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ABSTRACT

Keywords: Speaker segmentation; speaker change detection; multispeaker speech;
speaker turn; speaker separation; speaker tracking; 2-speaker detection; segmentation
cost; autoassociative neural network; within-speaker to across-speaker dissimilarity ra-

tio.

Speaker segmentation involves detection of speaker changes in a multispeaker
speech signal. Speaker segmentation or speaker change detection is the first step in
applications like 2-speaker detection, transcription of multispeaker speech, forensic in-
vestigations and audio indexing, which involve processing of multispeaker data. In this
research work we address the issue of detecting speaker changes in a casual 2-speaker
conversation, which contains short speaker turns. The existing approaches for speaker
segmentation depend mainly on vocal tract characteristics of speakers, to detect a
speaker change. They rely on the dissimilarity of distributions, of the feature vectors,
estimated from two adjacent windows of speech. This requires significant amount of
data (> 5 sec) in each of the windows, and hence the existing approaches are best
suited for applications that handle multispeaker data with long speaker turns (e.g.
transcription of broadcast news). This statistical approach to a point phenomenon
(speaker change) fails when the given conversation involves short speaker turns (<
5 sec). Casual conversations contain a large number of short speaker turns, and an
automated, accurate segmentation of these conversations is crucial for tasks handled

by forensic and intelligence agencies. In this thesis, we explore the possibility of using



excitation source information as an alternate feature for speaker segmentation. The
excitation source signal energizing the vocal tract system during the production of
voiced speech, has significant information for characterizing a speaker. Linear predic-
tion (LP) residual, obtained by removing the vocal tract information from the speech
signal, is a good approximation of the excitation source signal. An autoassociative
neural network (AANN) model can be used to capture the higher order correlations
among samples of the LP residual signal, at a subsegmental level (less than a pitch pe-
riod). Within-speaker to across-speaker dissimilarity (WAD) ratio is proposed as a new
measure to evaluate the ability of a given feature set in characterizing a speaker. Ex-
citation features are shown to have lesser dissimilarity across sounds within a speaker,
as compared to the vocal tract features. Hence excitation source features are better
suited for characterizing a speaker from limited amount of voiced speech (< 5 sec).
The ability of an AANN model to capture the subsegmental excitation characteristics
of a speaker from limited data, is used to propose a new approach for speaker segmen-
tation. The proposed approach using excitation source features works better than the
commonly used approach based on vocal tract features, in segmenting casual 2-speaker
conversations. The 2-speaker detection task, which is of significance in forensic ap-
plications, is considered as an application of speaker segmentation. The performance
of a 2-speaker detection system is shown to improve when speaker segmentation is
performed on the training and test conversations, as compared to the case when no

segmentation is done.



TABLE OF CONTENTS

Acknowledgements

Abstract

List of Tables

List of Figures

Abbreviations

1

2

SPEAKER SEGMENTATION - AN INTRODUCTION
1.1 What is Speaker Segmentation? . . . . . .. .. .. ... L.
1.2 Need for Speaker Segmentation . . . . ... .. .. ... .. ... ...
1.3 Issues in Speaker Segmentation . . . . ... .. .. ... ... ... ..
1.3.1 Nature of multispeaker data, . . . . . ... ... ... ......
1.3.2 Robust features . . . . . . ... oL
1.4 Motivation for Speaker Segmentation . . . . . . .. ... ... ... ..
1.5 Organization of the Thesis . . . . . . . .. ... ... ... ... ....
APPROACHES FOR SPEAKER SEGMENTATION
2.1 Speaker Segmentation using Vocal Tract Features . . . . ... ... ..
2.2 Review of Existing Approaches . . . . . .. .. .. ... ... ... ..
2.3 BIC for Speaker Change Detection . . . . . .. .. ... ... .....
2.4 Need for Alternate Approaches . . . . . ... ... ... ... .....
2.4.1 Limitations of the existing approaches . . . . ... ... .. ..
2.4.2 Significance of short speaker turns . . . . . .. .. ... ... ..

25 SUumMmary ... ..o e e

ii

iv

ix

xi

xiv



3 SIGNIFICANCE OF EXCITATION SOURCE FEATURES IN SPEAKER

CHARACTERIZATION 21
3.1 Excitation Source Features . . . . . . . . .. .. ... L. 22
3.2 Perceptual Significance of the Excitation Source . . . . . . . .. .. .. 26
3.3 Speaker Characterization using Excitation Features . . . .. .. . ... 27
3.4 Within-speaker to Across-speaker Dissimilarity of Sounds . . . . . . . . 31
3.0 Summary ... L L e e 35

4 SPEAKER SEGMENTATION USING EXCITATION SOURCE FEA-

TURES 36
4.1 Basic Principle of the Proposed Approach . . . ... ... ... .... 36
4.1.1 Sufficiency of data for speaker modeling . . . .. ... ... .. 37
4.1.2 Automatic detection of single speaker regions . . . .. ... .. 39

4.2 Proposed Approach for Speaker Segmentation . . . . .. ... ... .. 42
4.2.1 Speaker change detection . . . . . . . .. .. ... 42
4.2.1.1 Model generation phase . . . .. .. ... ... ... 42

4.2.1.2 Change detection phase . . . . ... ... ... ... 43

4.2.2 Speaker separation . . . . ... ... ... L. 47

4.3 Performance Evaluation of the Proposed Approach . .. ... ... .. 49
4.3.1 Performance evaluation metrics . . . . . .. ... ... ... .. 50
4.3.2 Dataset for performance studies . . . . . .. ... ... ... .. 51
4.3.3 Results of speaker segmentation and separation . . . .. .. .. 51
4.3.3.1 Accuracy of the speaker change hypotheses . . . . .. 52

4.3.3.2 Effect of analysis window length T4y on speaker seg-
mentation . . . . .. ..o Lo 52

4.3.3.3 Effect of validation threshold A on speaker segmentation 54

vil



4.3.3.4 Effect of different combining strategies on speaker seg-
mentation . . . . .. ..o Lo 54

4.3.3.5 Performance of the speaker separation task . . .. .. 56

4.3.3.6  Validation of speaker change hypotheses by speaker
separation . . . . . . . ... ... Y4

4.3.3.7 Comparison of the proposed approach and the metric-

based approach . . . . ... ... ... ... ... 58
4.4 Advantages and Limitations of the Proposed Approach . . . . . .. .. 60
4.5 Summary . . ... oL e e e 61

5 APPLICATION OF SPEAKER SEGMENTATION IN 2-SPEAKER

DETECTION 63
5.1 2-speaker Detection Task - An Overview . . . ... ... .. ...... 63
5.2 2-speaker Detection Without and With Speaker Segmentation . . . . . 65

5.2.1 1-speaker detection strategy . . . . . .. .. ... ... ... .. 65
5.2.2 2-speaker detection without speaker segmentation . . . . . . .. 66
5.2.3 2-speaker detection with speaker segmentation . . . . . . .. .. 67
5.3 Performance of 2-speaker Detection Systems . . . . . . ... ... ... 67
5.4 Summary . . o. ...l 68

6 SUMMARY AND CONCLUSIONS 70
6.1 Contributions of the Work . . . . . .. ... .. .. 00000, 70
6.2 Scope for Further Research . . . . . . . ... ... ... ... ...... 71

Bibliography 73

viii



3.1

3.2

4.1

4.2

4.3

4.4

LIST OF TABLES

The WAD ratios a(v;,s;) of sounds for different speakers, for vocal tract
features (LPCCs). . . . . . . . . i e
The WAD ratios a(v;,s;) of sounds for different speakers, for excitation

source features. . . . . . .. L L

Cross-correlation coefficient values between confidence score plots of 10 mod-
els generated from adjacent, overlapped segments of a male-male conversa-
tional speech data. The highest value among the non-diagonal entries in each
row is highlighted. . . . . . . . . . ... oo oo o Lo
Performance of the speaker change detection task for different lengths of the
analysis window T'4. (Score-level combination using sum rule, peak validation
threshold A = p — 0.50, Nacr = 880). . . . . . . . . . .. ... ...
Performance of the speaker change detection task for different thresholds in
validating peaks. (Analysis window of duration T4 = 500 ms, detection
accuracy Ty = 250 ms, Naor = 880). . . . . . . . . ... ... ...
Performance of the speaker change detection task for different strategies
of combining the scores. (Analysis window of duration 74 = 100 ms,
peak validation threshold A = p — 0.50, detection accuracy 7y = 50 ms,

Nacr = 880). . . o o o e



4.5

4.6

4.7

4.8

4.9

4.10

411

5.1

Performance of the speaker change detection task by combining decision
based on individual evidence. ( Analysis window size T4 = 100 ms,
peak validation threshold A = p — 0.50, detection accuracy 7y = 50 s,
Nacr = 880 ). . . o e
Performance of the speaker separation task for varying sizes of the analysis
window. (Peak validation threshold A = p — 0.50, sum rule for combining
scores, Ty = 1149 sec, Cgey = 0.3975). . . . . . . .. . ... ... ....
Performance of the speaker separation task for different strategies for com-
bining evidence at score-level. (Analysis window size T4 = 100 ms, peak
validation threshold A = p — 0.50, sum rule for combining scores, T; = 1149
sec, Cger = 0.3975). . . . . . ... ..
Effect of speaker separation on the performance of speaker change detection.
(Peak validation threshold A = p — 0.50, sum rule for combining scores,
detection accuracy of T4 /2, Nacr =880). . . . . . . .. ... ... ...
Performance of the speaker segmentation task for the proposed approach
and the metric-based approach. (Analysis window size T4 = 500 ms, peak
validation threshold A = 1 — 0.50, detection accuracy of T'4/2, Nacr = 880
Performance of the speaker separation task for the proposed approach (us-
ing excitation features) and the metric-based approach (using vocal tract
features). (Analysis window size T4 = 500 ms, peak validation threshold
A=p—050, T = 1149 sec, Cgey = 0.3975) . . . . . . .. .. ... ...
Summary of analysis on the performance of speaker segmentation and sep-

aration tasks. . . . . . L e e

The performance of the 2sp task without and with speaker segmentation. . .

99

69



1.1

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

LIST OF FIGURES

An overview of some of the audio indexing tasks. . . . . . . . .. ... ..

Metric-based approach for speaker segmentation using vocal tract features. .
(a) Waveform of a 2-speaker speech signal with long (> 5 sec) speaker turns.
The ABIC plots for windows of size (b) 3 sec, (c) 1 sec, (d) 0.5 sec and (e)
0.1 sec. True speaker change is marked in all the subplots. . . . . . . . ..
(a) Waveform of a 2-speaker speech signal with short (< 5 sec) speaker turns.
The ABIC plots for windows of size (b) 0.1 sec, (c) 0.2 sec, (d) 0.5 sec and
(e) 1 sec. True speaker changes are marked in all the subplots. . . . . . . .
(a) Frequency distribution of speaker turn duration. (b) Cumulative fre-
quency distribution of the speaker turn duration. . . . . . . ... . .. ..
(a) Frequency distribution of the duration of shorter turn around a speaker
change. (b) Cumulative distribution of (a). . . . . .. ... ... .. ...
Percentage of the conversation time (cumulative) covered by speaker turns

of varying durations. . . . . . . . . .. Lo oo

Inverse filtering of speech to obtain the LP residual. . . . . . . . . .. ..
Different types of excitation signals and the corresponding synthesized speech
signals. (a) LP residual, (b) random noise excitation, (c) residual with non-
glottal closure regions suppressed, (d) residual with glottal closure regions
suppressed, (e) to (h) speech signals synthesized using excitation signals

shown in (a) to (d) respectively. . . . . . . .. ..o

10



3.3

3.4

3.5

3.6

4.1

4.2

4.3

4.4

4.5

A five layer autoassociative neural network of structure Py L P, N P N P, N P;5 L,
where L (linear) and N (nonlinear) denote the type of activation functions. . 29
Training an AANN model to capture the subsegmental features in the LP
residual. . . . ..o Lo 29
Comparing the characteristics of a given LP residual signal against that cap-

tured by a trained AANN model. . . . . .. ... .. ... ........ 30
Frame selection for training AANN models. (a) LP residual of a voiced
speech segment. (b) Confidence scores of an AANN model for the input in

