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ABSTRACTKeywords: speaker veri�
ation, pit
h syn
hronous analysis, di�eren
e 
epstral 
oef-�
ients, autoasso
iative neural network models, s
ore normalization, 
omplementaryfeatures, 
ombination of eviden
es.The obje
tive of automati
 speaker veri�
ation is to validate a speaker's 
laimof identity, based on the speaker's voi
e. Speaker veri�
ation 
onsists of three steps,namely, feature extra
tion, modeling and s
ore normalization. The obje
tive of thisresear
h work is to address 
ertain issues in feature extra
tion and s
ore normalization.Most methods of feature extra
tion 
onsider uniform blo
ks of spee
h of 10-30 ms du-ration for analysis, overlooking the position of window of analysis. In this work, thesigni�
an
e of pit
h syn
hronous analysis of spee
h is studied for a

urate estimation ofshort-time spe
tral 
hara
teristi
s. Spe
tral features su
h as linear predi
tion 
epstral
oeÆ
ients (LPCC) and mel-frequen
y 
epstral 
oeÆ
ients represent 
hara
teristi
s ofboth the sound unit and the speaker. We propose di�eren
e 
epstral 
oeÆ
ients fordeemphasizing the sound unit information in the short-time spe
trum. The e�e
tive-ness of di�eren
e 
epstral 
oeÆ
ients for speaker veri�
ation and its ability to provide
omplementary information to spe
tral features is demonstrated. Autoasso
iative neu-ral network (AANN) models are used to estimate the probability density fun
tion offeature ve
tors in the feature spa
e. An important advantage of AANN models isthat they do not make a priori assumptions about the shape of the probability densityfun
tion. Due to di�eren
e in training and test utteran
es, the s
ores obtained fromthe models need to be 
alibrated, before 
omparison with a de
ision threshold. In this



work, methods of normalization are proposed for weighting the s
ores of di�erent testsegments, whi
h result in an improvement over the existing methods. Traditionally,speaker veri�
ation systems use a single feature for representing speaker-spe
i�
 infor-mation. In this work, 
ombination of eviden
es from three 
omplementary features,namely, LPCCs, di�eren
e 
epstral 
oeÆ
ients and ex
itation sour
e features, is shownto result in a signi�
ant improvement in the performan
e of veri�
ation.
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CHAPTER 1
INTRODUCTION TO AUTOMATIC SPEAKERRECOGNITIONSpee
h is one of the most basi
 forms of 
ommuni
ation among human beings. Spee
his a 
omposite signal that 
ontains information about the message to be 
onveyed,the 
hara
teristi
s of the speaker and the language of 
ommuni
ation. The unique
hara
teristi
s of the voi
e of a speaker are due to anatomi
al and physiologi
al fa
tors.Anatomi
al fa
tors relate to the physi
al aspe
ts of spee
h produ
tion me
hanism,namely, the vo
al tra
t system and the vo
al folds. Physiologi
al fa
tors re
e
t thespeaking habits of a person, su
h as speaking rate, a

ent and mannerisms. Thesefeatures are embedded in the spee
h signal, and hen
e, are useful in re
ognizing thespeaker.Automati
 speaker re
ognition is the task of re
ognizing a person by a ma
hine,using the information obtained from his/her spee
h signal. Automati
 speaker re
ogni-tion systems are useful in appli
ations where a

ess to a fa
ility needs to be 
ontrolled.Although te
hniques su
h as automati
 �ngerprint analysis, fa
e re
ognition, retinals
anning and magneti
 
ards with passwords are employed for su
h appli
ations, theyare limited by 
ost and ease of usage. Also, systems based on alphanumeri
 passwords
an be 
ompromised. On the other hand, spee
h is a natural and 
onvenient formof input that 
arries the signature of the speaker. Moreover, spee
h is inexpensiveto 
olle
t and analyze, and is hard to mimi
. Therefore, automati
 speaker re
ogni-tion is suitable for su
h appli
ations. Automati
 speaker re
ognition systems 
an be1



used as a prepro
essing stage in automati
 spee
h re
ognition systems, to improve theperforman
e of the spee
h re
ognizer. They 
an be used for ma
hine identi�
ationof parti
ipants in meetings, 
onferen
es or 
onversations. They 
an also be used in
onjun
tion with automati
 spee
h re
ognizers for analyzing multi speaker data, toobtain a re
ord of spee
h uttered by di�erent speakers. In law enfor
ement, speakerre
ognition systems 
an be used to help identify suspe
ts. Thus, speaker re
ognitionsystems have a number of important appli
ations.1.1 SPEAKER RECOGNITION BY HUMANSAn insight into the ability of human beings to identify speakers from their spee
h mayo�er 
lues for automati
 speaker re
ognition. Human beings 
an re
ognize speakersfrom their voi
es with ease, given a 
ertain degree of familiarity. This is due to theirability to extra
t spe
i�
 
ues for a given speaker, and also due to their ability to inte-grate higher sour
es of knowledge su
h as 
ontext, manner of speaking and language.In [1℄, 2-3 se
onds of spee
h was observed to be suÆ
ient for subje
ts to identify famil-iar voi
es, while the performan
e of re
ognition de
reased for unfamiliar voi
es. Also,when the utteran
es were played ba
kward, the performan
e of re
ognition redu
eddrasti
ally, thus highlighting the importan
e of timing and arti
ulatory 
ues. Humanbeings 
an easily per
eive mimi
ry of familiar voi
es [2℄. The ability of human beingsto re
ognize familiar voi
es in adverse 
onditions is remarkable [2℄. However, the per-forman
e of ma
hines 
an ex
eed that of human beings, when the test utteran
e isshort and the speakers are unfamiliar. This is be
ause the time required by humanbeings to learn a new voi
e is normally long and ma
hines may be trained mu
h faster.
2



1.2 CATEGORIES OF AUTOMATIC SPEAKER RECOGNITIONAutomati
 speaker re
ognition 
an be divided into two 
ategories: speaker identi�
a-tion and speaker veri�
ation. The speaker identi�
ation task is to determine if thespeaker of an unknown (test) utteran
e is present in a given set of speakers, and if so,to establish the identity of that speaker. The task is 
alled 
losed-set identi�
ation, ifit is known that the speaker is always a member of that set. If the speaker need notbe a member of that set, then the task is 
alled open-set identi�
ation. The speakerveri�
ation task is to determine if the speaker is indeed the person he / she 
laimsto be, i.e., to validate the 
laim of the speaker. In speaker identi�
ation, the numberof de
ision alternatives is equal to the size of the population, whereas in veri�
ationthere are only two alternatives, a

eptan
e or reje
tion of the 
laim.Speaker re
ognition 
an be performed in a text-dependent or text-independentmanner. A text-dependent system requires a speaker to utter a set of prede�nedphrases or senten
es while 
olle
ting the training and test utteran
es. A text-independentsystem does not depend on the text of the training or test utteran
es. The obje
tiveof this thesis is to address issues in text-independent speaker veri�
ation.1.3 ISSUES IN AUTOMATIC SPEAKER VERIFICATIONAs mentioned in Se
tion 1.1, human beings extra
t 
ertain 
ues from the spee
h of aspeaker, that help them to identify the speaker. But the exa
t nature of these 
ues isnot fully understood. Moreover, the tools available for spee
h pro
essing are not ade-quate to represent the higher sour
es of knowledge, su
h as the speaking mannerismsof the individual. Hen
e, automati
 speaker re
ognition is approa
hed as a statisti-
al pattern re
ognition problem. In this se
tion, we dis
uss the general approa
h toautomati
 speaker veri�
ation and issues involved in the task.3



Automati
 speaker veri�
ation entails the following steps:1. Representation of speaker-spe
i�
 
hara
teristi
s and their eÆ
ient measure-ment from the spee
h signal, known as feature extra
tion2. Development of a model (prototype) for ea
h speaker using referen
e featuresextra
ted from the spee
h of that speaker, known as modeling3. Comparison between the referen
e features and the features extra
ted from atest utteran
e, 
alled mat
hing4. De
ision me
hanism for veri�
ation based on the s
ore obtained during mat
h-ing, known as s
oringThe obje
tive of feature extra
tion is the quantitative representation of speaker-spe
i�
 properties and the eÆ
ient measurement of these properties from the a
ousti
spee
h signal. It is desirable that these features have the following properties [3℄:� High interspeaker-to-intraspeaker variability� Robustness to the 
hara
teristi
s of transmission 
hannel, mi
rophone and am-bient noise� Ease of extra
tion from the spee
h signal� Robustness to aging of the speaker� Not subje
t to mimi
ryTypi
ally, short-time analysis of spee
h is performed to extra
t features whi
h representthe 
hara
teristi
s of the two 
omponents of spee
h produ
tion me
hanism, namely,the ex
itation sour
e and the vo
al tra
t system. Although high-level features su
h asspeaking rate, a

ent and verbal mannerisms of the speaker 
onvey signi�
ant speaker-spe
i�
 information, the existing te
hniques of feature extra
tion are not adequate to4



represent su
h information. Most of the 
urrent speaker re
ognition algorithms arebased on short-time features extra
ted from spee
h signal.On
e the features are extra
ted from the spee
h signal, the next step is to developa model to represent the set of features. Models 
an be 
lassi�ed as parametri
 ornonparametri
 models. Parametri
 models assume a stru
ture 
hara
terized by 
ertainparameters, whi
h are estimated from the given features. In general, a model mayrepresent any information derived from the set of features. For example, the modelmay represent the following:� Statisti
al average of the features 
omputed over long utteran
es (of severalse
onds or minutes) of spee
h� Estimate of the probability density fun
tion of the features in the feature spa
e� Estimate of the temporal information present in the sequen
e of featuresSome issues in the 
hoi
e of models are as follows:� The 
hoi
e of features for modeling speaker-spe
i�
 
hara
teristi
s� The amount of spee
h data required to reliably estimate the parameters of themodel� The ability of the model to generalize the 
hara
teristi
s of the speaker fromthe given set of featuresThe model of a given speaker is presented with the features extra
ted from a testutteran
e, whose speaker is unknown. Comparison between the referen
e features andthe test features depends on the nature of the model. The following 
ases are possible:� If statisti
al averages of the features are used, a distan
e metri
 is required for
omparison. 5



� If the model represents an estimate of probability density fun
tion of the fea-tures, then likelihood is one measure of similarity between the referen
e and testfeatures.� If the model represents an estimate of the temporal information, then temporalmat
hing s
ore or likelihood 
an be used as measures of similarity.The 
omparison generates a s
ore that indi
ates the similarity between the refer-en
e features and the test features. Based on this s
ore, a de
ision needs to be madeon the validity of the 
laim. Due to di�eren
es in the referen
e and the test utter-an
es, the s
ore needs to be 
alibrated before setting a threshold for de
ision. Hen
e,normalization and s
oring methods are needed for this purpose.1.4 ISSUES ADDRESSED IN THIS THESISThe obje
tive of this resear
h work is to address 
ertain issues related to a text-independent speaker veri�
ation system. The fo
us of resear
h is: (a) To explorefeatures for e�e
tive representation of speaker-spe
i�
 
hara
teristi
s and (b) to ex-plore te
hniques of s
ore normalization for veri�
ation. The signi�
an
e of the positionof window for analyzing spee
h is dis
ussed. Pit
h syn
hronous analysis of spee
h isstudied for a

urate estimation of short-time spe
tral 
hara
teristi
s. Di�eren
e 
ep-stral 
oeÆ
ients are proposed as a feature for speaker veri�
ation, by deemphasizingthe linguisti
 information present in the spee
h signal. The ability of this featureto provide 
omplementary information for speaker veri�
ation is also demonstrated.Speaker-spe
i�
 models based on autoasso
iative neural networks are used to estimatethe probability density fun
tion of feature ve
tors. The problem of s
ore normaliza-tion for speaker veri�
ation is dis
ussed. Te
hniques for normalization of s
ores areproposed, and a 
omparison with the existing methods is presented. Most speaker ver-i�
ation systems use a single feature for representing speaker-spe
i�
 information. In6



this work, eviden
es due to several 
omplementary features are 
ombined for in
reasingdis
rimination between genuine and impostor speakers.1.5 ORGANIZATION OF THE THESISThe thesis is organized as follows:In Chapter 2, a brief review of the existing approa
hes to speaker veri�
ation is pre-sented.Chapter 3 des
ribes a baseline system for speaker veri�
ation using spe
tral featuresand autoasso
iative neural network models, and des
ribes a few re�nements for per-forman
e enhan
ement of the system.Chapter 4 dis
usses pit
h syn
hronous analysis of spee
h for extra
tion of short-timespe
tral features, and illustrates its advantages over the traditional blo
k-based anal-ysis.In Chapter 5, the development of di�eren
e 
epstral 
oeÆ
ients for speaker-spe
i�

hara
terization is des
ribed. A speaker veri�
ation system based on the above fea-ture is also dis
ussed.In Chapter 6, methods for normalization of s
ores are proposed and eviden
es due todi�erent features are 
ombined for speaker veri�
ation.Chapter 7 presents a summary of the work and outlines the s
ope for further resear
h.
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CHAPTER 2
REVIEW OF APPROACHES FOR SPEAKERVERIFICATIONThis 
hapter presents a brief review of approa
hes for speaker veri�
ation. In par-ti
ular, features for speaker veri�
ation, methods for modeling speaker-spe
i�
 
har-a
teristi
s and te
hniques for s
ore normalization are reviewed. Features for speakerveri�
ation are mostly obtained by short-time analysis of spee
h, whi
h normally repre-sent the 
hara
teristi
s of ex
itation sour
e and vo
al tra
t system. These are reviewedin Se
tion 2.1. Speakers 
an be modeled with features derived from spee
h signal, us-ing parametri
 or nonparametri
 models. Se
tion 2.2 reviews approa
hes for modelingspeaker-spe
i�
 
hara
teristi
s. Due to mismat
h between training and test data, thes
ores resulting from the models 
annot be 
ompared to a 
ommon threshold for de-
ision. Hen
e, the s
ores are 
alibrated using methods of normalization. Se
tion 2.3reviews the issue of normalization and some existing methods of normalization.2.1 FEATURES FOR SPEAKER VERIFICATIONSpee
h is produ
ed by ex
iting a time-varying vo
al tra
t system with a time-varyinginput. Speaker-spe
i�
 information is present in both these 
omponents of spee
hprodu
tion me
hanism. Short-time analysis of spee
h is an e�e
tive tool for extra
tionof su
h information.

