrast 


detectors. Simple cells are the first in the hierarchy to 


orientation specificity. A simple cell responds to an 


optimally oriented line in some narrowly defined position, 


even a slight displacement of the line to a new position 


without change in orientation renders the line ineffective. 


A complex cell, on the contrary, is as specific in its 


orientation requirements as the simple cell, but is far less 


particular abaut the exact positioning of the line. Such a 


cell will respond wherever a line is projected within a 


rectangle. Hypercomplex cells respond to more specific types 


of stimuli than either simple or complex cells. They respond 


maximally to edges, comers, curves and angles of particular 


sizes. 


In the literature neural architectures are reported 


simulating some of the properties of the visual cortex, and 


used in visual pattern recognition systems[12,15,24]. 







2.3 REVIEW OF NEURAL NETWORK ARCHlTECTllRES FOR VISUAL 
PATTERN RECOGNITION 


Theoretical neurodynamic approaches in cognitive 


sciences seek to replace symbol-manipulating formal 


computational rules with a short yet powerful list of 


elementary neural principles[l7]: 1.Competition 


2.Cooperation 3.Shunting inhibition 4.Adaptive feedback 


5.Resonance. This short list pf neural principles are the 


basis of diverse phenomena encountered in the cognitive 


sciences and neurosciences. The large number of computational 


neural models reported in the literature[6,20,29,30,361 are 


found to have based on these elementary neural principles. 


These elementary neural principles give raise to some 


interesting neural properties like associative recall, self 


organization, adaptive resonance and competitive learning. 


Number of architectures are proposed in the literature 


demonstrating these properties. These architectures include 


Hopfield Net[20,21,22], Hamming net[30], Adaptive Resonance 


Theory[6], Self organizing Maps[29], Boltzman machine[36], 


perceptron[30] and back propagation[36]. 


Various neural architectures for visual pattern 


recognition tasks are reported in the literature[12,15,24]. 


These architectures are designed to solve specific visual 


pattern recognition problems like handwritten character 


recognition, recognition of silhouettes etc. In visual 


pattern recognition, in general, the feature distribution of 







the input is not identical with that of the stored template. 


Hence a mechanism which can resolve the differences is 


necessary. There have been two approaches to this problem. 


The first one is to incorporate the mechanism into feature 


extracting stages as neocognitron does[12]. The second 


approach regards the feature extraction and pattern matching 


as separate stages[55]. 


In the following section we briefly review the 


neocognitron[l2] architecture which follows the first 


approach. There are other architectures for visual pattern 


recognition which follow the second approach[55]. These 


architectures use geometrical or analytical methods to 


extract features from the input pattern. These architectures 


use standard neural architectures like multilayer perceptron 


for recognition. We do not review these architectures here. 


23.1 Neocognitrorr. An Architecture for Visual Pattern Recognition 


F'ukushima proposed the cognitron[l3] model for pattern 


recognition. This mode1 does not have the capability to 


correctly recognize the position-shifted or shape-distorted 


patterns, Neo~ognitron which is an improved version of the 


conventional cognitron and has the capability to recognize 


stimulus patterns correctly, even if the patterns are shifted 


in position or distorted in shape. It has a hierarchical 


structure. The information of the stimulus pattern given to 







the input layer of the neocognitron is processed step by step 


in each stage of the multilayered network. A cell in the 


deeper stage generally has a tendency to respond selectively 


to a more complicated feature of the stimulus patterns. At 


the same time it has a larger receptive field and is less 


sensitive to shifts in position of the input pattern. Thus, 


each cell jn the deepest stage responds only to a specific 


stimulus pattern without being affected by the position or 


the size of the stimulus patterns. 


Neocognitron handles shifts by replicating the receptive 


field of a feature to cover the entire visual field. 


Distortions are tolerated by integrating the response from 


overlapping receptive fields of the previous stages in the 


subsequent stages. The successful performance of neocognitron 


is due to the gradual steps with which this replicating and 


integrating process is done. However, when this network is 


applied to other problem domains it poses a number of 


problems. 


Since the inner layers of neocognitron are trained for 


specific patterns, it falls short of the general purpose 


vision system. Each new pattern to be learnt is to be manually 


segmented and trained to various layers of the network. This 


is a comparatively easy task in the case of numerals for 


which neocognitron was shown. But designing such network for 


a pattern which has curves and lines as features, like in 


the case of images of formant contour patterns in speech, 


becomes extremely cumbersome. Moreover the training patterns 







like Arabic numerals themselves do not have any noise. If 


noise itself is part of the pattern then the first stage of 


neocognitron itself filters out such information and cannot 


be used by subsequent stages. 


2.4 PREAITENTIVE ViSUAL PROCESSING: ISSUES AND APPROACHES 


There are two issues to be addressed in the design of 


neural architectures for preattentive visual processing. The 


first issue is to identify different types of preattentive 


visual processing. The second issue is to find neural 


principles useful for the design of neural architectures. In 


this section we discuss these issues. 


The biological visual process can be functionally 


segregated into visual perception and visual cognition[4]. 


The visual perceptual process extracts information about the 


geometry of the visual world and the visual cognitive process 


concerns with the recognition of familiar objects. The visual 


perception in biological visual system seems to be automatic, 


does not use any detailed knowledge of the visual patterns, 


and extracts properties of the visual input which are not 


immediately used for recognition. 


The visual perception is based on two interrelated 


processes: parallel processing of visual information carried 


out automatically by mechanisms determined by neuronal 


organization of the retina, lateral geniculate nucleus, and 


visual cortex; and sequential processing is related to image 







recognition mechanisms and is controlled by attention[27]. 


In the first process, detector properties of single neurons 


and local neuron nets are of primary importance. Here, 


orientation of edges and contour elements of the input image 


are extracted by these neurons. In the second process, eye 


movements are considered to be an essential factor. As a 


result of these movements, the most informative parts of 


the image are sequentially projected onto the fovea for fine 


processing[5,54]. 


Therefore, an adequate computer system forthe processing 


and analysis of visual information should include a 


preprocessor with a neural network architecture, simulating 


parallel information processing at low levels of the visual 


system, and a sequential type neural system tuning the 


preprocessor to obtain necessary information for image 


recognition. Development of the neural network preprocessor 


should be preceded by a study on neuronal organization of 


low level structures of the visual system, their mathematical 


modeling and computer simulation. 