(a). (c) Weight function derived from the energy of the LP residual, for frame

selection. . . . . .. L L e e e e 31

(a) Waveform of a 2-speaker speech signal with the actual speaker changes
marked by vertical poles. Evidence (confidence scores) obtained by models

built from (b) 5 sec, (c) 2 sec, (d) 1 sec, (e) 0.5 sec and (f) 0.25 sec of training

Smoothened, mean-subtracted confidence score plots of 10 models (M; to
M from top to bottom) generated from adjacent, overlapped segments of a
male-male conversational speech data. The manually marked speaker changes
are shown in the first subplot. . . . . . . . . . .. ... 41
Model building and selection phase in speaker change detection. . . . . . . 43
Combining evidence at score level. (a) Aui(n), (b) Aua(n), (¢) Apanp(n),
and (d) Apor(n). The vertical lines indicate actual speaker changes. . . . 45
Evidence for varying lengths of the analysis window T4. The Ay plots for
window sizes of (a) 100 ms (b) 250 ms and (c) 500 ms. Manually marked

speaker changes are shown as vertical lines in all the plots. . . . . . . .. 46

xii



4.6 Speaker change hypothesis and validation. (a) The speech signal with actual
speaker changes marked manually. (b) The Ay plot (combined using sum
rule) with speaker changes hypothesized as a first step. (c) The final validated
speaker changes. The actual speaker changes are marked using poles with a
crossat thetop. . . . . . . . L Lo

4.7 Results of speaker separation task. (a) 2-speaker speech signal (vertical poles
with a cross at the top indicate actual speaker changes). (b) Ay plot (ver-
tical poles with a circle at the top indicate hypothesized speaker changes).
(c) Combined average confidence plot. The binary signal (solid) gives the
decision of the speaker separation process. The actual speaker separation

decision (dashed plot) is given as reference. . . . . . . . .. .. ... ...

5.1 Overview of the 2sp detection task. . . . . . .. .. ... ... .....

xiii



ABBREVIATIONS

1sp - 1-speaker detection

2sp - 2-speaker detection

AANN - Autoassociative Neural Network

BIC - Bayesian Information Criterion

EER - Equal Error Rate

FAR - False Acceptance Rate or False Alarm Rate
GC - Glottal Closure

GMM - Gaussian Mixture Model

KL - Kullback-Leibler

LLR - Log-Likelihood Ratio

LP - Linear Prediction

LPC - Linear Prediction Coefficients

LPCC - Linear Prediction Cepstral Coeflicients
LSP - Line Spectral Pairs

MDR - Missed Detection Rate

MFCC - Mel-Frequency Cepstral Coefficients

ML - Maximum Likelihood

NIST - National Institute of Standards and Technology
NN - Neural Network

PAP - Periodic-Aperiodic

SCD - Speaker Change Detection



SNR - Signal to Noise Ratio
TOC - Table of Content
VQ - Vector Quantization

WAD - Within-speaker to Across-speaker Dissimilarity

XV



CHAPTER 1

SPEAKER SEGMENTATION - AN
INTRODUCTION

The source of production of sound is an important criterion for classifying sounds into
broad categories. Speech produced by human beings is one such important category
of sounds. A continuous stream of audio can contain sounds produced by different
sources, including that produced by humans. The process of dividing an audio stream
into smaller homogeneous segments, based on a specific criterion, is termed as audio
segmentation [1-3]. The segmented regions of speech in turn can contain more than
one speaker speaking over non-overlapped periods of time. Such a multispeaker speech
can be further segmented using speaker identity as a criterion. A conversation between
two or more speakers is the most natural form of multispeaker speech, and the task of

segregating speakers in a conversation is studied in this thesis.

1.1 What is Speaker Segmentation?

Speaker segmentation involves processing multispeaker speech signals. A multispeaker
speech signal contains speech from two or more speakers, speaking one after the other
over non-overlapped intervals of time. Given a multispeaker speech signal, the task
of identifying all instants of time where there is a change in speaker, is termed as
speaker segmentation or speaker change detection. The speaker changes are also referred

to as speaker boundaries or speaker transitions. Speaker segmentation results in the



multispeaker speech divided into smaller segments of speech termed as speaker turns.
A speaker turn is defined as a segment of speech wherein a single speaker is talking, from
the time he has taken over from another speaker and till the time he is taken over by any
other speaker. Speaker trackingis a problem closely related to the speaker segmentation
task. It involves speaker change detection followed by a speaker separation task.
Speaker separation is the task of segregating segments of speech, with each segment
containing only one speaker, into as many groups as the number of speakers in the
conversation. Speaker tracking here refers to tracing a speaker within a conversation
and it should not be confused with tracking a speaker in space (source localization

problem).

1.2 Need for Speaker Segmentation

Speaker segmentation is the first step in most of the applications that involve process-
ing multispeaker speech. Some of the important applications that handle multispeaker

data are as follows:
e Forensic applications

— Speaker tracking
— 2-speaker (2sp) detection

— Recognition of conversational speech
e Audio indexing

— Transcription of broadcast news

— Speaker based indexing



The volume of voice traffic over various channels of communication is so high that
storage of all this data for analysis at a later stage is not viable. Even if it is stored,
manual analysis of this huge data is tedious. It has been found that these conversations
carry significant evidence for the prevention of crimes, if only they are detected in
advance. Intelligence agencies and forensic experts have interests in automating this
analysis of conversations. Some of the information of interest for a forensic expert are

as follows:

e How many speakers are involved in the conversation?

Is there a familiar or known voice?

What is the topic of discussion?

Who said what and when?

What is the background environment in which a speaker is talking?

The accuracy of these information is of high significance, and hence there is a need
for reliable techniques to analyze multispeaker speech. Tracking a speaker within a
conversation, detection of a common speaker between two different conversations and
identification of a known speaker in a conversation are tasks of significance in forensic
applications [4] [5]. A speaker segmentation followed by speaker separation can simplify
these tasks. The 2-speaker detection problem and the role of speaker segmentation in
detecting speakers in a conversation will be explained in greater detail in Chapter 5.

The volume of data stored in the form of audio and video documents is increasing,
due to increasing storage capacity, decreasing storage cost and increasing computing
power. Some examples of audio documents are broadcast news archives, interviews,
discussions over a meeting, voice mails, dialogues from a movie, lectures and presen-

tations, important speeches and music albums. Now the challenge is to automatically



analyze, label and index the audio documents for efficient organization and easy re-
trieval. Fig. 1.1 shows some of the tasks involved in audio indexing [2,3,6-9].
Transcription of multispeaker speech is an important task in audio indexing ap-
plications [7,10]. Conventional speech recognizers work best on speech from a single
speaker and the performance degrades if the given speech is a conversation involving
two or more speakers. Speaker adaptive speech recognizers [11-13] are used in such a

scenario, provided the speech regions of the conversant speakers are separated out.

Some Indexing Tasks |

S | Speech Ié%\tl\tl,ord
’ . b eech ing
Speaker Tracking ' |Transcription

Audio , Speaker Slpeaker —
Clip Audio . changey Speaker o ic |
=, ‘ | Automatic | |
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Fig. 1.1: An overview of some of the audio indexing tasks.

1.3 Issues in Speaker Segmentation

The two major issues in speaker segmentation are as follows:

1. Nature of multispeaker data

2. Robustness of the features



1.3.1 Nature of multispeaker data

The multispeaker speech data can be from a wide variety of sources. It can be a casual
conversation, a discussion over a formal meeting, a broadcast news or an audio clip
from a movie, to mention a few. Some of the important issues in segmenting different

types of multispeaker speech are:

Amount of data available for analyzing speaker changes

Lack of a prior: information

Overlapped speech, laughter and other sounds

Background noise, speech or music

Formal conversations like interviews and television or radio news bulletins have
speakers normally talking for longer durations, whereas casual conversations have fre-
quent speaker changes with several monosyllabic sounds, laughter and simultaneous
speaking. Hence, the amount of data available on either side of a speaker change varies
with the type of conversation. This research work addresses issues in detecting speaker
changes in casual conversations.

Two important a priori information about a conversation are the number of speak-
ers involved in the conversation and the identity of the speakers (i.e., reference data
for the speakers). The focus of this thesis is on the segmentation of 2-speaker conver-
sations. Though the number of speakers is known in advance, there is no reference
data available for the speakers, a priori.

In a casual conversation, the probability of speakers speaking simultaneously,
laughter and other monosyllabic sounds of gesture, is high. Identification of such re-
gions may be essential in applications like 2-speaker detection, as impure data (speech

data of a speaker corrupted by traces of a second speaker) can degrade the performance



of the verification task [14]. The detection or analysis of such regions of speech in a
conversation is not handled in this work.

The channel over which the conversations are recorded, background noise and the
possibility of background music (in case of audio) contribute to the complexity of
the problem [15]. Channel normalization [16-18] may be essential to avoid detecting
channel changes as speaker changes. The data considered in this work are telephonic
conversations between two speakers, recorded at a sampling rate of 8 kHz. The speech
data is clean and it is assumed that there is no background music. The channel issues

are not studied in this work.

1.3.2 Robust features

Speech is a composite signal which has information about the message, the speaker
identity and the language [19-21]. It is difficult to isolate the speaker specific features
alone from the signal. Also, speaker segmentation of casual conversations requires
that speakers be characterized from limited data. The variability of the chosen fea-
tures within a speaker is a major issue in speaker characterization problems. Features

capable of characterizing a speaker from limited data are explored in this thesis.

1.4 Motivation for Speaker Segmentation

The ability of humans to detect speaker changes almost effortlessly signifies that there
is ample evidence for automatic detection of speaker boundaries. The speaker char-
acteristics in a speech signal can be attributed to the structure of the vocal tract, the
rate and manner of vibration of the vocal folds, and the idiosyncrasies of the speaker
[19,21]. The vocal tract characteristics are usually referred to as spectral features and

are widely used for speaker characterization [17,22-24]. These spectral features require



large amount of speech data for characterizing a speaker. Most approaches for speaker
segmentation use spectral features and focus on multispeaker speech which have long
speaker turns (e.g. broadcast news). These approaches fail for casual conversations
which typically have short speaker turns. The characteristics of the vocal folds, which
are referred to as the excitation source features are usually neglected, except the rate
of vibration (pitch). The excitation features at the subsegmental level (less than a
pitch period) have significant speaker information [25]. Speaker characterization using
subsegmental excitation features require lesser amount of speech data, as compared to
the vocal tract features [26]. Hence we explore the possibility of using the excitation

source features at the subsegmental level for speaker segmentation.

1.5 Organization of the Thesis

Chapter 2 gives an overview of the existing approaches for speaker change detection.
The drawbacks of the existing approaches and hence the need for alternate approaches
are discussed in the chapter. Chapter 3 discusses the possibility of using excitation
source features for speaker segmentation, as an alternative to the commonly used vocal
tract features. The ability of autoassociative neural network models to capture the
excitation source features at a subsegmental level is also discussed. A new paramet-
ric measure to evaluate the suitability of a chosen set of features for characterizing a
speaker from limited amount of data is introduced in this chapter. A new approach for
speaker change detection using the excitation source features and neural network mod-
els is proposed in Chapter 4. The performance of the proposed approach is analyzed
and compared with the existing approach using vocal tract features. The usefulness
of speaker segmentation in enhancing the performance of 2-speaker detection task is

illustrated in Chapter 5. Chapter 6 summarizes the research work carried out as part



of this thesis, highlights the contributions of the work and discusses the directions for

further research.



CHAPTER 2

APPROACHES FOR SPEAKER
SEGMENTATION

The basic principle of the widely used approach to speaker segmentation and a brief
review of some of the work done on speaker segmentation are given in this chapter. The
limitations of the existing methods in processing conversational speech, that has short
speaker turns, is brought out. The significance of short speaker turns and hence the

need for alternate features and techniques for speaker change detection is emphasized.