9



2.1.1 Features Based on Vo
al Tra
t SystemThe vo
al tra
t system 
an be 
onsidered as a 
as
ade of 
avities of varying 
rossse
tions. The size and shape assumed by the vo
al tra
t while produ
ing various soundunits is a 
hara
teristi
 of the sound unit and the speaker. Formants are resonan
esof the vo
al tra
t system. They vary in frequen
y, bandwidth and relative amplitude,depending on the sound unit being produ
ed and the speaker uttering the sound.However, a

urate extra
tion of formants from spee
h signal is a diÆ
ult task [4℄ [5℄,and distan
es based on formant frequen
ies are not suÆ
iently dis
riminative betweenspeakers for text-independent systems.Linear predi
tion (LP) analysis of spee
h [6℄ provides an approximation to short-time spe
trum of the transfer fun
tion of the vo
al tra
t �lter, as well as the sour
eof ex
itation to the �lter. In [7℄, di�erent parametri
 representations of spee
h de-rived from LP analysis of spee
h were investigated for their e�e
tiveness for automati
speaker re
ognition. These were, the predi
tor 
oeÆ
ients, the impulse response ofthe vo
al tra
t system, the auto
orrelation of the impulse response and the 
epstrumderived from the logarithmi
 transfer fun
tion of the vo
al tra
t system. In [8℄, longterm averaging of re
e
tion 
oeÆ
ients (obtained during LP analysis) was shown to in-
rease the ratio of interspeaker-to-intraspeaker variability. In [9℄, adaptive 
omponentweighting 
epstral 
oeÆ
ients were proposed, to emphasize the formant stru
ture of thespee
h spe
trum obtained by LP analysis and attenuate the broad bandwidth spe
tral
omponents. In [10℄, a method 
alled orthogonal linear predi
tion was proposed anda small subset of the resulting orthogonal 
oeÆ
ients was shown to exhibit signi�
antinterspeaker variation. In [11℄, prin
ipal spe
tral 
omponents were derived from LP 
o-eÆ
ients for speaker veri�
ation task. In [12℄, 
epstral 
oeÆ
ients extra
ted by meansof LP analysis, 
alled linear predi
tion 
epstral 
oeÆ
ients (LPCC) were shown to yieldnearly the same performan
e of speaker re
ognition as that due to 
epstral 
oeÆ
ients10



obtained by short-time analysis using DFT. In [12℄ and [13℄, orthogonal polynomialrepresentations were proposed to 
hara
terize transitional spe
tral information. Mel-frequen
y 
epstral 
oeÆ
ients (MFCC) have been used for speaker re
ognition [14℄.They are obtained by warping the frequen
y s
ale in su
h a way as to resolve thespe
trum �nely at lower frequen
ies and relatively 
oarsely at higher frequen
ies [15℄.2.1.2 Features Based on Ex
itation Sour
eDuring the produ
tion of spee
h, the vibration of vo
al folds provides quasi-periodi
impulse-like ex
itation to the vo
al tra
t system. Linear predi
tion (LP) residual,obtaining by inverse �ltering the spee
h, is an approximation to the sour
e of ex
ita-tion of the vo
al tra
t system. In [16℄, a feature 
alled real 
epstrum was 
omputedfrom the LP residual by ignoring the phase information, retaining the amplitude spe
-trum and by introdu
ing a logarithmi
 nonlinearity. Long-term average of the real
epstrum was shown to have a low intraspeaker and high interspeaker variability. In[17℄, a nonlinear predi
tion model based on neural networks was used to 
ompute anerror signal. Certain measures were de�ned over LP residual, su
h as mean squareerror, mean absolute error and varian
e of the residue, that were shown to redu
ethe error rate in speaker re
ognition. Liljen
rants-Fant (LF) model has been used asa parametri
 model to 
hara
terize glottal 
ow derivative [18℄. In [19℄, estimate ofglottal 
ow derivative was obtained using LF model to 
apture its 
oarse stru
ture,while the �ne stru
ture was represented by energy and perturbation measures. Both
oarse and �ne-stru
ture glottal features were shown to result in the redu
tion of er-ror in a speaker identi�
ation system, when used in 
onjun
tion with Mel-frequen
y
epstral 
oeÆ
ients. However, in the above methods, the features of ex
itation sour
ewere modeled using a probabilisti
 framework. In [20℄, ex
itation sour
e informationpresent in the LP residual was extra
ted using autoasso
iative neural network models.11



Here, the goal was to 
apture the higher order relationship existing among the samplesof the LP residual. The e�e
t of the order of LP analysis on speaker veri�
ation wasstudied. An experimental study on the signi�
an
e of ex
itation sour
es 
orrespond-ing to di�erent sound units was also 
ondu
ted, and some sounds were observed to bemore signi�
ant for speaker veri�
ation than others.Pit
h is the fundamental frequen
y of vibration of vo
al folds. Pit
h is a unique
hara
teristi
 of ea
h speaker due to the di�eren
es in physi
al stru
ture of vo
al foldsamong di�erent speakers. It 
an also be di�erent due to speaking style and a

entimposed by di�erent speakers. A summary of various algorithms for pit
h extra
tionwas presented in [21℄. Unlike spe
tral features that are a�e
ted by 
hannel variations,noise and distan
e between the speaker and mi
rophone, pit
h is insensitive to theabove fa
tors. In [22℄, linear transformation of ve
tors representing the pit
h 
ontourswas shown to improve the ratio of interspeaker to intraspeaker varian
e, for a text-dependent speaker re
ognition system. In [8℄, long-term averages of pit
h and standarddeviation of pit
h were shown to be speaker dependent. In [23℄, a lognormal distribu-tion of pit
h was proposed instead of a Gaussian distribution. A probabilisti
 modelfor estimated pit
h was suggested, using a mixture of three lognormal distributionswith tied means and varian
es.Variation of pit
h as a fun
tion of time is 
alled intonation. While a speaker'saverage pit
h may be mimi
ked, it is diÆ
ult for an impostor to mimi
 the lo
al varia-tions of pit
h. Intonation has been more useful in text-dependent speaker re
ognition.In [22℄ and [24℄, similarity between the intonation patterns of referen
e and test ut-teran
es was measured using dynami
 time warping algorithm. Two other featuresrelated to pit
h are jitter and shimmer. Jitter is de�ned as the perturbation of pit
h,while shimmer represents the variation in peak amplitudes of the signal in su

essivepit
h periods [25℄. 12



2.2 MODELING SPEAKER CHARACTERISTICSParametri
 and nonparametri
 models have been studied for speaker veri�
ation. In[26℄, a nearest-neighbour distan
e measure was proposed, based on the similarity of dis-tributions of features extra
ted from referen
e and unknown utteran
es. The measuredid not assume any form of the distributions involved. A relationship was establishedbetween the distan
e measure and Kullba
k-Leibler divergen
e [27℄.In [28℄, ve
tor quantization (VQ) 
odebook was used as a means for 
hara
terizingthe short-time spe
tral features of a speaker. A VQ 
odebook was developed for ea
hspeaker. The de
ision on the identity of the unknown speaker was based on a minimumdistan
e 
lassi�
ation rule. The e�e
t of di�erent parameters on the performan
e ofveri�
ation was studied. These parameters were the 
odebook size, phoneti
 
ontentof the text and di�eren
e in re
ording sessions.In [14℄, Gaussian mixture models (GMM) were proposed for text-independentspeaker identi�
ation. The basis for su
h a model is that the individual Gaussian
omponents of a GMM represent speaker-dependent spe
tral shapes that are usefulfor modeling speaker identity, and also that Gaussian mixtures 
an model arbitrarydensities. The experiments reported in [14℄ deal with algorithmi
 issues su
h as modelinitialization, varian
e limiting and model order sele
tion. Te
hniques su
h as 
ep-stral mean subtra
tion, di�eren
e 
oeÆ
ients and frequen
y warping were applied to
ompensate for spe
tral variability due to telephone 
hannel and handsets.The methods mentioned above model only the distribution of feature ve
tors anddo not make use of the temporal 
orrelations that exist in the sequen
e of featureve
tors. In [29℄, a hidden Markov model (HMM) was proposed to in
orporate temporal
orrelations in the VQ model. In this approa
h, short-term stationary regions weremodeled by states, while the slower variations of the signal were modeled by thetransitions between su
h states. The signal in ea
h state was modeled by a type of13



HMM 
alled linear predi
tive HMM.Arti�
ial neural network models with di�erent topologies 
an perform di�erentpattern re
ognition tasks [27℄ [30℄. In [31℄, the ability of a neural network model todis
riminate between patterns of di�erent 
lasses was exploited for speaker re
ognition.A global 
lassi�er for a set of speakers was developed, whose utility was limited to asmall number of speakers. Ea
h model was trained to dis
riminate between spee
hdata of the given speaker and a small set of impostors. In [32{34℄, mapping ability ofneural network models was exploited to 
apture speaker-spe
i�
 knowledge. In [35℄,the ability of AANN models to estimate arbitrary densities was demonstrated. It wasillustrated experimentally that a network 
an be designed su
h that the training errorsurfa
e relates to the distribution of the given data, depending on the 
onstraintsimposed by the stru
ture of the network. The e�e
tiveness of AANN models forspeaker veri�
ation was also demonstrated. In [20℄ [36℄, AANN models were used toa
quire the temporal relationship between the samples of linear predi
tion residual, tomodel speaker-spe
i�
 
hara
teristi
s.Methods based on speaker-spe
i�
 mapping of features have been used for speakerveri�
ation. The goal of this approa
h was to 
apture speaker-spe
i�
 information bymapping a set of feature ve
tors spe
i�
 to linguisti
 information (message part) inthe spee
h, on to a set of feature ve
tors representing both the linguisti
 and speaker-spe
i�
 information. In [37℄, a nonlinear ve
torial interpolation fun
tion was pro-posed for text-dependent speaker re
ognition using the mapping property of a multi-layer feedforward neural network (MLFFNN), to obtain the interpolation ve
tor forea
h speaker. In [32℄, speaker-spe
i�
 mapping approa
h was investigated for text-independent speaker re
ognition , using 
epstral 
oeÆ
ients derived from per
eptuallinear predi
tion (PLP) as features. In [33℄, parameters for representing linguisti
 in-formation and linguisti
 plus speaker-spe
i�
 information were extra
ted from spee
h.14



Speaker-spe
i�
 information was 
aptured by nonlinear mapping using a multilayerfeedforward neural network.2.3 DECISION LOGIC FOR VERIFICATION AND IDENTIFICATIONOn
e a model is developed for a speaker, de
ision on the validity of the 
laim is madebased on the output s
ore obtained from the model for a test utteran
e. Due tomismat
h between training and test data, this s
ore is spe
i�
 to the model and thetest utteran
e. The obje
tive of s
ore normalization is to transform the s
ores into arange where a 
ommon threshold for de
ision may be set, whi
h is valid for any pairof training and test data.2.3.1 The Problem of S
ore NormalizationGiven a spee
h utteran
e x and a 
laimed identity �, the obje
tive of speaker veri-�
ation is to de
ide if x was uttered by the genuine speaker �, or by an impostor.This de
ision 
an be based on the 
omparison of a similarity measure (or a distan
emeasure) between the speaker's model and the utteran
e x to a threshold. In theprobabilisti
 framework, let O denote the set of observations 
orresponding to thetest utteran
e x and let M denote the statisti
al model 
orresponding to speaker �.A

ording to Bayes theorem,P (M=O)p(O) = p(O=M)P (M); (2.1)where P (M=O) is the a posteriori probability of the hypothesized speaker model Mgiven the set of observations O, p(O) is the probability density fun
tion of the ob-servations, p(O=M) is the likelihood of M with respe
t to O and P (M) is the priorprobability of o

urren
e of the model M . For speaker veri�
ation, we need to eval-uate P (M=O). However, the output of a statisti
al model is an estimate of p(O=M).15



Assuming the o

urren
e of ea
h model to be equally likely, the identity 
laim 
an bea

epted if p(O=M) > �; (2.2)and reje
ted otherwise, where � is the de
ision threshold. This de
ision rule 
annotbe used in pra
ti
e due to the following reasons:1. Due to di�eren
es in the training data of di�erent speakers, the resulting mod-els are not equally representative of the speaker-spe
i�
 
hara
teristi
s. Theassumption is that with suÆ
ient spee
h, the distribution of features in the fea-ture spa
e is a good representation of the sounds of the speaker. The amountof spee
h data available to model a speaker may not always 
onform to thisassumption. The ability of a model to represent the distribution of featuresof a speaker is also a�e
ted by the intraspeaker variability of sounds withinthe speaker. Thus, some speakers are diÆ
ult to model, while some are easilymodeled [38℄.2. Due to mismat
h between training and test data, the identity 
laim 
an bereje
ted due to a low likelihood s
ore, even if the 
laim is legitimate. The mainsour
e of this mismat
h is the 
hannel through whi
h spee
h is re
eived, whi
hindu
es variability in the features, 
ausing them to move around in the featurespa
e. Another sour
e of this mismat
h is that, some sound units o

urring inthe test data of a speaker might not have o

urred adequately in the trainingdata of that speaker. This results in poor modeling of that sound unit and
onsequently, a low likelihood s
ore.The obje
tive of normalization is to transform the s
ores to a range where a 
ommonthreshold 
an be determined for all tests. 16



2.3.2 Approa
hes to S
ore NormalizationSpeaker veri�
ation systems based on Gaussian mixture models a
hieve a 
ertain de-gree of normalization by using a speaker-independent world modelMw to model spee
hin general. A normalized log-likelihood s
ore is obtained asS(M;O) = log(p(O=M))� log(p(O=Mw)) (2.3)Here, the mismat
hes that o

ur between the test utteran
e and the modelM will havea 
orresponding e�e
t on the world modelMw, thus removing the bias in p(O=M) [39℄.A similar approa
h used a set of 
ohort speakers who were 
lose to the target speaker,thus viewing the 
ohorts as repla
ement for the world model [40℄. The sele
tion of
ohorts 
an be done during training or testing. During training, a similarity measurewas used to 
ompare the speaker model with 
ohort models [41℄ [42℄.In zero normalization (Z-norm) method [43℄ [44℄, a model was tested against exam-ple impostor utteran
es and the log-likelihood s
ores were used to estimate the mean�I and standard deviation �I of the impostor distribution. The quantities �I and �Iare spe
i�
 to the model of ea
h speaker and 
an be estimated o�ine. The normalizeds
ore was 
omputed as S = S(M;O)� �I�I : (2.4)Zero normalization is equivalent to s
aling the distribution of speaker-spe
i�
 s
ores.In test normalization, the obje
tive is to estimate the statisti
s of an impostorfor a given test utteran
e, whi
h 
an be used to dis
riminate the genuine speakerfrom impostors. In T-norm [43℄, a given test utteran
e was presented to a set ofba
kground models, and the mean and varian
e of the resulting s
ores were 
omputed.The normalized s
ore was 
omputed in a manner similar to that of zero normalization.The use of varian
e parameter is to estimate the distribution of the ba
kground s
ores17



more a

urately. Also, a
ousti
 mismat
h between training and test utteran
es, thatis still possible in zero normalization method is avoided here.In the review of approa
hes, the s
ope is limited to review of algorithms / te
h-niques for speaker veri�
ation and it does not in
lude the review of speaker veri�
ationsystems developed in other laboratories over the world, and industries. In this regard,[45℄ and [46℄ are useful referen
es for the interested reader. These sour
es brie
y dis
ussthe speaker re
ognition systems being developed at various resear
h laboratories, andalso provide a performan
e 
omparison for the NIST Speaker Re
ognition Evaluationtask.2.4 MOTIVATION FOR THE PRESENT WORKIn this 
hapter, a brief review of the standard approa
hes to speaker veri�
ation waspresented. In general, spe
tral and sour
e features are extra
ted from spee
h signalto represent speaker-spe
i�
 