Based on the observations about the visual perception, 


we have considered two possible approaches for processing 


binary images: The first approach extrac.ts primitive line 


segments from an input pattern and retains the spatial 


relationship between the features. In this processing the 


detector properties of individual neurons and their spatial 


locations are important. This architecture is implemented as 


an oriented filtering and integration network. In Chapter 3 







we discuss this architecture and its application for isolated 


word recognition. In the second approach the maximum 


information points from the input pattern are located. This 


is implemented using directed spreading activation layers. 


Spreading activation layers reported in the literature1371 


uses isotropic spreading of activation to carry out early 


vision tasks like feature clustering and feature centroid 


determination. The directed spreading activation layers 


proposed in Chapter 4 uses anisotropic or directed spreading 


of activation followed by maxima detection to locate maximum 


information points from the input image. 


Since preattentive visual processing is parallel, the 


neural network architectures have in their input stage two 


dimensional array of neurons and the input pattern is fed 


directly to this array. Also, since preattentive visual 


processing is purely data driven and does not use any detailed 


knowledge about the patterns, the neural computations must 


be from local data, i. e., each neuron receives its input from . 


local data only. Apart from the computations from local data, 


it is possible to have lateral interactions between neurons. 


In this work we show how neurocomputations from purely local 


data extract structural features, and local data computations 


with lateral interactions between neurons give rise to an 


architecture which extracts maximum information points. 







2.5 SUMMARY 


In this chapter we have discussed four theories about 


visual pattern description and recognition. We have reviewed 


some of the neural network principles and architectures for 


visual pattern recognition. Some aspects of the visual 


perception are presented. Based on these observations we have 


considered two approaches to preatterrtive visual processing. 


In the following chapters we discuss two neural architectures 


and applications based on these two architectures. 







Chapter 3 


ORIENTED FILTERING AND INTEGRATION NETWORK 


FOR STRUCTURAL FEATURE EXTRACTION 


3.1 INTRODUCTION 


In this chapter we present the design of the oriented 


filtering and integration network. This architecture extracts 


the structural features like straight line segments from the 


input image. This is similar to the first stage of 


neocognitron[l2], but differs in the implementation of the 


integrating network. We show how this network can be applied 


for recognizing isolated utterances of words from the images 


of formant contour patterns. Section 3-2 discusses the 


structural organization and functional characteristics of 


the oriented filtering and integration network. In Section 


3.3 we describe the design of a neural architecture for 


recognizing isolated utterances of words. 


3.2 ORIENTED FILTERING AND INTEGRATION NETWORK (ORFIN) 


This is a two stage hierarchical network as shown in 


Fig. 3.1. Each stage consists of a number of two 


dimensional array of neurons and these neurons are of analog 


type, i.e., the input output signals of the cells take 
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Fig3.1 This figure illustrates the structural organization of ORFIN. (a) shows the 
block diagram of ORFIN and (b) illustrates the interconnection between S-planes 
and C-planes. Outputs of two of the S-planes which have the same orientation of 
stimuli but trained differently are fed to corresponding C-planes. This is shown as 
outputs from two S-planes converging into a single C-plane. (c) illustrates examples 
of S-cells whose outputs are fed to corresponding C-cells. 







nonnegative analog values. The first stage is an oriented 


filtering network (also referred to as S-layer) which extracts 


line segments from the input pattern. The second stage is an 


integrating network (also referred to as C-layer) which 


integrates responses from overlapping fields of the output 


of the first stage. The computation in the second stage allows 


small variations in the positions of the line segments. 


In this architecture all the computations are carried 


out from local data only. These two stages are motivated by 


the orientation specificity shown by simple and complex cells 


in the visual cortex[23]. 


Functional characteristics and structural organization 


of this network are described in detail in the following 


sections. 


3.2.1 Design of Oriented Fiftering Metwork 


This network extracts line segments from the input pattern 


by filtering through a number of planes called S-planes. Each 


one of the S-planes consist of two-dimensional array of cells 


and each cell favors a specific orientation of preferred 


stimuli. There are two types of cells in the S-plane, called 


S-cells and Vs-cells. The S-cells receive input from either 


excitatory or inhibitory inputterminals. If the cell receives 


signals from excitatory input terminals the output of the 


cell will increase. On the other hand, a signal from 


inhibitory input terminal will suppress the cutput. Each 







input terminal has its own interconnection coefficient whose 


values are positive. These values determine the preference 


of the orientation of the cell. The output of the S-cell goes 


to a number of input terminals of next C-layer. 


The schematic diagram illustrating-the interconnections 


converging to a S-cell is summarized in Fig.3.2. Each one of 


the S-cells receives its inhibitory signal from the Vs-cell 


which causes the shunting effect. All the S-cells in the 


given S-plane are trained to respond for a specific 


orientation of stimuli. The Vs-cells are trained to recognize 


the absence of the specific orientation of stimuli. So if 


the input stimuli is exactly similar to the trained stimuli, 


then S-cells respond to its maximum and Vs-cells respond to 


its minimum. On the other hand, if the input stimuli is 


completely different then the S-cells respond to its minimum 


and Vs-cells respond to its maximum. 


Both S-cell and Vs-cell receive input interconnection 


from the same spatial distribution. All the other cells in 


the same cell- plane have input interconnection from the same 


spatial distribution and only the positions of the input 


cells to which their terminals are connected are shifted in 


parallel from cell to cell. Fig.3.3 is a schematic diagram 


illustrating the interconnections from this stage to the 


second stage. In this diagram for the sake of simplicity, 


only one cell is shown in each cell-plane. Each of these 


cells receive input interconnection from the cells within 


the area enclosed by circle in its preceding layer. 
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Fig. 3.3 Schematic diagram illustrating the interconnections between 
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Let u(l),u(2),.,.u(N) be the exci~ator~ inputs and Vs be the 
" 


inhibitory input. Then the S-cell output is computed using 


the following equation: 


where u(n) and b represent the excitatory and inhibitory 


coefficients respectively, i(n) is the fixed weight pattern, 


Vs is the output of the VS cells and r is a constant. The 


characteristic behavior of S-cell is summarized in Fig.3.4. 


The function p ( )  is defined by the following equation: 


for x 2 0 


where is a positive cdnstant which determines the degree of 


saturation of the output. 


The output of Vs-cell is computed using the following 


equation : 


The fixed values of c(n) are determined so as to decrease 


monotonically with respect to the center and to satisfy 


c(n)  = 1.0. (Though c(n) is a two dimensional array for notational 


convenience it is denoted as a single dimensional array). 
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Fig. 3.4 Input-to-output characteristics of a S-cell. 







