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ABSTRACTKeywords: speaker veri�ation, pith synhronous analysis, di�erene epstral oef-�ients, autoassoiative neural network models, sore normalization, omplementaryfeatures, ombination of evidenes.The objetive of automati speaker veri�ation is to validate a speaker's laimof identity, based on the speaker's voie. Speaker veri�ation onsists of three steps,namely, feature extration, modeling and sore normalization. The objetive of thisresearh work is to address ertain issues in feature extration and sore normalization.Most methods of feature extration onsider uniform bloks of speeh of 10-30 ms du-ration for analysis, overlooking the position of window of analysis. In this work, thesigni�ane of pith synhronous analysis of speeh is studied for aurate estimation ofshort-time spetral harateristis. Spetral features suh as linear predition epstraloeÆients (LPCC) and mel-frequeny epstral oeÆients represent harateristis ofboth the sound unit and the speaker. We propose di�erene epstral oeÆients fordeemphasizing the sound unit information in the short-time spetrum. The e�etive-ness of di�erene epstral oeÆients for speaker veri�ation and its ability to provideomplementary information to spetral features is demonstrated. Autoassoiative neu-ral network (AANN) models are used to estimate the probability density funtion offeature vetors in the feature spae. An important advantage of AANN models isthat they do not make a priori assumptions about the shape of the probability densityfuntion. Due to di�erene in training and test utteranes, the sores obtained fromthe models need to be alibrated, before omparison with a deision threshold. In this



work, methods of normalization are proposed for weighting the sores of di�erent testsegments, whih result in an improvement over the existing methods. Traditionally,speaker veri�ation systems use a single feature for representing speaker-spei� infor-mation. In this work, ombination of evidenes from three omplementary features,namely, LPCCs, di�erene epstral oeÆients and exitation soure features, is shownto result in a signi�ant improvement in the performane of veri�ation.
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CHAPTER 1
INTRODUCTION TO AUTOMATIC SPEAKERRECOGNITIONSpeeh is one of the most basi forms of ommuniation among human beings. Speehis a omposite signal that ontains information about the message to be onveyed,the harateristis of the speaker and the language of ommuniation. The uniqueharateristis of the voie of a speaker are due to anatomial and physiologial fators.Anatomial fators relate to the physial aspets of speeh prodution mehanism,namely, the voal trat system and the voal folds. Physiologial fators reet thespeaking habits of a person, suh as speaking rate, aent and mannerisms. Thesefeatures are embedded in the speeh signal, and hene, are useful in reognizing thespeaker.Automati speaker reognition is the task of reognizing a person by a mahine,using the information obtained from his/her speeh signal. Automati speaker reogni-tion systems are useful in appliations where aess to a faility needs to be ontrolled.Although tehniques suh as automati �ngerprint analysis, fae reognition, retinalsanning and magneti ards with passwords are employed for suh appliations, theyare limited by ost and ease of usage. Also, systems based on alphanumeri passwordsan be ompromised. On the other hand, speeh is a natural and onvenient formof input that arries the signature of the speaker. Moreover, speeh is inexpensiveto ollet and analyze, and is hard to mimi. Therefore, automati speaker reogni-tion is suitable for suh appliations. Automati speaker reognition systems an be1



used as a preproessing stage in automati speeh reognition systems, to improve theperformane of the speeh reognizer. They an be used for mahine identi�ationof partiipants in meetings, onferenes or onversations. They an also be used inonjuntion with automati speeh reognizers for analyzing multi speaker data, toobtain a reord of speeh uttered by di�erent speakers. In law enforement, speakerreognition systems an be used to help identify suspets. Thus, speaker reognitionsystems have a number of important appliations.1.1 SPEAKER RECOGNITION BY HUMANSAn insight into the ability of human beings to identify speakers from their speeh mayo�er lues for automati speaker reognition. Human beings an reognize speakersfrom their voies with ease, given a ertain degree of familiarity. This is due to theirability to extrat spei� ues for a given speaker, and also due to their ability to inte-grate higher soures of knowledge suh as ontext, manner of speaking and language.In [1℄, 2-3 seonds of speeh was observed to be suÆient for subjets to identify famil-iar voies, while the performane of reognition dereased for unfamiliar voies. Also,when the utteranes were played bakward, the performane of reognition redueddrastially, thus highlighting the importane of timing and artiulatory ues. Humanbeings an easily pereive mimiry of familiar voies [2℄. The ability of human beingsto reognize familiar voies in adverse onditions is remarkable [2℄. However, the per-formane of mahines an exeed that of human beings, when the test utterane isshort and the speakers are unfamiliar. This is beause the time required by humanbeings to learn a new voie is normally long and mahines may be trained muh faster.
2



1.2 CATEGORIES OF AUTOMATIC SPEAKER RECOGNITIONAutomati speaker reognition an be divided into two ategories: speaker identi�a-tion and speaker veri�ation. The speaker identi�ation task is to determine if thespeaker of an unknown (test) utterane is present in a given set of speakers, and if so,to establish the identity of that speaker. The task is alled losed-set identi�ation, ifit is known that the speaker is always a member of that set. If the speaker need notbe a member of that set, then the task is alled open-set identi�ation. The speakerveri�ation task is to determine if the speaker is indeed the person he / she laimsto be, i.e., to validate the laim of the speaker. In speaker identi�ation, the numberof deision alternatives is equal to the size of the population, whereas in veri�ationthere are only two alternatives, aeptane or rejetion of the laim.Speaker reognition an be performed in a text-dependent or text-independentmanner. A text-dependent system requires a speaker to utter a set of prede�nedphrases or sentenes while olleting the training and test utteranes. A text-independentsystem does not depend on the text of the training or test utteranes. The objetiveof this thesis is to address issues in text-independent speaker veri�ation.1.3 ISSUES IN AUTOMATIC SPEAKER VERIFICATIONAs mentioned in Setion 1.1, human beings extrat ertain ues from the speeh of aspeaker, that help them to identify the speaker. But the exat nature of these ues isnot fully understood. Moreover, the tools available for speeh proessing are not ade-quate to represent the higher soures of knowledge, suh as the speaking mannerismsof the individual. Hene, automati speaker reognition is approahed as a statisti-al pattern reognition problem. In this setion, we disuss the general approah toautomati speaker veri�ation and issues involved in the task.3



Automati speaker veri�ation entails the following steps:1. Representation of speaker-spei� harateristis and their eÆient measure-ment from the speeh signal, known as feature extration2. Development of a model (prototype) for eah speaker using referene featuresextrated from the speeh of that speaker, known as modeling3. Comparison between the referene features and the features extrated from atest utterane, alled mathing4. Deision mehanism for veri�ation based on the sore obtained during math-ing, known as soringThe objetive of feature extration is the quantitative representation of speaker-spei� properties and the eÆient measurement of these properties from the aoustispeeh signal. It is desirable that these features have the following properties [3℄:� High interspeaker-to-intraspeaker variability� Robustness to the harateristis of transmission hannel, mirophone and am-bient noise� Ease of extration from the speeh signal� Robustness to aging of the speaker� Not subjet to mimiryTypially, short-time analysis of speeh is performed to extrat features whih representthe harateristis of the two omponents of speeh prodution mehanism, namely,the exitation soure and the voal trat system. Although high-level features suh asspeaking rate, aent and verbal mannerisms of the speaker onvey signi�ant speaker-spei� information, the existing tehniques of feature extration are not adequate to4



represent suh information. Most of the urrent speaker reognition algorithms arebased on short-time features extrated from speeh signal.One the features are extrated from the speeh signal, the next step is to developa model to represent the set of features. Models an be lassi�ed as parametri ornonparametri models. Parametri models assume a struture haraterized by ertainparameters, whih are estimated from the given features. In general, a model mayrepresent any information derived from the set of features. For example, the modelmay represent the following:� Statistial average of the features omputed over long utteranes (of severalseonds or minutes) of speeh� Estimate of the probability density funtion of the features in the feature spae� Estimate of the temporal information present in the sequene of featuresSome issues in the hoie of models are as follows:� The hoie of features for modeling speaker-spei� harateristis� The amount of speeh data required to reliably estimate the parameters of themodel� The ability of the model to generalize the harateristis of the speaker fromthe given set of featuresThe model of a given speaker is presented with the features extrated from a testutterane, whose speaker is unknown. Comparison between the referene features andthe test features depends on the nature of the model. The following ases are possible:� If statistial averages of the features are used, a distane metri is required foromparison. 5



� If the model represents an estimate of probability density funtion of the fea-tures, then likelihood is one measure of similarity between the referene and testfeatures.� If the model represents an estimate of the temporal information, then temporalmathing sore or likelihood an be used as measures of similarity.The omparison generates a sore that indiates the similarity between the refer-ene features and the test features. Based on this sore, a deision needs to be madeon the validity of the laim. Due to di�erenes in the referene and the test utter-anes, the sore needs to be alibrated before setting a threshold for deision. Hene,normalization and soring methods are needed for this purpose.1.4 ISSUES ADDRESSED IN THIS THESISThe objetive of this researh work is to address ertain issues related to a text-independent speaker veri�ation system. The fous of researh is: (a) To explorefeatures for e�etive representation of speaker-spei� harateristis and (b) to ex-plore tehniques of sore normalization for veri�ation. The signi�ane of the positionof window for analyzing speeh is disussed. Pith synhronous analysis of speeh isstudied for aurate estimation of short-time spetral harateristis. Di�erene ep-stral oeÆients are proposed as a feature for speaker veri�ation, by deemphasizingthe linguisti information present in the speeh signal. The ability of this featureto provide omplementary information for speaker veri�ation is also demonstrated.Speaker-spei� models based on autoassoiative neural networks are used to estimatethe probability density funtion of feature vetors. The problem of sore normaliza-tion for speaker veri�ation is disussed. Tehniques for normalization of sores areproposed, and a omparison with the existing methods is presented. Most speaker ver-i�ation systems use a single feature for representing speaker-spei� information. In6



this work, evidenes due to several omplementary features are ombined for inreasingdisrimination between genuine and impostor speakers.1.5 ORGANIZATION OF THE THESISThe thesis is organized as follows:In Chapter 2, a brief review of the existing approahes to speaker veri�ation is pre-sented.Chapter 3 desribes a baseline system for speaker veri�ation using spetral featuresand autoassoiative neural network models, and desribes a few re�nements for per-formane enhanement of the system.Chapter 4 disusses pith synhronous analysis of speeh for extration of short-timespetral features, and illustrates its advantages over the traditional blok-based anal-ysis.In Chapter 5, the development of di�erene epstral oeÆients for speaker-spei�haraterization is desribed. A speaker veri�ation system based on the above fea-ture is also disussed.In Chapter 6, methods for normalization of sores are proposed and evidenes due todi�erent features are ombined for speaker veri�ation.Chapter 7 presents a summary of the work and outlines the sope for further researh.
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CHAPTER 2
REVIEW OF APPROACHES FOR SPEAKERVERIFICATIONThis hapter presents a brief review of approahes for speaker veri�ation. In par-tiular, features for speaker veri�ation, methods for modeling speaker-spei� har-ateristis and tehniques for sore normalization are reviewed. Features for speakerveri�ation are mostly obtained by short-time analysis of speeh, whih normally repre-sent the harateristis of exitation soure and voal trat system. These are reviewedin Setion 2.1. Speakers an be modeled with features derived from speeh signal, us-ing parametri or nonparametri models. Setion 2.2 reviews approahes for modelingspeaker-spei� harateristis. Due to mismath between training and test data, thesores resulting from the models annot be ompared to a ommon threshold for de-ision. Hene, the sores are alibrated using methods of normalization. Setion 2.3reviews the issue of normalization and some existing methods of normalization.2.1 FEATURES FOR SPEAKER VERIFICATIONSpeeh is produed by exiting a time-varying voal trat system with a time-varyinginput. Speaker-spei� information is present in both these omponents of speehprodution mehanism. Short-time analysis of speeh is an e�etive tool for extrationof suh information.
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2.1.1 Features Based on Voal Trat SystemThe voal trat system an be onsidered as a asade of avities of varying rosssetions. The size and shape assumed by the voal trat while produing various soundunits is a harateristi of the sound unit and the speaker. Formants are resonanesof the voal trat system. They vary in frequeny, bandwidth and relative amplitude,depending on the sound unit being produed and the speaker uttering the sound.However, aurate extration of formants from speeh signal is a diÆult task [4℄ [5℄,and distanes based on formant frequenies are not suÆiently disriminative betweenspeakers for text-independent systems.Linear predition (LP) analysis of speeh [6℄ provides an approximation to short-time spetrum of the transfer funtion of the voal trat �lter, as well as the soureof exitation to the �lter. In [7℄, di�erent parametri representations of speeh de-rived from LP analysis of speeh were investigated for their e�etiveness for automatispeaker reognition. These were, the preditor oeÆients, the impulse response ofthe voal trat system, the autoorrelation of the impulse response and the epstrumderived from the logarithmi transfer funtion of the voal trat system. In [8℄, longterm averaging of reetion oeÆients (obtained during LP analysis) was shown to in-rease the ratio of interspeaker-to-intraspeaker variability. In [9℄, adaptive omponentweighting epstral oeÆients were proposed, to emphasize the formant struture of thespeeh spetrum obtained by LP analysis and attenuate the broad bandwidth spetralomponents. In [10℄, a method alled orthogonal linear predition was proposed anda small subset of the resulting orthogonal oeÆients was shown to exhibit signi�antinterspeaker variation. In [11℄, prinipal spetral omponents were derived from LP o-eÆients for speaker veri�ation task. In [12℄, epstral oeÆients extrated by meansof LP analysis, alled linear predition epstral oeÆients (LPCC) were shown to yieldnearly the same performane of speaker reognition as that due to epstral oeÆients10