hara
teristi
s. Most of the methods analyze spee
h overuniform blo
ks of 10-30 ms duration for extra
ting spe
tral features. These methodsuse an arbitrary positioning of the window of analysis for feature extra
tion. In thisthesis, pit
h syn
hronous analysis is studied to obtain an a

urate estimation of theshort-time spe
tral features. The existing spe
tral features do not aim to spe
i�
allyrepresent the 
hara
teristi
s of the speaker, sin
e they also 
ontain information aboutthe sound unit. We propose a method to deemphasize the spee
h-spe
i�
 informationpresent in the short-time spe
trum. Most of the existing approa
hes model the prob-ability density fun
tion of feature ve
tors using a parametri
 model su
h as GMM.This approa
h assumes that the number of 
lusters in the feature spa
e of the speakeris known a priori, and that the probability density fun
tion of these 
lusters is Gaus-sian in shape. In the present work, AANN models have been used for estimation ofprobability density fun
tion of the features. AANN models do not make assumptions18



about the nature the of probability density fun
tion of features. S
ore normalizationmethods help in redu
ing the e�e
t of a
ousti
 and 
hannel related mismat
h betweentraining and test utteran
es. Existing methods are based on s
aling the distribution ofthe s
ores of genuine and impostor speakers and they give equal weightage to all theframes of the test utteran
e. We propose normalization methods to weight the s
oresof di�erent frames of the test utteran
e. Most speaker veri�
ation systems are basedon a single feature. In this work, we dis
uss the importan
e of 
omplementary sets offeatures for speaker veri�
ation. Combination of eviden
es from 
omplementary setsof features is shown to improve the performan
e of speaker veri�
ation.
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CHAPTER 3A BASELINE SPEAKER VERIFICATION SYSTEMIn this 
hapter, we des
ribe a baseline text-independent speaker veri�
ation systemusing spe
tral features and autoasso
iative neural network (AANN) models, whi
hprovides a framework for further experiments and performan
e evaluation. Se
tion 3.1des
ribes the 
omponents of the baseline system. The database used for experimentsand the metri
s for performan
e evaluation are dis
ussed in Se
tions 3.2 and 3.3 re-spe
tively. Certain re�nements to the baseline system are proposed in Se
tion 3.4.3.1 COMPONENTS OF THE BASELINE SYSTEM3.1.1 Feature Extra
tionSpee
h signal is preemphasized and frames of 20 ms duration are Hamming windowedwith a window shift of 5 ms. Short-time analysis of spee
h is performed using 14thorder linear predi
tion analysis. A 19 dimensional weighted linear predi
tion 
epstral
oeÆ
ient (LPCC) ve
tor is 
omputed from the linear predi
tor 
oeÆ
ients (LPC) ofea
h frame of data [15℄. Cepstral mean subtra
tion is performed to minimize the e�e
tof slowly varying 
hara
teristi
s of transmission 
hannel [12℄.3.1.2 AANN Models for Speaker Veri�
ationAutoasso
iative neural networks (AANN) are feedforward neural networks that per-form an identity mapping of the input spa
e [30℄. A three-layer AANN model withlinear units 
an 
apture the prin
ipal orthogonal 
omponents of a feature set, while a21



�ve-layer AANN with nonlinear units in the hidden layers 
an 
apture the probabilitysurfa
e of the feature ve
tors [30℄. The ba
kpropagation learning algorithm for multi-layer feedforward neural networks is des
ribed in Appendix A of this thesis. Fig. 3.1shows a �ve-layer AANN model that performs nonlinear prin
ipal 
omponent analysis.

Input Layer Output Layer      Layer
Compression

Layer 1

2

3

4

5

Fig. 3.1: A �ve-layer AANN model.The ability of AANN models to 
apture nonlinear subspa
es was demonstrated in[35℄. The importan
e of error surfa
e of the training data in the feature spa
e wasstudied. It was observed that the average error was lower for the most frequently o
-
urring input ve
tors than for the less frequently o

urring ones. It was demonstratedexperimentally that a network 
an be designed su
h that the training error surfa
erelates to the distribution of the given data, depending on the 
onstraints imposed onthe stru
ture of the network. AANN models are advantageous 
ompared to Gaussianmixture models (GMM), when the surfa
e representing the distribution of features ishighly non-linear. This is be
ause, GMMs assume the shape of the 
omponents of thedistribution to be Gaussian, whi
h need not be the 
ase. Moreover, a GMM requiresspe
i�
ation of the number of mixtures a priori.For the baseline system, a 5-layer AANN model is developed for ea
h speaker.The stru
ture of the model is 19L 38N 4N 38N 19L, where the numbers indi
ate the22



number of nodes in ea
h layer. The symbols L and N denote, respe
tively, linear andnonlinear nature of the a
tivation fun
tion of the nodes in ea
h layer. The models aretrained using ba
kpropagation learning rule [27℄. Ea
h model is trained for 50 epo
hs,where one epo
h denotes that all the feature ve
tors are presented to the model exa
tlyon
e.3.1.3 Normalization of S
oresIn the baseline speaker veri�
ation system, two existing methods, Z-norm and T-norm, are applied for normalization of s
ores [43℄ [44℄. For Z-norm, the impostor data
olle
ted from ba
kground speakers is presented to a 
laimant model, and the meanand varian
e of the s
ores are 
omputed. For test normalization, 20 ba
kground modelsare used. A given test utteran
e is presented to the 20 ba
kground models along withthe 
laimant model. The mean and varian
e of the s
ores of the ba
kground modelsare 
omputed. The normalizations are performed as des
ribed in Se
tion 2.3.3.2 DATABASE FOR SPEAKER VERIFICATIONThe database used in this study was sele
ted from NIST 2003 speaker re
ognitionevaluation [46℄. The spee
h data was 
olle
ted over 
ellular 
hannel and sampled at8 kHz. The database 
ontains 149 male and 191 female speakers. The duration oftraining data for ea
h speaker is about 2 minutes. The duration of a test utteran
eis between 15 and 45 se
onds. 500 test utteran
es of male speakers are 
onsideredfor veri�
ation. Ea
h test utteran
e has 11 
laimants, and the speaker of the testutteran
e may or may not be present among these 11 
laimants. There are no 
rossgender tests. When a test utteran
e is presented to the model of a 
laimant speaker,a s
ore is obtained whi
h indi
ates the probability that the 
laimant speaker is thespeaker of the test utteran
e. Thus, 
laimants are 
ategorized as genuine and impostor23




laimants.3.3 PERFORMANCE EVALUATIONThe s
ore resulting from a model is 
ompared against a threshold, for a

epting orreje
ting the 
laim of the model. Two types of errors are possible in a speaker veri�
a-tion system: (a) False a

eptan
e or false alarm error where an impostor is identi�ed asthe genuine speaker, and (b) false reje
tion or missed dete
tion error, where a genuinespeaker is 
lassi�ed as an impostor. The 
ost of false a

eptan
e is higher than thatof false reje
tion. For a low value of threshold, false reje
tion error is low but falsea

eptan
e error is high. As the threshold is in
reased, false reje
tion error in
reasesbut false a

eptan
e error de
reases. For a parti
ular threshold, the two types of errorare equal. The error at that threshold is 
alled equal error rate (EER). Smaller thevalue of EER, better is the performan
e of the system.The probability of false a

eptan
e 
an be plotted against that of false reje
tionto observe the error 
hara
teristi
s. Dete
tion error trade-o� (DET) 
urves plot thenormal deviates 
orresponding to the error probabilities [47℄. These 
urves are linearand help in 
omparing the performan
e 
hara
teristi
s of di�erent systems. On theDET 
urve, the point where the line y = x interse
ts the 
urve indi
ates the EER.The DET 
urves for the normalized and unnormalized s
ores obtained for the baselinesystem are shown in Fig. 3.2.The EER measure 
an be used to evaluate the performan
e of a speaker veri�
ationsystem. In this work, EER is 
omputed for three types of s
ores:1. Raw (unnormalized) s
ores obtained from the models2. Normalized s
ores obtained by 
alibrating the raw s
ores3. S
aled s
ores whi
h are obtained as follows: For ea
h test utteran
e, all the 1124
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Fig. 3.2: DET 
urves for the unnormalized (raw) and normalized s
ores, forthe baseline system.raw s
ores are s
aled by the maximum value among the 11 s
ores.In addition, the per
entage of the �rst ranks obtained by the genuine speakers is also
omputed over all the test utteran
es. These ranks are 
omputed for the raw s
ores.The signi�
an
e of s
aled s
ores is that they transform the s
ores of all test utteran
esbetween zero and one. In all those test 
ases where the genuine speaker has obtainedthe �rst rank, the s
aled s
ore of the genuine speaker is one. Thus, s
aling is equivalentto test normalization, whi
h brings about a redu
tion in EER. This is observed fromTable 3.1, whi
h lists the performan
e of the baseline system. The s
aled s
ores a
tas a referen
e against whi
h the performan
e of normalized s
ores 
an be 
ompared.Normalized s
ores are dis
ussed greater detail in Chapter 6.
25



Table 3.1: Performan
e of baseline speaker veri�
ation system.% of �rst EER(%) for EER(%) for EER(%) forranks raw s
ores normalized s
ores s
aled s
ores72.2 26.1 16.1 12.93.4 REFINEMENTS TO THE BASELINE SYSTEMIn this se
tion, we propose 
ertain re�nements to the baseline system in the manner ofsele
ting features for training the AANN models. These re�nements are based on theinterpretation that the feature spa
e for a given speaker 
onsists of a set of 
lusters ofvarying lo
ations and densities.3.4.1 Temporal Smoothing of Feature Ve
torsFeature ve
tors extra
ted from the spee
h signal 
an be viewed as points in a mul-tidimensional feature spa
e. For ea
h speaker, the feature ve
tors extra
ted from agiven 
ategory of sound unit 
an be expe
ted to form a 
luster in the feature spa
e.Temporal smoothing of features 
an be performed to make the 
lusters more 
ohesivein the feature spa
e. Su
h smoothing redu
es the e�e
t of outliers generated duringthe extra
tion of features. As a result, the training error of AANN models is redu
ed,during the estimation of probability density fun
tion of feature ve
tors. This is il-lustrated in Fig.3.3, where the training error is plotted for AANN models trained onLPCC features and smoothed LPCC features, for a given speaker. It is evident thatthe models trained on smoothed LPCC features attain a lower value of training error.However, for a given vowel sound, there is overlap between formant frequen
ies of dif-ferent speakers, leading to an overlap of 
lusters in the feature spa
e. If this overlap26



between two speakers is signi�
ant, then the dis
rimination between them is redu
eddue to the smoothing of feature ve
tors.
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Fig. 3.3: Training error 
urves, when LPCC features and smoothed LPCCfeatures were used for training AANN models for a given speaker.Table 3.2 
ompares the performan
e of speaker veri�
ation for LPCC and smoothedLPCC features. Due to smoothing, the 
on�den
e s
ores of genuine and impostormodels for a given test utteran
e in
rease, but the dis
rimination is nearly the sameas the 
ase without smoothing. Thus, the advantage of smoothing is o�set by the lossof dis
rimination.3.4.2 Sele
tion of Feature Ve
tors for TrainingWhen the parameters of AANN models (initial weights and learning rate) are sele
tedsuitably, the training error surfa
e is representative of the probability density fun
tionof feature ve
tors. In [35℄, it was observed that the training of AANN models is27



Table 3.2: Performan
e of speaker veri�
ation system after the re�nements.Speaker veri�
ation system based onLPCC Temporal smoothing Sele
tion of LPCCsfeatures of LPCCs during training% of �rst 72.2 72.9 70.1ranksEER for s
aled 12.9 13.0 13.3s
ores (%)in
uen
ed by the patterns that o

ur more frequently. Also, the training error waslower for the patterns o

urring more frequently. Hen
e, these patterns may be moreimportant for the estimation of probability density fun
tion as 
ompared to the lessfrequently o

urring ones. The former may be viewed as the denser regions of thefeature spa
e, while the latter may be termed as outliers. For speaker veri�
ation,features extra
ted from steady voi
ed regions of spee
h signal 
an be 
onsidered to liein the denser regions of a 
luster in the multidimensional feature spa
e, while featureve
tors extra
ted over weak voi
ed, unvoi
ed or noisy spee
h segments 
an be treatedas outliers. The in
uen
e of su
h outlier patterns should be minimized, sin
e they donot 
ontain signi�
ant speaker-spe
i�
 information.The outliers in the multidimensional feature spa
e 
an be eliminated to a 
ertainextent while training the AANN model. While training, the mean and standard devi-ation of error is 
omputed at regular intervals (10 epo
hs) for all the training patterns.Patterns having a higher deviation from the mean error are progressively eliminatedfrom the training set. Thus, after every subsequent 10 epo
hs, 
ertain number of out-liers are pruned out. The model is now trained on those patterns that are signi�
ant28



for estimation of probability density fun
tion. The 
riterion for stopping the training isthat either a 
ertain number of epo
hs (50) be 
ompleted, or a 
ertain minimum 
hangein error between su

essive epo
hs is a
hieved, whi
hever happens earlier. While theelimination of outliers during training may lead to a better representation of the dis-tribution of feature ve
tors, it may also redu
e the possibility of mat
hing betweentraining and test data. This is be
ause, the training data available for a given speakeris often limited and may not adequately represent all the 
ategories of sound units.Due to a
ousti
 and 
hannel variabilities, an exa
t mat
hing between the 
lusters oftraining and test data may not be a
hieved. The e�e
t of mismat
h seems to o�setthe advantage gained by the elimination of outliers, as indi
ated in Table 3.2.Thus, the advantage of the methods dis
ussed in Se
tion 3.4.1 and the presentse
tion is that they redu
e the e�e
t of outliers in the training of AANN models.However, these methods may also redu
e the feeble dis
rimination between the speak-ers even further. Hen
e, no major improvements are observed. Sin
e the exa
t formof the probability density fun
tion of the feature ve
tors is not known, it is diÆ
ult toanalyze the e�e
ts of these methods.3.5 SUMMARYThis 
hapter des
ribed a baseline speaker veri�
ation system using LPCC features andAANN models. AANN models are used to estimate the probability density fun
tion offeature ve
tors. The database and performan
e measures to evaluate the system weredis
ussed. Re�nements were suggested, based on smoothing the feature ve
tors andsele
tion of feature ve
tors for training. This highlights the issues of mismat
h andloss of dis
rimination. These issues are addressed during the normalization of s
oreswhi
h is des
ribed in Chapter 6.
29
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CHAPTER 4
PITCH SYNCHRONOUS ANALYSIS OF SPEECHThe goal of this 
hapter is to study the importan
e of the position of analysis windowfor extra
tion of features from spee
h signal. In Se
tion 4.1, we dis
uss the impor-tan
e of the position of analysis window with respe
t to the produ
tion 
hara
teristi
sof spee
h signal for a

urate estimation of the vo
al tra
t 
hara
teristi
s of a speaker.The instant of glottal 
losure, a signi�
ant event in the produ
tion of voi
ed spee
h,is des
ribed in Se
tion 4.2, and a method to derive the same from voi
ed spee
h is re-viewed. The ability of pit
h syn
hronous analysis to a