2.1 Speaker Segmentation using Vocal Tract Fea-

tures

The widely used approach for speaker change detection works on the principle outlined
in Fig. 2.1. The input multispeaker speech is converted into a sequence of acoustic fea-
tures. Short time (10-30 ms) spectral analysis of speech [21] with overlapped windows
(5-15 ms) is performed to convert the multispeaker speech into a sequence of acoustic
features. A dissimilarity value is computed between a pair of adjacent windows (5-10
sec). A sequence of dissimilarity values is computed by moving the pair of windows by
a constant shift. A large dissimilarity hypothesizes a speaker change. As it is difficult
to set an absolute threshold on the dissimilarity values, the locations of peaks in the
dissimilarity sequence are hypothesized as the speaker changes. This principle is often

referred to as metric-based approach, as it uses a dissimilarity metric to compare two

9



sets of features from two adjacent windows of speech.
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Fig. 2.1: Metric-based approach for speaker segmentation using vocal tract
features.

2.2 Review of Existing Approaches

The metric-based approach outlined in Section 2.1 is widely used approach for speaker
segmentation [4,7,15,27-29]. Vocal tract characteristics of a speaker are commonly
used as acoustic features for change detection. Cepstral coefficients [21] and line spec-
tral pairs (LSP) [23] are the widely used vocal tract features. A variety of dissimilarity
measures (also called distance or distortion measures) can be employed to compare two
sets of features [21,30-37]. The most commonly used metrics are Bayesian informa-
tion criterion (BIC), log-likelihood ratio (LLR) and Kullback-Leibler (KL) divergence.
Transcription of broadcast news archives is the application widely considered for the
speaker segmentation task.

Speaker separation is an essential task in most of the applications considered for

speaker segmentation [4,7,15,28,29]. The speaker separation task is treated as a
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clustering problem (unsupervised classification). The first step is to split the given
conversation into smaller segments of speech such that each segment contains only one
speaker. This is done either by detecting the speaker changes or by uniformly splitting
the data into small segments of the same size, say one second. These segments of
speech are then clustered in an unsupervised manner so as to form one cluster for each
speaker. A range of clustering methods [38-44] have been studied. The simplest but
widely used is the agglomerative clustering, which combines two closest segments at a
time. At the end of clustering process, each cluster is hypothesized to represent one
speaker. The stopping criterion for clustering has been a major problem when the
number of speakers is not known a priori [15,45]. Vector quantization (VQ) based
speaker clustering is used for speaker change detection in [46]. Different clustering
strategies have been used to solve the speaker separation problem without performing
an exclusive change detection before clustering [47,48].

As a continuation of the above two steps, a model is built for each speaker using
the clustered data [15]. The feature vectors are reclassified using these speaker models.
Gaussian mixture models (GMM) [49] are commonly used for this purpose [50]. Neural
network (NN) models have also been used for modeling speakers [51].

Gish et al. [4] have used the generalized log-likelihood ratio as a dissimilarity mea-
sure to compare two distributions estimated using maximum likelihood estimation.
Mel-frequency cepstral coefficients (MFCC) are used as the features. The conven-
tional agglomerative technique is used for clustering the segmented data. Tracking the
commands given by an air traffic controller to the pilots is studied as an application.
As the percentage of controller’s speech is high compared to that of individual pilots,
the largest cluster is labeled as that of the controller. Bayesian information criterion

(BIC) was used by Chen and Gopalakrishna [27] to define a dissimilarity measure to
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compare two sets of features, based on the comparison of their parametric statistical
models. The use of BIC for speaker change detection is discussed in the next section.
An approach similar to [4] is used by John Makhoul et al. [7] for segmenting speakers
in their system ’Rough’n’Ready’ for audio indexing. Transcription of multispeaker
speech (mostly broadcast news) for automatic indexing and retrieval is the application
studied. Delacourt et al. [29] have discussed a 2-pass algorithm for speaker segmen-
tation. In the first pass, speaker changes are hypothesized using the Kullback-Leibler
(KL) distance, which are validated in the next pass using BIC measure. The threshold
on distance values for speaker change hypotheses is found to be sensitive to the type of
data under consideration. Different distance measures and clustering techniques have
been studied and compared by Johnson [28], to separate speakers in news broadcasts
for the purpose of speech transcription. The existing techniques make an assumption
that the speaker turns are long enough (> 5 sec). This affects the segmentation perfor-
mance severely in case of casual conversations which contain a large number of short

speaker turns (< 5 sec).

2.3 BIC for Speaker Change Detection

This is a metric-based approach which uses the Bayesian information criterion to
define a dissimilarity metric and will be referred to as BIC approach. The BIC is
a maximum likelihood criterion penalized by the model complexity (the number of
model parameters), widely used for model selection [43,52]. It can be used for change
detection in a sequence of acoustic features [27]. If Z = {xx}, £k = 1,...,Nyz is
a sequence of feature vectors, then the possibility of a speaker change at £k = Nx

(Nx < Nz) can be examined by testing the two hypotheses:

e H, : the entire sequence Z is generated by a single speaker and is thus assumed
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to be represented by a single multivariate Gaussian process Mz (p,, X 7).

e H; : the sequence X = {xx}, k = 1,..., Nx belongs to one speaker and the
sequence Y = {xy}, k= Nx +1,..., Nz (where N; = Nx + Ny) belongs to a
different speaker, represented by two separate Gaussian processes Mx (py, Xx)

and My (puy, Xy ), respectively.

Here (puy, ¥x), (1y, Xy) and (u,, X7) are the maximum likelihood estimates
of the mean vectors and covariance matrices of the three multivariate Gaussian pro-
cesses Mx, My and My, respectively. The difference in the BIC values of the two

hypotheses (dgrc or ABIC) is given by
dgrc = R—T1P (2.1)

where

N N,
R = 5 log| X x| + TYlog|2y| — TZlog|2Z| (2.2)

is the log-likelihood ratio, P = Z(p + %p(p + 1)) xlogNy is the penalty factor, where
p is the dimension of the feature vector and 7 is a constant which acts as a threshold
for decision making. A positive value of ABIC' indicates that two multivariate Gaus-
sian models best fit the sequence Z, which in turn means that a speaker change is
hypothesized at £ = Nx. The threshold parameter 7 is sensitive to channel and other
variabilities in the speech data and requires fine-tuning for the type of data under

consideration.

2.4 Need for Alternate Approaches

The existing approaches, as outlined in the previous sections, use vocal tract features

and employ a statistical approach to detect a point phenomenon (speaker change).
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The limitations of the existing approaches to handle conversational speech and the

significance of short speaker turns will be discussed in this section.

2.4.1 Limitations of the existing approaches

The existing approaches for speaker change detection rely on features and dissimilarity
measures which are widely used in speaker verification applications [22,23,30,37]. The
vocal tract features vary significantly for different sounds within a speaker and hence
a large number of examples for each type of sound are necessary for representing
a speaker. Additionally, the dissimilarity measures compare distributions of feature
vectors from two segments of speech. The estimation of these multivariate probability
distributions require large amount of data and the performance of the text-independent
speaker verification task degrades significantly as the amount of data reduces below
30 sec [14]. The existing approaches for speaker change detection use a window size of
around 5 sec, and consider applications (e.g. transcription of broadcast news) which
handle multispeaker data with long speaker turns. As the window size reduces below 5
sec, the reliability of the dissimilarity scores for speaker change detection reduces, due
to inaccurate estimations of the distributions. The evidence (large dissimilarity) at a
genuine speaker change deteriorates, and at the same time several spurious speaker
changes may be hypothesized. A casual conversation typically has a large number of
short speaker turns and hence the existing approaches are not suitable for this kind of
data.

The limitations of the existing approaches can be readily seen from Figs. 2.2 and
2.3. A short segment of a broadcast news clip with only one speaker change is shown
in Fig. 2.2(a). The Figs. 2.2(b) to (e) show the ABIC plots for window sizes of 3

sec, 1 sec, 0.5 sec and 0.1 sec, respectively. It is evident from the plots that the
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evidence at the speaker boundary deteriorates and several spurious speaker changes
may be hypothesized as the window size is reduced. The Fig. 2.3 shows the evidence
provided by the ABIC plots for a 2-speaker conversation containing short speaker
turns. As there are speaker turns of the order of less than a second, the ABIC plots
are computed for window sizes 0.1 sec, 0.2 sec, 0.5 sec and 1 sec (Figs. 2.3 (b) to (e),
respectively). It can be seen from the plots that the existing approach fails completely
for short speaker turns, due to limited or corrupted (speech from both the speakers)

data.

0.5

-05 ! ! ! ! ! !
0
500 T T T T \ T

-500 ! ! ! ! ! L
0

200
(©)

-200
0

200

-200
0

2 4 6
T T T T T T
3200 .
€
3000 .
| | | | | |
2 4 6 8 10 12

-—=>Time (s)

Fig. 2.2: (a) Waveform of a 2-speaker speech signal with long (> 5 sec)
speaker turns. The ABIC plots for windows of size (b) 3 sec, (c) 1 sec, (d)
0.5 sec and (e) 0.1 sec. True speaker change is marked in all the subplots.
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Fig. 2.3: (a) Waveform of a 2-speaker speech signal with short (< 5 sec)
speaker turns. The ABIC plots for windows of size (b) 0.1 sec, (c) 0.2 sec,
(d) 0.5 sec and (e) 1 sec. True speaker changes are marked in all the subplots.

Summarization of the drawbacks :

The limitations of the existing approaches can be summarized as follows:

e Dependence on vocal tract features alone

e Statistical approach to a point phenomenon

— Dissimilarity measures rely on probability distributions
— Gaussian distributions are assumed

— Require large speaker turns for better estimation of the distributions,
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— Fail for conversational speech which have a large number of short speaker

turns

— Setting a threshold on the dissimilarity measure for validating a speaker

change is a difficult problem

e Applications under consideration downplay the importance of short speaker

turns

2.4.2 Significance of short speaker turns

The distribution of the duration of speaker turns varies significantly with the type of
multispeaker speech under consideration. Broadcast news data typically has speaker
turns of long durations (> 5 sec) and hence short speaker turns may not be of much
significance. Also, one can afford a greater flexibility in the accuracy of the detection
of the speaker change locations. However, the importance of short speaker turns
cannot be downplayed in applications like forensic investigations, which handle casual
conversations.

In order to study the frequency distribution of the duration of speaker turns, ten
different 2-speaker conversations, each 5 minute of duration, are considered. A total
of 880 speaker changes (manually marked) are present in approximately 3000 seconds
of the conversational speech. The frequency distribution of the duration of speaker
turns and its cumulative distribution are given in Figs. 2.4(a) and (b), respectively.
The speaker turn durations are computed by considering only voiced speech (after the
removal of silence and unvoiced regions) and speaker turns greater than 10 seconds
are clamped to 10 seconds. It can be seen that around 60% of the speaker turns are of
one second or lesser duration. The maximum amount of data available for detecting

a speaker change is dictated by shorter of the two speaker turns on either side of the
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Fig. 2.4: (a) Frequency distribution of speaker turn duration. (b) Cumulative
frequency distribution of the speaker turn duration.

change. The frequency distribution of the duration of the shorter speaker turn and its
cumulative distribution are shown in Figs. 2.5(a) and (b), respectively. It is seen that
around 90% of the speaker changes are bounded, on atleast one side, by speaker turns
of one second or lesser duration. This shows the abundance of short speaker turns and
the need for techniques to detect speaker changes with limited amount of data.

The above analysis considers only the frequency of speaker turns of various dura-
tion and the percentage coverage with respect to the total number of speaker changes.
The curve in Fig. 2.6 gives the percentage of conversation time (normalized between
0 and 1) covered by speaker turns less than or equal to a given duration. While more
than 50% of the conversation time is covered by speaker turns of 3 seconds or lesser
duration, around 20% of the total conversation time is due to turns of one second or

lesser duration.