The input area for a S-cell is taken from a 3x3 array. 


In the 3x3 array twelve orientations are possible. These 


twelve orientations are shown in Fig.3.5. 


3.2.2 Design of Integration Network 


This network integrates responses from overlapping fields 


of the output of the first stage to tolerate small variations 


in the positions of the line segments. This network also 


consists of a number of planes called C-planes, and each 


C-plane consists of two dimensional array of cells. There 


are two types of cells, C-cells and Vc-cells in the C-planes. 


Both C-cells and Vc-cells receive input from the S-plane. 


C-cells receive inputs from S-cells and Vc-cells. Each C- 


cell has input interconnections leading from a group of 


S-cells and these interconnections are fixed and 


unmodifiable. All the S-cel'ls in the C-cells' connecting area 


extract the same stimulus feature from a slightly different 


positions on the input layer. The values of the 


interconnection between S-cells and C-cells are determined 


such a way that the C-cell will be activated whenever at 


least one of these S-cells is active. Vc-cells average the 


input from S-cells which have same orientation but trained 


differently. Fig. 3.6 shows some examples of the 


interconnection topology. Even if a stimulus pattern which 


has given a large response from the C-cell is shifted a little 


in position, the C-cell will still keep responding as before. 
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Fig. 3.5 Twelve line segments used to train S-cells. 


Fig. 3.6 Fixed weight pattern between S-cells and C-cells. This pattern is 


responsible for handling small shifts in the input visual pattern. 







In other words, a C-cell responds to the same stimulus feature 


as the S-cells, but is less sensitive to the position of the 


stimulus feature. 


There are twelve orientations of stimuli in the S-layer. 


These are connected to the eight C-planes in the C-layer. 


The S-planes which have same orientation of stimuli but 


trained differently are fed to a single C-plane. This is 


illustrated in Fig.3.lb and 3.1~. This figure is illustrated 


for seven S-planes and five C-planes. Fig.3.lb shows how the 


interconnections between S-planes and C- planes are arranged. 


Some examples of S-cellsf outputs feeding C-cells are shown 


in Fig.3.l~. 


The output values of C-cells are computed using the 


following equation: 


where p ( )  is a function def in& by eqn(3.2), d(n) denotes the 


values of the interconnection topalogy, and Vc is the output 


of VC-cells. In this implementation d(n) is assigned a constant 


value. (In neocognitron [ 121 d(n) is assigned monotonically 


- decreasing values with respect to the center. The eqn(3.4) 


is also simplified and differs from neocognitron.) I/, is 


computed using the following equation: 







where k is the number of S-planes connected to a C-plane. 


To summarize the functional behavior, ORFIN extracts 


straight line segments with tolerance in their positions 


while retaining the spatial relationship between them. This 


generates profiles of the input pattern which can be used 


for recognition. In the following section we show how this 


preprocessing is useful for recognizing isolated utterances 


of words from the images of formant contour patterns. 


3.3 APPLICATION OF ORFIN FOR ISOLATED WORD RECOGNITION 


The isolated word recognition(1WR) systems reported in 


the literature consider parameters[42] like spectral 


coefficients, discrete Fourier transformed(DFT) spectrum, 


linear prediction coefficients(LPC) etc. as input for 


recognition. These parameters are extracted from the speech 


signal form the patterns and these patterns, are then matched 


by template matching techniques. The nonlinear temporal 


changes in these patterns are handled by using dynamic 


programming techniques like dynamic time warping[25,46] and 


probabilistic models like hidden markov models[43]. The 


success of the IWR systems depends on the choice of parameters 


and the technique adopted to match these parameters. 


Speaker independent isolated word recognition with these 


parameters has been attempted with partial success[47]. The 


reason for the partial success of the parametric 


representation used for speaker independent IWR systems can 







be ascribed to the parameters' inability to capture the 


features of the word. The utterances of the same word by two 


speakers show little similarity in the parametric form. But 


the same words show significant similarity in the gross 


features level in the spectrogram. Though there is a relative 


shift in the features depending on the speaker, there are 


common features between them. 


Formants are resonances of the vocal tract system. These 


formant values vary slowly and continuously with time. The 


formants carry information relating to the identification of 


the speech sounds. Changes in the formant values with time 


can be traced to obtain a formant contour. This formant 


contour reflects the movements of the articulators positioned 


in sequence. Even though different speakers utter the word, 


the articulatory movements need to be the same. Such formant 


contour represents the speech signal in the form of an image. 


Fig. 3.7 shows some examples of the images of formant contour 


patterns. In this work the images of formant contour patterns 


extracted from the speech signal are considered as input to 


the isolated word recognition system. 


In the images of the formant contours, the features are 


simple lines and curves and they undergo distortions and 


shifts depending on the utterance and speaker. Even for the 


same speaker these formant cont~ur patterns show variations. 


Here, both the absolute location and the relative arrangement 
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Fig. 3.7 Some examples of images of formant contour patterns are shown. 







of the features are significant. For example, depending on 


the vowel, the positions of the lines representing F1 and F2 


formant frequencies change. 


The formant contour of the same word undergoes changes 


in both time scale and frequency scale. This is reflected 


in changes in the shapes and lengths of the curves and straight 


lines. This results in a significant change in the binary 


pattern and a drastic change in the physical location of the 


pixels. So the image of the formant contour pattern cannot 


be used for simple template matching. However, at a higher 


level the curves and straight lines exist as specific features 


of the utterance. 


The approach adapted in this work attempts to preprocess 


the images of the formant contour to get an invariant 


representati~n. The distortions and shifts in the input 


pattern are processed by the preprocessing technique. Here 


we have attempted to use the oriented filtering and 


integration network for preprocessing the images of formant 


contour patterns. 


In the following section we describe a neural architecture 


for recognizing isolated utterances of words from the images 


of formant contours. 







3.3.1 Design of Isolated Word Recognition System 


The organization of the neural architecture proposed is 


shown in the Fig. 3.8. This system consists of two stages. 


The first stage is called Feature Extraction stage(FE) and 


the second stage is called Pattern Matching(PM) stage. 


Oriented filtering and integration network is used as FE 


stage. The small distortions and shifts of the features of 


the formant contours are preprocessed by this network to get 


an invariant representation. 


Since the formant contour image does not have any lines 


with angles above 45", all the orientations of stimuli above 


45" need not be considered. This eliminates five of the twelve 


orientations. So the number of S-planes in the S-layer in 


this system is seven responding to seven different 


orientations. The outputs of these S-planes are fed to five 


C-planes. The FE stage generates different profiles from the 


input image which are the outputs of C-planes of the 


integration network. 