urately bring out the temporalvariations of the spe
tral 
hara
teristi
s is illustrated in Se
tion 4.3. A quantitativemeasure is also des
ribed, to denote the ability of a feature for e�e
tively representingspeaker-spe
i�
 information. Features extra
ted from two methods, namely, blo
k-based analysis and pit
h syn
hronous analysis, are 
ompared using quantitative mea-sure. A speaker veri�
ation system based on pit
h syn
hronous extra
tion of featuresis des
ribed in Se
tion 4.4.4.1 SIGNIFICANCE OF PITCH SYNCHRONOUS ANALYSIS OFSPEECHShort-segment analysis of spee
h is performed to extra
t spe
tral information presentin the signal. For this purpose, spee
h signal is windowed in time domain. The sizeof the window is di
tated by the desired resolution in frequen
y domain and also, bythe region over whi
h spee
h signal 
an be 
onsidered quasi-stationary. The shape of31



the window is 
hosen so as to redu
e the edge e�e
ts, that manifest in the frequen
ydomain due to abrupt termination of the signal. For segmental analysis of spee
h, thesize of the window is typi
ally 
hosen in the range 
ontaining 2-4 pit
h periods (30 ms)during whi
h the 
hara
teristi
s of spee
h 
an be 
onsidered nearly stationary. Thereis another important aspe
t of analysis, namely, the position of the window relative tothe spee
h signal, that is not given due 
onsideration.The position of analysis window is 
riti
al for extra
ting the dynami
 sour
e andsystem 
hara
teristi
s from spee
h signal. Blo
k pro
essing methods 
onsider 10-30ms of spee
h to estimate the 
hara
teristi
s of the vo
al tra
t system in that interval.However, this smears the information within the analysis window. Consequently, theestimate of the spe
trum 
orresponds to an average behaviour and is not a

urate[48℄. For instan
e, if the analysis window 
ontains a region of dynami
 sound, a

u-rate temporal variation of the spe
tral 
hara
teristi
s 
an not be obtained by blo
kpro
essing. Se
ondly, if the analysis window 
ontains more than one pit
h period, theresulting spe
trum estimate is in
uen
ed by the fundamental frequen
y. This is morepronoun
ed in the 
ase of high-pit
hed voi
es, where the short-time spe
tral envelopeand the linear-predi
tion spe
trum are a�e
ted by the pit
h harmoni
s [49℄. Thus,apart from the size and shape of the analysis frame, the position of the window withrespe
t to the signal is important for a

urate estimation of short-time spe
trum.In order to position the analysis window suitably, it is ne
essary to lo
ate wellde�ned events in the produ
tion of spee
h signal. The instant of signi�
ant ex
itationof the vo
al tra
t system is one su
h event. For voi
ed sounds, the instants of signi�
antex
itation 
orrespond to the instants of glottal 
losure. On
e su
h su

essive eventsare derived from the spee
h signal, the analysis window 
an be pla
ed relative tothe events. This ensures that the segments 
hosen for analysis are always at the samerelative position in ea
h pit
h period. Hen
e, the estimated spe
tral 
hara
teristi
s are32



more 
onsistent a
ross su

essive pit
h periods. Also, temporal variation of spe
tral
hara
teristi
s 
an be obtained more a

urately.4.2 DETERMINATION OF INSTANTS OF SIGNIFICANTEXCITATIONThe instants of glottal 
losure are manifested in the voi
ed regions of spee
h. Duringthe produ
tion of voi
ed sounds, air expelled from the lungs is 
hopped by the vibrationof vo
al folds, 
ausing a quasi-periodi
 ex
itation to be delivered to the vo
al tra
tsystem. The degree of opening and 
losing of vo
al folds regulates the amount ofex
itation delivered to the vo
al tra
t system. While the opening of vo
al folds isgradual, the 
losing is relatively abrupt. It is at the instant of 
omplete 
losure ofvo
al folds that the maximum ex
itation is delivered to the vo
al tra
t system. This is
alled the instant of glottal 
losure (GC), or the instant of signi�
ant ex
itation [50℄.This is a well manifested event in the voi
ed regions of spee
h signal, and one that 
anbe derived from the spee
h signal a

urately. Here, an algorithm for the determinationof the instants of signi�
ant ex
itation is brie
y reviewed.A group-delay based method for determining the instants of signi�
ant ex
itationfrom spee
h signals was proposed in [51℄ [52℄. Here, the spee
h signal is preemphasizedand 10th order LP analysis is performed on frames of 10 ms duration, with a shift of 5ms. Spee
h signal is inverse �ltered to obtain the LP residual signal. For ea
h frameof LP residual of 10 ms duration, the group delay �0(!) is 
omputed using the relation�0(!) = �XR(!)YR(!) +XI(!)YI(!)X2R(!) +X2I (!) ; (4.1)where X(!) = XR(!) + jXI(!) and Y (!) = YR(!) + jYI(!), X(!) is the Fouriertransform of the LP residual signal x(n), Y (!) is the Fourier transform of nx(n),n = 0; 1; :::; N � 1. The length of the signal x(n) is N samples. This 
omputation is33



repeated for su

essive frames whi
h are obtained by sliding the window with a shiftof one sample at a time. Thus, the group delay is obtained as a fun
tion of time. Theaverage group delay for ea
h frame known as phase slope fun
tion is 
omputed. Thephase slope fun
tion is smoothed with an 8-point (N =8) Hamming window given byw(n) = 0:54� 0:46
os� 2�nN � 1� ; 0 � n � N � 1: (4.2)The positive zero 
rossings of the phase slope fun
tion are hypothesized as the instantsof glottal 
losure. Certain spurious instants 
an also be hypothesized as instants ofglottal 
losure, in both nonspee
h and spee
h regions. Cues based on frame energies,strength of the instants and time di�eren
e between su

essive instants are used toeliminate spurious instants.
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Fig. 4.1: (a) A segment of spee
h of vowel /a/. (b) Its LP residual and (
)the 
orresponding estimate of the glottal waveform. The verti
al lines in (
)indi
ate the instants of glottal 
losure.34



Fig. 4.1 shows a segment of spee
h signal of vowel /a/ for a male speaker, the
orresponding LP residual and an estimate of glottal waveform. The estimate of theglottal waveform is obtained by integrating the LP residual. The instants of glottal
losure are also marked on the estimate of glottal waveform. The abruptness of theglottal 
losure event 
an be observed from the glottal waveform.4.3 EFFECTIVENESS OF PITCH SYNCHRONOUS ANALYSISOn
e the instants of glottal 
losure are derived from the spee
h signal, the next stepis to sele
t a region for analysis that en
loses one pit
h period. For this purpose, theanalysis window is pla
ed from a few samples to the left of a GC instant to a fewsamples to the left of the next GC instant, thus en
losing one 
omplete pit
h period.During the linear predi
tion analysis of spee
h, the auto
orrelation 
oeÆ
ients evalu-ated using pit
h syn
hronous window represent the properties of only the 
hosen pit
hperiod, and do not su�er from the e�e
ts of smoothing as in blo
k pro
essing. Forsteady voi
ed regions, the spe
trum does not vary appre
iably from one pit
h periodto another. Hen
e, the e�e
t of smoothing of auto
orrelation 
oeÆ
ients due to blo
kpro
essing is not pronoun
ed. However, in voi
ed regions with spe
tral transitions,blo
k pro
essing does not allow an a

urate estimation of the spe
trum. This is il-lustrated in Fig. 4.2. Here, a segment of spee
h 
orresponding to the word `they' (inthe senten
e `have they 
ome ?') uttered by a male speaker is 
olle
ted at 8 kHz. Forthe segment of 80 ms duration, 12th order LP spe
tra are 
omputed for blo
k basedanalysis and pit
h syn
hronous analysis. For blo
k based analysis, a window of 20 mswas 
hosen with a shift of 10 ms. The e�e
t of smoothing due to blo
k pro
essing 
anbe 
learly observed in Fig. 4.2(a). Pit
h syn
hronous analysis brings out the spe
tralvariations between su

essive pit
h periods better than blo
k pro
essing. Also, peaksof the se
ond and third formants are sharper, as shown in Fig. 4.2(b). In 
ontrast,35



blo
k pro
essing smears the spe
trum in the se
ond and third formants, as observedfrom their bandwidths.
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(b)Fig. 4.2: LP spe
tra (12th order) for su

essive frames in the word `they', fora male speaker, obtained by (a) blo
k pro
essing and (b) pit
h syn
hronousanalysis. 37



Analysis of spee
h for 
losed glottis and open glottis regions was investigated in[48℄. It was observed that the tra
king of damped formants 
ould be e�e
tively doneby analyzing su

essive frames of 
losed glottis. This is mainly due to the de
ouplingbetween the sour
e of ex
itation and the vo
al tra
t during the interval of 
losed glottis. The e�e
tiveness of pit
h syn
hronous analysis for high-pit
hed voi
es was also dealtwith in [48℄. Here, due to a short analysis frame, 
ovarian
e estimates were averagedover a few su

essive pit
h periods for reliable extra
tion of the vo
al tra
t parameters.The signi�
an
e of pit
h syn
hronous analysis for appli
ations su
h as prosodymanipulation and spee
h enhan
ement has been demonstrated in the literature [53℄[54℄. In the above appli
ations, the e�e
tiveness of the method of analysis is re
e
tedin terms of the per
eptual quality of the resulting spee
h. On the other hand, text-independent speaker veri�
ation task is based on the mat
hing between referen
e fea-tures and test features. In this se
tion, a measure of within-speaker to a
ross-speakerdissimilarity of sounds is des
ribed, that 
an be used to measure the e�e
tivenessof a feature for speaker 
hara
terization [55℄. Then, features extra
ted using blo
kpro
essing and pit
h syn
hronous analysis 
an be 
ompared, based on this measure.Let us 
onsider a set of L speakers given by S = fs1; s2; :::; sLg. Let V =fv1; v2; :::; vMg denote the set of M di�erent sounds. For ea
h speaker, let there beN utteran
es of ea
h sound. Let vi;k denote the kth utteran
e of the ith sound. Thewithin-speaker dissimilarity of a given sound vi, for all the speakers, is given byw(vi) = 1L 1N 1N � 1 LXl=1 NXk=1 NXn6=kd((vi;k; sl); (vi;n; sl)); (4.3)where, d((vi;k; sl); (vi;n; sl)) is the dissimilarity between the (sound, speaker) pairs(vi;k; sl) and (vi;n; sl). The a
ross-speaker dissimilarity of a given sound vi is givenby a(vi) = 1L 1N 1L� 1 1N LXl=1 NXk=1 LXj 6=l NXn=1d((vi;k; sl); (vi;n; sj)): (4.4)38



The within-speaker to a
ross-speaker dissimilarity (WAD) ratio is given by�(vi) = w(vi)a(vi) : (4.5)The overall WAD ratio, a
ross all sounds, is given by
 = 1M MXi=1 �(vi): (4.6)In the above equations, the sounds 
an be represented by any feature, and the WADratio is 
omputed for that feature. A small value of 
 (less than 1), for a givenfeature indi
ates the ability of the feature to provide better dis
rimination betweenspeakers. Hen
e, the feature 
an be deemed more suitable to represent speaker-spe
i�
information. A larger value of 
 (greater than 1) indi
ates that the interspeakervariability of the feature is less, and hen
e the feature is more suitable for representingspee
h information. In our experiments, a data set 
ontaining L = 5 speakers was
onsidered. For every speaker, isolated utteran
es of M = 5 voi
ed sounds (vowels/a/, /i/, /u/, /e/ and /o/) were 
olle
ted. For every speaker, N = 5 utteran
es(examples) of ea
h sound were 
olle
ted. Two approa
hes of analysis of spee
h, namely,blo
k-based analysis and pit
h-syn
hronous analysis were performed. For blo
k-basedanalysis, frames of 20 ms were 
onsidered with a shift of 10 ms. For pit
h syn
hronousanalysis, the instants of glottal 
losure were determined using the algorithm des
ribedin Se
tion 4.2. Then, a region an
hored around two su

essive instants was 
hosen asan analysis frame. An LP analysis of 12th order was performed using ea
h approa
hand 19-dimensional LPCCs were 
omputed. Every utteran
e was 
hara
terized by aunimodal, multivariate Gaussian probability density fun
tion, using the feature ve
torsextra
ted from voi
ed regions of that utteran
e. The Kullba
k-Leibler distan
e [27℄was used as a measure of dissimilarity between the distributions.Table 4.1 lists the WAD values for �ve sounds, 
omputed for both the approa
hesof analysis. Although both the approa
hes 
ompute LPCCs due to 12th order LP39



Table 4.1: Comparison of features extra
ted by blo
k-based and pit
h syn-
hronous methods of analysis, in terms of within-speaker to a
ross-speakerdissimilarity values. WAD ratio/a/ /i/ /u/ /e/ /o/ OverallLPCCs (blo
k based) 0.153 0.1919 0.2165 0.0928 0.136 0.158LPCCs (pit
h syn
hronous) 0.1269 0.1350 0.1620 0.0234 0.0845 0.1064analysis, pit
h syn
hronous analysis results in lesser values of the WAD ratio. This
an be observed for the di�erent sounds, and hen
e, for the overall WAD ratio. Thus,pit
h syn
hronous spe
tral features seem to be better suited for speaker veri�
ation
ompared to those obtained by blo
k pro
essing.4.4 SPEAKER VERIFICATION STUDIESFor speaker veri�
ation studies, the database des
ribed in Se
tion 3.2 is 
onsidered. Forfeature extra
tion, the instants of glottal 
losure are derived and pit
h syn
hronousspe
tral features (LPCCs) are 
omputed. The features are modeled using AANNmodels. Ea
h utteran
e is tested against 11 
laimants. The performan
e of veri�
ationis evaluated in terms of the per
entage of �rst ranks obtained by genuine speakers, andEER for the s
aled s
ores. The performan
e of pit
h syn
hronous analysis for speakerveri�
ation is listed in Table 4.2. It is evident that there is only a slight improvementin the performan
e. The 
onsistently lower values of WAD ratio suggested that pit
hsyn
hronous LPCCs may be more suited than blo
k-based LPCCs. However, it islikely that the averaging of feature ve
tors in blo
k-based LPCCs, whi
h is an artifa
tof blo
k pro
essing, may a
tually be working to its advantage. The smoothing ofspe
trum due to blo
k pro
essing (espe
ially the high frequen
y formants) may lead40



to a better mat
h between training and test feature ve
tors. This was observed inFig. 4.2(a). Thus, the advantage of pit
h syn
hronous LPCCs may be o�set. However,pit
h syn
hronous analysis is important from the perspe
tive of a

urate estimationof short-time spe
tral 
hara
teristi
s for representing speaker-spe
i�
 information.Table 4.2: Comparison of blo
k pro
essing and pit
h syn
hronous analysisin terms of the performan
e of speaker veri�
ation system.LPCCs 
omputed byBlo
k-based Pit
h syn
hronousanalysis analysis% of �rst ranks 72.2 71.1EER (%) (s
aled s
ores) 12.9 12.2
4.5 SUMMARYThis 
hapter des
ribed the signi�
an
e of the position of analysis window for a

urateestimation of short-time spe
tral features. A method to dete
t the instants of glottal
losure from voi
ed spee
h was reviewed. These instants serve as an
hor points aroundwhi
h short-time spe
tral features 
an be extra
ted. The ability of pit
h syn
hronousanalysis to tra
k the temporal variations of spe
tral 
hara
teristi
s, espe
ially for dy-nami
 sounds, was illustrated. A measure 
alled within-speaker to a
ross-speaker dis-similarity (WAD) was des
ribed, whi
h re
e
ts the suitability of a feature for speakerveri�
ation. The WAD values obtained on a sample dataset indi
ate that LPCCs ex-tra
ted by pit
h syn
hronous analysis are better suited for speaker veri�
ation, 
om-pared to those extra
ted by blo
k pro
essing. Pit
h syn
hronous LPCCs performedbetter than those due to blo
k pro
essing for speaker veri�
ation experiments.41
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CHAPTER 5
EXPLORING FEATURES FOR REPRESENTATION OFSPEAKER-SPECIFIC INFORMATIONThe primary step in speaker veri�
ation is the extra
tion of features from the spee
hsignal. These features should 
hara
terize speaker-spe
i�
 information, and theyshould also be robust to 
hannel variations. Typi
ally, spe
tral features su
h as MFCCsand LPCCs extra
ted from segmental analysis of spee
h are used for speaker veri�-
ation. However, these features do not aim to spe
i�
ally represent speaker-spe
i�

hara
teristi
s. In this 
hapter, di�eren
e 
epstral 
oeÆ
ients are proposed as a featurefor speaker veri�
ation, with the obje
tive of highlighting speaker-spe
i�
 
hara
teris-ti
s. Se
tion 5.1 des
ribes the logi
al development of the proposed feature. A speakerveri�
ation system based on the above feature is des
ribed in Se
tion 5.2. The abilityof the proposed feature to add 
omplementary eviden
e to the existing feature (LPCC)is also demonstrated.5.1 DIFFERENCECEPSTRAL COEFFICIENTS FOR SPEAKERCHAR-ACTERIZATIONIn this se
tion, a brief review of linear predi
tion (LP) analysis of spee
h is presented.This is followed by a dis
ussion on gross and �ne spe
tra of spee
h, whi
h are 
omputedfrom lower and higher orders of LP analysis, respe
tively. This provides motivationfor the extra
tion of di�eren
e 
epstral 
oeÆ
ients.43