obtained by short-time analysis using DFT. In [12℄ and [13℄, orthogonal polynomialrepresentations were proposed to haraterize transitional spetral information. Mel-frequeny epstral oeÆients (MFCC) have been used for speaker reognition [14℄.They are obtained by warping the frequeny sale in suh a way as to resolve thespetrum �nely at lower frequenies and relatively oarsely at higher frequenies [15℄.2.1.2 Features Based on Exitation SoureDuring the prodution of speeh, the vibration of voal folds provides quasi-periodiimpulse-like exitation to the voal trat system. Linear predition (LP) residual,obtaining by inverse �ltering the speeh, is an approximation to the soure of exita-tion of the voal trat system. In [16℄, a feature alled real epstrum was omputedfrom the LP residual by ignoring the phase information, retaining the amplitude spe-trum and by introduing a logarithmi nonlinearity. Long-term average of the realepstrum was shown to have a low intraspeaker and high interspeaker variability. In[17℄, a nonlinear predition model based on neural networks was used to ompute anerror signal. Certain measures were de�ned over LP residual, suh as mean squareerror, mean absolute error and variane of the residue, that were shown to reduethe error rate in speaker reognition. Liljenrants-Fant (LF) model has been used asa parametri model to haraterize glottal ow derivative [18℄. In [19℄, estimate ofglottal ow derivative was obtained using LF model to apture its oarse struture,while the �ne struture was represented by energy and perturbation measures. Bothoarse and �ne-struture glottal features were shown to result in the redution of er-ror in a speaker identi�ation system, when used in onjuntion with Mel-frequenyepstral oeÆients. However, in the above methods, the features of exitation sourewere modeled using a probabilisti framework. In [20℄, exitation soure informationpresent in the LP residual was extrated using autoassoiative neural network models.11



Here, the goal was to apture the higher order relationship existing among the samplesof the LP residual. The e�et of the order of LP analysis on speaker veri�ation wasstudied. An experimental study on the signi�ane of exitation soures orrespond-ing to di�erent sound units was also onduted, and some sounds were observed to bemore signi�ant for speaker veri�ation than others.Pith is the fundamental frequeny of vibration of voal folds. Pith is a uniqueharateristi of eah speaker due to the di�erenes in physial struture of voal foldsamong di�erent speakers. It an also be di�erent due to speaking style and aentimposed by di�erent speakers. A summary of various algorithms for pith extrationwas presented in [21℄. Unlike spetral features that are a�eted by hannel variations,noise and distane between the speaker and mirophone, pith is insensitive to theabove fators. In [22℄, linear transformation of vetors representing the pith ontourswas shown to improve the ratio of interspeaker to intraspeaker variane, for a text-dependent speaker reognition system. In [8℄, long-term averages of pith and standarddeviation of pith were shown to be speaker dependent. In [23℄, a lognormal distribu-tion of pith was proposed instead of a Gaussian distribution. A probabilisti modelfor estimated pith was suggested, using a mixture of three lognormal distributionswith tied means and varianes.Variation of pith as a funtion of time is alled intonation. While a speaker'saverage pith may be mimiked, it is diÆult for an impostor to mimi the loal varia-tions of pith. Intonation has been more useful in text-dependent speaker reognition.In [22℄ and [24℄, similarity between the intonation patterns of referene and test ut-teranes was measured using dynami time warping algorithm. Two other featuresrelated to pith are jitter and shimmer. Jitter is de�ned as the perturbation of pith,while shimmer represents the variation in peak amplitudes of the signal in suessivepith periods [25℄. 12



2.2 MODELING SPEAKER CHARACTERISTICSParametri and nonparametri models have been studied for speaker veri�ation. In[26℄, a nearest-neighbour distane measure was proposed, based on the similarity of dis-tributions of features extrated from referene and unknown utteranes. The measuredid not assume any form of the distributions involved. A relationship was establishedbetween the distane measure and Kullbak-Leibler divergene [27℄.In [28℄, vetor quantization (VQ) odebook was used as a means for haraterizingthe short-time spetral features of a speaker. A VQ odebook was developed for eahspeaker. The deision on the identity of the unknown speaker was based on a minimumdistane lassi�ation rule. The e�et of di�erent parameters on the performane ofveri�ation was studied. These parameters were the odebook size, phoneti ontentof the text and di�erene in reording sessions.In [14℄, Gaussian mixture models (GMM) were proposed for text-independentspeaker identi�ation. The basis for suh a model is that the individual Gaussianomponents of a GMM represent speaker-dependent spetral shapes that are usefulfor modeling speaker identity, and also that Gaussian mixtures an model arbitrarydensities. The experiments reported in [14℄ deal with algorithmi issues suh as modelinitialization, variane limiting and model order seletion. Tehniques suh as ep-stral mean subtration, di�erene oeÆients and frequeny warping were applied toompensate for spetral variability due to telephone hannel and handsets.The methods mentioned above model only the distribution of feature vetors anddo not make use of the temporal orrelations that exist in the sequene of featurevetors. In [29℄, a hidden Markov model (HMM) was proposed to inorporate temporalorrelations in the VQ model. In this approah, short-term stationary regions weremodeled by states, while the slower variations of the signal were modeled by thetransitions between suh states. The signal in eah state was modeled by a type of13



HMM alled linear preditive HMM.Arti�ial neural network models with di�erent topologies an perform di�erentpattern reognition tasks [27℄ [30℄. In [31℄, the ability of a neural network model todisriminate between patterns of di�erent lasses was exploited for speaker reognition.A global lassi�er for a set of speakers was developed, whose utility was limited to asmall number of speakers. Eah model was trained to disriminate between speehdata of the given speaker and a small set of impostors. In [32{34℄, mapping ability ofneural network models was exploited to apture speaker-spei� knowledge. In [35℄,the ability of AANN models to estimate arbitrary densities was demonstrated. It wasillustrated experimentally that a network an be designed suh that the training errorsurfae relates to the distribution of the given data, depending on the onstraintsimposed by the struture of the network. The e�etiveness of AANN models forspeaker veri�ation was also demonstrated. In [20℄ [36℄, AANN models were used toaquire the temporal relationship between the samples of linear predition residual, tomodel speaker-spei� harateristis.Methods based on speaker-spei� mapping of features have been used for speakerveri�ation. The goal of this approah was to apture speaker-spei� information bymapping a set of feature vetors spei� to linguisti information (message part) inthe speeh, on to a set of feature vetors representing both the linguisti and speaker-spei� information. In [37℄, a nonlinear vetorial interpolation funtion was pro-posed for text-dependent speaker reognition using the mapping property of a multi-layer feedforward neural network (MLFFNN), to obtain the interpolation vetor foreah speaker. In [32℄, speaker-spei� mapping approah was investigated for text-independent speaker reognition , using epstral oeÆients derived from pereptuallinear predition (PLP) as features. In [33℄, parameters for representing linguisti in-formation and linguisti plus speaker-spei� information were extrated from speeh.14



Speaker-spei� information was aptured by nonlinear mapping using a multilayerfeedforward neural network.2.3 DECISION LOGIC FOR VERIFICATION AND IDENTIFICATIONOne a model is developed for a speaker, deision on the validity of the laim is madebased on the output sore obtained from the model for a test utterane. Due tomismath between training and test data, this sore is spei� to the model and thetest utterane. The objetive of sore normalization is to transform the sores into arange where a ommon threshold for deision may be set, whih is valid for any pairof training and test data.2.3.1 The Problem of Sore NormalizationGiven a speeh utterane x and a laimed identity �, the objetive of speaker veri-�ation is to deide if x was uttered by the genuine speaker �, or by an impostor.This deision an be based on the omparison of a similarity measure (or a distanemeasure) between the speaker's model and the utterane x to a threshold. In theprobabilisti framework, let O denote the set of observations orresponding to thetest utterane x and let M denote the statistial model orresponding to speaker �.Aording to Bayes theorem,P (M=O)p(O) = p(O=M)P (M); (2.1)where P (M=O) is the a posteriori probability of the hypothesized speaker model Mgiven the set of observations O, p(O) is the probability density funtion of the ob-servations, p(O=M) is the likelihood of M with respet to O and P (M) is the priorprobability of ourrene of the model M . For speaker veri�ation, we need to eval-uate P (M=O). However, the output of a statistial model is an estimate of p(O=M).15



Assuming the ourrene of eah model to be equally likely, the identity laim an beaepted if p(O=M) > �; (2.2)and rejeted otherwise, where � is the deision threshold. This deision rule annotbe used in pratie due to the following reasons:1. Due to di�erenes in the training data of di�erent speakers, the resulting mod-els are not equally representative of the speaker-spei� harateristis. Theassumption is that with suÆient speeh, the distribution of features in the fea-ture spae is a good representation of the sounds of the speaker. The amountof speeh data available to model a speaker may not always onform to thisassumption. The ability of a model to represent the distribution of featuresof a speaker is also a�eted by the intraspeaker variability of sounds withinthe speaker. Thus, some speakers are diÆult to model, while some are easilymodeled [38℄.2. Due to mismath between training and test data, the identity laim an berejeted due to a low likelihood sore, even if the laim is legitimate. The mainsoure of this mismath is the hannel through whih speeh is reeived, whihindues variability in the features, ausing them to move around in the featurespae. Another soure of this mismath is that, some sound units ourring inthe test data of a speaker might not have ourred adequately in the trainingdata of that speaker. This results in poor modeling of that sound unit andonsequently, a low likelihood sore.The objetive of normalization is to transform the sores to a range where a ommonthreshold an be determined for all tests. 16



2.3.2 Approahes to Sore NormalizationSpeaker veri�ation systems based on Gaussian mixture models ahieve a ertain de-gree of normalization by using a speaker-independent world modelMw to model speehin general. A normalized log-likelihood sore is obtained asS(M;O) = log(p(O=M))� log(p(O=Mw)) (2.3)Here, the mismathes that our between the test utterane and the modelM will havea orresponding e�et on the world modelMw, thus removing the bias in p(O=M) [39℄.A similar approah used a set of ohort speakers who were lose to the target speaker,thus viewing the ohorts as replaement for the world model [40℄. The seletion ofohorts an be done during training or testing. During training, a similarity measurewas used to ompare the speaker model with ohort models [41℄ [42℄.In zero normalization (Z-norm) method [43℄ [44℄, a model was tested against exam-ple impostor utteranes and the log-likelihood sores were used to estimate the mean�I and standard deviation �I of the impostor distribution. The quantities �I and �Iare spei� to the model of eah speaker and an be estimated o�ine. The normalizedsore was omputed as S = S(M;O)� �I�I : (2.4)Zero normalization is equivalent to saling the distribution of speaker-spei� sores.In test normalization, the objetive is to estimate the statistis of an impostorfor a given test utterane, whih an be used to disriminate the genuine speakerfrom impostors. In T-norm [43℄, a given test utterane was presented to a set ofbakground models, and the mean and variane of the resulting sores were omputed.The normalized sore was omputed in a manner similar to that of zero normalization.The use of variane parameter is to estimate the distribution of the bakground sores17



more aurately. Also, aousti mismath between training and test utteranes, thatis still possible in zero normalization method is avoided here.In the review of approahes, the sope is limited to review of algorithms / teh-niques for speaker veri�ation and it does not inlude the review of speaker veri�ationsystems developed in other laboratories over the world, and industries. In this regard,[45℄ and [46℄ are useful referenes for the interested reader. These soures briey disussthe speaker reognition systems being developed at various researh laboratories, andalso provide a performane omparison for the NIST Speaker Reognition Evaluationtask.2.4 MOTIVATION FOR THE PRESENT WORKIn this hapter, a brief review of the standard approahes to speaker veri�ation waspresented. In general, spetral and soure features are extrated from speeh signalto represent speaker-spei� harateristis. Most of the methods analyze speeh overuniform bloks of 10-30 ms duration for extrating spetral features. These methodsuse an arbitrary positioning of the window of analysis for feature extration. In thisthesis, pith synhronous analysis is studied to obtain an aurate estimation of theshort-time spetral features. The existing spetral features do not aim to spei�allyrepresent the harateristis of the speaker, sine they also ontain information aboutthe sound unit. We propose a method to deemphasize the speeh-spei� informationpresent in the short-time spetrum. Most of the existing approahes model the prob-ability density funtion of feature vetors using a parametri model suh as GMM.This approah assumes that the number of lusters in the feature spae of the speakeris known a priori, and that the probability density funtion of these lusters is Gaus-sian in shape. In the present work, AANN models have been used for estimation ofprobability density funtion of the features. AANN models do not make assumptions18