18



—-==>p(y)
o o o
o o o
Sy (s3] [e5)
:
1 1
—
&

o
o
N
T
I

0 i A i i i i
0 1 2 3 4 5 6 7
—-=> Duration of shorter speaker turn, y (in sec)

-

=y)
o
[ee]

N =4
>~ o

———> P(Y<
o
N

|

|

|

|

|

|

I

|

1 1 1 1 1 1
0 1 2 3 4 5 6 7
-—-> Duration of shorter speaker turn, y (in sec)

o

Fig. 2.5: (a) Frequency distribution of the duration of shorter turn around
a speaker change. (b) Cumulative distribution of (a).

---> 9 of total conversation time

I
I
I
|
!
I
|
!
t i i i i i i
3

4 5 6 7 8 9 10
———> Duration of speaker turns (in sec)

Fig. 2.6: Percentage of the conversation time (cumulative) covered by speaker
turns of varying durations.

19



2.5 Summary

In this chapter, the general principle of the commonly used approach for speaker
segmentation was outlined. A brief review of some of the work done on speaker seg-
mentation and the use of ABIC for speaker change detection was also discussed. The
limitation of the BIC approach which uses vocal tract features, in detecting speaker
changes in a multispeaker data with short speaker turns, was brought out. In the next
chapter, the possibility of using the excitation source features for change detection will

be discussed.
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CHAPTER 3

SIGNIFICANCE OF EXCITATION
SOURCE FEATURES IN SPEAKER
CHARACTERIZATION

Most of the problems related to speech are pattern recognition problems, which have a
representation problem followed by a comparison problem. A good representation can
trivialize the comparison task. Speech is a composite signal carrying in it information
regarding the message, the language and the speaker. Depending on the application
of interest, a set of parameters known as features, is extracted to characterize the
required information. As the information about the speech, speaker and language
are tightly integrated into the speech signal, separating them is a challenging task.
The speaker characteristics present in the signal can be attributed to the anatomical
and the behavioral aspects of the speech production mechanism. The representation
and extraction of the behavioral characteristics is a difficult task, and usually requires
large amount of data. The speech production mechanism in human beings can be
modeled by a two-stage system [19-21]. A time-varying excitation system energizes
a time-varying vocal tract system to generate a quasi-periodic and quasi-stationary
speech signal. As outlined in Chapter 2, the existing approaches bank only on the
vocal tract features for speaker change detection. In this chapter, the possibility of
using the characteristics of the excitation source system for speaker segmentation,

is explored. A brief discussion on the various excitation source features is given in
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Section 3.1. The significance of excitation source in characterizing a speaker’s voice
from perception point of view is discussed in Section 3.2. The use of neural network
models to capture the excitation characteristics at a subsegmental level (less than a
pitch cycle) is illustrated in Section 3.3. A new metric to evaluate the effectiveness of
a feature set in characterizing a speaker from limited amount of data, is introduced
in Section 3.4. Also, the effectiveness of the excitation source features as compared
to that of the vocal tract features, in characterizing a speaker from limited data, is

studied in this section.

3.1 Excitation Source Features

The vocal tract system can be modeled as a time-varying all-pole filter using segmental
analysis [21]. The segmental analysis corresponds to the processing of speech as short
(10-30 ms) overlapped (5-15 ms) windows. The vocal tract system is assumed to be
stationary within the window and is modeled as an all-pole filter of order p using linear
prediction (LP) analysis [21,53]. The LP analysis works on the principle that a sample
value in a correlated, stationary sequence can be predicted as a linear weighted sum
of the past few (p) samples. If s(n) denotes a sequence of speech samples, then the

predicted value at the time instant n is given by,

§(n) = Zak s(n—k) (3.1)

where {ax}, £k =1,2,...,pis the set of linear predictor coefficients (LPC) and p is the
order of the LP filter. The error at time n and the sum of squared errors E are given

by,

r(n) = s(n) — §(n) (3.2)
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E =) r’n) (3.3)

The cost function E is minimized with respect to {a;}, ¢ = 1,2, ..., p over the interval

—o0 € n < oo (autocorrelation formulation) as,

N
N
3

w
N

This minimization leads to a set of normal equations,

Zp:akR(z'—k)z—R(i) 1<i<p (3.5)
where
R(i)= ) _ s(n) s(n+1) —0<i< o (3.6)

is the autocorrelation signal. The solution of these normal equations gives the values of
the predictor coefficients {ax}, k = 1,2, ..., p. The error signal r(n) obtained by inverse
filtering the speech signal is referred to as the LP residual. The smooth variations
(highly correlated) in the speech signal are captured by the LPCs and are attributed to
the vocal tract characteristics. The complex poles of the LP filter occur as conjugate
pairs, and each pair represents a resonator cavity, with a maximum response at a
frequency (called as resonant frequency) where the poles are located on the z-plane
[64-56]. The vocal tract can be considered as a cascade of resonator cavities with
different shapes and sizes [21]. The resonant frequencies of these cavities are referred
to as formants. The LP residual signal has large error values at regular intervals
and can be attributed to the periodic impulses of excitation. Hence the LP residual
is a good approximation to the excitation source signal and can be used further to
extract the excitation source characteristics. A segment of voiced speech (windowed),
frequency response of the inverse filter and the corresponding LP residual are shown

in Fig. 3.1.
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Fig. 3.1: Inverse filtering of speech to obtain the LP residual.

The excitation source features can be classified into three broad categories based
on the size of the window used to analyze the speech signal or the excitation source

signal. They are:

e Subsegmental features
e Segmental features

e Suprasegmental features

The subsegmental features are extracted over a very short (1-5 ms) analysis window,
typically less than a pitch period. Parameters modeling the shape of the glottal flow
derivative waveform ( derivative of the glottal volume velocity waveform) can be used to
characterize a speaker’s voice [57-61]. An approximation to the glottal flow derivative
can be obtained using the LP residual signal. However, accurate estimation of these
parameters is a tough task and are highly susceptible to noise. Alternatively, an

autoassociative neural network (AANN) model can be used to capture the excitation
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characteristics of a speaker present in the LP residual signal [25, 26, 62].

The segmental features are extracted over a short (10-30 ms) analysis window,
typically comprising a few pitch cycles. The term segmental features arises due to the
popular segmental analysis of speech over a short (10 — 30 ms) interval of time during
which the signal is assumed to be stationary [21]. Pitch or fundamental frequency (fo)
and periodic-aperiodic (PAP) ratio are two important features extracted at segmental
level. Pitch refers to the periodicity in the signal and is often expressed or measured
in terms of the fundamental frequency fo [20]. The periodic and aperiodic components
of the excitation signal can be separated out using PAP decomposition [63,64]. The
ratio of the energies of the periodic and aperiodic components is termed as the PAP
ratio.

Suprasegmental features mainly refer to the behavioral aspects (speaking habits)
of a speaker and are typically extracted over a large (> 100 ms) analysis window. The
temporal variation of any of the segmental or subsegmental features can be consid-
ered as a suprasegmental feature. Intonation (pitch contour), syllable durations and
speaking rate are some of the important suprasegmental features. Jitter, the maxi-
mum perturbation in durations (pitch) of successive signal periods, and shimmer, the
maximum perturbation in the peak values of successive signal periods, are also used
to characterize a voice [63,64]. Efficient representation and accurate estimation are
the major issues in using suprasegmental features for speaker characterization.

The excitation source characteristics of a speech signal can be summarized as

follows:
e Subsegmental features
— Parameters characterizing the glottal flow derivative waveform

— Excitation characteristics present in LP residual, as captured by an AANN
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model
e Segmental features

— Pitch or fundamental frequency (fo)

— Periodic-aperiodic (PAP) ratio
e Suprasegmental features

Intonation

— Syllable duration
— Speaking rate
— Jitter

— Shimmer

The focus in this thesis work is on the subsegmental excitation features. The
ability of an AANN model to capture the subsegmental excitation features in the LP

residual signal will be discussed in Section 3.3.

3.2 Perceptual Significance of the Excitation Source

The objective of this study is to understand the role played by the excitation source
signal in characterizing a speaker’s voice from a listener’s point of view. Though
the vocal tract system and the excitation system of the human speech production
mechanism are tightly coupled, a reasonable approximation of the vocal tract can be
obtained by LP analysis of the speech signal. A 12" order LP analysis (a window
size of 20 ms and a shift of 10 ms) is used to separate the vocal tract information

(LPCs) from the excitation source information (LP residual) [21]. The speech signal
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can be resynthesized by exciting the sequence of LP filters using blocks of residual. In
many applications this residual error signal is discarded, after capturing the pitch (fy)
information. Now if speech is synthesized using a random excitation signal, but with
the same LPCs, the voicing characteristics of the speaker are totally lost. The synthe-
sized speech sounds like a whispered speech and it is difficult to identify the speaker
by listening, though the message may be interpreted. This signifies the importance
of the excitation source information in characterizing a speaker’s voice. If speech is
synthesized using a train of impulses with a periodicity of 1/fy, the speech sounds
artificial and many of the speaker-specific characteristics are lost. This signifies the
importance of excitation characteristics other than the rate of vibration of the vocal
folds (pitch). The high signal to noise ratio (SNR) regions in the LP residual, at the
glottal closure (GC) events, can be approximated by the peaks in the magnitude of the
analytic signal (Hilbert transform of the residual signal). Listening to speech synthe-
sized separately by emphasizing and deemphasizing the GC regions in the LP residual
show that the GC regions contribute significantly towards retaining the speaker char-
acteristics. The various excitation signals and the corresponding resynthesized speech

signals are shown in Fig. 3.2.

3.3 Speaker Characterization using Excitation Fea-

tures

The subsegmental features embedded in the LP residual signal can be captured using
an autoassociative neural network model [25,26,62]. A five layer AANN model with
nonlinear hidden layers and a linear output layer is used, as shown in Fig. 3.3. The
structure of the AANN model is denoted as Py, L P, N P3 N P, N Ps L, where P,

to P5 are the number of nodes in each of the five layers, P, = P5, L (linear) and N
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Fig. 3.2: Different types of excitation signals and the corresponding synthe-
sized speech signals. (a) LP residual, (b) random noise excitation, (c) residual
with non-glottal closure regions suppressed, (d) residual with glottal closure
regions suppressed, (e) to (h) speech signals synthesized using excitation sig-
nals shown in (a) to (d) respectively.

(nonlinear) represent the type of activation function used by the nodes in that layer.
Let r(n) be the given LP residual signal of length N, after removal of silence and
unvoiced portions. A rectangular window of size d (samples) is slided over the signal
r(n) with a shift of one sample, to obtain a sequence of frames {x(n)}, n=1,..., N,
as shown in Fig. 3.4.

Typically, the length of the frames d (d =P, = P;), corresponds to a duration of
2 to 5 ms (less than one pitch period). The magnitude normalized frames are then
presented to the neural network one after the other, in the same sequence. If (n) and
y(n) represent the input and output of the AANN model, the error in mapping at the
time instant n is computed as u(n) = x(n)—y(n). The weights of the network, initially
set to small (= 0) random values, are adjusted using generalized delta learning rule and

error backpropagation [41,42], on a pattern-by-pattern basis. The network is now said
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Fig. 3.3: A five layer autoassociative neural network of structure
P LP, NP3 NP, NPs; L, where L (linear) and N (nonlinear) denote
the type of activation functions.
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Fig. 3.4: Training an AANN model to capture the subsegmental features in
the LP residual.

to have learned over one cycle or epoch. The error at the end of an epoch is computed

as Eag(k) = - S°N €2(n), where k is the epoch number, e(n) = 130 _ w2 (n) is
the mean squared error at time instant n, and u,,(n) is the m™ component of the error
frame u(n). The learning process is repeated for a predetermined number of epochs
or until the accumulated error (or a change in it as compared to the previous epoch) is

significantly low, depending upon the complexity of the task. The goal of the learning

process is to minimize the cost function E,,,. The training error E,,, accumulated
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over each epoch typically shows a decreasing trend, as shown in Fig. 3.4, signifying
the learning ability of the network. The AANN model now characterizes or represents
the subsegmental excitation features present in the LP residual signal.