The five C-planes generate five different profiles. These 


profiles are input to the PM stage (Fig. 3.9) . The PM stage 
is a hierarchical Adaptive Resonance Architecture[6]. It 


consists of two stages of ARTS in a hierarchy. First stage 


consists of five Simple Adaptive Classifiers called SAC-1. 


Each SAC-1 receives one of the profiles as input. It 


classifies the profile into a category. Each SAC-1 makes its 
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Fig. 3.8 Neural architecture for recognizing isolated utterances of words. 
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Fig. 3.9 Pattern Matching Stage is a hierarchical adaptive resonance 


architecture. SAC-1 categorizes the profiles. SAC-2 classifies based on the 


categorization done by SAC-1. 







decisions based purely on the specific profile it receives. 


The second stage is also a Simple Adaptive Classifier, called 


SAC-2. All the outputs of the SAC-1 are fed to SAC-2 and it 


merges the classification done by SAC-1 and identifies the 


input pattern. The Simple Adaptive Classifiers follow the 


adaptive resonance architecture (Fig.3.10) and the salient 


points of this architecture are summarized below. 


The main feature of adaptive resonance architecture is 


the adaptive resonance that occurs between the current input 


and learned expectations. In ART the system which carries 


out the adaptive resonance is called attentional subsystem, 


which consists of bottom-up and top-down adaptive filters. 


These filters are contained in pathways from a feature 


representation field (Fl) to a category representation field 


(F2) whose nodes undergo competitive-cooperative 


interactions. 


An auxiliary orienting subsystem controls the self 


organizing and recognizing capability of ART. When a new 


input is added at any time, the system would search the 


established categories. If an adequate match is found on the 


initial search cycle, the bottom-up weights would be refined 


if necessary to incorporate the new pattern. If no match is 


found and the full coding capacity is not exhausted a new 


category would be formed with previously uncommitted F2 nodes 


encoding the new input pattern. 
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The auxiliary orienting subsystem becomes active when a 


bottom-up input to FI fails to match the learned top-down 


expectation read-out by the active category representation 


at F2. In this case, the orienting subsystem is activated and 


causes rapid reset of the'active category representation at 


F2. This reset event automatically induces the attentional 


subsystem to proceed with a parallel search. Alternative 


categories are tested until either an adequate match is found 


or a new category is established. The search proceeds rapidly 


relative to the learning rate. Thus significant changes in 


the bottom-up and top-down adaptive filters occur only when 


a search ends and a matched FI pattern resonates within the 


system. 


The criterion for an adequate match between an input 


pattern and a chosen category template is adjustable in an 


ART architecture. The matching criterion is determined by a 


vigilance parameter that controls activation of the orienting 


system. Allotherth ingsbe ingequal ,  higher vigilance imposes 


a stricter matching criterion, which in turn partitions the 


input set into finer categories. Lower vigilance tolerates 


greater tbp-down/bottom-up mismatches at FI, leading in turn 


to coarser categories. 


Fig.3.10 illustrates the main components of ART module 


in detail. Field Fl of M nodes, with output vector 


X = ( x ~ $ ~  ,... qM), registers the input vector I = (11,12 ,..., IM). The 


bottom-up weights are denoted by q.. and top-down weights are 
'I 







denoted by zij. The index i is used for the feature 


representation nodes of the field Fl  and thg indexj is used 


for category nodes in the field F2. In the current 


implementation the input feature vector1 is a two dimensional 


vector for both SAC-1. and SAC-2. This is denoted as a single 


dimensional vector for convenience. The size of M for SAC-1 


is taken to be 32x32 and for SAC-2 is taken to be 5x15. 


~ a c h  F l  node can receive input from three sources: the 


bottom-up input, nonspecific gain control signals which is 


received by all the nodes at Fl  at the same time, and the 


top-down signals from the N nodes of F2 via an top-down 


adaptive filter. The nonspecific gain signals in SAC-2 are 


activated only after SAC-1 stabilizes the resonance activity. 


Therefore SAC-2 is inactive when SAC-1 is active. A node in 


F l  is said to be active if it generates an output* signal equal 


to 1 .  Output from inactive nodes equals 0. The 2/3 nrk [ 6 3 is 


realized in its simplest, dimensionless form as follows: 


2/3 The ith Fl  node is active if its net 


input exceeds a fixed threshold. Specifically, 


where term I, is the binary input, term gl is the binary 


N 
nonspecific Fl gain control signal, term CyjZji is the sum of 


j =l 


top-down signals yj via pathways with adaptive weights Zji, and 







k  is a constant such that 0 < k  < I .  In this implementation k  


is chosen to be 0.23 which is the least value computed by the 


C-cells of the integrating network. 


F1 aain control: The Fl gain control signal gl is defined by 


= { 1 if FO and I2 are active 
0 otherwise 


Since F2 activity inhibits Fl  gain 


1 if Ii = 1 xi = (3.8) 
0 otherwise 


If only one. of the F2 nodes are active eqn(3.6) reduces 


to the single term z.. so 
I' 


1 i f & =  l a n d z j i > k  
X i  ' (3.9) 


0 otherwise 


The case where two F2 noges are active at the same time 


has not occurred during our simulation. 


F2 U Let T. denote the total input from Fl to F2 
I 


node, given by 


where the zji denote the bottom-up adaptive weights. If some 


T, > 0, define the F2 choice index J by 


T, = max(T -j = I , . . . & )  
i' 


In the typical case, J is uniquely defined. Then the F2 


output vector y = (y1y2,.-..aN) obeys 







If two or more indicesj share maximal input, then they 


equally share the total activity. In the simulation this 


situation also never arouse because of the nature of the 


distinct categories of isolated words. 


The adaptive weights reach their new 


asymptote on each input presentation. The learning is gated 


by FI activity: that is, the adaptive weights z .  and qJ can 
11 


change only when the P F2 node is active. 


n learnina: When the y. gate opens then learning 
I 


of top-down weights z. begins and 2.. is attracted towards x i .  
li 11 


This is called outstar learning rule[l7]. Initially all z.. 
11 


are set to 1. The F2 activity vector can be described as 


I if F2 is inactive 
x ={ I+ZJ if the Sh node i~ active 


When node I is active, learning causes zJ = I+zj(ald)-1 where 


zj(01d) denotes zJ at the start of the input presentation. The 


first time an F2 node J becomes active, it is said to be 


uncommitted. In this case % = I  during learning. Thereafter 


node is said to be committed. 