about the nature the of probability density funtion of features. Sore normalizationmethods help in reduing the e�et of aousti and hannel related mismath betweentraining and test utteranes. Existing methods are based on saling the distribution ofthe sores of genuine and impostor speakers and they give equal weightage to all theframes of the test utterane. We propose normalization methods to weight the soresof di�erent frames of the test utterane. Most speaker veri�ation systems are basedon a single feature. In this work, we disuss the importane of omplementary sets offeatures for speaker veri�ation. Combination of evidenes from omplementary setsof features is shown to improve the performane of speaker veri�ation.
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CHAPTER 3A BASELINE SPEAKER VERIFICATION SYSTEMIn this hapter, we desribe a baseline text-independent speaker veri�ation systemusing spetral features and autoassoiative neural network (AANN) models, whihprovides a framework for further experiments and performane evaluation. Setion 3.1desribes the omponents of the baseline system. The database used for experimentsand the metris for performane evaluation are disussed in Setions 3.2 and 3.3 re-spetively. Certain re�nements to the baseline system are proposed in Setion 3.4.3.1 COMPONENTS OF THE BASELINE SYSTEM3.1.1 Feature ExtrationSpeeh signal is preemphasized and frames of 20 ms duration are Hamming windowedwith a window shift of 5 ms. Short-time analysis of speeh is performed using 14thorder linear predition analysis. A 19 dimensional weighted linear predition epstraloeÆient (LPCC) vetor is omputed from the linear preditor oeÆients (LPC) ofeah frame of data [15℄. Cepstral mean subtration is performed to minimize the e�etof slowly varying harateristis of transmission hannel [12℄.3.1.2 AANN Models for Speaker Veri�ationAutoassoiative neural networks (AANN) are feedforward neural networks that per-form an identity mapping of the input spae [30℄. A three-layer AANN model withlinear units an apture the prinipal orthogonal omponents of a feature set, while a21



�ve-layer AANN with nonlinear units in the hidden layers an apture the probabilitysurfae of the feature vetors [30℄. The bakpropagation learning algorithm for multi-layer feedforward neural networks is desribed in Appendix A of this thesis. Fig. 3.1shows a �ve-layer AANN model that performs nonlinear prinipal omponent analysis.
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Fig. 3.1: A �ve-layer AANN model.The ability of AANN models to apture nonlinear subspaes was demonstrated in[35℄. The importane of error surfae of the training data in the feature spae wasstudied. It was observed that the average error was lower for the most frequently o-urring input vetors than for the less frequently ourring ones. It was demonstratedexperimentally that a network an be designed suh that the training error surfaerelates to the distribution of the given data, depending on the onstraints imposed onthe struture of the network. AANN models are advantageous ompared to Gaussianmixture models (GMM), when the surfae representing the distribution of features ishighly non-linear. This is beause, GMMs assume the shape of the omponents of thedistribution to be Gaussian, whih need not be the ase. Moreover, a GMM requiresspei�ation of the number of mixtures a priori.For the baseline system, a 5-layer AANN model is developed for eah speaker.The struture of the model is 19L 38N 4N 38N 19L, where the numbers indiate the22



number of nodes in eah layer. The symbols L and N denote, respetively, linear andnonlinear nature of the ativation funtion of the nodes in eah layer. The models aretrained using bakpropagation learning rule [27℄. Eah model is trained for 50 epohs,where one epoh denotes that all the feature vetors are presented to the model exatlyone.3.1.3 Normalization of SoresIn the baseline speaker veri�ation system, two existing methods, Z-norm and T-norm, are applied for normalization of sores [43℄ [44℄. For Z-norm, the impostor dataolleted from bakground speakers is presented to a laimant model, and the meanand variane of the sores are omputed. For test normalization, 20 bakground modelsare used. A given test utterane is presented to the 20 bakground models along withthe laimant model. The mean and variane of the sores of the bakground modelsare omputed. The normalizations are performed as desribed in Setion 2.3.3.2 DATABASE FOR SPEAKER VERIFICATIONThe database used in this study was seleted from NIST 2003 speaker reognitionevaluation [46℄. The speeh data was olleted over ellular hannel and sampled at8 kHz. The database ontains 149 male and 191 female speakers. The duration oftraining data for eah speaker is about 2 minutes. The duration of a test utteraneis between 15 and 45 seonds. 500 test utteranes of male speakers are onsideredfor veri�ation. Eah test utterane has 11 laimants, and the speaker of the testutterane may or may not be present among these 11 laimants. There are no rossgender tests. When a test utterane is presented to the model of a laimant speaker,a sore is obtained whih indiates the probability that the laimant speaker is thespeaker of the test utterane. Thus, laimants are ategorized as genuine and impostor23



laimants.3.3 PERFORMANCE EVALUATIONThe sore resulting from a model is ompared against a threshold, for aepting orrejeting the laim of the model. Two types of errors are possible in a speaker veri�a-tion system: (a) False aeptane or false alarm error where an impostor is identi�ed asthe genuine speaker, and (b) false rejetion or missed detetion error, where a genuinespeaker is lassi�ed as an impostor. The ost of false aeptane is higher than thatof false rejetion. For a low value of threshold, false rejetion error is low but falseaeptane error is high. As the threshold is inreased, false rejetion error inreasesbut false aeptane error dereases. For a partiular threshold, the two types of errorare equal. The error at that threshold is alled equal error rate (EER). Smaller thevalue of EER, better is the performane of the system.The probability of false aeptane an be plotted against that of false rejetionto observe the error harateristis. Detetion error trade-o� (DET) urves plot thenormal deviates orresponding to the error probabilities [47℄. These urves are linearand help in omparing the performane harateristis of di�erent systems. On theDET urve, the point where the line y = x intersets the urve indiates the EER.The DET urves for the normalized and unnormalized sores obtained for the baselinesystem are shown in Fig. 3.2.The EER measure an be used to evaluate the performane of a speaker veri�ationsystem. In this work, EER is omputed for three types of sores:1. Raw (unnormalized) sores obtained from the models2. Normalized sores obtained by alibrating the raw sores3. Saled sores whih are obtained as follows: For eah test utterane, all the 1124
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Fig. 3.2: DET urves for the unnormalized (raw) and normalized sores, forthe baseline system.raw sores are saled by the maximum value among the 11 sores.In addition, the perentage of the �rst ranks obtained by the genuine speakers is alsoomputed over all the test utteranes. These ranks are omputed for the raw sores.The signi�ane of saled sores is that they transform the sores of all test utteranesbetween zero and one. In all those test ases where the genuine speaker has obtainedthe �rst rank, the saled sore of the genuine speaker is one. Thus, saling is equivalentto test normalization, whih brings about a redution in EER. This is observed fromTable 3.1, whih lists the performane of the baseline system. The saled sores atas a referene against whih the performane of normalized sores an be ompared.Normalized sores are disussed greater detail in Chapter 6.
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Table 3.1: Performane of baseline speaker veri�ation system.% of �rst EER(%) for EER(%) for EER(%) forranks raw sores normalized sores saled sores72.2 26.1 16.1 12.93.4 REFINEMENTS TO THE BASELINE SYSTEMIn this setion, we propose ertain re�nements to the baseline system in the manner ofseleting features for training the AANN models. These re�nements are based on theinterpretation that the feature spae for a given speaker onsists of a set of lusters ofvarying loations and densities.3.4.1 Temporal Smoothing of Feature VetorsFeature vetors extrated from the speeh signal an be viewed as points in a mul-tidimensional feature spae. For eah speaker, the feature vetors extrated from agiven ategory of sound unit an be expeted to form a luster in the feature spae.Temporal smoothing of features an be performed to make the lusters more ohesivein the feature spae. Suh smoothing redues the e�et of outliers generated duringthe extration of features. As a result, the training error of AANN models is redued,during the estimation of probability density funtion of feature vetors. This is il-lustrated in Fig.3.3, where the training error is plotted for AANN models trained onLPCC features and smoothed LPCC features, for a given speaker. It is evident thatthe models trained on smoothed LPCC features attain a lower value of training error.However, for a given vowel sound, there is overlap between formant frequenies of dif-ferent speakers, leading to an overlap of lusters in the feature spae. If this overlap26



between two speakers is signi�ant, then the disrimination between them is redueddue to the smoothing of feature vetors.
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Fig. 3.3: Training error urves, when LPCC features and smoothed LPCCfeatures were used for training AANN models for a given speaker.Table 3.2 ompares the performane of speaker veri�ation for LPCC and smoothedLPCC features. Due to smoothing, the on�dene sores of genuine and impostormodels for a given test utterane inrease, but the disrimination is nearly the sameas the ase without smoothing. Thus, the advantage of smoothing is o�set by the lossof disrimination.3.4.2 Seletion of Feature Vetors for TrainingWhen the parameters of AANN models (initial weights and learning rate) are seletedsuitably, the training error surfae is representative of the probability density funtionof feature vetors. In [35℄, it was observed that the training of AANN models is27



Table 3.2: Performane of speaker veri�ation system after the re�nements.Speaker veri�ation system based onLPCC Temporal smoothing Seletion of LPCCsfeatures of LPCCs during training% of �rst 72.2 72.9 70.1ranksEER for saled 12.9 13.0 13.3sores (%)inuened by the patterns that our more frequently. Also, the training error waslower for the patterns ourring more frequently. Hene, these patterns may be moreimportant for the estimation of probability density funtion as ompared to the lessfrequently ourring ones. The former may be viewed as the denser regions of thefeature spae, while the latter may be termed as outliers. For speaker veri�ation,features extrated from steady voied regions of speeh signal an be onsidered to liein the denser regions of a luster in the multidimensional feature spae, while featurevetors extrated over weak voied, unvoied or noisy speeh segments an be treatedas outliers. The inuene of suh outlier patterns should be minimized, sine they donot ontain signi�ant speaker-spei� information.The outliers in the multidimensional feature spae an be eliminated to a ertainextent while training the AANN model. While training, the mean and standard devi-ation of error is omputed at regular intervals (10 epohs) for all the training patterns.Patterns having a higher deviation from the mean error are progressively eliminatedfrom the training set. Thus, after every subsequent 10 epohs, ertain number of out-liers are pruned out. The model is now trained on those patterns that are signi�ant28



for estimation of probability density funtion. The riterion for stopping the training isthat either a ertain number of epohs (50) be ompleted, or a ertain minimum hangein error between suessive epohs is ahieved, whihever happens earlier. While theelimination of outliers during training may lead to a better representation of the dis-tribution of feature vetors, it may also redue the possibility of mathing betweentraining and test data. This is beause, the training data available for a given speakeris often limited and may not adequately represent all the ategories of sound units.Due to aousti and hannel variabilities, an exat mathing between the lusters oftraining and test data may not be ahieved. The e�et of mismath seems to o�setthe advantage gained by the elimination of outliers, as indiated in Table 3.2.Thus, the advantage of the methods disussed in Setion 3.4.1 and the presentsetion is that they redue the e�et of outliers in the training of AANN models.However, these methods may also redue the feeble disrimination between the speak-ers even further. Hene, no major improvements are observed. Sine the exat formof the probability density funtion of the feature vetors is not known, it is diÆult toanalyze the e�ets of these methods.3.5 SUMMARYThis hapter desribed a baseline speaker veri�ation system using LPCC features andAANN models. AANN models are used to estimate the probability density funtion offeature vetors. The database and performane measures to evaluate the system weredisussed. Re�nements were suggested, based on smoothing the feature vetors andseletion of feature vetors for training. This highlights the issues of mismath andloss of disrimination. These issues are addressed during the normalization of soreswhih is desribed in Chapter 6.
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CHAPTER 4
PITCH SYNCHRONOUS ANALYSIS OF SPEECHThe goal of this hapter is to study the importane of the position of analysis windowfor extration of features from speeh signal. In Setion 4.1, we disuss the impor-tane of the position of analysis window with respet to the prodution harateristisof speeh signal for aurate estimation of the voal trat harateristis of a speaker.The instant of glottal losure, a signi�ant event in the prodution of voied speeh,is desribed in Setion 4.2, and a method to derive the same from voied speeh is re-viewed. The ability of pith synhronous analysis to aurately bring out the temporalvariations of the spetral harateristis is illustrated in Setion 4.3. A quantitativemeasure is also desribed, to denote the ability of a feature for e�etively representingspeaker-spei� information. Features extrated from two methods, namely, blok-based analysis and pith synhronous analysis, are ompared using quantitative mea-sure. A speaker veri�ation system based on pith synhronous extration of featuresis desribed in Setion 4.4.4.1 SIGNIFICANCE OF PITCH SYNCHRONOUS ANALYSIS OFSPEECHShort-segment analysis of speeh is performed to extrat spetral information presentin the signal. For this purpose, speeh signal is windowed in time domain. The sizeof the window is ditated by the desired resolution in frequeny domain and also, bythe region over whih speeh signal an be onsidered quasi-stationary. The shape of31