5.1.1 Linear Predi
tion Analysis of Spee
hLinear predi
tion analysis of spee
h signal [6℄ [15℄ predi
ts a given spee
h sampleat time instant n as a linear weighted sum of the previous p samples, and the predi
tedsample is given by ŝ(n) = pXk=1 aks(n� k) (5.1)where s(n) is the spee
h sample at time n, and fakg; k = 1; 2; :::p; is the set of predi
tor
oeÆ
ients [6℄.The predi
tion error e(n) is de�ned ase(n) = s(n)� ŝ(n): (5.2)The mean square of the predi
tion error over an analysis frame of N samples is givenby E = N�1Xn=0 e2(n): (5.3)Minimizing E with respe
t to the set of predi
tor 
oeÆ
ients fakg results in a set ofp normal equations. The set of predi
tor 
oeÆ
ients fakg is obtained by solving the pnormal equations.Linear predi
tion analysis of spee
h provides a reasonable approximation to boththe 
omponents of spee
h produ
tion me
hanism, namely, the sour
e of ex
itation andthe vo
al tra
t system. The vo
al tra
t system is modeled as an all-pole �lter whosespe
tral response is des
ribed by the set of predi
tor 
oeÆ
ients fakg. The predi
tionerror signal e(n), also known as linear predi
tion residual, is a model for the sour
eof ex
itation to the vo
al tra
t system. The predi
tion order p has signi�
ant bearingon the ability of the all-pole �lter to 
losely approximate the short-time spe
trum ofspee
h. Typi
ally, the vo
al tra
t system 
an be 
hara
terized by a maximum of �veprominent resonan
es in the 0-4 kHz range. For very small orders of predi
tion su
h as44



2 or 4, the LP spe
trum may represent only one or two resonan
es. For larger valuesof p from 16 to 30, the LP model tries to mat
h spurious spe
tral peaks of the spee
hsignal and also the individual pit
h harmoni
s. Therefore, an LP order of 10 to 14 isappropriate for spee
h signal sampled at 8 kHz to estimate the short-time spe
trum,although the exa
t order is not very 
riti
al.5.1.2 Interpretation of Gross and Fine Spe
tra of Spee
h SignalThe short-time spe
trum of spee
h for a voi
ed sound has two 
omponents: Harmoni
peaks due to periodi
ity of voi
ed spee
h, and gross envelope of the spe
trum thatre
e
ts the vo
al tra
t response and glottal-pulse shape [56℄. The periodi
ity of voi
edspee
h is due to the vibration of vo
al folds, whi
h is a property of the sour
e ofex
itation. The spe
tral envelope is shaped by formants, that re
e
t the resonan
es ofthe vo
al tra
t. Formant lo
ations and bandwidths show variation between di�erentspeakers, even for a given 
ategory of sound unit [57℄. This is due to the varying vo
altra
t shapes and lengths for di�erent speakers. This variation is more pronoun
edin the �ner 
u
tuations of the spe
tral envelope, as 
ompared to the gross spe
tralenvelope. To illustrate this point, spee
h utteran
es for vowel /a/ were 
olle
ted fromtwo speakers (one female and one male) over a mi
rophone. Four su
h utteran
eswere 
olle
ted from ea
h speaker at a sampling rate of 8 kHz. The instants of glottal
losure were dete
ted, and both 6th order and 14th order LP spe
tra were 
omputedover pit
h syn
hronous windows. Figs. 5.1(a) and (b) show the LP spe
tra for a femalespeaker, obtained by 6th and 14th order of LP analysis, respe
tively. Both the spe
traare 
omputed for the same region of spee
h. Similarly, Figs. 5.1(
) and (d) show the
orresponding LP spe
tra for the male speaker. The following are observed:1. For di�erent utteran
es of a given speaker, the 
orresponding 6th order LP spe
-tra are similar. The 6th order LP spe
tra of the two speakers are also similar.45



This is observed from Figs. 5.1(a) and (
).2. While the 14th order LP spe
tra are similar for di�erent utteran
es of the samespeaker, there are signi�
ant di�eren
es between the 14th order LP spe
tra ofthe two speakers. This is evident from Figs. 5.1(b) and (d).The above observations imply that the similarity between 6th order LP spe
tra of thetwo speakers is due to the same underlying sound unit, while the di�eren
es betweenthe 14th order LP spe
tra of the two speakers is due to the speaker-spe
i�
 
hara
ter-isti
s whi
h are di�erent.Fig. 5.2 shows the 6th order and 14th order LP spe
tra for �ve di�erent speakers, forvowels /a/ and /i/. For the 6th order LP analysis, the spe
tra for all the speakers aremostly similar for a given sound unit. This 
an be seen from Figs. 5.2(a) and (
). But,for the 14th order LP analysis, the spe
tra of the speakers are signi�
antly di�erenteven for the same sound unit. This is observed from Figs. 5.2(b) and (d). Thus,the gross spe
trum estimated by 6th order LP analysis 
an be viewed as representinginformation spe
i�
 to the spee
h sound, while the �ne spe
trum estimated by the 14thorder LP analysis represents both sound unit information as well as speaker-spe
i�
information.
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(d)Fig. 5.1: (a) and (b) are, respe
tively, the 6th order and 14th order LPspe
tra for four di�erent utteran
es of the same vowel /a/, as uttered by afemale speaker. (
) and (d) are similar plots for a male speaker. The samplingfrequen
y is 8 kHz. 47
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(d)Fig. 5.2: (a) and (b) are, respe
tively, the 6th order and 14th order LP spe
traof �ve di�erent speakers, for the vowel /a/. (
) and (d) are similar plots forvowel /i/. In ea
h plot, the �rst speaker is female and the remaining speakersare male. The sampling frequen
y is 8 kHz.48



5.1.3 Extra
tion of Di�eren
e Cepstral CoeÆ
ientsIn order to deemphasize the in
uen
e of the sound unit, the di�eren
e of the �nespe
trum and the gross spe
trum is 
onsidered. This di�eren
e still preserves the �nerspe
tral variations that represent speaker-spe
i�
 
hara
teristi
s. For the purpose ofrepresentation, this subtra
tion is done in the 
epstral domain. Firstly, the set of 
ep-stral 
oeÆ
ients is derived from the LP 
oeÆ
ients [15℄. Cepstral 
oeÆ
ients providea 
ompa
t representation of the resonan
es and the spe
tral roll-o� 
hara
teristi
s ofthe vo
al tra
t system. The set of 
epstral 
oeÆ
ients f
kg, k = 0; 1; :::; m, is obtainedfrom the set of predi
tor 
oeÆ
ients fakg, k = 1; 2; :::; p, using the following re
ursiverelation: 
0 = logEmin
k = �ak + k�1Xj=1 jk
jak�j 1 � k � p
k = k�1Xj=k�p jk
jak�j p < k � m (5.4)where m is the number of 
epstral 
oeÆ
ients, and Emin is minimum mean squaredpredi
tion error.The set of di�eren
e 
epstral 
oeÆ
ients fdkg, k = 1; 2; :::; m 
an be expressed asdk = k(
hk � 
lk) 1 < k � m (5.5)where f
hkg is the set of 
epstral 
oeÆ
ients due to a higher order of LP analysis, f
lkgis the set of 
epstral 
oeÆ
ients due to a lower order of LP analysis. The 
omparablerange of amplitudes of the 
epstral 
oeÆ
ients of the two spe
tra leads to noise inthe di�eren
e 
epstral 
oeÆ
ients. Hen
e, the di�eren
e 
epstral 
oeÆ
ients dk areaveraged over a window of M 
ontiguous frames of a region of voi
ed spee
h, asfollows: 49



d̂k;j = 1M j+M2Xi=j�M2 dk;i 1 < k � m; (5.6)where fd̂k;jg is the set of averaged di�eren
e 
epstral 
oeÆ
ients for segment j of theregion of voi
ed spee
h, and fdk;ig is the set of di�eren
e 
epstral 
oeÆ
ients for framei. The di�eren
ing of the 
epstra also redu
es the in
uen
e of the transmission 
han-nel 
hara
teristi
s on the spee
h signal. This obviates the need for 
epstral meansubtra
tion, that is normally employed to remove the mean of the time traje
tory ofea
h 
epstral 
oeÆ
ient [12℄ [7℄.5.2 SPEAKERVERIFICATIONUSING DIFFERENCECEPSTRAL CO-EFFICIENTSA speaker veri�
ation system is developed using di�eren
e 
epstral 
oeÆ
ients, onsimilar lines to that of the baseline system des
ribed in Se
tion 3.1. Di�eren
e 
epstral
oeÆ
ients are extra
ted as des
ribed in Se
tion 5.1.3. A 5-layer AANN model ofstru
ture 19L 38N 4N 38N 19L is used, whi
h is trained using di�eren
e 
epstral
oeÆ
ients. This 
hoi
e of the stru
ture of AANN model for LPCC features wasbased on a study reported in [58℄. In that study, the number of units in layers 2 and 4were 
hosen empiri
ally to be twi
e the dimension of the input ve
tor. The number ofunits in the 
ompression layer was arrived at, after systemati
 experimentation. Thestudy was repeated for di�eren
e 
epstral 
oeÆ
ients and it was observed that thesame stru
ture of AANN model was suitable. Ea
h model is trained for 50 epo
hs.Ea
h utteran
e is tested against 11 
laimants.The rank of the genuine speaker among the 11 
laimants is 
omputed for ea
h testutteran
e. The number of test utteran
es where the genuine speaker se
ures the �rst50



Table 5.1: Performan
e of speaker veri�
ation for LPCCs and di�eren
e
epstral 
oeÆ
ients. Speaker veri�
ation system based onLPCC Di�eren
e 
epstral Combination usingfeatures 
oeÆ
ients OR logi
% of �rst ranks 72.2 67.3 77.7rank is also 
omputed. A 
ombination of the ranks is performed using OR logi
. Table5.1 
ompares the performan
e of LPCC features and di�eren
e 
epstral 
oeÆ
ients, interms of the per
entage of �rst ranks. The �gure in the third 
olumn represents theper
entage of �rst ranks obtained by the genuine speaker, using either LPCC featuresor di�eren
e 
epstral features or both. It is observed that the 
ombination resultsin an improved performan
e of veri�
ation. This indi
ates that di�eren
e 
epstral
oeÆ
ients do 
ontain speaker-spe
i�
 features that are 
omplementary in nature toLPCC features. Here, the 
ombination of ranks has been performed using the ORlogi
. This is only to establish that di�eren
e 
epstral 
oeÆ
ients indeed 
ontainspeaker-spe
i�
 information that is 
omplementary to LPCC features. However, when
onsidering a system that uses both LPCC features and di�eren
e 
epstral 
oeÆ
ients,the performan
e analysis in terms of EER requires that the s
ores due to the twofeatures be 
ombined suitably. This is a 
ombination at the level of measurements andis not as straightforward as a logi
al OR operation performed on the ranks. Hen
e,the 
ombination of eviden
es due to multiple features, and the performan
e analysisof su
h a system are dis
ussed in Se
tion 6.3.
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5.3 SUMMARYIn this 
hapter, the development of a feature for representing speaker-spe
i�
 informa-tion was des
ribed. The gross spe
trum was shown to be representative of the soundunit, while the �ne spe
trum was shown to 
ontain both spee
h and speaker-spe
i�

hara
teristi
s. These spe
tra were estimated using di�erent orders of LP analysis. Dif-feren
e 
epstral 
oeÆ
ients were extra
ted from the 
epstral representations of grossand �ne spe
tra. A speaker veri�
ation system based on di�eren
e 
epstral 
oeÆ
ientswas shown to provide some 
omplementary eviden
e for veri�
ation.In Chapters 4 and 5, extra
tion of features for speaker veri�
ation was dis
ussed.Probability density fun
tion of the feature ve
tors was estimated using autoasso
iativeneural network models. On
e a model is built, it is presented with the feature ve
torsderived from an unknown utteran
e. The de
ision for a

epting or reje
ting the 
laimis based on the s
ore output by the model. In the next 
hapter, we dis
uss the issueof s
ore normalization for speaker veri�
ation.
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CHAPTER 6SCORE NORMALIZATION FOR SPEAKERVERIFICATIONThe de
ision me
hanism for speaker veri�
ation depends on the s
ore output by themodel of a speaker, when presented with an unknown (test) utteran
e. This s
ore is
ompared to a threshold in order to a

ept or reje
t the 
laim of the speaker. Butgenerally, the s
ores obtained from di�erent models and test utteran
es are not inthe same range. The task of 
omputing a 
alibrated s
ore is known as s
ore nor-malization. In Se
tion 6.1, the need for s
ore normalization in speaker veri�
ation isdis
ussed. Some methods for s
ore normalization are proposed in Se
tion 6.2. Theperforman
e of the proposed approa
hes is 
ompared against that of the existing ap-proa
hes. Se
tion 6.3 dis
usses 
ombination of eviden
es from 
omplementary featuresfor improving the performan
e of speaker veri�
ation. Se
tion 6.4 
ompares the per-forman
e of the speaker veri�
ation system des
ribed in this thesis with that of a fewother systems.6.1 NEED FOR SCORE NORMALIZATIONThe raw s
ores obtained from the models 
an not be used for de
ision making asdis
ussed in Chapter 2. To summarize:1. The nature of training data di�ers from one speaker to another. Spe
i�
ally,the di�eren
e is due to the amount of training data, 
omposition of the data interms of a
ousti
 