Pottom - lap learnina. In simulations it is convenient to 
assign initial values to the bottom-up adaptive weights q.. 


I' 


in such a way that F2 nodes first become active in the order 







j =  1,2, ... N. This is done by choosing the bottom-up weights small 


but decreasing order. This is accomplished by letting q.. = a.  
11 I 


where al,al ,..., aN. 


Like the top-down weights vector zJ, the bottom-up weight 


vector qJ also becomes proportional to the F2 output vectoc 


x when the F2 node J is active. In addition the bottom-up 


weights are scaled inversely to 1x1, so that 
qu= (,3+IxI) 


where 0 > 0. During learning qJ is computed by 


I+ZJ (old) - 1 
" = p+( ~I+zJ (old)-'1 I 
Since learning depends on the few samples provided in 


the initial stages of the training the network, it is possible 


that from the training set provided it may not be possible 


for the system to generalize'for correct recognition. Hence 


the network is allowed to learn continuously even during the 


recognition phase. To facilitate such learning possible, the 


vigilance parameters are adjusted during recognition. 


3.3.2 Data Preparation 


A number of approaches are proposed to extract formant 


contours from the speech signal. Some of the approaches 


proposed extract the formant frequencies by linear prediction 


analysis or fromcepstrum. Another approach to extract formant 


frequency from speech signal is usinggroup delay function[l9] 







which is the negative derivative of the Fourier transform 


phase. The group delay function derived from the Fourier 


transform phase of a signal has two important properties, 


namely, additive and high resolution. Hema[l9] has proposed 


a technique for formant extraction from group delay function 


using these properties. From the group delay the formant 


frequencies are picked using a simple peak picking method. 


In this work the formant contour is extracted from the speech 


signal using the above technique. 


The speech signal is sampled at 10,000 samples per second. 


These samples are grouped into blocks of 256 samples. Each 


block is processed through the group delay formant extraction 


technique. The next block is chosen by shifting 32 samples. 


This processing generates the image of the formant contour. 


This image should be preprocessed before feeding into the 


proposed system. There are number of issues to be addressed 


for preprocessing the images. 


The first issue is to normalize the temporal variations 


in the image. Depending on the time taken for uttering the 


word the length of the x-axis of the image changes. Since 


the input to the proposed system is a fixed two-dimensional 


array of visual pattern, the formant contour should be 


normalized before feeding into the system. This essentially 


involves normalizing the duration of the uttered speech 


signal. In this work we have used a simple normalizing 


technique. The time expansion and compression is carried out 


in vowel regions of the uttered signal. The vowel region in 







the formant contours contains nearly horizontal lines. In 


these locations -the formant contours are compressed or 


expanded and normalized to specific size of the input. 


The second issue is to remove the noisy peaks in the 


image. A simple support point technique is used to remove 


the noisy pixels of the image. In this technique each point 


in the image is retained only if thelje are atleast 20 


neighboring points. The other issue is to process the 


discontinuities in the image. The same support point technique 


which is used above automatically corrects the 


discontinuities. 


3.3.3 Implementation Details and Results 


In the current implementation the S-layer in the FE stage 


consists of seven S-planes. The S-cells in these S-planes 


are tuned to seven different orientations. Each S-plane 


consists of 64x64 array of S-cells. The orientation for which 


each S-plane responds is already trained and the values are 


hard-coded into the program. Each pattern is a 3x3 array as 


shown in Fig. 3.5. Each S-cell receives its input from a window 


of size 3x3. The adjacent S-cell receives the input from an 


overlapping window. A number of parameters are used in 


eqn(3.1) and (3.2) for computing the outputs of S-cells. 


These parameters are fine tuned for a good performance. The 


value of r is taken tobe 1.7, b =  1, D = 0.5 anda = 0.333018. 







The C-layer in the FE stage consists of five C-planes. 


Each C-plane consists of 32x32 array of C-cells. The outputs 


of the S-planes are connected to the C-planes through the 


interconnection topology as shown in Fig.3.6. This topology 


is a 5x5 matrix for each C-plane and hardcoded into the 


program. Each C-cell receives its input from output of the 


S-plane having a window of size 5x5. This feature extraction 


phase finally generates five different profiles each of size 


32x32. These profiles are fed to the PM stage. An example of 


the outputs of C-planes for the utterance TWO are shown in 


Fig.3.11. 


Field F1 of SAC-1 is an array of size 32x32. Field F2 


has 15 category nodes for classification. All the five SAC-1 


classifiers together generate a two dimensional array of 


values of size 15x5 which is fed as input for SAC-2. Hence, 


in SAC-2 the field F2 has an array 15x5 input nodes. There 


are 10 category nodes in field F2 of SAC-2. 


There are two isolated word recognition tests conducted 


on this system. We have selected utterances of the digits 


for recognition. In the first test the system is tested with 


the utterances of a single speaker. The recognition results 


of the system for .a single speaker with 20 utterances of each 


digit, are shown in Table 3.1. The system was trained with 


three utterances of each word. 
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Table 3.1. Isolated Word Recognition System Test results 


for a single speaker 


In the second test the system is tested with isolated 


utterances of digits from two American speakers. The system 


is trained with two utterances each of the two speakers and 


tested with five utterances of each speaker. The results are 


shown in Table-2 and Table-3. 


Table 3.2. Isolated word recognition system test results 


for two speakers: Speaker-1 







Table 3.3 Isolated word recognition system test results 


for two speakers: Speaker-2 


From the tests conducted we observe that the system 


performs well for a single speaker for distinct words. Words 


like FIVE, EIGHT and NINE have the same dominant vowels and 


formant contour image for these words show similar horizontal 


lines. The system attempts to locate the distinct features 


of these words for classfication and shown good results, for 


example 16 out of 20 instances of FIVE are identified 


correctly. The s y s t e m m i s c l a s s i f i e s t h e s e w ~ r d s  in some cases. 


This may be attibuted to the limitation of using iamges of 


formant contour patterns which capture only the resonances 


of the system properly. In the second test also we observe 


misclassifications in those words where there is vowel 


domination. 