the window is hosen so as to redue the edge e�ets, that manifest in the frequenydomain due to abrupt termination of the signal. For segmental analysis of speeh, thesize of the window is typially hosen in the range ontaining 2-4 pith periods (30 ms)during whih the harateristis of speeh an be onsidered nearly stationary. Thereis another important aspet of analysis, namely, the position of the window relative tothe speeh signal, that is not given due onsideration.The position of analysis window is ritial for extrating the dynami soure andsystem harateristis from speeh signal. Blok proessing methods onsider 10-30ms of speeh to estimate the harateristis of the voal trat system in that interval.However, this smears the information within the analysis window. Consequently, theestimate of the spetrum orresponds to an average behaviour and is not aurate[48℄. For instane, if the analysis window ontains a region of dynami sound, au-rate temporal variation of the spetral harateristis an not be obtained by blokproessing. Seondly, if the analysis window ontains more than one pith period, theresulting spetrum estimate is inuened by the fundamental frequeny. This is morepronouned in the ase of high-pithed voies, where the short-time spetral envelopeand the linear-predition spetrum are a�eted by the pith harmonis [49℄. Thus,apart from the size and shape of the analysis frame, the position of the window withrespet to the signal is important for aurate estimation of short-time spetrum.In order to position the analysis window suitably, it is neessary to loate wellde�ned events in the prodution of speeh signal. The instant of signi�ant exitationof the voal trat system is one suh event. For voied sounds, the instants of signi�antexitation orrespond to the instants of glottal losure. One suh suessive eventsare derived from the speeh signal, the analysis window an be plaed relative tothe events. This ensures that the segments hosen for analysis are always at the samerelative position in eah pith period. Hene, the estimated spetral harateristis are32



more onsistent aross suessive pith periods. Also, temporal variation of spetralharateristis an be obtained more aurately.4.2 DETERMINATION OF INSTANTS OF SIGNIFICANTEXCITATIONThe instants of glottal losure are manifested in the voied regions of speeh. Duringthe prodution of voied sounds, air expelled from the lungs is hopped by the vibrationof voal folds, ausing a quasi-periodi exitation to be delivered to the voal tratsystem. The degree of opening and losing of voal folds regulates the amount ofexitation delivered to the voal trat system. While the opening of voal folds isgradual, the losing is relatively abrupt. It is at the instant of omplete losure ofvoal folds that the maximum exitation is delivered to the voal trat system. This isalled the instant of glottal losure (GC), or the instant of signi�ant exitation [50℄.This is a well manifested event in the voied regions of speeh signal, and one that anbe derived from the speeh signal aurately. Here, an algorithm for the determinationof the instants of signi�ant exitation is briey reviewed.A group-delay based method for determining the instants of signi�ant exitationfrom speeh signals was proposed in [51℄ [52℄. Here, the speeh signal is preemphasizedand 10th order LP analysis is performed on frames of 10 ms duration, with a shift of 5ms. Speeh signal is inverse �ltered to obtain the LP residual signal. For eah frameof LP residual of 10 ms duration, the group delay �0(!) is omputed using the relation�0(!) = �XR(!)YR(!) +XI(!)YI(!)X2R(!) +X2I (!) ; (4.1)where X(!) = XR(!) + jXI(!) and Y (!) = YR(!) + jYI(!), X(!) is the Fouriertransform of the LP residual signal x(n), Y (!) is the Fourier transform of nx(n),n = 0; 1; :::; N � 1. The length of the signal x(n) is N samples. This omputation is33



repeated for suessive frames whih are obtained by sliding the window with a shiftof one sample at a time. Thus, the group delay is obtained as a funtion of time. Theaverage group delay for eah frame known as phase slope funtion is omputed. Thephase slope funtion is smoothed with an 8-point (N =8) Hamming window given byw(n) = 0:54� 0:46os� 2�nN � 1� ; 0 � n � N � 1: (4.2)The positive zero rossings of the phase slope funtion are hypothesized as the instantsof glottal losure. Certain spurious instants an also be hypothesized as instants ofglottal losure, in both nonspeeh and speeh regions. Cues based on frame energies,strength of the instants and time di�erene between suessive instants are used toeliminate spurious instants.
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Fig. 4.1: (a) A segment of speeh of vowel /a/. (b) Its LP residual and ()the orresponding estimate of the glottal waveform. The vertial lines in ()indiate the instants of glottal losure.34



Fig. 4.1 shows a segment of speeh signal of vowel /a/ for a male speaker, theorresponding LP residual and an estimate of glottal waveform. The estimate of theglottal waveform is obtained by integrating the LP residual. The instants of glottallosure are also marked on the estimate of glottal waveform. The abruptness of theglottal losure event an be observed from the glottal waveform.4.3 EFFECTIVENESS OF PITCH SYNCHRONOUS ANALYSISOne the instants of glottal losure are derived from the speeh signal, the next stepis to selet a region for analysis that enloses one pith period. For this purpose, theanalysis window is plaed from a few samples to the left of a GC instant to a fewsamples to the left of the next GC instant, thus enlosing one omplete pith period.During the linear predition analysis of speeh, the autoorrelation oeÆients evalu-ated using pith synhronous window represent the properties of only the hosen pithperiod, and do not su�er from the e�ets of smoothing as in blok proessing. Forsteady voied regions, the spetrum does not vary appreiably from one pith periodto another. Hene, the e�et of smoothing of autoorrelation oeÆients due to blokproessing is not pronouned. However, in voied regions with spetral transitions,blok proessing does not allow an aurate estimation of the spetrum. This is il-lustrated in Fig. 4.2. Here, a segment of speeh orresponding to the word `they' (inthe sentene `have they ome ?') uttered by a male speaker is olleted at 8 kHz. Forthe segment of 80 ms duration, 12th order LP spetra are omputed for blok basedanalysis and pith synhronous analysis. For blok based analysis, a window of 20 mswas hosen with a shift of 10 ms. The e�et of smoothing due to blok proessing anbe learly observed in Fig. 4.2(a). Pith synhronous analysis brings out the spetralvariations between suessive pith periods better than blok proessing. Also, peaksof the seond and third formants are sharper, as shown in Fig. 4.2(b). In ontrast,35



blok proessing smears the spetrum in the seond and third formants, as observedfrom their bandwidths.
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(b)Fig. 4.2: LP spetra (12th order) for suessive frames in the word `they', fora male speaker, obtained by (a) blok proessing and (b) pith synhronousanalysis. 37



Analysis of speeh for losed glottis and open glottis regions was investigated in[48℄. It was observed that the traking of damped formants ould be e�etively doneby analyzing suessive frames of losed glottis. This is mainly due to the deouplingbetween the soure of exitation and the voal trat during the interval of losed glottis. The e�etiveness of pith synhronous analysis for high-pithed voies was also dealtwith in [48℄. Here, due to a short analysis frame, ovariane estimates were averagedover a few suessive pith periods for reliable extration of the voal trat parameters.The signi�ane of pith synhronous analysis for appliations suh as prosodymanipulation and speeh enhanement has been demonstrated in the literature [53℄[54℄. In the above appliations, the e�etiveness of the method of analysis is reetedin terms of the pereptual quality of the resulting speeh. On the other hand, text-independent speaker veri�ation task is based on the mathing between referene fea-tures and test features. In this setion, a measure of within-speaker to aross-speakerdissimilarity of sounds is desribed, that an be used to measure the e�etivenessof a feature for speaker haraterization [55℄. Then, features extrated using blokproessing and pith synhronous analysis an be ompared, based on this measure.Let us onsider a set of L speakers given by S = fs1; s2; :::; sLg. Let V =fv1; v2; :::; vMg denote the set of M di�erent sounds. For eah speaker, let there beN utteranes of eah sound. Let vi;k denote the kth utterane of the ith sound. Thewithin-speaker dissimilarity of a given sound vi, for all the speakers, is given byw(vi) = 1L 1N 1N � 1 LXl=1 NXk=1 NXn6=kd((vi;k; sl); (vi;n; sl)); (4.3)where, d((vi;k; sl); (vi;n; sl)) is the dissimilarity between the (sound, speaker) pairs(vi;k; sl) and (vi;n; sl). The aross-speaker dissimilarity of a given sound vi is givenby a(vi) = 1L 1N 1L� 1 1N LXl=1 NXk=1 LXj 6=l NXn=1d((vi;k; sl); (vi;n; sj)): (4.4)38



The within-speaker to aross-speaker dissimilarity (WAD) ratio is given by�(vi) = w(vi)a(vi) : (4.5)The overall WAD ratio, aross all sounds, is given by = 1M MXi=1 �(vi): (4.6)In the above equations, the sounds an be represented by any feature, and the WADratio is omputed for that feature. A small value of  (less than 1), for a givenfeature indiates the ability of the feature to provide better disrimination betweenspeakers. Hene, the feature an be deemed more suitable to represent speaker-spei�information. A larger value of  (greater than 1) indiates that the interspeakervariability of the feature is less, and hene the feature is more suitable for representingspeeh information. In our experiments, a data set ontaining L = 5 speakers wasonsidered. For every speaker, isolated utteranes of M = 5 voied sounds (vowels/a/, /i/, /u/, /e/ and /o/) were olleted. For every speaker, N = 5 utteranes(examples) of eah sound were olleted. Two approahes of analysis of speeh, namely,blok-based analysis and pith-synhronous analysis were performed. For blok-basedanalysis, frames of 20 ms were onsidered with a shift of 10 ms. For pith synhronousanalysis, the instants of glottal losure were determined using the algorithm desribedin Setion 4.2. Then, a region anhored around two suessive instants was hosen asan analysis frame. An LP analysis of 12th order was performed using eah approahand 19-dimensional LPCCs were omputed. Every utterane was haraterized by aunimodal, multivariate Gaussian probability density funtion, using the feature vetorsextrated from voied regions of that utterane. The Kullbak-Leibler distane [27℄was used as a measure of dissimilarity between the distributions.Table 4.1 lists the WAD values for �ve sounds, omputed for both the approahesof analysis. Although both the approahes ompute LPCCs due to 12th order LP39



Table 4.1: Comparison of features extrated by blok-based and pith syn-hronous methods of analysis, in terms of within-speaker to aross-speakerdissimilarity values. WAD ratio/a/ /i/ /u/ /e/ /o/ OverallLPCCs (blok based) 0.153 0.1919 0.2165 0.0928 0.136 0.158LPCCs (pith synhronous) 0.1269 0.1350 0.1620 0.0234 0.0845 0.1064analysis, pith synhronous analysis results in lesser values of the WAD ratio. Thisan be observed for the di�erent sounds, and hene, for the overall WAD ratio. Thus,pith synhronous spetral features seem to be better suited for speaker veri�ationompared to those obtained by blok proessing.4.4 SPEAKER VERIFICATION STUDIESFor speaker veri�ation studies, the database desribed in Setion 3.2 is onsidered. Forfeature extration, the instants of glottal losure are derived and pith synhronousspetral features (LPCCs) are omputed. The features are modeled using AANNmodels. Eah utterane is tested against 11 laimants. The performane of veri�ationis evaluated in terms of the perentage of �rst ranks obtained by genuine speakers, andEER for the saled sores. The performane of pith synhronous analysis for speakerveri�ation is listed in Table 4.2. It is evident that there is only a slight improvementin the performane. The onsistently lower values of WAD ratio suggested that pithsynhronous LPCCs may be more suited than blok-based LPCCs. However, it islikely that the averaging of feature vetors in blok-based LPCCs, whih is an artifatof blok proessing, may atually be working to its advantage. The smoothing ofspetrum due to blok proessing (espeially the high frequeny formants) may lead40



