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ABSTRACT

Keywords: speaker verification, pitch synchronous analysis, difference cepstral coef-
ficients, autoassociative neural network models, score normalization, complementary

features, combination of evidences.

The objective of automatic speaker verification is to validate a speaker’s claim
of identity, based on the speaker’s voice. Speaker verification consists of three steps,
namely, feature extraction, modeling and score normalization. The objective of this
research work is to address certain issues in feature extraction and score normalization.
Most methods of feature extraction consider uniform blocks of speech of 10-30 ms du-
ration for analysis, overlooking the position of window of analysis. In this work, the
significance of pitch synchronous analysis of speech is studied for accurate estimation of
short-time spectral characteristics. Spectral features such as linear prediction cepstral
coefficients (LPCC) and mel-frequency cepstral coefficients represent characteristics of
both the sound unit and the speaker. We propose difference cepstral coefficients for
deemphasizing the sound unit information in the short-time spectrum. The effective-
ness of difference cepstral coefficients for speaker verification and its ability to provide
complementary information to spectral features is demonstrated. Autoassociative neu-
ral network (AANN) models are used to estimate the probability density function of
feature vectors in the feature space. An important advantage of AANN models is
that they do not make a priori assumptions about the shape of the probability density
function. Due to difference in training and test utterances, the scores obtained from

the models need to be calibrated, before comparison with a decision threshold. In this



work, methods of normalization are proposed for weighting the scores of different test
segments, which result in an improvement over the existing methods. Traditionally,
speaker verification systems use a single feature for representing speaker-specific infor-
mation. In this work, combination of evidences from three complementary features,
namely, LPCCs, difference cepstral coefficients and excitation source features, is shown

to result in a significant improvement in the performance of verification.

vi



TABLE OF CONTENTS

Thesis certificate i
Acknowledgements iii
Abstract \s
List of Tables X
List of Figures xi
Abbreviations xiv

1 INTRODUCTION TO AUTOMATIC SPEAKER RECOGNITION 1

2

1.1
1.2
1.3
1.4
1.5

Speaker Recognition by Humans . . . . . . . . .. .. ... ... .... 2
Categories of Automatic Speaker Recognition . . . . ... ... . ... 3
Issues in Automatic Speaker Verification . . . . ... ... ... .. .. 3
Issues addressed in this Thesis . . . . . . . ... ... ... ... ... 6
Organization of the Thesis . . . . . . . . . ... ... ... .. ..... 7

REVIEW OF APPROACHES FOR SPEAKER VERIFICATION 9

2.1

2.2
2.3

2.4

Features for Speaker Verification. . . . . . ... .. ... ... ..... 9
2.1.1 Features Based on Vocal Tract System . . . . ... .. .. ... 10
2.1.2 Features Based on Excitation Source . . . . ... ... ... .. 11
Modeling Speaker Characteristics . . . . . . . .. .. ... ... .... 13
Decision Logic for Verification and Identification . . . . . . . . . .. .. 15
2.3.1 The Problem of Score Normalization . . . . . ... .. ... .. 15
2.3.2 Approaches to Score Normalization . . . . . ... ... .. ... 17

Motivation for the Present Work . . . . . . . . . . . . . ... ... ... 18



3 A BASELINE SPEAKER VERIFICATION SYSTEM 21

3.1 Components of the Baseline System . . . . . . . .. ... ... ..... 21
3.1.1 Feature Extraction . . . ... ... ... ... ... ... 21
3.1.2  AANN Models for Speaker Verification . . . . .. .. ... ... 21
3.1.3 Normalization of Scores . . . . . . . .. ... ... .. .. ... 23

3.2 Database for Speaker Verification . . . . . ... ... ... .. ..... 23

3.3 Performance Evaluation . . . . ... ... ... ... ... ... .. 24

3.4 Refinements to the Baseline System . . . . . . .. .. ... .. ..... 26
3.4.1 Temporal Smoothing of Feature Vectors . . . ... ... .. .. 26
3.4.2  Selection of Feature Vectors for Training . . . . . . . . ... .. 27

3.5 Summary ... .. e e 29

4 PITCH SYNCHRONOUS ANALYSIS OF SPEECH 31

4.1 Significance of Pitch Synchronous Analysis of

4.2 Determination of Instants of Significant

Excitation . . . . . . Lo 33
4.3 Effectiveness of Pitch Synchronous Analysis . . . . ... .. ... ... 35
4.4 Speaker Verification Studies . . . . . . .. .. ... oL 40
4.5 Summary ... oL e 41