3.4 SUMMARY 


I n  t h i s  c h a p t e r  w e  have p re sen ted  t h e  d e s i g n  o f  t h e  


o r i e n t e d  f i l t e r i n g  and i n t e g r a t i n g  network f o r  s t r u c t u r a l  


f e a t u r e  e x t r a c t i o n .  W e  have a l s o  desc r ibed  an  a p p l i c a t i o n  of  


t h i s  a r c h i t e c t u r e .  A n e u r a l  a r c h i t e c t u r e  f o r  r e c o g n i t i o n  of  


u t t e r a n c e s  of i s o l a t e d  words from t h e  images o f  t h e  formant 


con tou r  p a t t e r n s  is presen ted .  W e  have d e s c r i b e d  t h e  


implementation d e t a i l s  of t h e  neu ra l  a r c h i t e c t u r e '  and a l s o  


p r e s e n t e d  t h e  test  r e s u l t s .  







Chapter 4 


DIRECTED SPREADING ACTIVATION LAYERS FOR 


LOCATING MAXIMUM INFORMATION POINTS 


4.1 INTRODUCTION 


In this chapter we present the design of directed 


spreading activation layers. This architecture extracts the 


maximum information points in the input image. We describe 


two applications of this architecture. In the first 


application we show how low level features can be extracted 


from the machine fonts. In the second application we show 


how transformation invariant binary pattern recognition can 


be achieved-using the maximum information points generated 


by this architecture. 


Spreading activation layers[37] has been used to carry 


out early vision tasks like feature clustering and feature 


centroid determination. However, studies reported in the 


literature use isotropic spreading of activation. In this 


chapter we discuss the drawbacks of the spreading activation 


layers for locating maximum information points.and propose 


a new directed spreading activation model. In Section 4.2 we 


describe the spreading activation layers. Section 4.3 


discusses the motivation for the directed spreading and 


Section 4.4 describes the design of the directed spreading 







activation model. We discuss the implementation details and 


examples in Section 4.5. In Section 4.6 and 4.7 we show some 


applications of these architectures. 


4.2 SPREADING ACTIVATION LAYERS 


Evidence for rapid diffusion like phenomena are found in 


the brightness and color domains of stabilized image 


experiments. Compelling evidence is provided by Yarbusts[54] 


experiments, in which color from the surround rapidly fills 


regions in which stabilized images have faded. These evidences 


are reported in the brightness domain. Butthe diffusion-like 


phenomena are used in both high level information processing 


models[2,26] and low level visual processing models 


also[14,15,37]. Spreading activation layers use this 


diffusion like phenomena for early vision tasks. 


Diffusion enhancement is a low level computational model 


which has been used in building a neural network vision 


system[37]. This model is used for learning and recognizing 


two-dimensional binary patterns invariant of their location, 


orientation and scale. The processing is divided into layers, 


each of which encompass many levels of neuron-like processing 


cells. This low level processing model carries out early 


vision tasks like feature extraction, feature clustering and 


feature centroid determination. In the following seczions we 


summarize the salient features of the spreading activation 


layers. 







4.2.1 Activity Dlffusion and Centroid Detection 


Consider a region R and an activation function A(R) 


defined over it at an initial time to. Let the function A(R) 


be binary values at to, either A, or 0, corresponding to 


locations where maximum information or the low level features 


on the binary image have been detected. The maximum 


information points are the high curvature points detected by 


a technique proposed by Rosenfeld[28]. Now let the activation 


diffuses locallythroughthe region according tothe classical 


diffusion equation: 


where k(R) accounts for the density and conductivity of the 


region. If k(R) = k this reduces to dA/dt = @A(R) a constant. 


If the total activation is held constant, then the locations 


with initial activation Asat begin to lose activation, while 


adjacent locations begin to gain activation. Due to 


superposition, areas near activation-rich locations gain 


activation more quickly than areas far from the 


activation-rich locations. Fig.4.1 plots the activity 


distribution surface as it spreads by the simple diffusion 


as described above. Activity spreads as the time progresses 


from to (Fig.4.la) until a global activity maximum emerges 


(Fig.4.ld), indicating the geometric centroid of the 


features. At an intermediate time various local maxima can 







Fig. 4.1 The activity distribution of the spreading activation fayer is plotted 
in Wee dimensions at four times: (a) at to as diffusion begins; @) at to', 
after a sbrt time; and much later in (c) a d  (d). In (d) the peak is located 
at the geometric centroid of the three features as shown in (a). 







Fig. 4.1 The activity distribution of the spreading activation layer is plotted 
in three dimensions at four times: (a) at to as diffusion begins; @) at tof. 
after a short time; and much later in (c) and (d). In (d) the peak is located 
at the geometric centroid of the three features as shown in (a). 







be located. Fig.4.2 shows the time sequence of two feature 


locations spreading, superimposing their tails, and finally 


merging at the centroid. This example is shown for one 


dimensional spreading. 


The activation distribution in the diffusion level 


defines a surface over a 2D plane. Extrema of activity are 


found in areas of positive curvature of the surface. The 


maximum is computed in neural networks by self-activation 


and competition. Using lateral inhibition, each element 


suppresses its neighbors according to its activation, while 


feeding back an excitatory activation to itself. This is 


accomplished using an on-center/off-surround recurrent 


receptive-field for each element. Among other properties, 


this type of network enhances[l6] the contrast of the activity 


distribution, or in the extreme case, leaves only the 


maximally acti-vated element on. This type of network along 


with spreading activation layers locates 'the feature centroid 


of the given feature points. 


4.22 Feature Extraction in Spreading Amation Layers 


Curvature along contours are useful for recognition of 


shapes from 2D images. Spreading activation layers may be 


used in locating the curvature along contours. Fig.4.3 shows 


the result of using spreading activation layers for locating 


a corner. The figure shows that the areas near high curvature 


points along the contour are easily found, since they receive 


superimposed activation from a greater number of locations 
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Fig. 4.2 As time progresses (a) to (f), the activrty distributions initially due to 
two features spread. As activity spreads the local maxima moves toward 
the centroid. The global maxima is stable at that point. 
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Fig. 4.3 A contour with a c o r m  shown in (a) is diffused in (b)-(d). Activity 
accumulates more $utdcly where the average distance to the features is 
least. As the diffusion progresses the activity maxima moves to the global 
centroid. Since maxima moves continuously it is difficult to determine when 
to stop diffusion to locate the peak at the comer. 







Fig. 4.3 A contour with a comer shown in (a) is diffused m (b)-(d). Activity 
accumulates more quickly where the average distance to the features is 
least. As the diffusion progresses the activity maxima moves to the global 
centroid. Since maxima moves continuously it is difficult to determine when 
to stop diffusion to locate the peak at the comer. 







than areas near straight contours. But a certain amount of 


care is required in using diffusion as a corner and contour 


termination points detector. If the diffusion is too short 


on a coarsely sampled image, then maxima will be detected 


for a short time. If the diffusion is too long, as the 


diffusion progresses, the maxima points merge together with 


real corners, and corners located around small features merge 


together. 