to a better math between training and test feature vetors. This was observed inFig. 4.2(a). Thus, the advantage of pith synhronous LPCCs may be o�set. However,pith synhronous analysis is important from the perspetive of aurate estimationof short-time spetral harateristis for representing speaker-spei� information.Table 4.2: Comparison of blok proessing and pith synhronous analysisin terms of the performane of speaker veri�ation system.LPCCs omputed byBlok-based Pith synhronousanalysis analysis% of �rst ranks 72.2 71.1EER (%) (saled sores) 12.9 12.2
4.5 SUMMARYThis hapter desribed the signi�ane of the position of analysis window for aurateestimation of short-time spetral features. A method to detet the instants of glottallosure from voied speeh was reviewed. These instants serve as anhor points aroundwhih short-time spetral features an be extrated. The ability of pith synhronousanalysis to trak the temporal variations of spetral harateristis, espeially for dy-nami sounds, was illustrated. A measure alled within-speaker to aross-speaker dis-similarity (WAD) was desribed, whih reets the suitability of a feature for speakerveri�ation. The WAD values obtained on a sample dataset indiate that LPCCs ex-trated by pith synhronous analysis are better suited for speaker veri�ation, om-pared to those extrated by blok proessing. Pith synhronous LPCCs performedbetter than those due to blok proessing for speaker veri�ation experiments.41
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CHAPTER 5
EXPLORING FEATURES FOR REPRESENTATION OFSPEAKER-SPECIFIC INFORMATIONThe primary step in speaker veri�ation is the extration of features from the speehsignal. These features should haraterize speaker-spei� information, and theyshould also be robust to hannel variations. Typially, spetral features suh as MFCCsand LPCCs extrated from segmental analysis of speeh are used for speaker veri�-ation. However, these features do not aim to spei�ally represent speaker-spei�harateristis. In this hapter, di�erene epstral oeÆients are proposed as a featurefor speaker veri�ation, with the objetive of highlighting speaker-spei� harateris-tis. Setion 5.1 desribes the logial development of the proposed feature. A speakerveri�ation system based on the above feature is desribed in Setion 5.2. The abilityof the proposed feature to add omplementary evidene to the existing feature (LPCC)is also demonstrated.5.1 DIFFERENCECEPSTRAL COEFFICIENTS FOR SPEAKERCHAR-ACTERIZATIONIn this setion, a brief review of linear predition (LP) analysis of speeh is presented.This is followed by a disussion on gross and �ne spetra of speeh, whih are omputedfrom lower and higher orders of LP analysis, respetively. This provides motivationfor the extration of di�erene epstral oeÆients.43



5.1.1 Linear Predition Analysis of SpeehLinear predition analysis of speeh signal [6℄ [15℄ predits a given speeh sampleat time instant n as a linear weighted sum of the previous p samples, and the preditedsample is given by ŝ(n) = pXk=1 aks(n� k) (5.1)where s(n) is the speeh sample at time n, and fakg; k = 1; 2; :::p; is the set of preditoroeÆients [6℄.The predition error e(n) is de�ned ase(n) = s(n)� ŝ(n): (5.2)The mean square of the predition error over an analysis frame of N samples is givenby E = N�1Xn=0 e2(n): (5.3)Minimizing E with respet to the set of preditor oeÆients fakg results in a set ofp normal equations. The set of preditor oeÆients fakg is obtained by solving the pnormal equations.Linear predition analysis of speeh provides a reasonable approximation to boththe omponents of speeh prodution mehanism, namely, the soure of exitation andthe voal trat system. The voal trat system is modeled as an all-pole �lter whosespetral response is desribed by the set of preditor oeÆients fakg. The preditionerror signal e(n), also known as linear predition residual, is a model for the soureof exitation to the voal trat system. The predition order p has signi�ant bearingon the ability of the all-pole �lter to losely approximate the short-time spetrum ofspeeh. Typially, the voal trat system an be haraterized by a maximum of �veprominent resonanes in the 0-4 kHz range. For very small orders of predition suh as44



2 or 4, the LP spetrum may represent only one or two resonanes. For larger valuesof p from 16 to 30, the LP model tries to math spurious spetral peaks of the speehsignal and also the individual pith harmonis. Therefore, an LP order of 10 to 14 isappropriate for speeh signal sampled at 8 kHz to estimate the short-time spetrum,although the exat order is not very ritial.5.1.2 Interpretation of Gross and Fine Spetra of Speeh SignalThe short-time spetrum of speeh for a voied sound has two omponents: Harmonipeaks due to periodiity of voied speeh, and gross envelope of the spetrum thatreets the voal trat response and glottal-pulse shape [56℄. The periodiity of voiedspeeh is due to the vibration of voal folds, whih is a property of the soure ofexitation. The spetral envelope is shaped by formants, that reet the resonanes ofthe voal trat. Formant loations and bandwidths show variation between di�erentspeakers, even for a given ategory of sound unit [57℄. This is due to the varying voaltrat shapes and lengths for di�erent speakers. This variation is more pronounedin the �ner utuations of the spetral envelope, as ompared to the gross spetralenvelope. To illustrate this point, speeh utteranes for vowel /a/ were olleted fromtwo speakers (one female and one male) over a mirophone. Four suh utteraneswere olleted from eah speaker at a sampling rate of 8 kHz. The instants of glottallosure were deteted, and both 6th order and 14th order LP spetra were omputedover pith synhronous windows. Figs. 5.1(a) and (b) show the LP spetra for a femalespeaker, obtained by 6th and 14th order of LP analysis, respetively. Both the spetraare omputed for the same region of speeh. Similarly, Figs. 5.1() and (d) show theorresponding LP spetra for the male speaker. The following are observed:1. For di�erent utteranes of a given speaker, the orresponding 6th order LP spe-tra are similar. The 6th order LP spetra of the two speakers are also similar.45



This is observed from Figs. 5.1(a) and ().2. While the 14th order LP spetra are similar for di�erent utteranes of the samespeaker, there are signi�ant di�erenes between the 14th order LP spetra ofthe two speakers. This is evident from Figs. 5.1(b) and (d).The above observations imply that the similarity between 6th order LP spetra of thetwo speakers is due to the same underlying sound unit, while the di�erenes betweenthe 14th order LP spetra of the two speakers is due to the speaker-spei� harater-istis whih are di�erent.Fig. 5.2 shows the 6th order and 14th order LP spetra for �ve di�erent speakers, forvowels /a/ and /i/. For the 6th order LP analysis, the spetra for all the speakers aremostly similar for a given sound unit. This an be seen from Figs. 5.2(a) and (). But,for the 14th order LP analysis, the spetra of the speakers are signi�antly di�erenteven for the same sound unit. This is observed from Figs. 5.2(b) and (d). Thus,the gross spetrum estimated by 6th order LP analysis an be viewed as representinginformation spei� to the speeh sound, while the �ne spetrum estimated by the 14thorder LP analysis represents both sound unit information as well as speaker-spei�information.
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(d)Fig. 5.1: (a) and (b) are, respetively, the 6th order and 14th order LPspetra for four di�erent utteranes of the same vowel /a/, as uttered by afemale speaker. () and (d) are similar plots for a male speaker. The samplingfrequeny is 8 kHz. 47
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(d)Fig. 5.2: (a) and (b) are, respetively, the 6th order and 14th order LP spetraof �ve di�erent speakers, for the vowel /a/. () and (d) are similar plots forvowel /i/. In eah plot, the �rst speaker is female and the remaining speakersare male. The sampling frequeny is 8 kHz.48



5.1.3 Extration of Di�erene Cepstral CoeÆientsIn order to deemphasize the inuene of the sound unit, the di�erene of the �nespetrum and the gross spetrum is onsidered. This di�erene still preserves the �nerspetral variations that represent speaker-spei� harateristis. For the purpose ofrepresentation, this subtration is done in the epstral domain. Firstly, the set of ep-stral oeÆients is derived from the LP oeÆients [15℄. Cepstral oeÆients providea ompat representation of the resonanes and the spetral roll-o� harateristis ofthe voal trat system. The set of epstral oeÆients fkg, k = 0; 1; :::; m, is obtainedfrom the set of preditor oeÆients fakg, k = 1; 2; :::; p, using the following reursiverelation: 0 = logEmink = �ak + k�1Xj=1 jkjak�j 1 � k � pk = k�1Xj=k�p jkjak�j p < k � m (5.4)where m is the number of epstral oeÆients, and Emin is minimum mean squaredpredition error.The set of di�erene epstral oeÆients fdkg, k = 1; 2; :::; m an be expressed asdk = k(hk � lk) 1 < k � m (5.5)where fhkg is the set of epstral oeÆients due to a higher order of LP analysis, flkgis the set of epstral oeÆients due to a lower order of LP analysis. The omparablerange of amplitudes of the epstral oeÆients of the two spetra leads to noise inthe di�erene epstral oeÆients. Hene, the di�erene epstral oeÆients dk areaveraged over a window of M ontiguous frames of a region of voied speeh, asfollows: 49



d̂k;j = 1M j+M2Xi=j�M2 dk;i 1 < k � m; (5.6)where fd̂k;jg is the set of averaged di�erene epstral oeÆients for segment j of theregion of voied speeh, and fdk;ig is the set of di�erene epstral oeÆients for framei. The di�erening of the epstra also redues the inuene of the transmission han-nel harateristis on the speeh signal. This obviates the need for epstral meansubtration, that is normally employed to remove the mean of the time trajetory ofeah epstral oeÆient [12℄ [7℄.5.2 SPEAKERVERIFICATIONUSING DIFFERENCECEPSTRAL CO-EFFICIENTSA speaker veri�ation system is developed using di�erene epstral oeÆients, onsimilar lines to that of the baseline system desribed in Setion 3.1. Di�erene epstraloeÆients are extrated as desribed in Setion 5.1.3. A 5-layer AANN model ofstruture 19L 38N 4N 38N 19L is used, whih is trained using di�erene epstraloeÆients. This hoie of the struture of AANN model for LPCC features wasbased on a study reported in [58℄. In that study, the number of units in layers 2 and 4were hosen empirially to be twie the dimension of the input vetor. The number ofunits in the ompression layer was arrived at, after systemati experimentation. Thestudy was repeated for di�erene epstral oeÆients and it was observed that thesame struture of AANN model was suitable. Eah model is trained for 50 epohs.Eah utterane is tested against 11 laimants.The rank of the genuine speaker among the 11 laimants is omputed for eah testutterane. The number of test utteranes where the genuine speaker seures the �rst50



Table 5.1: Performane of speaker veri�ation for LPCCs and di�ereneepstral oeÆients. Speaker veri�ation system based onLPCC Di�erene epstral Combination usingfeatures oeÆients OR logi% of �rst ranks 72.2 67.3 77.7rank is also omputed. A ombination of the ranks is performed using OR logi. Table5.1 ompares the performane of LPCC features and di�erene epstral oeÆients, interms of the perentage of �rst ranks. The �gure in the third olumn represents theperentage of �rst ranks obtained by the genuine speaker, using either LPCC featuresor di�erene epstral features or both. It is observed that the ombination resultsin an improved performane of veri�ation. This indiates that di�erene epstraloeÆients do ontain speaker-spei� features that are omplementary in nature toLPCC features. Here, the ombination of ranks has been performed using the ORlogi. This is only to establish that di�erene epstral oeÆients indeed ontainspeaker-spei� information that is omplementary to LPCC features. However, whenonsidering a system that uses both LPCC features and di�erene epstral oeÆients,the performane analysis in terms of EER requires that the sores due to the twofeatures be ombined suitably. This is a ombination at the level of measurements andis not as straightforward as a logial OR operation performed on the ranks. Hene,the ombination of evidenes due to multiple features, and the performane analysisof suh a system are disussed in Setion 6.3.
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5.3 SUMMARYIn this hapter, the development of a feature for representing speaker-spei� informa-tion was desribed. The gross spetrum was shown to be representative of the soundunit, while the �ne spetrum was shown to ontain both speeh and speaker-spei�harateristis. These spetra were estimated using di�erent orders of LP analysis. Dif-ferene epstral oeÆients were extrated from the epstral representations of grossand �ne spetra. A speaker veri�ation system based on di�erene epstral oeÆientswas shown to provide some omplementary evidene for veri�ation.In Chapters 4 and 5, extration of features for speaker veri�ation was disussed.Probability density funtion of the feature vetors was estimated using autoassoiativeneural network models. One a model is built, it is presented with the feature vetorsderived from an unknown utterane. The deision for aepting or rejeting the laimis based on the sore output by the model. In the next hapter, we disuss the issueof sore normalization for speaker veri�ation.
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CHAPTER 6SCORE NORMALIZATION FOR SPEAKERVERIFICATIONThe deision mehanism for speaker veri�ation depends on the sore output by themodel of a speaker, when presented with an unknown (test) utterane. This sore isompared to a threshold in order to aept or rejet the laim of the speaker. Butgenerally, the sores obtained from di�erent models and test utteranes are not inthe same range. The task of omputing a alibrated sore is known as sore nor-malization. In Setion 6.1, the need for sore normalization in speaker veri�ation isdisussed. Some methods for sore normalization are proposed in Setion 6.2. Theperformane of the proposed approahes is ompared against that of the existing ap-proahes. Setion 6.3 disusses ombination of evidenes from omplementary featuresfor improving the performane of speaker veri�ation. Setion 6.4 ompares the per-formane of the speaker veri�ation system desribed in this thesis with that of a fewother systems.6.1 NEED FOR SCORE NORMALIZATIONThe raw sores obtained from the models an not be used for deision making asdisussed in Chapter 2. To summarize:1. The nature of training data di�ers from one speaker to another. Spei�ally,the di�erene is due to the amount of training data, omposition of the data interms of aousti ategories, and the hannel e�ets.53