ategories, and the 
hannel e�e
ts.53



2. Mismat
h between the training and test data 
an lead to low s
ores, even fromthe model of genuine speaker. This is due to 
hannel e�e
ts, or inadequaterepresentation of 
ertain a
ousti
 
ategories in the training data.The ability to dis
riminate between genuine and impostor speakers di�ers amongmodels. This ability also di�ers among test utteran
es for a given model. To illustratethe e�e
t of these fa
tors, the distributions of the 
on�den
e s
ores of genuine andimpostor speakers are observed for the baseline system. Fig. 6.1 shows the estimateddistributions of the 
on�den
e s
ores for genuine and impostor speakers. If a signi�
antoverlap exists between the two, it makes the task of setting a de
ision threshold diÆ-
ult. Thus, there is need to improve the dis
rimination between the s
ores of genuineand impostor speakers for reliable de
ision-making. Table 6.1 shows the EER obtained
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Fig. 6.1: Estimated distributions of the 
on�den
e s
ores of genuine andimpostor speakers.for the raw and s
aled s
ores. Ea
h test has 11 
laimants, and the s
aled s
ores areobtained by dividing all the 11 s
ores by the maximum. The s
aling of s
ores serves54



as a normalization be
ause genuine speakers who are winners in their respe
tive tests,have the same s
ore of 1 after normalization. This normalization is re
e
ted in thevalue of EER for s
aled s
ores. However, the de
ision of veri�
ation should be basedon the s
ore of a given model alone. Hen
e, s
aling the s
ores as mentioned above isnot appropriate. This ne
essitates the need for a 
ommon threshold for a given speakerveri�
ation system.Table 6.1: Performan
e of speaker veri�
ation for raw and s
aled s
ores.% of �rst EER(%) for raw EER(%) for s
aledranks s
ores s
ores72.2 26.1 12.9
6.2 METHODS FOR SCORE NORMALIZATIONMethods of s
ore normalization 
an be 
lassi�ed as model normalization and testutteran
e normalization. In model normalization, a speaker's model is tested againstexample impostor utteran
es and the resulting s
ores are used to estimate speaker-spe
i�
 statisti
s. In test utteran
e normalization, the test utteran
e is 
omparedagainst the model of a 
laimant speaker, and also, ba
kground/
ohort models. Thes
ores of the ba
kground models are used to normalize the speaker's s
ore for thatutteran
e. In this se
tion, three di�erent methods of s
ore normalization are proposed.Se
tion 6.2.1 des
ribes a method of model normalization. Se
tions 6.2.2 and 6.2.3des
ribe two methods of test utteran
e normalization.
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6.2.1 Modeling Speaker-spe
i�
 Distribution of Impostor S
oresThe training data available to develop a model di�ers from one speaker to another.Hen
e, the likelihood/
on�den
e s
ores resulting from di�erent models 
annot be 
om-pared to a single threshold for a

eptan
e or reje
tion. The task of model normalizationis to 
ompute the 
alibrated s
ores, so that a 
ommon threshold for de
ision 
an beused a
ross all the speakers.Let a sequen
e of feature ve
tors X = fx1;x2; :::;xNg, derived from the spee
h ofone or more impostors, be presented to the model of a speaker, denoted by M . Spee
hfrom 50 impostors was used, with 20 se
onds of spee
h for ea
h impostor. The modelM outputs a 
orresponding sequen
e of s
ores C = f
1; 
2; :::; 
Ng, whose mean andstandard deviation are denoted bymi and �i respe
tively, where the subs
ript i denotesimpostor. The idea of presenting the model M with the feature ve
tors derived fromimpostors is to estimate the behaviour of the model for impostors. This is typi
allydone o�ine. During veri�
ation, feature ve
tors derived from a test utteran
e are pre-sented to the model M . Let this sequen
e of test feature ve
tors Y = fy1;y2; :::;yLg,when presented to the model M , result in a sequen
e of s
ores S = fs1; s2; :::; sLghaving a mean mt and standard deviation �t, where the subs
ript t denotes the testutteran
e. The existing method of normalization (Z-norm) [43℄ 
omputes the normal-ized s
ore as 
norm = s�mi�i , where s = 1LPLk=1 sk. This method uses only the averagevalue s to 
ompute the normalized s
ore and does not exploit the distribution of thes
ores C and S. Instead, a method is proposed where the probability density fun
tionsof the s
ores are estimated from C and S. Observation of histograms of s
ores obtainedfrom C and S for several 
ases showed that the histograms 
an be approximated byGaussian probability density fun
tions. For estimation of pi(
), features are 
olle
tedo�ine and typi
ally, the number of feature ve
tors (and hen
e, the number of s
ores)is in ex
ess of 1,00,000. For estimation of pt(
) from the test data, the number of56



s
ores is typi
ally above 10,000 and almost always, above 5000. This is large enoughto obtain the histogram of s
ores, by dividing the interval 0 to 1 into 10 equally spa
edbins.Thus, the probability density fun
tions of the s
ores obtained from C and S 
an bemodeled as Gaussian densities. Let pi(
) and pt(
) represent the estimates of the prob-ability density fun
tions of the s
ores C and S, respe
tively. Then, pi(
) = N(mi; �i2)and pt(
) = N(mt; �t2), where N(m; �2) = 1p2��2 exp (�(x�m)22�2 ), represents a normal(Gaussian) density with mean m and standard deviation �. Due to the availabilityof substantial amount of data from impostors, pi(
) is a good estimate of the a
tualprobability density fun
tion. If the test utteran
e belongs to an impostor, then pt(
) isexpe
ted to mat
h pi(
) 
losely. However, if the test utteran
e belongs to the genuinespeaker of model M , the mat
h between pt(
) and pi(
) should redu
e, with mt > mi.Thus, the de
ision for veri�
ation 
an be based on the degree of mat
h between pt(
)and pi(
). Fig. 6.2 illustrates a 
ase where a model is presented with three di�erenttest utteran
es. When 
omparing pt(
) and pi(
), the following 
ases were observed:
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1. pt(
) has a signi�
ant region that does not overlap with pi(
), and mt > mi, asshown in Fig. 6.2(a). It is likely that the test utteran
e belongs to the genuinespeaker, and the model M reasonably represents the distribution of featureve
tors of the training and test data. Though less likely, it is also possiblethat the test utteran
e belongs to an impostor. This indi
ates that, due tointraspeaker variability or the e�e
ts of the 
hannel, the test feature ve
torsnow `fall' more often into the 
lusters represented by the model M .2. pt(
) and pi(
) overlap mostly, with mt < mi, as shown in Fig. 6.2(b). The morelikely inferen
e here is that the test feature ve
tors belong to an impostor, sin
efeature ve
tors from the genuine speaker should have resulted in a better mat
hwith the model M . A less likely inferen
e is that the test utteran
e belongs tothe genuine speaker.3. The distributions pt(
) and pi(
) lie very 
lose, but pt(
) `
rosses over' pi(
) asshown in Fig. 6.2(
). This indi
ates a good mat
h between pt(
) and pi(
) leadingto the inferen
e that the test utteran
e belongs to an impostor. However, inthe region of high s
ores (say, 0:6 < 
 < 1), pt(
) ex
eeds pi(
). The s
ores ofpt(
) in this region may 
orrespond to those frames of the test utteran
e that
losely mat
h the model M . Thus, it is still possible that the test belongs tothe genuine speaker.The above 
ases are not exhaustive, but they are representative of the general be-haviour. Based on these observations, a mat
hing s
ore needs to be 
omputed forveri�
ation. A quantitative measure of the mat
h between the two distributions 
anbe 
omputed from the plots of pt(
)�pi(
). Figs. 6.3(a), (b) and (
) show pt(
) for threedi�erent tests, against the same model. The 
orresponding plots of pt(
) � pi(
) areshown in Figs. 6.3(d), (e) and (f), respe
tively. If the area under the 
urve pt(
)�pi(
)is positive in the region of high s
ores, as in Fig. 6.3(d), then the test utteran
e is58



likely to belong to the genuine speaker. If this area is negative as shown in Fig. 6.3(e),then the test speaker is likely to be an impostor.
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Fig. 6.3: Plots (a), (b) and (
) show pt(
) for three di�erent test utteran
es,for a given model. pi(
) is estimated a priori for the given model. Plots (d),(e) and (f) show pt(
) � pi(
) for (a), (b) and (
) respe
tively.Figs. 6.3(
) and (f) show a 
ase where pt(
) `
rosses over' pi(
) in the region ofhigher s
ores. Here too, a positive area exists in the region of higher s
ores, indi
atingthat the test speaker may be genuine. Thus, positive area under the 
urve pt(
)�pi(
),in the region of high s
ores, should be 
onsidered for s
oring. The normalized s
ore
an be obtained as 
norm = P1
=mi 
(pt(
)� pi(
)). The lower limit of 
 is 
hosen as mito ex
lude non-
ontributing s
ores. Multipli
ation by 
 is intended to provide more59



weightage to the s
ores of greater magnitude. The algorithm for model normalizationis summarized in Table 6.2.
Table 6.2: Sequen
e of steps involved in model normalization.1. Present X = fx1;x2; :::;xNg to M , to obtain C = f
1; 
2; :::; 
Ng.2. Compute mi and �i from C.3. Present Y = fy1;y2; :::;yLg to M , to obtain S = fs1; s2; :::; sLg.4. Compute mt and �t from S.5. Obtain the estimates pi(
) = N(mi; �i2) and pt(
) = N(mt; �t2).6. Compute 
norm = P1
=mi 
(pt(
)� pi(
)).Table 6.3 
ompares the performan
e of the proposed method against Z-norm. Itis observed that the proposed method does not result in appre
iable improvement inEER, 
ompared to that obtained from Z-norm. The logi
 behind model normalizationis that the example impostor utteran
es 
an represent the response of a given model forany impostor data. However, the 
onditions under whi
h the test spee
h is 
olle
tedmay di�er from those of the example impostor utteran
es. Thus, the a
ousti
 mismat
hbetween the test utteran
e and the example impostor utteran
es limits the e�e
tivenessof model normalization. This issue is addressed in test normalization.Table 6.3: Performan
e of di�erent model normalization methods.Raw s
ores Z-norm Proposed modelnormalizationEER (%) 26.1 24.0 23.5

60



6.2.2 Rank-based Normalization of S
oresA disadvantage of the existing test normalization methods (notably T-norm) is thatthey 
onsider only the average value of the s
ores output by a model for a giventest utteran
e [43℄ [44℄. This provides equal weightage to all the frames of the testutteran
e. However, it is not ne
essary that all frames of the test utteran
e are equallyimportant for speaker veri�
ation. Some methods 
onsider the sum of only the top Mranked s
ores, where M is less than the number of segments in the test utteran
e [59℄.Su
h methods help in eliminating the less signi�
ant frames, but a disadvantage is thatthe sum of top M ranked s
ores is not normalized a
ross di�erent test utteran
es. Inthe proposed method, a set of N ba
kground models is used for s
ore normalization.Ba
kground models help in estimating the behaviour of impostors. These ba
kgroundmodels are randomly 
hosen and are 
ommon to all the test utteran
es. A given testutteran
e is presented to a 
laimant model along with the N ba
kground models. Forevery frame of the test utteran
e, the s
ore due to the 
laimant model is ranked amongthe s
ores due to the N ba
kground models. Thus, the rank of the 
laimant 
an varybetween 1 and N +1. The normalized s
ore is 
omputed as the per
entage of the totalnumber of frames where the genuine speaker wins over all the ba
kground models.The 
hoi
e of N , the number of ba
kground models, should result in a reasonableestimate of the behaviour of impostors. A large value of N su
h as 50 dilutes theeviden
e due to the genuine speaker. On the 
ontrary, with a small value of N su
h as5, the possibility of an impostor obtaining as many �rst ranks as the genuine speakeris high. Thus, not enough ba
kground models are there to 
hallenge the genuineor impostor speakers. In this experiment, 20 ba
kground models have been 
hosen.Fig. 6.4 shows the fra
tion P (r) of the total number of frames to have obtained rankr. To illustrate, two test utteran
es are 
onsidered. Fig. 6.4(a) shows a 
ase wherean utteran
e is tested against the genuine speaker, 5 impostors and 20 ba
kground61



models. The genuine speaker s
ores over the impostors, as observed from the valueof P (1). Fig. 6.4(b) shows another 
ase where Impostor 1 has a slightly higher valueof P (1) as 
ompared to that of the genuine speaker, leading to false a

eptan
e. The
hoi
e of P (1) as the normalized s
ore implies that only those frames that rank �rstare 
onsidered for normalization. However, the number of frames that rank se
ond orthird may still be important for dis
rimination. This issue is addressed in Se
tion 6.2.3.The algorithm of rank-based normalization of s
ores is summarized in Table 6.4.Experiments were 
ondu
ted on NIST 2003 database, and normalized s
ores wereevaluated for genuine and impostor speakers. Fig. 6.5 plots the estimates of probabilitydensity fun
tions, of s
ores obtained from the models of genuine and impostor speakers.Figs. 6.5 (a), (b) and (
) show, respe
tively, the densities of raw s
ores, normalizeds
ores due to the existing methods (Z-norm + T-norm), and normalized s
ores dueto the proposed rank-based approa
h. From Figs. 6.5 (a) and (
), it is evident thatthe proposed method signi�
antly improves the dis
rimination between genuine andimpostor speakers, as 
ompared to the raw s
ores. Figs. 6.5 (b) and (
) indi
ate thatthe s
ores of impostors have lesser varian
e for the proposed method, 
ompared to theexisting method. This is signi�
ant for setting the de
ision threshold. This indi
atessome uniformity in the behaviour of the normalized s
ores of impostors. For genuinespeakers, the varian
e of the normalized s
ores is greater than that of the raw s
ores,be
ause the degree of dis
rimination between genuine and impostor speakers may varyfrom one genuine speaker to another. The performan
e of this method will be dis
ussedin Se
tion 6.2.4.
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Table 6.4: Sequen
e of steps involved in rank-based normalization.1. Sele
t an appropriate number (N) of ba
kgroundmodels.2. Present the test utteran
e to the 
laimant model and Nba
kground models.3. For ea
h frame, 
ompute the rank (r) of the 
laimant among theN ba
kground models.4. Compute P (r), r = 1; 2; :::; N + 1, i.e., that fra
tion ofthe total number of frames whi
h has obtained rank r.5. P (1) is the normalized s
ore.6.2.3 Method Based on Frame-level Weighting of S
oresThe degree to whi
h a test utteran
e mat
hes the 
orresponding (genuine) speakermodel varies for di�erent test utteran
es. To an extent, this degree of mat
h dependson the nature of the test utteran
e. In test normalization, the obje
tive is to estimatethe average behaviour of impostors for the test utteran
e. The test normalizations
heme T-norm des
ribed in [43℄ 
omputes the mean and standard deviation of theaverage s
ores of several ba
kground models for a given test utteran
e. By averagingthe s
ores due to all the frames, this method provides equal weightage to all theframes of the test utteran
e. However, some frames of the test utteran
e may 
ontaingreater speaker-spe
i�
 information 
ompared to other frames. In [60℄, it is shown thatstatisti
al modeling of speaker-spe
i�
 