Once an AANN model has captured the subsegmental features in the LP residual,
it can be used to find the similarity or dissimilarity of characteristics of any given LP
residual signal with respect to that used while training. The given LP residual signal
is tested against the trained AANN model as shown in Fig. 3.5, in a way similar to

that during training. The mean squared error e(n), obtained for each frame represents

LP residual signal for testing

LX0) |
L X1) | X n)
3 : x 2 ) : P +
X n) Trained _ n) e(n) _ Confidence
i 1sample | — 7] AANN a exp( - e(n) score
hainl | Model c(n
“Frame size '

Fig. 3.5: Comparing the characteristics of a given LP residual signal against
that captured by a trained AANN model.

the amount of dissimilarity between the current frame and the set of frames used for
training the network. Larger the error, farther are the frame characteristics from those
used while training. This frame error is converted into a normalized (0 to 1) similarity
measure known as the confidence score, given by c(n) = exp(—e(n)). The average
frame confidence C,,y = N% Zgil ¢(n), gives the similarity between the training se-
quence and the test sequence, where N; is the number of frames in the test signal.

Fig. 3.6 shows the typical confidence scores for a small portion of the residual signal.

It can be seen that the confidence scores are high around the glottal closure regions
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Fig. 3.6: Frame selection for training AANN models. (a) LP residual of
a voiced speech segment. (b) Confidence scores of an AANN model for the
input in (a). (c) Weight function derived from the energy of the LP residual,
for frame selection.

due to high SNR of the residual signal around GCs. Owing to this, the training and

testing processes are modified to use frames only around the GC instants.

3.4 Within-speaker to Across-speaker Dissimilar-

ity of Sounds

Speaker segmentation of conversational speech requires that the speaker characteristics
be captured with minimum amount of speech data. The choice of feature vector and
the comparison strategy play a significant role on the performance of the segmentation
task. It is desired that the features characterizing a speaker are invariant to the type
of sound unit. Given an alphabet of N sounds V = {v;}, i =1,..., N, and a set of M
speakers S = {s;}, j = 1,..., M, the within-speaker to across-speaker dissimilarity

(WAD) ratio for a feature set can be defined at different levels.
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The WAD ratio for the sound v; of speaker s; is defined as
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The WAD ratio for a given feature set is defined as

(3.9)

A value of a(v;, s;) less than one signifies that the sound v; is a good candidate for
characterizing a speaker using the given feature set. A value of 3(s;) less than one
signifies that the given feature set is good at discriminating the speaker s; from other
speakers. A value of v less than one signifies that the given feature-set is good at
discriminating speakers from one another. Given two feature sets, the feature set
which gives a lesser value of v is better suited for characterizing a speaker from limited
amount of data. An ideal value of v = 0 makes the feature an ideal one for speaker
characterization.

In order to study the suitability of the vocal tract features (LPCC) and the subseg-
mental excitation characteristics for speaker characterization from limited data, the

WAD ratios for both the features are computed separately. The dataset contains,
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isolated utterances of N=>5 voiced sounds (vowels /a/,/i/,/u/,/e/ and /o/), collected
from M = 5 different speakers. LPCCs (19 dimensional) obtained from a 12 order
LP analysis were used as the vocal tract features, and ABIC was used as the dissim-
ilarity measure. The excitation source features in the LP residual signal is captured
using a 5-layer AANN model (40L 60N 12N 60N 40L) as described in Section 3.3. A
model is generated for each sound of every speaker. A confidence score c(v;, v;) ob-
tained by testing a sound v; against the model of another sound v; gives the similarity
between the two sounds. The dissimilarity between the two sounds is computed as
d(vi,v;) = 1 — ¢(v;,vj). The WAD ratios a(v;, s;) of different (sound, speaker) pairs
for the LPCC features and the excitation source features are given in Tables 3.1 and
3.2 respectively. It can be seen from the tables that some speakers are better charac-
terized by their vocal tract features (speaker s;), while some others (speakers s, and
s5) by their excitation source characteristics. The LPCC features give an overall WAD
ratio of v = 1.3713, while it is v = 0.9656 for the excitation source features. This
shows that the excitation source features have lesser dissimilarity within a speaker as
compared to that across speakers. Hence excitation source features are better suited

for segmenting multispeaker speech with short speaker turns.
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Table 3.1: The WAD ratios a(v;,s;) of sounds for different speakers, for
vocal tract features (LPCCs).

Sound
U1 V2 U3 Vg Vs
Speaker Ja/ /i/ Ju/ /e/ /o/
S1 0.47 0.51 0.76 0.61 0.42
So 1.24 1.28 3.94 1.06 1.23
S3 0.91 1.31 2.28 0.83 0.83
Sy 1.37 1.67 2.71 1.44 1.41
S5 1.32 1.29 2.70 1.21 1.48

Table 3.2: The WAD ratios a(v;,s;) of sounds for different speakers, for

excitation source features.

Sound
vy Vg U3 Vg Vs
Speaker /a/ /i/ Ju/ /e/ /o]
S1 1.72 1.21 0.61 1.83 1.88
So 1.09 0.95 0.44 1.57 1.06
S3 1.26 1.27 0.43 1.92 1.07
S4 0.66 0.69 0.11 0.71 0.34
S5 0.82 0.65 0.38 0.87 0.59
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3.5 Summary

Some of the important excitation source features at subsegmental, segmental and
suprasegmental levels were listed in this chapter. The significance of excitation source
features in characterizing a speaker’s voice, and the ability of AANN models to cap-
ture the subsegmental features in the excitation signal were discussed. It was noted
that the WAD ratio for the subsegmental excitation features is lesser than that for
the vocal tract features, for small segments (syllables) of speech. This shows that
the excitation features have lesser dissimilarity within a speaker, and hence are better
suited for segmenting multispeaker speech with short speaker turns. A new approach
for speaker segmentation using the subsegmental excitation features will be proposed

in the next chapter.

35



CHAPTER 4

SPEAKER SEGMENTATION USING
EXCITATION SOURCE FEATURES

In the previous chapter, it was shown that excitation source information can play a
significant role in characterizing a speaker from limited amount of data. The ability
of autoassociative neural network models to capture the excitation characteristics of
a speaker from the LP residual signal was also discussed. As suggested by the WAD
ratio, the excitation source features are better suited for detecting speaker changes in
a casual conversation, which is likely to contain short speaker turns. In this chapter, a
new approach for speaker segmentation is proposed using neural network models and
the excitation source information. The principle on which the proposed approach works
is discussed is Section 4.1. The approach for speaker segmentation using subsegmental
excitation features is presented in Section 4.2. A comparison of performance of the
proposed approach and the metric-based (BIC) approach using vocal tract features, is

given in Section 4.3.

4.1 Basic Principle of the Proposed Approach

The proposed approach for speaker segmentation relies on the principle that the ex-
citation source features have lesser dissimilarity within a speaker, as compared to the
dissimilarity across speakers. This means that smaller amount of data is sufficient to

model a speaker using the excitation features, as compared to the vocal tract features.
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Given a multispeaker speech signal, if one of the speakers can be modeled, then
segments of speech corresponding to the modeled speaker can be separated from seg-
ments of the remaining speakers. The process can be repeated until only one speaker
is left out. Though this principle applies to a multispeaker conversation with any num-
ber of speakers, the focus of this thesis is on 2-speaker conversations. As there is no a
priori information about the identities of the speakers involved in the conversation, the
automation of the above process becomes essential. Two major issues to be addressed

here are:

e Sufficiency of data for speaker modeling

e Automatic detection of single speaker regions for speaker modeling

4.1.1 Sufficiency of data for speaker modeling

The amount of speech data required to characterize a speaker plays an important
role in devising a method for speaker segmentation. The evidence for speaker change
detection will be reliable, if the modeling of the speaker is good. Speaker verification
experiments using excitation source information show that around 5 seconds of voiced
data is optimal for training [26]. The performance almost remains constant above 5
seconds, while it degrades gradually for lesser amount of training data. In the case
of speaker segmentation, one needs to discriminate only between the two conversing
speakers, unlike the speaker verification task where a speaker has to be discriminated
against a number of speakers. Hence lesser amount of training data may be sufficient
for speaker segmentation. In order to study the availability of evidence for speaker
change detection and sufficiency of the training data, speaker models are built from
varying amounts of training data (5 sec, 2 sec, 1 sec, 0.5 sec and 0.25 sec). The data for

training the models are manually marked from a 2-speaker conversation. The entire
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conversation is tested against each of the models. Regions belonging to the modeled
speaker are expected to give a higher confidence score, as compared to the regions of the
other speaker. Fig. 4.1 shows the evidence obtained by models trained with different

amounts of data. While the evidence for speaker change detection deteriorates with the

0 2 4 6 8 10 12 14 16 18 20
—-—=> Time (sec)

Fig. 4.1: (a) Waveform of a 2-speaker speech signal with the actual speaker
changes marked by vertical poles. Evidence (confidence scores) obtained by
models built from (b) 5 sec, (c) 2 sec, (d) 1 sec, (e) 0.5 sec and (f) 0.25 sec of
training data.

reduction in the amount of training data, it is seen that there is considerable evidence
even for 0.5 sec of training data. The actual decision on the amount of training data
to be used depends on the availability of contiguous segments of speech from a single
speaker and their automatic detection. It is a compromise between the strength of
evidence for speaker change detection and the chances of automatically detecting such

contiguous segments. About one second of training data is reasonable in terms of both
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sufficiency and availability of data. The automatic identification of regions containing

a single speaker is discussed in the following section.

4.1.2 Automatic detection of single speaker regions

In a casual conversational speech it is not guaranteed that a randomly chosen segment,
of 1 sec data (voiced) contains only one speaker. In order to circumvent this problem,
M (about 10) models are built from M adjacent segments (1 sec) of speech, with an
overlap of half a second. The entire conversation is tested against each of the M models
to obtain the confidence scores. The confidence plots are smoothened using a moving
average window [55]. Typically a window size of 0.5 sec is used. The similarity between
any two models can be measured in terms of the cross-correlation coefficient [54, 65]
between the two mean-subtracted confidence plots. The cross-correlation coefficient
between any two signals p;(n) and po(n) is given by

X i)
. n=—oco (4.1)

0o 00 1/2
> wi(n) Yo p(n)

n=—0oo n=—oo

In order to automatically detect the training segments that contain speech from

only one speaker, the following hypotheses should be true:

e If the value of the cross-correlation coefficient is high and positive (close to +1),
then the two models belong to the same speaker. Also, there is a high probability

that the training data of each model contains only one speaker.

e If the value of the cross-correlation coefficient is high and negative (close to -1),

then the two training segments are pure, but belong to different speakers.

e The chances of any two impure training segments giving a high correlation value

are low.
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Fig. 4.2 shows the smoothened, mean-subtracted confidence plots for ten models
(M=10), each model trained with one second of voiced data from a single conversation.
The values of the cross-correlation coefficient computed among the ten confidence plots

shown in Fig. 4.2 are given in Table 4.1. The confidence plots and the tabulated cor-

Table 4.1: Cross-correlation coefficient values between confidence score plots
of 10 models generated from adjacent, overlapped segments of a male-male
conversational speech data. The highest value among the non-diagonal entries
in each row is highlighted.