2. Mismath between the training and test data an lead to low sores, even fromthe model of genuine speaker. This is due to hannel e�ets, or inadequaterepresentation of ertain aousti ategories in the training data.The ability to disriminate between genuine and impostor speakers di�ers amongmodels. This ability also di�ers among test utteranes for a given model. To illustratethe e�et of these fators, the distributions of the on�dene sores of genuine andimpostor speakers are observed for the baseline system. Fig. 6.1 shows the estimateddistributions of the on�dene sores for genuine and impostor speakers. If a signi�antoverlap exists between the two, it makes the task of setting a deision threshold diÆ-ult. Thus, there is need to improve the disrimination between the sores of genuineand impostor speakers for reliable deision-making. Table 6.1 shows the EER obtained
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Fig. 6.1: Estimated distributions of the on�dene sores of genuine andimpostor speakers.for the raw and saled sores. Eah test has 11 laimants, and the saled sores areobtained by dividing all the 11 sores by the maximum. The saling of sores serves54



as a normalization beause genuine speakers who are winners in their respetive tests,have the same sore of 1 after normalization. This normalization is reeted in thevalue of EER for saled sores. However, the deision of veri�ation should be basedon the sore of a given model alone. Hene, saling the sores as mentioned above isnot appropriate. This neessitates the need for a ommon threshold for a given speakerveri�ation system.Table 6.1: Performane of speaker veri�ation for raw and saled sores.% of �rst EER(%) for raw EER(%) for saledranks sores sores72.2 26.1 12.9
6.2 METHODS FOR SCORE NORMALIZATIONMethods of sore normalization an be lassi�ed as model normalization and testutterane normalization. In model normalization, a speaker's model is tested againstexample impostor utteranes and the resulting sores are used to estimate speaker-spei� statistis. In test utterane normalization, the test utterane is omparedagainst the model of a laimant speaker, and also, bakground/ohort models. Thesores of the bakground models are used to normalize the speaker's sore for thatutterane. In this setion, three di�erent methods of sore normalization are proposed.Setion 6.2.1 desribes a method of model normalization. Setions 6.2.2 and 6.2.3desribe two methods of test utterane normalization.
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6.2.1 Modeling Speaker-spei� Distribution of Impostor SoresThe training data available to develop a model di�ers from one speaker to another.Hene, the likelihood/on�dene sores resulting from di�erent models annot be om-pared to a single threshold for aeptane or rejetion. The task of model normalizationis to ompute the alibrated sores, so that a ommon threshold for deision an beused aross all the speakers.Let a sequene of feature vetors X = fx1;x2; :::;xNg, derived from the speeh ofone or more impostors, be presented to the model of a speaker, denoted by M . Speehfrom 50 impostors was used, with 20 seonds of speeh for eah impostor. The modelM outputs a orresponding sequene of sores C = f1; 2; :::; Ng, whose mean andstandard deviation are denoted bymi and �i respetively, where the subsript i denotesimpostor. The idea of presenting the model M with the feature vetors derived fromimpostors is to estimate the behaviour of the model for impostors. This is typiallydone o�ine. During veri�ation, feature vetors derived from a test utterane are pre-sented to the model M . Let this sequene of test feature vetors Y = fy1;y2; :::;yLg,when presented to the model M , result in a sequene of sores S = fs1; s2; :::; sLghaving a mean mt and standard deviation �t, where the subsript t denotes the testutterane. The existing method of normalization (Z-norm) [43℄ omputes the normal-ized sore as norm = s�mi�i , where s = 1LPLk=1 sk. This method uses only the averagevalue s to ompute the normalized sore and does not exploit the distribution of thesores C and S. Instead, a method is proposed where the probability density funtionsof the sores are estimated from C and S. Observation of histograms of sores obtainedfrom C and S for several ases showed that the histograms an be approximated byGaussian probability density funtions. For estimation of pi(), features are olletedo�ine and typially, the number of feature vetors (and hene, the number of sores)is in exess of 1,00,000. For estimation of pt() from the test data, the number of56



sores is typially above 10,000 and almost always, above 5000. This is large enoughto obtain the histogram of sores, by dividing the interval 0 to 1 into 10 equally spaedbins.Thus, the probability density funtions of the sores obtained from C and S an bemodeled as Gaussian densities. Let pi() and pt() represent the estimates of the prob-ability density funtions of the sores C and S, respetively. Then, pi() = N(mi; �i2)and pt() = N(mt; �t2), where N(m; �2) = 1p2��2 exp (�(x�m)22�2 ), represents a normal(Gaussian) density with mean m and standard deviation �. Due to the availabilityof substantial amount of data from impostors, pi() is a good estimate of the atualprobability density funtion. If the test utterane belongs to an impostor, then pt() isexpeted to math pi() losely. However, if the test utterane belongs to the genuinespeaker of model M , the math between pt() and pi() should redue, with mt > mi.Thus, the deision for veri�ation an be based on the degree of math between pt()and pi(). Fig. 6.2 illustrates a ase where a model is presented with three di�erenttest utteranes. When omparing pt() and pi(), the following ases were observed:
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Fig. 6.2: Estimated densities pt() and pi() of test sores and impostorsores respetively. The test sores (a) dominate, (b) lag and () ompeteagainst the impostor sores. 57



1. pt() has a signi�ant region that does not overlap with pi(), and mt > mi, asshown in Fig. 6.2(a). It is likely that the test utterane belongs to the genuinespeaker, and the model M reasonably represents the distribution of featurevetors of the training and test data. Though less likely, it is also possiblethat the test utterane belongs to an impostor. This indiates that, due tointraspeaker variability or the e�ets of the hannel, the test feature vetorsnow `fall' more often into the lusters represented by the model M .2. pt() and pi() overlap mostly, with mt < mi, as shown in Fig. 6.2(b). The morelikely inferene here is that the test feature vetors belong to an impostor, sinefeature vetors from the genuine speaker should have resulted in a better mathwith the model M . A less likely inferene is that the test utterane belongs tothe genuine speaker.3. The distributions pt() and pi() lie very lose, but pt() `rosses over' pi() asshown in Fig. 6.2(). This indiates a good math between pt() and pi() leadingto the inferene that the test utterane belongs to an impostor. However, inthe region of high sores (say, 0:6 <  < 1), pt() exeeds pi(). The sores ofpt() in this region may orrespond to those frames of the test utterane thatlosely math the model M . Thus, it is still possible that the test belongs tothe genuine speaker.The above ases are not exhaustive, but they are representative of the general be-haviour. Based on these observations, a mathing sore needs to be omputed forveri�ation. A quantitative measure of the math between the two distributions anbe omputed from the plots of pt()�pi(). Figs. 6.3(a), (b) and () show pt() for threedi�erent tests, against the same model. The orresponding plots of pt() � pi() areshown in Figs. 6.3(d), (e) and (f), respetively. If the area under the urve pt()�pi()is positive in the region of high sores, as in Fig. 6.3(d), then the test utterane is58



likely to belong to the genuine speaker. If this area is negative as shown in Fig. 6.3(e),then the test speaker is likely to be an impostor.
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weightage to the sores of greater magnitude. The algorithm for model normalizationis summarized in Table 6.2.
Table 6.2: Sequene of steps involved in model normalization.1. Present X = fx1;x2; :::;xNg to M , to obtain C = f1; 2; :::; Ng.2. Compute mi and �i from C.3. Present Y = fy1;y2; :::;yLg to M , to obtain S = fs1; s2; :::; sLg.4. Compute mt and �t from S.5. Obtain the estimates pi() = N(mi; �i2) and pt() = N(mt; �t2).6. Compute norm = P1=mi (pt()� pi()).Table 6.3 ompares the performane of the proposed method against Z-norm. Itis observed that the proposed method does not result in appreiable improvement inEER, ompared to that obtained from Z-norm. The logi behind model normalizationis that the example impostor utteranes an represent the response of a given model forany impostor data. However, the onditions under whih the test speeh is olletedmay di�er from those of the example impostor utteranes. Thus, the aousti mismathbetween the test utterane and the example impostor utteranes limits the e�etivenessof model normalization. This issue is addressed in test normalization.Table 6.3: Performane of di�erent model normalization methods.Raw sores Z-norm Proposed modelnormalizationEER (%) 26.1 24.0 23.5
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6.2.2 Rank-based Normalization of SoresA disadvantage of the existing test normalization methods (notably T-norm) is thatthey onsider only the average value of the sores output by a model for a giventest utterane [43℄ [44℄. This provides equal weightage to all the frames of the testutterane. However, it is not neessary that all frames of the test utterane are equallyimportant for speaker veri�ation. Some methods onsider the sum of only the top Mranked sores, where M is less than the number of segments in the test utterane [59℄.Suh methods help in eliminating the less signi�ant frames, but a disadvantage is thatthe sum of top M ranked sores is not normalized aross di�erent test utteranes. Inthe proposed method, a set of N bakground models is used for sore normalization.Bakground models help in estimating the behaviour of impostors. These bakgroundmodels are randomly hosen and are ommon to all the test utteranes. A given testutterane is presented to a laimant model along with the N bakground models. Forevery frame of the test utterane, the sore due to the laimant model is ranked amongthe sores due to the N bakground models. Thus, the rank of the laimant an varybetween 1 and N +1. The normalized sore is omputed as the perentage of the totalnumber of frames where the genuine speaker wins over all the bakground models.The hoie of N , the number of bakground models, should result in a reasonableestimate of the behaviour of impostors. A large value of N suh as 50 dilutes theevidene due to the genuine speaker. On the ontrary, with a small value of N suh as5, the possibility of an impostor obtaining as many �rst ranks as the genuine speakeris high. Thus, not enough bakground models are there to hallenge the genuineor impostor speakers. In this experiment, 20 bakground models have been hosen.Fig. 6.4 shows the fration P (r) of the total number of frames to have obtained rankr. To illustrate, two test utteranes are onsidered. Fig. 6.4(a) shows a ase wherean utterane is tested against the genuine speaker, 5 impostors and 20 bakground61



models. The genuine speaker sores over the impostors, as observed from the valueof P (1). Fig. 6.4(b) shows another ase where Impostor 1 has a slightly higher valueof P (1) as ompared to that of the genuine speaker, leading to false aeptane. Thehoie of P (1) as the normalized sore implies that only those frames that rank �rstare onsidered for normalization. However, the number of frames that rank seond orthird may still be important for disrimination. This issue is addressed in Setion 6.2.3.The algorithm of rank-based normalization of sores is summarized in Table 6.4.Experiments were onduted on NIST 2003 database, and normalized sores wereevaluated for genuine and impostor speakers. Fig. 6.5 plots the estimates of probabilitydensity funtions, of sores obtained from the models of genuine and impostor speakers.Figs. 6.5 (a), (b) and () show, respetively, the densities of raw sores, normalizedsores due to the existing methods (Z-norm + T-norm), and normalized sores dueto the proposed rank-based approah. From Figs. 6.5 (a) and (), it is evident thatthe proposed method signi�antly improves the disrimination between genuine andimpostor speakers, as ompared to the raw sores. Figs. 6.5 (b) and () indiate thatthe sores of impostors have lesser variane for the proposed method, ompared to theexisting method. This is signi�ant for setting the deision threshold. This indiatessome uniformity in the behaviour of the normalized sores of impostors. For genuinespeakers, the variane of the normalized sores is greater than that of the raw sores,beause the degree of disrimination between genuine and impostor speakers may varyfrom one genuine speaker to another. The performane of this method will be disussedin Setion 6.2.4.
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Table 6.4: Sequene of steps involved in rank-based normalization.1. Selet an appropriate number (N) of bakgroundmodels.2. Present the test utterane to the laimant model and Nbakground models.3. For eah frame, ompute the rank (r) of the laimant among theN bakground models.4. Compute P (r), r = 1; 2; :::; N + 1, i.e., that fration ofthe total number of frames whih has obtained rank r.5. P (1) is the normalized sore.6.2.3 Method Based on Frame-level Weighting of SoresThe degree to whih a test utterane mathes the orresponding (genuine) speakermodel varies for di�erent test utteranes. To an extent, this degree of math dependson the nature of the test utterane. In test normalization, the objetive is to estimatethe average behaviour of impostors for the test utterane. The test normalizationsheme T-norm desribed in [43℄ omputes the mean and standard deviation of theaverage sores of several bakground models for a given test utterane. By averagingthe sores due to all the frames, this method provides equal weightage to all theframes of the test utterane. However, some frames of the test utterane may ontaingreater speaker-spei� information ompared to other frames. In [60℄, it is shown thatstatistial modeling of speaker-spei� harateristis using only two broad phonetiategories (vowel + diphthongs and glides + nasals) resulted in better veri�ationperformane than the ase when all the phoneti ategories were used. The phonetiategorization of frames was ahieved by using an automati speeh reognizer. Apart65