hara
teristi
s using only two broad phoneti

ategories (vowel + diphthongs and glides + nasals) resulted in better veri�
ationperforman
e than the 
ase when all the phoneti
 
ategories were used. The phoneti

ategorization of frames was a
hieved by using an automati
 spee
h re
ognizer. Apart65



from phoneti
ally less-signi�
ant frames, the test utteran
e may also 
ontain spuriousframes in nonspee
h regions of the signal, inspite of using a good spee
h-nonspee
hdete
tion in the prepro
essing stage. This is possible in the 
ase of energy based-methods of spee
h-nonspee
h dete
tion. The removal of su
h spurious frames maybe a
hieved by using a suitable signal-pro
essing algorithm. The aim of the 
urrentexperiment is to weight the frames of the test utteran
e at the s
oring level.In the proposed method, a test utteran
e is presented to a 
laimant model anda set of N ba
kground models. For every frame of the test utteran
e, average of thes
ores of ba
kground models is 
omputed. The reason for 
omputing the average offrame-level s
ores of ba
kground models is to provide di�erent weightages to di�erentframes of the test utteran
e. This will be des
ribed later in this se
tion.The �rst issue is the number of ba
kground models to be sele
ted. In the exper-iment, utteran
es were tested against varying number of ba
kground models. Ea
hutteran
e was tested against 5, 10, 20, 40, 60, and 100 ba
kground models, and frame-level average of s
ores was 
omputed. Figs. 6.6(a) and 6.6(b) show the plots of frame-level s
ores averaged over di�erent number of ba
kground models. It is observed thatthe variation of the average of frame-level s
ores is not signi�
ant beyond 20 ba
k-ground models. Hen
e, a set of 20 ba
kground models is used in further experimentson test normalization.
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On
e the average of frame-level s
ores of the ba
kground models is 
omputed, thenext step is to 
ompute the normalized s
ore. Let f
kg; k = 1; 2; :::; L represent thesequen
e of frame-level s
ores obtained when a test utteran
e is presented to a 
laimantmodel. Let fbkg; k = 1; 2; :::; L represent the sequen
e of average of frame-level s
oresof the ba
kground models for the same utteran
e. Here, L denotes the total numberof frames in the test utteran
e. The di�eren
e s
ore 
an be de�ned asdk = 
k � bk k = 1; 2; :::; L (6.1)To sele
t only those frames where the 
laimant s
ore ex
eeds the average of ba
kgrounds
ores, we de�ne fk = 8>><>>: 1; dk > 0; k = 1; 2; :::; L0; otherwise:The normalized s
ore 
an be 
omputed ass = 1L LXk=1 fkdk: (6.2)However, all su
h frames are given equal weightage in the above s
oring s
heme.Hen
e, a weighting fun
tion is derived using the frame-level average of ba
kgrounds
ores, as follows: wk = bk � bminbmax � bmin k = 1; 2; :::; L: (6.3)The di�eren
e s
ores are then weighted with this fun
tion for only those frames wherethe 
laimant s
ore ex
eeds the average of ba
kground s
ores. The �nal s
ore is 
om-puted as snorm = 1L LXk=1 fkwkdk: (6.4)The algorithm is summarized in Table 6.5.68



The reason for 
omputing the weight fun
tion is the following: If a test frame ispoor / spurious, it is likely to result in a lower value of 
on�den
e s
ore from mostof the ba
kground models. If the test frame belongs to a well-manifested region ofspee
h, it is likely to result in a higher value of 
on�den
e s
ore from most of theba
kground models. Thus, the frame-level average of s
ores of ba
kground models is arepresentative of the nature of the test utteran
e. Fig. 6.7 shows the variation of frame-level 
on�den
e s
ores for a given test segment for genuine and impostor speakers. Theper
entage of frames, where the frame-level s
ore ex
eeds the frame-level average ofthe ba
kgrounds, is a fa
tor of normalization. The performan
e of this method ofnormalization is dis
ussed in Se
tion 6.2.4.
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Table 6.5: Sequen
e of steps involved in frame-level weight-ing of s
ores.1. Sele
t a suitable number of ba
kground models,by experimentation.2. Present the test utteran
e to 
laimant model, toobtain the s
ores f
kg; k = 1; 2; :::; L.3. Present the test utteran
e to N ba
kground modelsand 
ompute the frame-level average of ba
kgrounds
ores fbkg; k = 1; 2; :::; L.4. Compute the di�eren
e s
ore dk = 
k � bk,k = 1; 2; :::; L.5. Compute the binary weight ffkg; k = 1; 2; :::; L.6. Compute the weight fun
tion fwkg; k = 1; 2; :::; L.7. Compute the normalized s
ore assnorm = 1LPLk=1 fkwkdk.6.2.4 Results and Dis
ussionIn this se
tion, we dis
uss the performan
e of the proposed methods of test normal-ization. Table 6.6 lists the results of the proposed methods of test normalization,along with the existing (Z-norm + T-norm) s
heme. The performan
e of the rank-based approa
h is better than that of T-norm, and 
omparable to T-norm + Z-norms
heme.The existing approa
h estimates the mean and varian
e of the s
ores of ba
kgroundmodels, using all the frames of the test utteran
e. In 
omparison, the rank-basedmethod des
ribed in Se
tion 6.2.2 
onsiders only those frames for 
omputing the s
ore,that 
onsistently win over the ba
kground models. Also, the normalized s
ore is limited70



to a range of 0 to 1. On the other hand, in Z-norm and T-norm, the s
aling of s
oresby varian
e 
auses the normalized s
ores to a
quire a greater range.A limitation of the rank-based approa
h is that it does not 
onsider those framesfor s
oring that are ranked se
ond or third. To over
ome this limitation, the normalizeds
ore was 
omputed as a weighted average of the per
entage of �rst, se
ond and thirdranks. However, this did not result in the redu
tion of EER.Table 6.6: Performan
e of di�erent test normalization methods.T-norm Z-norm Rank Frame-level+ T-norm based weightingnormalization of s
oresEER (%) 19.1 16.1 16.5 15.2This may be due to the extent of dis
rimination between the genuine and impostorspeakers for di�erent frames of the test utteran
e. For example, all the frames thatse
ure �rst ranks may not be equally signi�
ant in terms of speaker-spe
i�
 informa-tion. Similarly, frames se
uring se
ond and third ranks may also be useful for de
ision,although the rank-based method does not use this information.The method based on frame-level weighting of s
ores over
omes this limitation to a
ertain extent. The sele
tion of only those frames where the 
laimant s
ores ex
eed theaverage of ba
kground s
ores, is a poli
y that is similar to the rank-based approa
h.Yet, it is not as harsh as ignoring the se
ond and third ranked frames altogether. Theweight fun
tion derived from the ba
kground s
ores serves as a measure of signi�
an
eof ea
h frame for s
oring. The improvement obtained by this method over the existingmethods is indi
ated in Table 6.6.
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6.3 COMBINING EVIDENCES FROM MULTIPLE FEATURESThe goal of speaker veri�
ation is to validate the identity of a speaker, based onthe voi
e 
hara
teristi
s of the speaker. Traditionally, speaker veri�
ation systemsuse a single feature to represent speaker-spe
i�
 information and a single modelingte
hnique. In pattern 
lassi�
ation problems, studies have shown that it is possible toimprove the reliability of 
lassi�
ation by using di�erent types of features and modelssimultaneously [61{63℄. In the 
ontext of speaker veri�
ation, di�erent features 
anbe extra
ted from spee
h to represent speaker-spe
i�
 information. These featuresmay represent the vo
al tra
t system or the sour
e of ex
itation. The features may beextra
ted over di�erent levels of analysis. For instan
e, 
ombination of eviden
es dueto subsegmental, segmental and suprasegmental features has been studied for text-dependent speaker veri�
ation [24℄ [64℄. For speaker veri�
ation, it is advantageous ifthe features are 
omplementary in nature, i.e, they represent di�erent aspe
ts of voi
e
hara
teristi
s of a speaker.The method of modeling may depend on the des
ription of features. Due to di�er-ent representations, it may not be possible to model di�erent features within a singleframework. Hen
e, di�erent models 
an be used for di�erent features, and the result-ing eviden
es 
an be 
ombined. The e�e
tiveness of 
ombining the eviden
es due todi�erent features for speaker veri�
ation depends on the following fa
tors:1. E�e
tiveness of the individual features for speaker veri�
ation2. Complementary nature of the features3. Method of 
ombining the s
ores due to individual featuresIn the present study, we dis
uss the 
ombination of eviden
es due to three di�erentfeatures extra
ted from the spee
h signal. These are:1. Linear predi
tion 
epstral 
oeÆ
ients (LPCC)72



2. Di�eren
e 
epstral 
oeÆ
ients3. Ex
itation sour
e features present in the linear predi
tion (LP) residual [36℄ [20℄The LPCCs obtained by the 14th order LP analysis represent the resonant frequen
iesof the vo
al tra
t system and their bandwidths. The LPCCs 
ontain information aboutthe sound unit as well as the speaker. Di�eren
e 
epstral 
oeÆ
ients are obtainedby deemphasizing the gross spe
tral envelope from the �ne spe
trum, to suppressthe sound unit information while preserving the �ner variations of the short-timespe
trum. The ex
itation sour
e features are derived from the 12th LP residual. Thesefeatures represent the 
hara
teristi
s of the glottal vibrations, and are un
orrelatedwith the 
hara
teristi
s of the vo
al tra
t system. Thus, the three features 
an beviewed to provide somewhat 
omplementary information about the 
hara
teristi
s ofthe speaker. The development of AANN models for speaker veri�
ation based onLPCCs and di�eren
e 
epstral 
oeÆ
ients was des
ribed in Se
tions 3.1.2 and 5.2,respe
tively. In Se
tion 6.3.1, we brie
y review the development of AANN modelsto represent the ex
itation sour
e features present in the LP residual of spee
h signal.Combination of eviden
es for speaker veri�
ation due to the three features is des
ribedin Se
tion 6.3.2.6.3.1 Ex
itation Sour
e Features for Speaker Veri�
ationLinear predi
tion analysis of spee
h results in the LP 
oeÆ
ients whi
h represent thevo
al tra
t 
hara
teristi
s. The error signal obtained by inverse �ltering the spee
hsignal is termed as LP residual. LP residual 
ontains ex
itation sour
e information,whi
h 
an be 
aptured using a �ve-layer AANN model [20℄. Conse
utive blo
ks ofsamples of the LP residual are presented to an AANN model, and the blo
ks areseparated by a shift of one sample. When raw data su
h as the samples of LP residualare presented to the AANN, the interpretation of the behaviour of AANN in terms of73




apturing the distribution of feature ve
tors is not appropriate. The reason is, thoughthe adja
ent frames may be widely separated in the input spa
e, temporal relationshipstill exists among the adja
ent frames sin
e the samples of the LP residual are notentirely de
orrelated. Thus, the obje
tive of training the AANN model using thesamples of LP residual is to a
quire the higher order relations among the samples, thatmay 
ontain useful speaker-spe
i�
 
hara
teristi
s. The e�e
tiveness of the features ofex
itation sour
e for speaker veri�
ation has been demonstrated in [20℄ [36℄. In [20℄,signi�
an
e of the regions of LP residual around the instants of glottal 
losure was alsoillustrated for speaker veri�
ation.6.3.2 Approa
hes for Combining Eviden
esAn important issue in 
ombining eviden
es from di�erent 
lassi�ers is the nature ofoutput asso
iated with ea
h 
lassi�er. The output of a 
lassi�er 
ould be a 
lass label,or a set of ranks 
orresponding to di�erent labels, or a set of measurements to indi
atethe 
on�den
e of the 
lassi�er in a given 
lass label. The strategy for 
ombining theeviden
es depends on the representation of the outputs. If only the 
lass labels orthe label rankings are available, a majority vote is used [65℄ [66℄. If 
ontinuous out-puts like a posteriori probabilities are available, an average or linear 
ombination ora Bayes 
lassi�er 
ould be used [67℄ [63℄. When the 
lassi�er outputs are available asfuzzy values or belief values, belief fun
tions and Dempster-Shafer te
hniques are used[68℄ [69℄. In [70℄, a theoreti
al framework was suggested for 
lassi�er 
ombination. Itwas shown that the 
ommonly used s
hemes of 
ombination su
h as the produ
t rule,sum rule, min rule, max rule and the majority voting are spe
ial 
ases whi
h 
an bederived from the given framework under di�erent assumptions and approximations. Itwas found that the sum rule outperformed other 
lassi�
ation s
hemes, and was re-silient to estimation errors, under 
ertain assumptions. In our experiments on speaker74



veri�
ation, the sum rule is used for 
ombining eviden
es.The ability of di�eren
e 
epstral 
oeÆ
ients to provide 
omplementary eviden
efor speaker veri�
ation was illustrated in Se
tion 5.2, in terms of the �rst ranks se
uredby the genuine speakers. Table 6.7 lists the performan
e of 
ombination of eviden
esdue to LPCCs and di�eren
e 
epstral 
oeÆ
ients. A redu
tion in EER is a
hieved dueto the 
ombination.Table 6.7: Combining eviden
es from LPCCs and di�eren
e 
epstral 
oeÆ-
ients. LPCCs Di�eren
e Combination
epstral by sum-rule
oeÆ
ientsEER (%) 16.1 20.2 15.0
Table 6.8: Combining eviden
es from LPCCs, di�eren
e 
epstral 
oeÆ
ientsand ex
itation sour
e features.LPCCs Di�eren
e Ex
itation Combination
epstral sour
e by sum-rule
oeÆ
ients featuresEER (%) 16.1 20.2 21.5 13.4Table 6.8 lists the performan
e of 
ombination of eviden
es due to LPCCs, di�er-en
e 
epstral 
oeÆ
ients and ex
itation sour
e features. Although the error rates dueto di�eren
e 
epstral 
oeÆ
ients and sour
e features are higher 
ompared to that ofLPCCs, the 
ombination provides signi�
ant improvement. This is due to nature of75