4.2.3 Centers of Focus of Attention 


Since initial activation function corresponds to 


locations where features have been located, the diffusion as 


it progresses form feature clusters. These feature clusters 


can be used as a center of focus of the saccadic controller 


of any visual system. Since the activation level of each 


maxima point depends on the density of features nearby, it 


may be used to prioritize the importance of feature area as 


a fixation point. The level of detail, and thus the size of 


the feature cluster, can be controlled by the extent in time 


of the diffusion process. For instance, if the diffusion 


results can be sampled before extensive feature clustering 


occurs, they will reflect small feature clusters and a high 


level of detail. If recognition using the clusters found at 


this fine level of detail is incomplete, the diffusion may 


be allowed to proceed, creating larger feature clusters. 


Hence, small scale organization emerges before large scale 


organization in a natural way. 







Fig.4.4 shows an example of the feature clustering in a 


binary image. The figure illustrates how small scale 


organization arises naturally before a large scale 


organization. These small local clusters are shown in 


different stages of spreading. 


Features can be separated from each other by merging into 


different activity groups. These different groups emerging 


as a function of time can be processed individually leading 


to piecewise support for recognizing a complete object, even 


in the presence of noise or occlusions. 


4.3 MOTIVATION FOR DIRECTED SPREADING 


4.3.1 Drawbacks of the Spreading Activation Layers flx Low tevei Feature 
Extraction 


The objective here is to use spreading activation layers 


for low level features or-.maximum information points 


extraction. In this section we discuss the drawbacks of using 


spreading activation layers for extracting low level 


features. 


The spreading activation layers is essentially employs 


an averaging process. When the input pattern is directly 


presented to the spreading activation layers, as the time 


progresses, the activation values of the individual neurons 


reflect the averaging process which takes place over two 


dimensional space. This kind of averaging is unconstrained , 







Fig. 4.4 Small scale organization of feature clusters emerges before large 
scale organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feaiure clustering at different times. 







Fig. 4.4 Small scale organization of feature clusters emerges before large 
scale organization. (a) shows the continuous process of feature clustering. 
(b)-(d) shows different snapshots of feaiure clustering at different times. 







because there is neither a limiting factor nor a complementary 


mechanism to constrain the spreading of activation in both 


time and space. The local maxima formed as time progresses, 


represent various features and feature clusters in the image. 


As there is no constraint in the spreading it is very difficult 


to determine 'a priori8 when t'o stop the spreading process 


and identify features or feature clusters, since the peaks 


which are formed during the spreading slowly drift away 


towards the global centroid. Hence the main problem in using 


spreading activation layers for feature extraction is 


identifying the temporal event for stopping the spreading. 


The location of quasi-static points[37] during the 


spreading activation process has been proposed as a temporal 


event for determiningthe feature clusters. This quasi-static 


point method cannot be adopted to the low level feature 


extraction directly as the feature maxima tend to move 


continuously towards the global centroid. To overcome this 


problem the feature extraction phase and feature cluster 


identification phase are isolated in spreading activation 


layers. The feature points are detected by nonneural 


techniques and the feature map is considered as input for 


spreading instead of the direct input pattern. But the lines, 


curves and contour termination points which are not retained 


are very useful and significant as they contain information 


useful for invariant pattern recognition. When the 


eye/camera movement is used to identify the features located 


at the maxima points, the lines and contour termination points 







will be missed. Even though spreading activation layers is 


not successful in low level feature extraction, it can be 


successfully used for saccadic movement, once the maximum 


information points on the binary images are located. 


4.3.2 Basis for Directed Spreading Activation Model 


This drawback of the spreading activation layers' 


inability to detect the low level features like line segments, 


corners, curves and contour termination points correctly as 


part of the low level feature extraction can be attributed 


to mainly the unconstrained nature of spreading both 


temporally and spatially. In this section we discuss the 


basis for directed spreading which constrains the spreading 


spatially. The spreading takes place in specific 


predetermined directions and the directions specified by the 


input pattern. The directed spreading activation model 


locates the midpoints of lines of different lengths, curves 


and edge termination points in a purely datadriven manner. 


When the input binary pattern is subjected to 


unconstrained spreading, the maxima points are formed at the 


line segments, corners, curves and contour termination 


points. If the diffusion is too short then these feature 


maxima are not formed correctly. On the other hand, if the 


diffusion is long then they move towards each other and merge. 


The nonstationary nature of the feature maxima is due to the 


lateral influence of the adjacent feature maxima. 







The straight line segments and the corners may be 


considered as complementary features. Since the spreading is 


unconstrained these complementary feature peaks spread fast 


and become nonstationary. To avoid this lateral influence it 


is necessary to separate these complementary features. In 


this directed spreading activation model there are two 


surfaces which work in parallel and locate complementary 


features. One layer of neurons is sensitive to lines of 


different orientations and acts similar to Boundary Contour 


System(BCS) proposed by Grossberg[l4]. The second parallel 


layer of neurons is similar to Feature Contour System(FCS) 


and is sensitive to curves and contour terminations. By 


proposing constrained spreading activation simultaneously 


taking place in two functionally complementary neuron nets, 


we isolate the complementary features and hence prevent the 


lateral influence of the feature maxima points. 


4.4 DIRECTED SPREADING ACTNATLON (DSA) LAYERS 


In the directed spreading activation layers discussed in 


this section there are two layers each with different 


characteristic k(R). The first layer has k(R) defined for 


specific directions and spreading takes place only in these 


directions. It locates the midpoints of the line segments. 


The second layer receives its input from the first layer and 


the input binary pattern. In the second layer the spreading 


activation takes place in the direction specified by the 


activation values of the adjacent neurons. Hence the 







conductivity function k(R) of the region is directed by the 


data. This second layer detects curve centroids of all 


curvatures and contour terminations. Since the spreading in 


these two layers is spatially constrained there is no lateral 


influence between peaks, hence these peaks are always 


stationary and the movement is restricted to the directions 


specified within a layer. These two layers along with their 


maxima detectors locate midpoints of lines, curves, corners 


and contour terminations in a purely data-driven manner which 


can be used for eye/camera movement. 