from phonetially less-signi�ant frames, the test utterane may also ontain spuriousframes in nonspeeh regions of the signal, inspite of using a good speeh-nonspeehdetetion in the preproessing stage. This is possible in the ase of energy based-methods of speeh-nonspeeh detetion. The removal of suh spurious frames maybe ahieved by using a suitable signal-proessing algorithm. The aim of the urrentexperiment is to weight the frames of the test utterane at the soring level.In the proposed method, a test utterane is presented to a laimant model anda set of N bakground models. For every frame of the test utterane, average of thesores of bakground models is omputed. The reason for omputing the average offrame-level sores of bakground models is to provide di�erent weightages to di�erentframes of the test utterane. This will be desribed later in this setion.The �rst issue is the number of bakground models to be seleted. In the exper-iment, utteranes were tested against varying number of bakground models. Eahutterane was tested against 5, 10, 20, 40, 60, and 100 bakground models, and frame-level average of sores was omputed. Figs. 6.6(a) and 6.6(b) show the plots of frame-level sores averaged over di�erent number of bakground models. It is observed thatthe variation of the average of frame-level sores is not signi�ant beyond 20 bak-ground models. Hene, a set of 20 bakground models is used in further experimentson test normalization.
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One the average of frame-level sores of the bakground models is omputed, thenext step is to ompute the normalized sore. Let fkg; k = 1; 2; :::; L represent thesequene of frame-level sores obtained when a test utterane is presented to a laimantmodel. Let fbkg; k = 1; 2; :::; L represent the sequene of average of frame-level soresof the bakground models for the same utterane. Here, L denotes the total numberof frames in the test utterane. The di�erene sore an be de�ned asdk = k � bk k = 1; 2; :::; L (6.1)To selet only those frames where the laimant sore exeeds the average of bakgroundsores, we de�ne fk = 8>><>>: 1; dk > 0; k = 1; 2; :::; L0; otherwise:The normalized sore an be omputed ass = 1L LXk=1 fkdk: (6.2)However, all suh frames are given equal weightage in the above soring sheme.Hene, a weighting funtion is derived using the frame-level average of bakgroundsores, as follows: wk = bk � bminbmax � bmin k = 1; 2; :::; L: (6.3)The di�erene sores are then weighted with this funtion for only those frames wherethe laimant sore exeeds the average of bakground sores. The �nal sore is om-puted as snorm = 1L LXk=1 fkwkdk: (6.4)The algorithm is summarized in Table 6.5.68



The reason for omputing the weight funtion is the following: If a test frame ispoor / spurious, it is likely to result in a lower value of on�dene sore from mostof the bakground models. If the test frame belongs to a well-manifested region ofspeeh, it is likely to result in a higher value of on�dene sore from most of thebakground models. Thus, the frame-level average of sores of bakground models is arepresentative of the nature of the test utterane. Fig. 6.7 shows the variation of frame-level on�dene sores for a given test segment for genuine and impostor speakers. Theperentage of frames, where the frame-level sore exeeds the frame-level average ofthe bakgrounds, is a fator of normalization. The performane of this method ofnormalization is disussed in Setion 6.2.4.
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Table 6.5: Sequene of steps involved in frame-level weight-ing of sores.1. Selet a suitable number of bakground models,by experimentation.2. Present the test utterane to laimant model, toobtain the sores fkg; k = 1; 2; :::; L.3. Present the test utterane to N bakground modelsand ompute the frame-level average of bakgroundsores fbkg; k = 1; 2; :::; L.4. Compute the di�erene sore dk = k � bk,k = 1; 2; :::; L.5. Compute the binary weight ffkg; k = 1; 2; :::; L.6. Compute the weight funtion fwkg; k = 1; 2; :::; L.7. Compute the normalized sore assnorm = 1LPLk=1 fkwkdk.6.2.4 Results and DisussionIn this setion, we disuss the performane of the proposed methods of test normal-ization. Table 6.6 lists the results of the proposed methods of test normalization,along with the existing (Z-norm + T-norm) sheme. The performane of the rank-based approah is better than that of T-norm, and omparable to T-norm + Z-normsheme.The existing approah estimates the mean and variane of the sores of bakgroundmodels, using all the frames of the test utterane. In omparison, the rank-basedmethod desribed in Setion 6.2.2 onsiders only those frames for omputing the sore,that onsistently win over the bakground models. Also, the normalized sore is limited70



to a range of 0 to 1. On the other hand, in Z-norm and T-norm, the saling of soresby variane auses the normalized sores to aquire a greater range.A limitation of the rank-based approah is that it does not onsider those framesfor soring that are ranked seond or third. To overome this limitation, the normalizedsore was omputed as a weighted average of the perentage of �rst, seond and thirdranks. However, this did not result in the redution of EER.Table 6.6: Performane of di�erent test normalization methods.T-norm Z-norm Rank Frame-level+ T-norm based weightingnormalization of soresEER (%) 19.1 16.1 16.5 15.2This may be due to the extent of disrimination between the genuine and impostorspeakers for di�erent frames of the test utterane. For example, all the frames thatseure �rst ranks may not be equally signi�ant in terms of speaker-spei� informa-tion. Similarly, frames seuring seond and third ranks may also be useful for deision,although the rank-based method does not use this information.The method based on frame-level weighting of sores overomes this limitation to aertain extent. The seletion of only those frames where the laimant sores exeed theaverage of bakground sores, is a poliy that is similar to the rank-based approah.Yet, it is not as harsh as ignoring the seond and third ranked frames altogether. Theweight funtion derived from the bakground sores serves as a measure of signi�aneof eah frame for soring. The improvement obtained by this method over the existingmethods is indiated in Table 6.6.
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6.3 COMBINING EVIDENCES FROM MULTIPLE FEATURESThe goal of speaker veri�ation is to validate the identity of a speaker, based onthe voie harateristis of the speaker. Traditionally, speaker veri�ation systemsuse a single feature to represent speaker-spei� information and a single modelingtehnique. In pattern lassi�ation problems, studies have shown that it is possible toimprove the reliability of lassi�ation by using di�erent types of features and modelssimultaneously [61{63℄. In the ontext of speaker veri�ation, di�erent features anbe extrated from speeh to represent speaker-spei� information. These featuresmay represent the voal trat system or the soure of exitation. The features may beextrated over di�erent levels of analysis. For instane, ombination of evidenes dueto subsegmental, segmental and suprasegmental features has been studied for text-dependent speaker veri�ation [24℄ [64℄. For speaker veri�ation, it is advantageous ifthe features are omplementary in nature, i.e, they represent di�erent aspets of voieharateristis of a speaker.The method of modeling may depend on the desription of features. Due to di�er-ent representations, it may not be possible to model di�erent features within a singleframework. Hene, di�erent models an be used for di�erent features, and the result-ing evidenes an be ombined. The e�etiveness of ombining the evidenes due todi�erent features for speaker veri�ation depends on the following fators:1. E�etiveness of the individual features for speaker veri�ation2. Complementary nature of the features3. Method of ombining the sores due to individual featuresIn the present study, we disuss the ombination of evidenes due to three di�erentfeatures extrated from the speeh signal. These are:1. Linear predition epstral oeÆients (LPCC)72



2. Di�erene epstral oeÆients3. Exitation soure features present in the linear predition (LP) residual [36℄ [20℄The LPCCs obtained by the 14th order LP analysis represent the resonant frequeniesof the voal trat system and their bandwidths. The LPCCs ontain information aboutthe sound unit as well as the speaker. Di�erene epstral oeÆients are obtainedby deemphasizing the gross spetral envelope from the �ne spetrum, to suppressthe sound unit information while preserving the �ner variations of the short-timespetrum. The exitation soure features are derived from the 12th LP residual. Thesefeatures represent the harateristis of the glottal vibrations, and are unorrelatedwith the harateristis of the voal trat system. Thus, the three features an beviewed to provide somewhat omplementary information about the harateristis ofthe speaker. The development of AANN models for speaker veri�ation based onLPCCs and di�erene epstral oeÆients was desribed in Setions 3.1.2 and 5.2,respetively. In Setion 6.3.1, we briey review the development of AANN modelsto represent the exitation soure features present in the LP residual of speeh signal.Combination of evidenes for speaker veri�ation due to the three features is desribedin Setion 6.3.2.6.3.1 Exitation Soure Features for Speaker Veri�ationLinear predition analysis of speeh results in the LP oeÆients whih represent thevoal trat harateristis. The error signal obtained by inverse �ltering the speehsignal is termed as LP residual. LP residual ontains exitation soure information,whih an be aptured using a �ve-layer AANN model [20℄. Conseutive bloks ofsamples of the LP residual are presented to an AANN model, and the bloks areseparated by a shift of one sample. When raw data suh as the samples of LP residualare presented to the AANN, the interpretation of the behaviour of AANN in terms of73



apturing the distribution of feature vetors is not appropriate. The reason is, thoughthe adjaent frames may be widely separated in the input spae, temporal relationshipstill exists among the adjaent frames sine the samples of the LP residual are notentirely deorrelated. Thus, the objetive of training the AANN model using thesamples of LP residual is to aquire the higher order relations among the samples, thatmay ontain useful speaker-spei� harateristis. The e�etiveness of the features ofexitation soure for speaker veri�ation has been demonstrated in [20℄ [36℄. In [20℄,signi�ane of the regions of LP residual around the instants of glottal losure was alsoillustrated for speaker veri�ation.6.3.2 Approahes for Combining EvidenesAn important issue in ombining evidenes from di�erent lassi�ers is the nature ofoutput assoiated with eah lassi�er. The output of a lassi�er ould be a lass label,or a set of ranks orresponding to di�erent labels, or a set of measurements to indiatethe on�dene of the lassi�er in a given lass label. The strategy for ombining theevidenes depends on the representation of the outputs. If only the lass labels orthe label rankings are available, a majority vote is used [65℄ [66℄. If ontinuous out-puts like a posteriori probabilities are available, an average or linear ombination ora Bayes lassi�er ould be used [67℄ [63℄. When the lassi�er outputs are available asfuzzy values or belief values, belief funtions and Dempster-Shafer tehniques are used[68℄ [69℄. In [70℄, a theoretial framework was suggested for lassi�er ombination. Itwas shown that the ommonly used shemes of ombination suh as the produt rule,sum rule, min rule, max rule and the majority voting are speial ases whih an bederived from the given framework under di�erent assumptions and approximations. Itwas found that the sum rule outperformed other lassi�ation shemes, and was re-silient to estimation errors, under ertain assumptions. In our experiments on speaker74



veri�ation, the sum rule is used for ombining evidenes.The ability of di�erene epstral oeÆients to provide omplementary evidenefor speaker veri�ation was illustrated in Setion 5.2, in terms of the �rst ranks seuredby the genuine speakers. Table 6.7 lists the performane of ombination of evidenesdue to LPCCs and di�erene epstral oeÆients. A redution in EER is ahieved dueto the ombination.Table 6.7: Combining evidenes from LPCCs and di�erene epstral oeÆ-ients. LPCCs Di�erene Combinationepstral by sum-ruleoeÆientsEER (%) 16.1 20.2 15.0
Table 6.8: Combining evidenes from LPCCs, di�erene epstral oeÆientsand exitation soure features.LPCCs Di�erene Exitation Combinationepstral soure by sum-ruleoeÆients featuresEER (%) 16.1 20.2 21.5 13.4Table 6.8 lists the performane of ombination of evidenes due to LPCCs, di�er-ene epstral oeÆients and exitation soure features. Although the error rates dueto di�erene epstral oeÆients and soure features are higher ompared to that ofLPCCs, the ombination provides signi�ant improvement. This is due to nature of75