Models M1 M2 M3 M4 M5 Mﬁ M7 Mg Mg MlO

M, 1.00 | 0.56 | 0.06 | -0.18 | -0.12 | -0.06 | 0.49 | 0.54 | 0.61 | 0.38

M, 0.56 | 1.00 | 0.26 | -0.05 | -0.00 | 0.05 | 0.41 | 0.38 | 0.45 | 0.45

Msy 0.06 | 0.26 | 1.00 | 0.54 | 0.35 | 0.38 | 0.25 | -0.07 | -0.01 | 0.28

M, -0.18 | -0.05 | 0.54 | 1.00 | 0.62 | 0.46 | 0.09 | -0.31 | -0.29 | 0.02

Ms -0.12 1 -0.00 | 0.35 | 0.62 | 1.00 | 0.49 | 0.09 | -0.22 | -0.22 | 0.03

Mg -0.06 | 0.05 | 0.38 | 0.46 | 0.49 | 1.00 | 0.24 | -0.19 | -0.18 | 0.15

My 0.49 | 0.41 | 0.25 | 0.09 | 0.09 | 0.24 | 1.00 | 0.36 | 0.42 | 0.50

Mg 0.54 | 0.38 | -0.07 | -0.31 | -0.22 | -0.19 | 0.36 | 1.00 | 0.65 | 0.30

My 0.61 | 0.45 |-0.01 |-0.29 | -0.22 | -0.18 | 0.42 | 0.65 | 1.00 | 0.47

Mg 0.38 | 0.45 | 0.28 | 0.02 | 0.03 | 0.15 | 0.50 | 0.30 | 0.47 | 1.00

relation coefficient values, clearly show that all the three hypotheses made earlier hold
good. The models My, M,, Mg and My show a high degree of similarity and belong to
the same speaker. Similarly, the models M, and M5 have a high degree of similarity
and belong to the second speaker. It can be seen that the evidences from models

of different speakers have reversed trends, and hence yield negative cross-correlation
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coefficient values. Models M3, Mg, M; and M;, are trained from impure segments and
hence have a relatively lower correlation values with other models. The pair of models
with the highest absolute value of the cross-correlation coefficient (0.65 between Mg
and My from Table 4.1) are hypothesized to be trained from pure segments (a pure
segment is one that contains speech from only one speaker) of speech. The sign of the
cross-correlation coefficient value suggests whether they belong to the same speaker or

not.

—01 1 | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20
——=> Time (sec)

Fig. 4.2: Smoothened, mean-subtracted confidence score plots of 10 models
(M to My from top to bottom) generated from adjacent, overlapped segments
of a male-male conversational speech data. The manually marked speaker
changes are shown in the first subplot.

41



4.2 Proposed Approach for Speaker Segmentation

The previous section shows that the models trained with one second of single speaker
data, provide significant evidence for speaker change detection. Automatic detection
of training segments containing only one speaker was also discussed. A new approach
for speaker segmentation using excitation source features and neural network models is
proposed in this section. As the speaker separation problem is closely associated with
the speaker change detection problem, a simple agglomerative clustering is proposed

for speaker separation.

4.2.1 Speaker change detection

The proposed method for speaker segmentation has two phases, model generation and

change detection.

4.2.1.1 Model generation phase

The issues in model generation were discussed in Section 4.1. A summary of the steps
involved in the generation of models is given in this section. An AANN model is
trained from approximately 1 sec of contiguous voiced speech which is hypothesized to
contain only one speaker. In a casual conversational speech it is not guaranteed that a
randomly chosen segment of 1 sec (voiced speech) contains only one speaker. In order
to circumvent this problem, M (about 10) models are built from M adjacent speech
segments of one second, with an overlap of half a second. The entire conversation is
tested against each of the models to obtain M confidence score plots. The values of
the cross-correlation coefficient between all possible pairs of confidence score plots are
computed. The confidence scores are smoothened using a moving average window (0.5

sec) and mean subtracted before computing the cross-correlation coefficient values.
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Out of M models, N (2 to 4) model that give the highest values of cross-correlation
coefficient with one another are chosen. The entire process of model building and

selection is depicted in Fig. 4.3.

LP residual signal of ag speaker conversati/on
[

| Test data for model selection
I
i i Smoothening| ]
| | Model
ffffff i #1 & Mean
! subtraction
! (I : MxM
! ‘ Model Smoothening Cross
e S EEEE = # & Mean correlation
! Training data subtraction coefficients
| for
. ) model
: : Confidence Zero-mear]  selection N
! p|0t$ average selected
| ! confidence models
! v plots
! Model Smoothening
””””””””””””” = #M & Mean
subtraction | — -

Fig. 4.3: Model building and selection phase in speaker change detection.

4.2.1.2 Change detection phase

The change detection phase has two steps - combining evidence from multiple models

and detection of peaks in the combined confidence score plots.

Combining evidence from multiple models :

This phase involves combining evidence from the N confidence score plots chosen in
the previous step. The evidence provided by each of the N models can be of varying
degree. A minimum of one pair of models (N = 2) with single speaker data is essential
for the reliability of the evidence. While there may be more evidence in some cases, it
need not be true with all conversations. Also, combining evidence from multiple mod-
els in a constructive manner is a tough problem in itself. Hence evidence from only

two models, with the highest degree of similarity, are used for speaker segmentation.
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Let ¢(n) denote the sequence of raw confidence scores obtained by testing the given

conversation against a model. An average confidence signal

p(n) = c(n) * hm(n) (4.2)
is computed, where '+’ denotes convolution operation [56] and

1 _Na Na
Na 5 <N <5

hm(n) = (4.3)
0 elsewhere

where Ny = T4 X f, is the length of the analysis window (in number of samples), T4 is
the duration of the analysis window (in sec) and fs is the sampling rate of the speech

signal. An absolute delta-mean sequence is computed as

Ap(n) = () * ha(n)| (4.4)
where
.
-1 n= —%,
hi)={ 1 =2 (4.5
0 elsewhere.
\

The Ay value at any instant represents the change in average confidence values between
two adjacent window segments of length N4 around that instant. Hence a peak in the
Ap plot can be hypothesized as a speaker change. If Apui(n) and Apus(n) are the
confidence plots obtained from the chosen two models, they can be combined using

product rule (AND logic) as

Apanp(n) = v/ Api(n) Aps(n) (4.6)

They can also be combined using sum rule (OR logic) as

(Aps(n) + Apg(n)) (4.7)

N —

Apor(n) =
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Fig. 4.4: Combining evidence at score level. (a) Aui(n), (b) Aus(n), (c)
Apanp(n), and (d) Apogr(n). The vertical lines indicate actual speaker
changes.

Fig. 4.4 shows the individual evidence and the combined scores using both methods.
It can be seen that the evidence combined using product rule has more ripples and
destroys the evidence in some cases. Instead of combining the evidence at the score
level, the individual confidence sequences can also be processed independently and the
decisions can be combined at a later stage using AND or OR logic. The choice of the
combining logic is a compromise between a high detection rate and a low false alarm
rate. The OR logic favours a high detection rate, while the AND logic favors a low
false alarm rate. A majority based logic can be employed if evidence from more than
two models are considered. The parameters that affect the performance of the speaker
segmentation task are the duration of the analysis window 74 and the decision logic

used to combine the individual evidence. The evidence available when different lengths
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of the analysis window are used, is shown in Fig. 4.5. It can be seen that the strength
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Fig. 4.5: Evidence for varying lengths of the analysis window T4. The Ay
plots for window sizes of (a) 100 ms (b) 250 ms and (c) 500 ms. Manually
marked speaker changes are shown as vertical lines in all the plots.

of the peaks (evidence) reduces slightly as the duration of analysis is increased, but
at the same time there is a significant reduction in the number of spurious peaks.
The effect of these parameters on the performance of the speaker segmentation task is

discussed in Section 4.3.3.

Peak detection and validation :

A peak in a Ay sequence corresponds to a significant change in the excitation char-
acteristics of the speech signal. Hence a peak in a Ay sequence is hypothesized as a
speaker change. Larger the peak strength, greater is the probability of the hypothe-

sized speaker change being a genuine one. As it is difficult to set an absolute threshold
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on the peak strength, all peaks in the Ay sequence are detected in the first step and

then validated to eliminate spurious peaks. A simple differential operator,

—NLA —% <n <0,
— 2 N
wn)=q 2 0 <n < X (4.8)
0 elsewhere
\

is applied on the Ay sequence to detect the peaks. The positive zero crossings of the
signal y(n) = Au(n) * w(n) are hypothesized as speaker changes. In the next step,
speaker change hypothesis at a peak is validated to reduce the number of false alarms.
The hypothesis is true, if the peak strength is greater than A = (m — po), where m
is the average peak strength, o is the average deviation of the peak strengths from m
over the entire conversation and p is a constant which controls the dynamic threshold
A. Fig. 4.6 shows the results of the peak detection and validation process for a dynamic
threshold of A = (m—0.50). The effect of varying the parameter A on the performance

of the change detection task is discussed in Section 4.3.3.

4.2.2 Speaker separation

Speaker change detection results in a sequence of segments, each of which is hypothe-
sized to contain a single speaker. An agglomerative clustering [28,38] is performed to
separate the segments into two groups. The algorithm starts with Ng¢ clusters with
one segment in each cluster. The number of clusters is reduced iteratively, by com-
bining two segments at a time which are most similar. Absolute difference between
the average confidence scores of two segments is used as the dissimilarity measure.
The clustering process is continued until only two groups are left. The two groups are
now hypothesized to represent each of the speakers involved in the conversation. The

results of the speaker separation process are shown in Fig. 4.7. The speaker separation
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Fig. 4.6: Speaker change hypothesis and validation. (a) The speech signal
with actual speaker changes marked manually. (b) The Ay plot (combined

using sum rule) with speaker changes hypothesized as a first step. (c) The
final validated speaker changes. The actual speaker changes are marked using

poles with a cross at the top.

process validates a speaker change hypothesized in the previous step. If the two seg-
ments on either side of a hypothesized speaker change are assigned to the same group,
the speaker change hypothesis is said to be invalidated. When speaker separation is
the primary objective of the segmentation task, oversegmentation is preferred during

the chance detection phase, since a missed speaker change is more expensive than a

false hypothesis.
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Fig. 4.7: Results of speaker separation task. (a) 2-speaker speech signal
(vertical poles with a cross at the top indicate actual speaker changes). (b)
Ay plot (vertical poles with a circle at the top indicate hypothesized speaker
changes). (c) Combined average confidence plot. The binary signal (solid)
gives the decision of the speaker separation process. The actual speaker sep-
aration decision (dashed plot) is given as reference.

4.3 Performance Evaluation of the Proposed Ap-

proach

The metrics used to evaluate the performance of the speaker segmentation and sep-
aration tasks are discussed in Section 4.3.1. The dataset used for the performance
studies is described in Section 4.3.2. The performance of the proposed approach for
speaker segmentation and separation is discussed in Section 4.3.3. A comparison with

the metric-based system using vocal tract features is also given in this section.
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4.3.1 Performance evaluation metrics

The performance of the speaker change detection process is evaluated using the false

alarm rate (FAR) and the missed detection rate (MDR). These are defined as below:

Npa
P = x 100% 4.9
FAR Nacr + Nuyp ’ (4.9)
N
Pupr = Aj’CSS x 100% (4.10)
T

where
Nacr is the number of actual speaker changes (manually marked),
Npgyp is the total number of speaker changes hypothesized or detected,
Nr 4 is the number of false acceptances (a hypothesized change being wrong),

Nirrss is the number of actual speaker changes missed out.

There are other possible definitions of FAR, Pragi = ]f[\.IAFOAT x 100% and Pppe =

% % 100%. While Pp4g1 is not restricted to an upper limit of 100%, the definition
of Ppago does not take care of the number of actual speaker changes. Hence the
number of false alarms is weighed against a sum of the Nycr + Ngyp. An ideal system
should give an FAR of 0% and an MDR of 0%. The accuracy of the speaker changes
detected, measured in terms of the deviation of the hypothesized changes from the
manually marked ones, is also an important factor while evaluating the performance
of a segmentation algorithm.

The performance of the speaker separation process is measured in terms of the

segmentation cost function [5] given by
Cseg=1—-T./T; (4.11)

where 7, is the duration of voiced speech that is correctly segmented and 7; is the to-

tal duration of the voiced speech in the conversation. The cost function is normalized
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by a factor Cg.r, which is the minimum segmentation cost that can be obtained even
without processing the conversation (by assigning the entire conversation to either of

the speaker).

Cseq|Entire speech is assigned to speaker 1,
Caey = min (4.12)

Cyeq| Entire speech is assigned to speaker 2

Chrorm = Cseg/cdef (413)

A good system should give a C,,,,, value close to zero, and a value close to one is as

good as not processing the conversation.

4.3.2 Dataset for performance studies

A total of 10 different 2-speaker conversations, each of 5 min duration are used to
evaluate the performance of speaker segmentation system. The 10 conversations con-
stitute 5 female-female conversations, 3 male-male conversations and 2 male-female
conversations. The data set has a total of 880 (N4cr) actual speaker changes (man-
ually marked). The data is part of the NIST-2003 database for speaker verification
tasks and are casual telephonic conversations recorded at the switchboard [5]. The
data is recorded at a sampling rate of 8 kHz. The data has approximately 3000 sec of

conversational speech, which contains around 1149 sec (7;) of voiced speech.