4.4.1 Organization of DSA Layers 


The functional organization of the directed spreading 


activation layers is shown in Fig.4.5. It consists of two 


layers called L1 and L2 each of which consists of two 


dimensional array of neurons. In the case of ORFIN the layers 


are arranged in a hierarchy. In DSA both the layers receive 


the input simultaneously and send their outputs to a two 


dimensional array of neurons which locate the maxima points. 


The layer L2 also receives input from L1. These two layers 


with their maxima locating network locate the complementary 


features in the input image. L1 locates the midpoints of line 


segments and L2 locates other maximum information points like 


corners, curve segments and contour termination points. 
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4.4.2 Design of DSA Layers 


The first layer L1, consists of two dimensional array of 


hypercolumns[23]. A hypercolumn is a collection of 


orientation specific cells. Each cell in a hypercolumn 


responds to a specific orientation. The collection of cells 


is such that cells responding to all the orientations are 


available in a hypercolumn. In the current implementation 


each hypercolumn consists of a twelve directional detector 


neurons which respond to twelve different directions. A 


hypercolumn with twelve directional detectors is shown in 


Fig.4.6. These hypercolumns receive their input from the 


input binary pattern. The outputs of all the directional 


detector neurons are totally connected and these links have 


a small negative value. Hence when the input is presented 


each hypercolumn act like a winner take all network as shown 


in Fig. 4.7. As a result, even though the directional detectors 


respond to partial line segments, the one which has the 


maximum response survives. All the directional detectors 


belonging to a hypercolumn receive their input from a fixed 


window of the input pattern. Adjacent hypercolumns receive 


their input from overlapping windows. 


The general structure of the directional detectors is 


essentially the same as that of the S-cells described in 


Section 3.2.1. Each directional detector has two types of 


cells, excitatory cells (ECs) and the inhibitory cells (ICs) 


that occur in pairs. Each pair receives the same input set. 







0 - Directional Detector 


Fig.4.6 Layer one: Hypercolumn lnpuf 


WINNER-TAKE-ALL NETWORK 


L U  


3 x 3  Input Array 


@ - Directional Detectors 


Fig.4.7 Layer one: Hypercolumn output 







The ICs have fixed excitatory weights with values such that 


the output of the ICs is proportional to the mean intensity 


value over the input. The activation function of the ICs that 


produces this mean value is a simple weighted sum: 


where the cl(i) values are determined by a function that 


decreases monotonically with distance from the center of the 


connectable area and sums to 1. The mean value vl is used as 


inhibition to the paired EC, which generates an output 


according to the equation: 


where the weights a, and b are modifiable weights, r represents 


the efficacy nf the inhibitory synapse and the transfer 


function is a piecewise linear function according to: 


The functional characteristics of directional detector 


is summarized in Fig.4.8. 


The directional detectors which have the same directional 


sensitivity of neighboring hypercolumns are connected by a 


link. An example of the hypercolumns connected through the 


links is illustrated in Fig. 4.9. In the illustration six 


hypercolumns with each hypercolumn having only four 


directional detectors are shown. The directed spreading takes 







place through these links. Hence the k(R) defined for L1 is 


sensitive to the direction. The output of the layer L1 is 


connected to the maxima detector. This network is a simple 


on-center/off-surround network to detect maxima. Each maxima 


detector cell suppresses the neighboring neurons according 


to its activation and feeds back excitatory activation to 


itself. 


The second layer L2 also consists of two-dimensional 


array of neurons. These cells are connected to all their 


neighbors by links. Each neuron receives its activation from 


the input and the first layer according to the following 


equation: 


L2ry = Ixy - LL;y (4.5) 


where L2x,y is the activation value fed to the neuron of L2, 


I x ,  is the input binary pattern and Llxy  is the activation 


values of L1. From the equation it is clear that the second 


layer receives complement of the first layer output over the 


input binary pattern. All the inputs and outputs of a single 


neuron in L2 is shown in Fig.4.10. Since the first layer 


detects all the lines and diffuses them, the second layer 


receives activations at corners, curves of all curvatures 


other than straight lines and contour terminations. In layer 


L2, the spreading takes place between only the active 


neighboring neurons. So the corner, curve and contour 
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termination centroids are enhanced. The output of L2 is fed 


to the maxima detector and the maxima detector locates the 


enhanced peaks of L2. 


Rapid eye movements (saccades) driven by the locations of 


maximum information points play an important role in the 


establishment of spatial relations. The absolute and relative 


positions of the peaks located by L1 and L2 of this system 


can be considered as bottom-up cues for the eye/camera 


movement to establish the spatial relationships. The peak 


strength shows the length of a line or a curve at that 


position. The onf pixels around the fixed window of the peak 


is useful for identification of the feature at the peaks. 


4.5 IMPLEMENTATION DETAILS AND EXAMPLES 


The input visual pattern is a 32x32 two-dimensional array 


of binary values. There are twelve directional detectors in 


the hypercolumn structure as shown in Fig.4.6. These 


directional detectors compute their activation values 


following the eqn(4.3) . The parameters for the directional 
detectors are fine tuned and these values are r = 1.7 and b 


= 1.0. 


The L1 layer receives the maximum value of each 


hypercolumn. This L1 layer is implemented in an array of size 


31x31, giving an offset of one for computing the directional 


detectors. The directional spreading takes place in L1 layer. 
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Fig. 4.10 Input/Output of a neuron in L2. 
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The spreading activation coefficient k is taken to be 0.005. 


The L2 layer receives the complement of L1 over the input 


array. 


Fig.4.11 shows an example of the input binary pattern 


for which maximum information points are generated. 


Figs. 4. llb to 4.11e show the outputs of different layers. 


Fig. 4. lla shows the input pattern for which maximum 


information points are to be located. Fig.4.llb shows the 


spreading taken place in specific directions. The centers of 


the line segments have the maximum activation which is shown 


in Fig. 4.11 c. Fig. 4. lld shows the complementary of L1 values 


to the input image. Since the adjacent values to these corners 


are very large in L1 layer, the comlpement becomes too small 


and hence the adjacent values are not seen in Fig.4.lld. In 


this binary pattern the maximum information points are the 


corners. These points are automatically located by the 


architecture and is shown in Fig. 4. lle. It can be observed 


that even though this architecture does not have any corner 


or any other template, it locates the corners and other 


maximum information points automatically, This is an 


advantage for locating low level features from machine fonts 


which is illustrated in the next section. Fig.4.12 shows 


another example of low level feature extraction from another 


binary pattern. 