speaker-spei� information represented by these two features, whih is omplemen-tary to that of spetral features (LPCCs). The performane of speaker veri�ation forindividual features and the result of ombination of evidenes is indiated in the DETurve in Fig. 6.8.
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6.4 PERFORMANCE COMPARISON OF SPEAKER VERIFICATIONSYSTEMSIn this setion, the speaker veri�ation system disussed in this thesis is omparedwith ertain ontemporary speaker veri�ation systems, in terms of the performaneahieved on a ommon dataset, namely, the NIST 2003 dataset. Table 6.9 lists afew systems, along with the features, models and normalization methods used fordeveloping those systems.Table 6.9: Comparison of performanes of speaker veri�ation systems.System Features Channel Models Normalization EER (%)ompensation methodsmethodsIITM LPCC, CMS AANN Z-norm, 13.4ESF, DCC T-normMITLL MFCC, RASTA, GMM-UBM, Z-norm, 6.5DC FM SVM T-normDDRD MFCC, CMS PCA, AANN, T-norm 8.0DC GMM-UBMIBM LPC - GMM-UBM Z-norm, 7.5T-normIRISA LFCC RASTA GMM-UBM Z-norm, Tnorm, 8.5D-norm
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A glossary of the abbreviations used in the table is as follows:LPCC - Linear predition epstral oeÆientsESF - Exitation soure featuresDCC - Di�erene epstral oeÆientsDC - Delta epstralsMFCC - Mel frequeny epstral oeÆientsLFCC - Linear �lter-bank epstral oeÆientsCMS - Cepstral mean subtrationRASTA - Relative spetralFM - Feature mappingAANN - Autoassoiative neural networkGMM - Gaussian mixture modelUBM - Universal bakground modelSVM - Support vetor mahinePCA - Prinipal omponent analysisD-norm - Distane normalizationDetails about these systems an be found in [45℄ and [46℄. It is evident that mostof these systems use spetral features, espeially MFCC and DC, and are based onGMMs. In this sense, the system desribed in this thesis (IITM) attempts to explorenovel features. The best performane of speaker veri�ation obtained for NIST 2003dataset, as reported in [46℄, is an EER value of 6.5 %. The main reasons for the betterperformane of these systems ould be the following:1. Some systems pool data from all types of hannels to develop hannel-dependentmodels. For the unknown utterane, the hannel is deteted and the featuresare mapped into a hannel-independent spae. This may redue the mismath78



between the training and test patterns.2. Some systems use an automati speeh reognizer to ategorize speeh into dif-ferent sound units. Separate models are then developed for the di�erent ate-gories of sound units. Speaker-dependent language models are also developedusing the output of the reognizer.3. Modeling prosodi features suh as intonation and duration has been shown tobe e�etive for speaker veri�ation.6.5 SUMMARYIn this hapter, the issue of sore normalization was disussed. Three methods ofnormalization of sores were proposed. In the model normalization method, model-spei� statistis were estimated from example impostor utteranes. However, modelnormalization su�ers from the mismath between the example utteranes and thetest utterane. Hene, methods of test normalization were investigated. A methodbased on the rank of laimant sores among the bakground models was proposed,to exlude non-ompetitive sores for normalization. Another method was proposed,based on framewise weighting of sores. Evidenes due to omplementary featureswere ombined to improve the performane of speaker veri�ation.
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CHAPTER 7
SUMMARY AND CONCLUSIONSThe objetive of automati speaker veri�ation is to validate a speaker's laim of iden-tity based on the speaker's voie. Speaker veri�ation onsists of three steps, namely,feature extration, modeling and sore normalization. In this thesis, we have addressedissues related to feature extration and sore normalization. In feature extration, sig-ni�ane of the position of analysis window was disussed for aurate estimation ofshort-time spetral harateristis. A feature for speaker veri�ation was developedbased on the di�erene between �ne and gross spetra of speeh. Autoassoiative neu-ral network models were used to estimate the probability density funtion of featurevetors in the feature spae. Methods of model normalization and test normalizationwere proposed for alibrating the sores obtained from the models. Evidenes wereombined from three di�erent features, whih represent omplementary informationfor speaker veri�ation.7.1 CONTRIBUTIONS OF THE WORK1. Pith synhronous analysis of speeh was studied for aurate estimation ofshort-time spetral harateristis. Pith synhronous LPCC features yieldeda lower value of within-speaker to aross-speaker dissimilarity, as ompared toLPCCs obtained by blok proessing.2. Di�erene epstral oeÆients were proposed as a feature for speaker veri�a-tion. The ability of these features to add omplementary evidene for speaker81



veri�ation was illustrated.3. Methods for model normalization and test utterane normalization were pro-posed.4. Evidenes from three features were ombined, namely, LPCC features, di�er-ene epstral oeÆients and exitation soure features. The features are om-plementary soures of information and hene, their ombination improves theperformane of veri�ation.7.2 SCOPE FOR FUTURE WORK1. Features that are robust to hannel variations need to be extrated from speehsignal. This an help redue the mismath between training and test utteranesaused by hannel e�ets.2. Certain ategories of sounds may be more important for speaker reognitionthan others. Thus, for eah speaker, speeh an be lassi�ed into a few broadategories of sound units. This may be done in an unsupervised manner ratherthan expliitly using a speeh reognizer. A separate model an be developedfor eah ategory, and the evidenes due to di�erent models an be ombinedfor speaker veri�ation.3. The temporal variation of feature vetors may ontain useful speaker-spei�information. Methods based on modeling the probability density funtion offeature vetors overlook this aspet. Hene, methods are needed to representand model the temporal information.
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APPENDIX ABACKPROPAGATION ALGORITHM FORFEEDFORWARD NEURAL NETWORKSMultilayer feedforward neural networks are an important lass of neutral networks.Typially, a multilayer feedforward neural network onsists of a set of sensory units(soure nodes) that form the input layer, omputation nodes that form one or morehidden layers, and omputation nodes that form the output layer. The input signalpropagates through the network in a forward diretion, on a layer-by-layer basis. Theerror between the desired pattern and the output pattern is used to update the weightsof the network, using a method alled bakpropagation algorithm. The objetive ofthis appendix is to disuss the bakpropagation learning algorithm. A detailed disus-sion of multilayer feedforward neural networks an be found in [27℄ and [30℄.In multilayer feedforward neural networks, eah neuron is haraterized by an ativa-tion funtion that ould be a linear or a nonlinear funtion of the inputs to the neuron.Let vj denote the indued loal �eld (i.e., the weighted sum of all synapti inputs plusthe bias) of neuron j, and let yj denote the output of the neuron. Then, an exampleof nonlinear ativation funtion is the sigmoidal nonlinearity de�ned by the logistifuntion: yj = 11 + exp(�vj) :The neessary ondition here is that the nonlinearity should be smooth, i.e., di�eren-tiable everywhere. In the present work, the following nonlinearity has been used:yj = tanh(�vj);



where � = 0:66 has been hosen, based on experiments.The neurons of the hidden layers are not part of the input or the output layer.However, the hidden neurons enable the network to learn omplex tasks by extratingprogressively meaningful features from the input patterns. Also, it is important todistinguish between funtion signals and error signals. A funtion signal is an inputsignal that omes in at the input end of the network, propagates forward throughthe hidden layers of the network, and emerges at the output end of the network asan output signal. An error signal originates at an output neuron of the network andpropagates bakward, layer by layer, through the network.In the remaining part of the appendix, derivation of the bakpropagation algorithmis presented. In Setion A.1, a summary of the notations used in the derivation ispresented. Setion A.2 disusses the derivation of the algorithm.A.1 NOTATION� The indies i, j and k refer to di�erent neurons in the network. The signalspropagate through the network from left to right, neuron j lies in a layer to theright of neuron i, and neuron k lies in a layer to the right of neuron j whenneuron j is a hidden unit.� In iteration n, the nth training pattern is presented to the network.� E(n) refers to the instantaneous sum of error squares at iteration n. The averageof E(n) over all values of n is denoted by the average energy Eav.� ej(n) refers to the error signal at the output of neuron j of iteration n.� dj(n) refers to the desired response for neuron j and is used to ompute ej(n).84



� yj(n) denotes the funtion signal appearing at the output of neuron j at iterationn.� wji(n) denotes the synapti weight onneting the output of neuron i to the inputof neuron j at iteration n. The orretion applied to this weight at iteration nis denoted by �wji(n).� The indued loal �eld of neuron j at iteration n is denoted by vj(n). It is thesignal applied to the ativation funtion assoiated with neuron j.� The ativation funtion desribing the input-output funtional relationship ofthe nonlinearity assoiated with neuron j is denoted by �j(:).� The bias applied to neuron j is denoted by bj. Its e�et is represented by asynapse of weight wj0 = bj onneted to a �xed input equal to +1.� The ith element of the input vetor (pattern) is denoted by xi(n).� The kth element of the overall output vetor (pattern) is denoted by ok(n).� The learning-rate parameter is denoted by �.� ml denotes the number of nodes (size) in layer l of the network where, l =0; 1; :::; L and L denotes the depth (number of layers) of the network.A.2 BACKPROPAGATION ALGORITHMThe error signal at the output of neuron j at iteration n is de�ned byej(n) = dj(n)� yj(n); (A.1)where neuron j is an output node. The instantaneous sum of error squares over allneurons in the output layer is given byE(n) = 12Xj�C ej2(n); (A.2)85



where the set C inludes all the neurons in the output layer of the network. Theaverage squared error energy is obtained asEav(n) = 1N NXn=1E(n); (A.3)where N denotes the total number of patterns ontained in the training set. For agiven training set, Eav represents a ost funtion. The objetive of the learning proessis to adjust the free parameters of the network to minimize Eav.
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where m is the total number of inputs applied to neuron j, exluding the bias. Thus,the funtion signal yj(n) appearing at the output of neuron j at iteration n is givenby yj(n) = �j(vj(n)): (A.5)The gradient or the partial derivative �E(n)�wji(n) an be expressed, using the hain rule ofalulus, as follows: �E(n)�wji(n) = �E(n)�ej(n) �ej(n)�yj(n) �yj(n)�vj(n) �vj(n)�wji(n) : (A.6)The various partial derivatives in the above equation are obtained as follows:�E(n)�ej(n) = ej(n): (A.7)
�ej(n)�yj(n) = �1: (A.8)

�yj(n)�vj(n) = �0j(vj(n)): (A.9)
�vj(n)�wji(n) = yi(n): (A.10)Substituting for the various partial derivatives in the expression for �E(n)�wji(n) , we obtain�E(n)�wji(n) = �ej(n)�0j(vj(n))yi(n): (A.11)The orretion �wji(n) applied to wji(n) is de�ned by the delta rule as follows:�wji(n) = �� �E(n)�wji(n) ; (A.12)87



where � is the learning-rate parameter of the bakpropagation algorithm, and the useof minus sign aounts for gradient desent in weight spae. Thus,�wji(n) = �Æj(n)yi(n); (A.13)where the loal gradient Æj(n) is de�ned byÆj(n) = ��E(n)�vj(n)= ��E(n)�ej(n) �ej(n)�yj(n) �yj(n)�vj(n)= �ej(n)�0j(vj(n)): (A.14)It is seen that the loal gradient is dependent on the orresponding error signal. Forthe nodes of the output layer, the omputation of the error signal is straightforward,sine the desired response is known. The situation for nodes of hidden layers is shownin Figure A.2, whih depits a neuron j as a hidden node of the network.
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The loal gradient Æj(n) for hidden neuron j is rede�ned asÆj(n) = ��E(n)�yj(n) �yj(n)�vj(n)= ��E(n)�yj(n)�0j(vj(n)): (A.15)The instantaneous sum of error squares E(n) is given byE(n) = 12Xk�C e2k(n); (A.16)where k denotes a neuron in the output node. Now, di�erentiating the above equationwith respet to the funtion signal yj(n), we get�E(n)�yj(n) =Xk ek(n)�ek(n)�yj(n) : (A.17)Using the hain rule for the partial derivative �ek(n)�yj(n) , the above equation an be rewrit-ten as �E(n)�yj(n) =Xk ek(n)�ek(n)�vk(n) �vk(n)�yj(n) : (A.18)Also, ek(n) = dk(n)� yk(n)= dk(n)� �k(vk(n)); (A.19)where neuron k is an output node.Hene �ek(n)�vk(n) = ��0k(vk(n)): (A.20)The indued loal �eld for neuron k is given byvk(n) = mXj=0wkj(n)yj(n); (A.21)89



where m is the total number of inputs (exluding the bias) applied to neuron k.Di�erentiating the above equation with respet to yj(n) yields�vk(n)�yj(n) = wkj(n): (A.22)Thus, the desired partial derivative of E(n) is obtained as�E(n)�yj(n) = �Xk ek(n)�0k(vk(n))wkj(n)= �Xk Æk(n)wkj(n); (A.23)where the de�nition of the loal gradient has been used for the nodes of the outputlayer.Finally, the bakpropagation formula for the loal gradient Æj(n) is given byÆj(n) = �0j(vj(n))Xk Æk(n)wkj(n); (A.24)where neuron j is hidden.Thus, the loal gradients are omputed bakward, starting from the hidden layer pre-eding the output layer.The orretion �wji(n) applied to the weight onneting neuron i to neuron j is de�nedby the delta rule as follows: �wji(n) = �Æj(n)yi(n): (A.25)To summarize the bakpropagation algorithm:1. If neuron j is an output node, Æj(n) equals the produt of the derivative �0j(vj(n))and the error signal ej(n), both of whih are assoiated with neuron j.2. If neuron j is a hidden node, Æj(n) equals the produt of the assoiated derivative�0j(vj(n)) and the weighted sum of the Æs omputed for the neurons in the nexthidden or output layer that are onneted to neuron j.90
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