4.3.3 Results of speaker segmentation and separation

The performance of the proposed approach for speaker segmentation depends on the

following parameters:

e Analysis window length T}
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e The threshold A for validating speaker change hypotheses

e The logic used to combine evidence

— Score-level combination

— Decision-level combination

The effect of these parameters on the performance of speaker segmentation is discussed
in this section. Also, the effect of the analysis window length 74 and the combination
logic used to combine scores, on the performance of speaker separation is discussed.
The performance of speaker change detection after the speaker separation process is
studied. A comparison of the proposed approach with the metric-based approach

(described in Chapter 2) is given towards the end of the section.

4.3.3.1 Accuracy of the speaker change hypotheses

The accuracy of the hypothesized speaker changes is measured in terms of the deviation
from the manually marked speaker changes. The length of the analysis window T4
controls the maximum tolerance in accuracy (deviation from the manual markings).
The comparison being done between two adjacent windows of size T4 each, a tolerance
T, greater than T4/2 is not logical. Here, the error in the manually marked speaker
changes is assumed to be zero. If T, is assumed to be the average error in manual
markings, then the tolerance for automatic detection should be within T},,, = T4 /2 +
T,... Assuming that the average error in manual markings is close to zero, we set an

upper limit on the maximum tolerance at Tp,op = Ta/2.

4.3.3.2 Effect of analysis window length 74 on speaker segmentation

The performance of the proposed speaker change detection algorithm is given in Ta-

ble 4.2 for different lengths of the analysis window T4 (100 ms, 250 ms and 500 ms).
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In each case, the performance is evaluated for different tolerance limits, varying upto

Table 4.2: Performance of the speaker change detection task for different
lengths of the analysis window T4. (Score-level combination using sum rule,
peak validation threshold A = y — 0.50, Naor = 880).

Ta Tolerance | Nuyyp | Nea | Nuiss | Prar(%) | Pupr(%)
10 ms 3188 | 2938 631 72.2 77.39
100 ms 20 ms 3188 | 2693 383 66.2 43.52
50 ms 3188 | 2541 218 62.46 24.7
25 ms 1824 | 1076 633 48.82 71.93
250 ms 50 ms 1824 | 1397 448 51.66 50.91
125 ms 1824 | 1219 238 45.08 27.05
50 ms 1428 | 1200 647 51.99 73.52
500 ms | 100 ms 1428 | 1019 447 44.15 50.08
250 ms 1428 | 763 119 33.06 13.52

a maximum tolerance of T4 /2. It is seen that the missed detection rate for a common
tolerance of 50 ms is less for an analysis window size of 100 ms. However, the number
of false hypotheses is high for smaller lengths of the analysis window. The larger win-
dow lengths mask some of the finer variations in the features within the window and
hence can afford a larger tolerance. This results in a reduction in the number of misses
for the maximum allowable tolerance, as the size of the analysis window is increased.
It is seen that a best MDR of 13.52% can be obtained at an FAR of 33.06%, with a

maximum allowable tolerance of 250 ms.
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4.3.3.3 Effect of validation threshold )\ on speaker segmentation

The performance of the speaker change detection task depends on the dynamic thresh-
old A, used to validate the speaker changes hypothesized at the first level. Table 4.3
compares the performance for different thresholds against the case where no valida-
tion is done. It can be seen from the table that setting the threshold is a compromise

between a low MDR and a low FAR.

Table 4.3: Performance of the speaker change detection task for different
thresholds in validating peaks. (Analysis window of duration T4 = 500 ms,
detection accuracy T; = 250 ms, Nacr = 880).

Validation threshold | Ngyp | Nea | Nurss | Prar(%) | Pupr(%)
A
No validation 1680 | 988 | 105 38.59 11.93
p—05%0 1428 | 763 | 119 33.06 13.52
p—025%0 966 | 367 | 200 19.88 22.73
[ 615 | 156 | 375 10.43 42.61

4.3.3.4 Effect of different combining strategies on speaker segmentation

The effect of using different strategies to combine evidence from multiple models, on
the speaker change detection performance, is shown in Tables 4.4 and 4.5. Table 4.4
corresponds to combining the evidence at score level. It can be seen that the number of
misses is more using the product rule, which is analogous to AND logic. The number
of false alarms has also increased, which is probably counter-intuitive for AND logic.
The increase is due to the fact that the evidence is combined at the score level as can

be verified from Fig. 4.4.
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Table 4.4: Performance of the speaker change detection task for different

strategies of combining the scores. (Analysis window of duration 7'y

100

ms, peak validation threshold A = y — 0.50, detection accuracy Ty = 50 ms,

Nacr = 880).
Rule for Ngyp | Nra | Nyrss | Prar(%) | Pupr(%)
score-level combination
Product rule 3444 | 2824 249 65.31 28.3
Sum rule 3188 | 2541 218 62.46 24.7

The performance by combining the decisions after processing the individual evi-

dence separately is given in Table 4.5. The decisions are said to be corroborative if

Table 4.5: Performance of the speaker change detection task by combining

decision based on individual evidence. ( Analysis window size T4 = 100 ms,
peak validation threshold A = uy — 0.50, detection accuracy Ty = 50 ms,
Nacr = 880).
Logic for Nuyp | Nra | Nurss | Prar(%) | Pupr(%)
decision-level combination
AND 1603 | 1252 522 50.42 59.3
OR 4715 | 3967 160 70.9 18.18

they are within a tolerance limit of T},. Comparing results from Table 4.4 and Ta-
ble 4.5, it can be seen that the OR logic reduces the number of misses, increasing the

false alarms at the same time. The AND logic increases the number of misses severely,

while reducing the false alarms.
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4.3.3.5 Performance of the speaker separation task

The speaker separation process prefers a few additional false alarms rather than missing
out a genuine speaker change. Hence when the goal of the speaker segmentation task
is to separate the segments of the conversant speakers, oversegmentation is always
preferred at the change detection stage. The performance of the speaker separation

task for different lengths of the analysis window is given in Table 4.6. The length of the

Table 4.6: Performance of the speaker separation task for varying sizes of
the analysis window. (Peak validation threshold A = p — 0.50, sum rule for
combining scores, T; = 1149 sec, Cger = 0.3975).

Analysis window T, Cseg | Crorm
size (T4)

100 ms 1079.4 | 0.0601 | 0.1511

250 ms 1071.7 | 0.0673 | 0.1693

500 ms 1063.1 | 0.0748 | 0.1883

analysis window seems to have little effect on the speaker separation performance as
compared to the change detection performance (Table 4.2). The C,, values shows that
around 92 to 94% of the overall speech is assigned to the correct speaker. However,
a Cyer value of 0.3975 specifies that around 60% of the conversation can be correctly
assigned even without any processing. Hence by using Cy.s as a reference, the Cyopm
values suggest that an accuracy of around 81 to 85% is achieved. The evidence from
the two selected models is combined at the score level. The results in Table 4.7 show
that the performance of the speaker separation task does not vary much. This may
be due to the fact that only two models are considered and a high degree of similarity

exists in the evidence provided by the two models.
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Table 4.7: Performance of the speaker separation task for different strate-
gies for combining evidence at score-level. (Analysis window size T4 = 100
ms, peak validation threshold A = y — 0.50, sum rule for combining scores,
Ty = 1149 sec, Cgey = 0.3975).

Score combination || 7, Cseg | Crorm

logic

Product rule 1084.4 | 0.0562 | 0.1414

Sum rule 1079.4 | 0.0601 | 0.1511

4.3.3.6 Validation of speaker change hypotheses by speaker separation

The speaker changes hypothesized by the speaker segmentation process act as the
starting point for speaker separation. The segments of speech bound by the speaker
change hypotheses are grouped into two categories during speaker separation. In the
process, a speaker change hypothesis may either be validated or invalidated. The per-
formance of the speaker change detection task reevaluated after the speaker separation
task is given in Table 4.8. The performance of the speaker segmentation task before
speaker separation is also given for comparison. It can be seen that there is an increase
in the number of misses, but at the same time there is a reduction in the number of
false alarms. This is mainly due the elimination of weak and spurious speaker change
hypotheses by the speaker separation process. It can seen that a missed detection rate
of around 40 to 50% (Pupr of 38.64 and 50.45 from Table 4.8), corresponds to an
inaccuracy of 6 to 7.5% in speaker separation (C,., values of 0.0604 and 0.0748 from
Table 4.6). This shows that the segmentation cost C,, is heavily biased towards the
longer speaker turns. While it is a good measure for the speaker separation process,

it is not best suited for evaluating the performance of speaker segmentation.
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Table 4.8: Effect of speaker separation on the performance of speaker change
detection. (Peak validation threshold A = p — 0.50, sum rule for combining
scores, detection accuracy of T4 /2, Nacr = 880).

Speaker Analysis window | Ngyp | Nra | Nuiss | Prar(%) | Pupr(%)
segmentation size (T')

Before 100 ms 3188 | 2541 218 62.46 24.7
speaker 250 ms 1824 | 1219 | 238 45.08 27.05
separation 500 ms 1428 | 763 119 33.06 13.52
After 100 ms 859 | 325 340 18.69 38.64
speaker 250 ms 535 92 419 6.5 47.61
separation 500 ms 429 34 444 2.6 50.45

4.3.3.7 Comparison of the proposed approach and the metric-based ap-

proach

The performance of the proposed approach for speaker segmentation and the metric-
based (BIC) approach (described in Chapter 2) is given in Table 4.9. An analysis
window of length 500 ms, a peak validation threshold of A = y — 0.5 % ¢ and a 250
ms tolerance on the accuracy of detected changes are used for both methods. It is
seen that the proposed approach for speaker segmentation using excitation source
information performs significantly better than the metric-based approach that uses
vocal tract information. Also, the speaker separation performance by the proposed

approach is better than the metric-based approach as shown in Table 4.10.
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Table 4.9: Performance of the speaker segmentation task for the proposed
approach and the metric-based approach. (Analysis window size T4 = 500
ms, peak validation threshold A = p — 0.50, detection accuracy of T4/2,

Nacr = 880

Speaker segmentation || Ngyp

using

Ny

Nurss

Prpar(%)

Prpr(%)

Excitation source 1428

features

763

119

33.06

13.52

Vocal tract 2072

features

1825

631

61.82

717

Table 4.10: Performance of the speaker separation task for the proposed
approach (using excitation features) and the metric-based approach (using
vocal tract features). (Analysis window size T4 = 500 ms, peak validation
threshold A = p — 0.50, T; = 1149 sec, Cger = 0.3975)

Speaker separation Tc Cieg Chrorm
using
Excitation source | 1063.1 0.0748 0.1883
features
Vocal tract 838.66 | 0.2701 0.6795
features
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4.4 Advantages and Limitations of the Proposed
Approach

Some of the important advantages and limitations of the proposed approach can be
summarized as follows:

Advantages:

e The dissimilarity of the excitation features within a speaker is less as compared
to the dissimilarity with sounds of other speakers. This makes the excitation
source features a better option for detecting speaker changes in conversations

with short speaker turns.

e The excitation features are less affected by channel variations, as compared
to the vocal tract features. Hence the excitation features may give consistent

segmentation performance, irrespective of the channel of recording.
Limitations:

e The proposed method requires around one second of contiguous speech (voiced)
containing only one speaker. Atleast two such segments are essential for auto-
matic detection of such regions. The performances of the speaker segmentation

and separation tasks can degrade if the the above requirements are not met.

e The proposed method requires some adaptation time and data for every con-
versation it tries to segment. Hence it is not suited to process conversations on
a real-time basis. But once the models are generated, the conversations may be

segmented on a real-time basis.
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4.5 Summary

A new approach for speaker segmentation using the excitation source features was
proposed in this chapter. A simple agglomerative clustering was used to separate
the segments belonging to the two speakers. The various analysis discussed in Sec-
tion 4.3.3 on the performance of the speaker segmentation and separation tasks are
tabulated in Table 4.11. The performance of the speaker segmentation task depends
on the analysis window length, validation threshold and the decision strategy used
to combine evidence. The choice of these parameters is a compromise between a low
missed detection rate and a low false alarm rate. The results have shown that the
proposed approach based on excitation source features performs significantly better
than the existing metric-based approach that use vocal tract features. Some of the
directions for future work based on the proposed approach will be discussed in Chap-
ter 6. Chapter 5 discusses the application of speaker segmentation and separation in

the 2-speaker detection task.
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Table 4.11: Summary of analysis on the performance of speaker segmenta-
tion and separation tasks.