5 EXPLORING FEATURES FOR REPRESENTATION OF SPEAKER-

SPECIFIC INFORMATION 43
5.1 Difference Cepstral Coefficients for Speaker Characterization . . . . . . 43
5.1.1 Linear Prediction Analysis of Speech . . . . . . ... ... ... 44

5.1.2 Interpretation of Gross and Fine Spectra of Speech Signal . . . 45

5.1.3 Extraction of Difference Cepstral Coefficients . . . . . ... .. 49

5.2 Speaker Verification using Difference Cepstral Coefficients . . . . . . . 50

viil



5.3 Summary ... ...

6 SCORE NORMALIZATION FOR SPEAKER VERIFICATION
6.1 Need for Score Normalization . . . . ... ... .. ... ... .....
6.2 Methods for Score Normalization . . . . ... ... ... ... .....

6.2.1 Modeling Speaker-specific Distribution of Impostor Scores

6.2.2 Rank-based Normalization of Scores . . . . . . . . .. ... ...

6.2.3 Method Based on Frame-level Weighting of Scores . . . . . . ..

6.2.4 Results and Discussion . . . . . . .. ... oo
6.3 Combining Evidences from Multiple Features. . . . . . . . .. ... ..

6.3.1 Excitation Source Features for Speaker Verification . . . . . ..

6.3.2 Approaches for Combining Evidences . . . . . . . . ... .. ..
6.4 Performance Comparison of Speaker Verification Systems . . . . . . . .

6.5 Summary . . . . ...

7 SUMMARY AND CONCLUSIONS
7.1 Contributions of the Work . . . . . . . . . . . . . .. ... ...

7.2 Scope for Future Work . . . . . . ... ... o o

Appendix A
A1 Notation . . . . . . . .

A.2 Backpropagation Algorithm . . . . . . .. ... ... ... .. .....

Bibliography

X

53
93
35
56
61
65
70
72
73
74
77
79

81
81
82

83
84
85

91



3.1
3.2

4.1

4.2

5.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

LIST OF TABLES

Performance of baseline speaker verification system. . . . . . . . . . . . ..

Performance of speaker verification system after the refinements. . . . . . .

Comparison of features extracted by block-based and pitch synchronous meth-

ods of analysis, in terms of within-speaker to across-speaker dissimilarity values.

Comparison of block processing and pitch synchronous analysis in terms of

the performance of speaker verification system. . . . . . . . . . ... ...

Performance of speaker verification for LPCCs and difference cepstral coeffi-

cientS. . . . L. e s

Performance of speaker verification for raw and scaled scores. . . . . . . . .
Sequence of steps involved in model normalization. . . . . . . . . . . . ..
Performance of different model normalization methods. . . . . . . . . . ..
Sequence of steps involved in rank-based normalization. . . . . . . . . . ..
Sequence of steps involved in frame-level weighting of scores. . . . . . . . .
Performance of different test normalization methods. . . . . . . . . . . ..
Combining evidences from LPCCs and difference cepstral coefficients. . . . .
Combining evidences from LPCCs, difference cepstral coefficients and exci-

tation source features. . . . . . . ... Lo Lo

Comparison of performances of speaker verification systems. . . . . . . . .

26
28

40

41

o1

%)
60
60
65
70
71
75

5
77



3.1
3.2

3.3

4.1

4.2

5.1

0.2

6.1

LIST OF FIGURES

A five-layer AANN model. . . . . . . . . . . ... ... 22
DET curves for the unnormalized (raw) and normalized scores, for the base-
line system. . . . . . . . .o 25
Training error curves, when LPCC features and smoothed LPCC features

were used for training AANN models for a given speaker. . . . . . . . . .. 27

(a) A segment of speech of vowel /a/. (b) Its LP residual and (c) the corre-
sponding estimate of the glottal waveform. The vertical lines in (c) indicate
the instants of glottal closure. . . . . . . . . .. .. ... L. 34
LP spectra (12 order) for successive frames in the word ‘they’, for a male

speaker, obtained by (a) block processing and (b) pitch synchronous analysis. 37

(a) and (b) are, respectively, the 6! order and 14 order LP spectra for four
different utterances of the same vowel /a/, as uttered by a female speaker.