speaker-spe
i�
 information represented by these two features, whi
h is 
omplemen-tary to that of spe
tral features (LPCCs). The performan
e of speaker veri�
ation forindividual features and the result of 
ombination of eviden
es is indi
ated in the DET
urve in Fig. 6.8.
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Fig. 6.8: DET 
urves indi
ating the performan
e of speaker veri�
ationbased on LPCCs, di�eren
e 
epstral 
oeÆ
ients, ex
itation sour
e featuresand 
ombination of eviden
es.
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6.4 PERFORMANCE COMPARISON OF SPEAKER VERIFICATIONSYSTEMSIn this se
tion, the speaker veri�
ation system dis
ussed in this thesis is 
omparedwith 
ertain 
ontemporary speaker veri�
ation systems, in terms of the performan
ea
hieved on a 
ommon dataset, namely, the NIST 2003 dataset. Table 6.9 lists afew systems, along with the features, models and normalization methods used fordeveloping those systems.Table 6.9: Comparison of performan
es of speaker veri�
ation systems.System Features Channel Models Normalization EER (%)
ompensation methodsmethodsIITM LPCC, CMS AANN Z-norm, 13.4ESF, DCC T-normMITLL MFCC, RASTA, GMM-UBM, Z-norm, 6.5DC FM SVM T-normDDRD MFCC, CMS PCA, AANN, T-norm 8.0DC GMM-UBMIBM LPC - GMM-UBM Z-norm, 7.5T-normIRISA LFCC RASTA GMM-UBM Z-norm, Tnorm, 8.5D-norm
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A glossary of the abbreviations used in the table is as follows:LPCC - Linear predi
tion 
epstral 
oeÆ
ientsESF - Ex
itation sour
e featuresDCC - Di�eren
e 
epstral 
oeÆ
ientsDC - Delta 
epstralsMFCC - Mel frequen
y 
epstral 
oeÆ
ientsLFCC - Linear �lter-bank 
epstral 
oeÆ
ientsCMS - Cepstral mean subtra
tionRASTA - Relative spe
tralFM - Feature mappingAANN - Autoasso
iative neural networkGMM - Gaussian mixture modelUBM - Universal ba
kground modelSVM - Support ve
tor ma
hinePCA - Prin
ipal 
omponent analysisD-norm - Distan
e normalizationDetails about these systems 
an be found in [45℄ and [46℄. It is evident that mostof these systems use spe
tral features, espe
ially MFCC and DC, and are based onGMMs. In this sense, the system des
ribed in this thesis (IITM) attempts to explorenovel features. The best performan
e of speaker veri�
ation obtained for NIST 2003dataset, as reported in [46℄, is an EER value of 6.5 %. The main reasons for the betterperforman
e of these systems 
ould be the following:1. Some systems pool data from all types of 
hannels to develop 
hannel-dependentmodels. For the unknown utteran
e, the 
hannel is dete
ted and the featuresare mapped into a 
hannel-independent spa
e. This may redu
e the mismat
h78



between the training and test patterns.2. Some systems use an automati
 spee
h re
ognizer to 
ategorize spee
h into dif-ferent sound units. Separate models are then developed for the di�erent 
ate-gories of sound units. Speaker-dependent language models are also developedusing the output of the re
ognizer.3. Modeling prosodi
 features su
h as intonation and duration has been shown tobe e�e
tive for speaker veri�
ation.6.5 SUMMARYIn this 
hapter, the issue of s
ore normalization was dis
ussed. Three methods ofnormalization of s
ores were proposed. In the model normalization method, model-spe
i�
 statisti
s were estimated from example impostor utteran
es. However, modelnormalization su�ers from the mismat
h between the example utteran
es and thetest utteran
e. Hen
e, methods of test normalization were investigated. A methodbased on the rank of 
laimant s
ores among the ba
kground models was proposed,to ex
lude non-
ompetitive s
ores for normalization. Another method was proposed,based on framewise weighting of s
ores. Eviden
es due to 
omplementary featureswere 
ombined to improve the performan
e of speaker veri�
ation.
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CHAPTER 7
SUMMARY AND CONCLUSIONSThe obje
tive of automati
 speaker veri�
ation is to validate a speaker's 
laim of iden-tity based on the speaker's voi
e. Speaker veri�
ation 
onsists of three steps, namely,feature extra
tion, modeling and s
ore normalization. In this thesis, we have addressedissues related to feature extra
tion and s
ore normalization. In feature extra
tion, sig-ni�
an
e of the position of analysis window was dis
ussed for a

urate estimation ofshort-time spe
tral 
hara
teristi
s. A feature for speaker veri�
ation was developedbased on the di�eren
e between �ne and gross spe
tra of spee
h. Autoasso
iative neu-ral network models were used to estimate the probability density fun
tion of featureve
tors in the feature spa
e. Methods of model normalization and test normalizationwere proposed for 
alibrating the s
ores obtained from the models. Eviden
es were
ombined from three di�erent features, whi
h represent 
omplementary informationfor speaker veri�
ation.7.1 CONTRIBUTIONS OF THE WORK1. Pit
h syn
hronous analysis of spee
h was studied for a

urate estimation ofshort-time spe
tral 
hara
teristi
s. Pit
h syn
hronous LPCC features yieldeda lower value of within-speaker to a
ross-speaker dissimilarity, as 
ompared toLPCCs obtained by blo
k pro
essing.2. Di�eren
e 
epstral 
oeÆ
ients were proposed as a feature for speaker veri�
a-tion. The ability of these features to add 
omplementary eviden
e for speaker81



veri�
ation was illustrated.3. Methods for model normalization and test utteran
e normalization were pro-posed.4. Eviden
es from three features were 
ombined, namely, LPCC features, di�er-en
e 
epstral 
oeÆ
ients and ex
itation sour
e features. The features are 
om-plementary sour
es of information and hen
e, their 
ombination improves theperforman
e of veri�
ation.7.2 SCOPE FOR FUTURE WORK1. Features that are robust to 
hannel variations need to be extra
ted from spee
hsignal. This 
an help redu
e the mismat
h between training and test utteran
es
aused by 
hannel e�e
ts.2. Certain 
ategories of sounds may be more important for speaker re
ognitionthan others. Thus, for ea
h speaker, spee
h 
an be 
lassi�ed into a few broad
ategories of sound units. This may be done in an unsupervised manner ratherthan expli
itly using a spee
h re
ognizer. A separate model 
an be developedfor ea
h 
ategory, and the eviden
es due to di�erent models 
an be 
ombinedfor speaker veri�
ation.3. The temporal variation of feature ve
tors may 
ontain useful speaker-spe
i�
information. Methods based on modeling the probability density fun
tion offeature ve
tors overlook this aspe
t. Hen
e, methods are needed to representand model the temporal information.
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APPENDIX ABACKPROPAGATION ALGORITHM FORFEEDFORWARD NEURAL NETWORKSMultilayer feedforward neural networks are an important 
lass of neutral networks.Typi
ally, a multilayer feedforward neural network 
onsists of a set of sensory units(sour
e nodes) that form the input layer, 
omputation nodes that form one or morehidden layers, and 
omputation nodes that form the output layer. The input signalpropagates through the network in a forward dire
tion, on a layer-by-layer basis. Theerror between the desired pattern and the output pattern is used to update the weightsof the network, using a method 
alled ba
kpropagation algorithm. The obje
tive ofthis appendix is to dis
uss the ba
kpropagation learning algorithm. A detailed dis
us-sion of multilayer feedforward neural networks 
an be found in [27℄ and [30℄.In multilayer feedforward neural networks, ea
h neuron is 
hara
terized by an a
tiva-tion fun
tion that 
ould be a linear or a nonlinear fun
tion of the inputs to the neuron.Let vj denote the indu
ed lo
al �eld (i.e., the weighted sum of all synapti
 inputs plusthe bias) of neuron j, and let yj denote the output of the neuron. Then, an exampleof nonlinear a
tivation fun
tion is the sigmoidal nonlinearity de�ned by the logisti
fun
tion: yj = 11 + exp(�vj) :The ne
essary 
ondition here is that the nonlinearity should be smooth, i.e., di�eren-tiable everywhere. In the present work, the following nonlinearity has been used:yj = tanh(�vj);



where � = 0:66 has been 
hosen, based on experiments.The neurons of the hidden layers are not part of the input or the output layer.However, the hidden neurons enable the network to learn 
omplex tasks by extra
tingprogressively meaningful features from the input patterns. Also, it is important todistinguish between fun
tion signals and error signals. A fun
tion signal is an inputsignal that 
omes in at the input end of the network, propagates forward throughthe hidden layers of the network, and emerges at the output end of the network asan output signal. An error signal originates at an output neuron of the network andpropagates ba
kward, layer by layer, through the network.In the remaining part of the appendix, derivation of the ba
kpropagation algorithmis presented. In Se
tion A.1, a summary of the notations used in the derivation ispresented. Se
tion A.2 dis
usses the derivation of the algorithm.A.1 NOTATION� The indi
es i, j and k refer to di�erent neurons in the network. The signalspropagate through the network from left to right, neuron j lies in a layer to theright of neuron i, and neuron k lies in a layer to the right of neuron j whenneuron j is a hidden unit.� In iteration n, the nth training pattern is presented to the network.� E(n) refers to the instantaneous sum of error squares at iteration n. The averageof E(n) over all values of n is denoted by the average energy Eav.� ej(n) refers to the error signal at the output of neuron j of iteration n.� dj(n) refers to the desired response for neuron j and is used to 
ompute ej(n).84



� yj(n) denotes the fun
tion signal appearing at the output of neuron j at iterationn.� wji(n) denotes the synapti
 weight 
onne
ting the output of neuron i to the inputof neuron j at iteration n. The 
orre
tion applied to this weight at iteration nis denoted by �wji(n).� The indu
ed lo
al �eld of neuron j at iteration n is denoted by vj(n). It is thesignal applied to the a
tivation fun
tion asso
iated with neuron j.� The a
tivation fun
tion des
ribing the input-output fun
tional relationship ofthe nonlinearity asso
iated with neuron j is denoted by �j(:).� The bias applied to neuron j is denoted by bj. Its e�e
t is represented by asynapse of weight wj0 = bj 
onne
ted to a �xed input equal to +1.� The ith element of the input ve
tor (pattern) is denoted by xi(n).� The kth element of the overall output ve
tor (pattern) is denoted by ok(n).� The learning-rate parameter is denoted by �.� ml denotes the number of nodes (size) in layer l of the network where, l =0; 1; :::; L and L denotes the depth (number of layers) of the network.A.2 BACKPROPAGATION ALGORITHMThe error signal at the output of neuron j at iteration n is de�ned byej(n) = dj(n)� yj(n); (A.1)where neuron j is an output node. The instantaneous sum of error squares over allneurons in the output layer is given byE(n) = 12Xj�C ej2(n); (A.2)85



where the set C in
ludes all the neurons in the output layer of the network. Theaverage squared error energy is obtained asEav(n) = 1N NXn=1E(n); (A.3)where N denotes the total number of patterns 
ontained in the training set. For agiven training set, Eav represents a 
ost fun
tion. The obje
tive of the learning pro
essis to adjust the free parameters of the network to minimize Eav.
y = +1

y
i
(n)

wj0(n) = bj(n)

vj(n) φ ( .) yj(n) −

dj(n)

ej(n)
wji n( )

Neuron  j

 1

 0

Fig. A.1: Signal-
ow graph highlighting the details of output neuron j.Figure A.1 depi
ts neuron j being fed by a set of fun
tion signals produ
ed by alayer of neurons to its left. The indu
ed lo
al �eld vj(n) produ
ed at the input of thea
tivation fun
tion asso
iated with neuron j is given byvj(n) = mXi=0wji(n)yi(n); (A.4)86



where m is the total number of inputs applied to neuron j, ex
luding the bias. Thus,the fun
tion signal yj(n) appearing at the output of neuron j at iteration n is givenby yj(n) = �j(vj(n)): (A.5)The gradient or the partial derivative �E(n)�wji(n) 
an be expressed, using the 
hain rule of
al
ulus, as follows: �E(n)�wji(n) = �E(n)�ej(n) �ej(n)�yj(n) �yj(n)�vj(n) �vj(n)�wji(n) : (A.6)The various partial derivatives in the above equation are obtained as follows:�E(n)�ej(n) = ej(n): (A.7)
�ej(n)�yj(n) = �1: (A.8)

�yj(n)�vj(n) = �0j(vj(n)): (A.9)
�vj(n)�wji(n) = yi(n): (A.10)Substituting for the various partial derivatives in the expression for �E(n)�wji(n) , we obtain�E(n)�wji(n) = �ej(n)�0j(vj(n))yi(n): (A.11)The 
orre
tion �wji(n) applied to wji(n) is de�ned by the delta rule as follows:�wji(n) = �� �E(n)�wji(n) ; (A.12)87



where � is the learning-rate parameter of the ba
kpropagation algorithm, and the useof minus sign a

ounts for gradient des
ent in weight spa
e. Thus,�wji(n) = �Æj(n)yi(n); (A.13)where the lo
al gradient Æj(n) is de�ned byÆj(n) = ��E(n)�vj(n)= ��E(n)�ej(n) �ej(n)�yj(n) �yj(n)�vj(n)= �ej(n)�0j(vj(n)): (A.14)It is seen that the lo
al gradient is dependent on the 
orresponding error signal. Forthe nodes of the output layer, the 
omputation of the error signal is straightforward,sin
e the desired response is known. The situation for nodes of hidden layers is shownin Figure A.2, whi
h depi
ts a neuron j as a hidden node of the network.
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Fig. A.2: Signal-
ow graph highlighting the details of output neuron k
onne
ted to hidden neuron j. 88



The lo
al gradient Æj(n) for hidden neuron j is rede�ned asÆj(n) = ��E(n)�yj(n) �yj(n)�vj(n)= ��E(n)�yj(n)�0j(vj(n)): (A.15)The instantaneous sum of error squares E(n) is given byE(n) = 12Xk�C e2k(n); (A.16)where k denotes a neuron in the output node. Now, di�erentiating the above equationwith respe
t to the fun
tion signal yj(n), we get�E(n)�yj(n) =Xk ek(n)�ek(n)�yj(n) : (A.17)Using the 
hain rule for the partial derivative �ek(n)�yj(n) , the above equation 
an be rewrit-ten as �E(n)�yj(n) =Xk ek(n)�ek(n)�vk(n) �vk(n)�yj(n) : (A.18)Also, ek(n) = dk(n)� yk(n)= dk(n)� �k(vk(n)); (A.19)where neuron k is an output node.Hen
e �ek(n)�vk(n) = ��0k(vk(n)): (A.20)The indu
ed lo
al �eld for neuron k is given byvk(n) = mXj=0wkj(n)yj(n); (A.21)89



where m is the total number of inputs (ex
luding the bias) applied to neuron k.Di�erentiating the above equation with respe
t to yj(n) yields�vk(n)�yj(n) = wkj(n): (A.22)Thus, the desired partial derivative of E(n) is obtained as�E(n)�yj(n) = �Xk ek(n)�0k(vk(n))wkj(n)= �Xk Æk(n)wkj(n); (A.23)where the de�nition of the lo
al gradient has been used for the nodes of the outputlayer.Finally, the ba
kpropagation formula for the lo
al gradient Æj(n) is given byÆj(n) = �0j(vj(n))Xk Æk(n)wkj(n); (A.24)where neuron j is hidden.Thus, the lo
al gradients are 
omputed ba
kward, starting from the hidden layer pre-
eding the output layer.The 
orre
tion �wji(n) applied to the weight 
onne
ting neuron i to neuron j is de�nedby the delta rule as follows: �wji(n) = �Æj(n)yi(n): (A.25)To summarize the ba
kpropagation algorithm:1. If neuron j is an output node, Æj(n) equals the produ
t of the derivative �0j(vj(n))and the error signal ej(n), both of whi
h are asso
iated with neuron j.2. If neuron j is a hidden node, Æj(n) equals the produ
t of the asso
iated derivative�0j(vj(n)) and the weighted sum of the Æs 
omputed for the neurons in the nexthidden or output layer that are 
onne
ted to neuron j.90
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