Performance of speaker segmentation for different lengths of the analysis win-
dow.

— Section 4.3.3.2, Table 4.2

Performance of speaker segmentation for different values of the validation
threshold.

— Section 4.3.3.3, Table 4.3

Performance of speaker segmentation for different strategies in combining ev-
idence.

— Combination of evidence at the score level.
*x Section 4.3.3.4, Table 4.4
— Combination of evidence at the decision level.

x Section 4.3.3.4, Table 4.5
Performance of speaker separation for different lengths of the analysis window.
— Section 4.3.3.5, Table 4.6

Performance of speaker separation for different strategies in combining evi-
dence.

— Section 4.3.3.5, Table 4.7

Reevaluation of the performance of speaker segmentation after speaker sepa-
ration.

— Section 4.3.3.6, Table 4.8
Comparison of the proposed approach with the metric-based approach.

— Section 4.3.3.7, Tables 4.9 and 4.10.
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CHAPTER 5

APPLICATION OF SPEAKER
SEGMENTATION IN 2-SPEAKER
DETECTION

In Chapter 3, it was shown that the excitation features at the subsegmental level can
characterize a speaker better than the vocal tract features, from limited data. In the
previous chapter, a new approach for segmentation and separation of speakers in a
conversation, was proposed. The 2-speaker detection task (also referred to as the 2sp
task), which is of significance in forensic applications, is considered in this chapter as
an application of the speaker segmentation and separation tasks. The objective here
is to demonstrate the impact of speaker segmentation on the performance of the 2sp
task. A detailed study on various issues in the 2sp task is not within the scope of this

chapter.

5.1 2-speaker Detection Task - An Overview

The 2-speaker detection task involves detecting or verifying a speaker within a conver-
sation. There could be several variations to the definition of the task. In this thesis,
the 2sp task defined by NIST (National Institute of Standards and Technology, USA)
as part of the annual speaker verification evaluation [5,66], is considered. The NIST

2sp task has two phases, a training phase and a testing phase. The training phase

63



involves building a model for a speaker from three different conversations (each of five
minutes duration) of the speaker with three different speakers. The common speaker
has to be identified before building a model for the speaker. The definition of the task
ensures that only one speaker is common among the three conversations available for
training. The second speaker in each of the conversations does not repeat in any of the
other two conversations. Also, it is given that each of the speakers in a conversation
contributes to atleast 20% of the overall duration, with an average contribution of
50%. During the testing phase, a single conversation (of five minutes duration) is to
be tested against the model of a claimant speaker. It is to be verified if the claimant
speaker is one of the speakers in the test conversation. Fig. 5.1 gives an overview of

the 2sp detection task.

3 comversations
of speaker 51
. 8] Model for
Training —=- 5L Ej@ speaker
[SIadST ] [:} CBL] | Spesker |51
phase bl

Speaker
[ Fiads ] seqrentation [ 5]
5]

. Test
TEStlllg comrversation [ | Model for Cl Final
_ speaker BCLED ¥ ontenee
phase ol [ 5b | 5l 2 sCoe
segtientation Confidence

SCOres

Fig. 5.1: Overview of the 2sp detection task.
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5.2 2-speaker Detection Without and With Speaker

Segmentation

In order to study the importance of the speaker segmentation and separation tasks,
the performance of the 2sp task is studied under two cases - (a) without speaker
segmentation and (b) with speaker segmentation. In both the cases, a strategy similar
to a l-speaker detection task is employed. Hence, the general strategy for 1-speaker

detection will be discussed before the actual 2sp tasks.

5.2.1 1-speaker detection strategy

The 1-speaker detection task (also referred to as 1sp task), in general, has two major
phases - speaker modeling (training) phase and speaker verification (testing) phase.
In the training phase a parametric model is developed to characterize a speaker from
the training data provided for the speaker. The vocal tract features are found to
characterize a speaker better than the excitation source features, when large amount
(> 30 sec) of training data is available [14,26]. Hence, 19-dimensional LPCCs obtained

2" order LP analysis of speech (20 ms window size and 10 ms shift) are used as

using a 1
feature vectors. A five layer AANN model with a structure 19L38 N12N38N19L is used
to capture the distribution of the vocal tract features [67]. During the testing phase,
the LPCC features extracted from the test utterance are presented to the claimant
model and an average confidence score is obtained [62]. The average confidence score
indicates the probability that the test speaker is the same as the claimant speaker. A

threshold is set on the confidence score to decide the authenticity of the claim. The 1sp

system used in these experiments is based on the speaker verification systems detailed

in [62,68-70].
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To evaluate the performance of a speaker verification system, several test utter-
ances are considered and each test utterance is tested against several claimants. The
average confidence scores, obtained by testing different test utterances against different
claimant speakers, can be in different ranges due to the variability in the type of data
used for training and testing. Hence, there is a need for normalizing these confidence
scores to a common range, so that a common threshold be set, independent of the test
and claimant speaker pair, and independent of the type of data used for training or
testing. Model normalization, followed by a test utterance normalization is performed
on these confidence scores, to reduce the effect of variability in training data and test
data respectively [68,71]. If a confidence score is above the common threshold, the

test and the claimant speakers are declared to be the same.

5.2.2 2-speaker detection without speaker segmentation

The definition of the 2sp task ensures that only one speaker is common among the
three conversations available for training. Also, the second speaker in each of the
conversations does not repeat in any of the other two conversations. Hence, the overall
training data contains four speakers and the target speaker has almost three times the
data of any other speaker. A single AANN model is trained using all the training data
without separating the speakers in conversation. The hypothesis is that the AANN
model captures the distribution of features corresponding to all four speakers, but the
target speaker who has more data than any other speaker is modeled better. During
testing, the entire conversation is tested against a specified target speaker model. The
confidence scores of only those frames (or feature vectors) which are above the mean
confidence score are considered to compute the final average confidence score. The

hypothesis is that, if the target speaker is one of the speakers in the test conversation,
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the frames of the target speaker give higher confidence scores than that of the other
speaker. At the same time, if the target speaker is neither of the test speakers, all
frames of the test conversation should give low scores. The drawback of this approach
is that the training patterns for the AANN models are corrupted with data from other
speakers and can inhibit the ability of the AANN model to characterize a speaker. Also,
if the claimant happens to be one of the three non-target speakers in the training data,

the performance of the 2sp task can degrade.

5.2.3 2-speaker detection with speaker segmentation

Speaker segmentation followed by a speaker separation task is performed on the train-
ing conversations as well as the test conversation, based on the approach proposed in
the previous chapter. An analysis window length of T4 = 100 ms, a peak validation
threshold A\ = p — 0.50 and sum rule for combining evidence are used for speaker
segmentation and separation. The speaker separation process splits a conversation
into two clusters, each representing one speaker. The common speaker from the three
training conversations is determined by performing an agglomerative clustering, which
starts with six initial clusters and ends with four clusters. As there is considerable
amount of data in each of the clusters, LPCCs are used as features and ABIC' is used
as the dissimilarity measure. The largest cluster is hypothesized as the common or
target speaker. During testing, a claim is tested against both the speakers separated

from a test conversation separately, and the largest confidence score is retained.

5.3 Performance of 2-speaker Detection Systems

The performance of the system is evaluated in terms of equal error rate (EER). The

EER is that value of false acceptance rate (FAR) or missed detection rate (MDR) at
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which both are equal. A false acceptance is a case when an impostor is declared as a
genuine speaker, and a missed detection is a case when a genuine speaker is declared as
an impostor. The false acceptance rate and missed detection rate vary as the threshold
on the normalized confidence scores is varied.

The performance of the 2sp system is evaluated on a small set of 50 target speakers.
A total of 150 conversations for training speaker models (3 per target speaker) and
50 test conversations (one each per target speaker) are considered. Eleven claims are
made against each of the test conversations, of which only one is genuine. A claim
or a claimant corresponds to an already modeled speaker, and a genuine claim is one
where the claimant speaker is one of the conversants in the test conversation. Thus
a total of 550 claims are verified, of which 50 are genuine claims and the remaining
500 are impostor claims. Apart from the EER, the performance of the 2sp task is
measured using a rank based method. The eleven confidence scores obtained for the
eleven claims against a single test conversation, are ranked against each other. The
number of times (out of the total 50 tests) a genuine claim wins over the remaining 10
impostor claims is used as a performance measure. The performance of the 2sp task
without and with speaker segmentation is given in Table 5.1. The table clearly shows
that the separation of the two speakers in a conversation brings about a significant

improvement in the performance of the 2-speaker detection task.

5.4 Summary

The 2-speaker detection task was considered as an application in order to illustrate the
usefulness of the speaker segmentation and separation tasks. Based on the principle of
a l-speaker verification system, two different 2sp systems were designed, one without

speaker segmentation and the other with speaker segmentation. The performance
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Table 5.1: The performance of the 2sp task without and with speaker segmentation.

Number of genuine
2sp task first ranks EER (%)
(out of 50)
Without speaker 26 33
segmentation
With speaker 39 24
segmentation

of the 2sp task was shown to improve when speaker segmentation and separation
were performed before the verification task, thus signifying the importance of speaker

segmentation and separation.
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CHAPTER 6

SUMMARY AND CONCLUSIONS

The existing methods for speaker segmentation provide a statistical solution to detect
a point phenomenon (speaker change). They rely on the vocal tract features, which
have a high degree of dissimilarity among sounds of the same speaker as compared to
the same sounds in different speakers. This limits the existing approaches from being
used on casual conversations that contain short (< 5 sec) speaker turns.

An alternate approach for detecting speaker changes using excitation source fea-
tures has been proposed. AANN models were used to capture the excitation features
in the LP residual signal. The proposed method for speaker segmentation using exci-
tation source features was found to perform better than the system using vocal tract
features. Use of speaker segmentation in 2-speaker detection task was shown to im-

prove the performance of the task.

6.1 Contributions of the Work

The contributions of the research work carried out as part of this thesis can be sum-

marized as follows:
e The limitations of the existing approach using vocal tract features in segmenting
conversations with short speaker turns are brought out.

e The within-speaker to across-speaker (WAD) ratio is introduced as a metric to

evaluate the ability of a feature set in characterizing a speaker from limited
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amount of data.

e The excitation features are shown to be better than the vocal tract features for

characterizing speakers from limited data.

e An alternate approach for speaker segmentation of conversational speech using
excitation source features is proposed. The proposed approach was shown to

perform better than the existing approach based on vocal tract features.

e An approach for speaker separation task, which uses excitation source features

for combining segments is proposed.

e The ability of speaker segmentation in improving the performance of the 2-

speaker detection task is demonstrated.

6.2 Scope for Further Research

Some of the directions for continuing the research carried out as part of this thesis are

as follows:

e The proposed approach for speaker change detection can be easily extended to

process multispeaker speech with more than two speakers.

e The current work was focused on detecting speaker changes in casual telephone
conversations. The performance of the proposed algorithm can be studied for

different types of data, with different channel and noise considerations.

e The proposed algorithm requires some amount of data from the conversation for
the generation of models. This can be a limitation in processing short clips of a
conversation. Also, the generation of the models take significant time making the

approach unsuitable for real-time processing of multispeaker speech. However,
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once the models are trained, the conversations can be processed in almost real-
time. It is observed that the models trained with data less than one second
also contain evidence for detecting speaker changes. Reduction in the amount
of training data, increase in the number of models for combining evidence, and
efficient methods to combine evidence from multiple models may help reduce

the overhead involved in training the models.
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