(c) and (d) are similar plots for a male speaker. The sampling frequency is

6th 4th

(a) and (b) are, respectively, the order and 14" order LP spectra of five
different speakers, for the vowel /a/. (c) and (d) are similar plots for vowel
/i/. In each plot, the first speaker is female and the remaining speakers are

male. The sampling frequency is 8 kHz. . . . . . . . . . ... .. .. ... 48

Estimated distributions of the confidence scores of genuine and impostor

speakers. . . ... . L e e e e e e 54



6.2

6.3

6.4

6.5

6.6

6.7

6.8

Estimated densities p;(c) and p;(c) of test scores and impostor scores respec-
tively. The test scores (a) dominate, (b) lag and (¢) compete against the
IMpoStor SCOTes. . . . . .. L e e e e e e e
Plots (a), (b) and (c) show p;(c) for three different test utterances, for a given
model. p;(c) is estimated a priori for the given model. Plots (d), (e) and (f)
show p;(¢) — p;i(c) for (a), (b) and (c) respectively. . . . . . . . . . . . ...
P(r) is that fraction of the total number of frames, which has obtained rank
r. (a) A test utterance where the genuine speaker scores over the impostors.
(b) A test utterance where impostors (1 and 2) compete with the genuine
speaker. . . ... L e e e e
Estimates of the probability density functions of genuine and impostor scores.
(a) Raw scores, (b) scores normalized by Z-norm + T-norm and (c) scores
normalized by rank-based method. . . . . . . . . . ... ...
Frame-level average of scores for varying number of background models, for
a given test utterance. (a) For 5, 10 and 20 background models. (b) For 20,

40 and 100 background models. Legend indicates the number of background

(a) A segment of test speech signal. The corresponding framewise confidence
scores obtained from the model of (b) genuine speaker and (c), (d) impostor
speakers, shown by solid lines. In (b), (c¢) and (d), the broken lines represent
the framewise average of scores of background models. . . . . . . . . . . ..
DET curves indicating the performance of speaker verification based on
LPCCs, difference cepstral coefficients, excitation source features and com-

bination of evidences. . . . . . . . . . L L e e e e e

A.1 Signal-flow graph highlighting the details of output neuron 5. . . . . . . . .

xii



A.2 Signal-flow graph highlighting the details of output neuron & connected to

hidden neuron j. . . . . . . . . ... 88

xiil



LP
PLP
LPC
LPCC
MFCC
DFT
LF

VQ
GD
GC
ANN
AANN
MLFFNN
GMM
HMM
WAD
NIST
EER
DET

ABBREVIATIONS

- Linear Prediction

- Perceptual Linear Prediction

- Linear Prediction Coefficients

- Linear Prediction Cepstral Coefficients

- Mel-Frequency Cepstral Coefficients

- Discrete Fourier Transform

- Liljencrants-Fant

- Vector Quantization

- Group Delay

- Glottal Closure

- Artificial Neural Network

- Autoassociative Neural Network

- Multilayer Feedforward Neural Network

- Gaussian-Mixture Model

- Hidden Markov Models

- Within-speaker to Across-speaker Dissimilarity
- National Institute of Standards and Technology
- Equal Error Rate

- Detection Error Tradeoff



CHAPTER 1

INTRODUCTION TO AUTOMATIC SPEAKER

RECOGNITION

Speech is one of the most basic forms of communication among human beings. Speech
is a composite signal that contains information about the message to be conveyed,
the characteristics of the speaker and the language of communication. The unique
characteristics of the voice of a speaker are due to anatomical and physiological factors.
Anatomical factors relate to the physical aspects of speech production mechanism,
namely, the vocal tract system and the vocal folds. Physiological factors reflect the
speaking habits of a person, such as speaking rate, accent and mannerisms. These
features are embedded in the speech signal, and hence, are useful in recognizing the
speaker.

Automatic speaker recognition is the task of recognizing a person by a machine,
using the information obtained from his/her speech signal. Automatic speaker recogni-
tion systems are useful in applications where access to a facility needs to be controlled.
Although techniques such as automatic fingerprint analysis, face recognition, retinal
scanning and magnetic cards with passwords are employed for such applications, they
are limited by cost and ease of usage. Also, systems based on alphanumeric passwords
can be compromised. On the other hand, speech is a natural and convenient form
of input that carries the signature of the speaker. Moreover, speech is inexpensive
to collect and analyze, and is hard to mimic. Therefore, automatic speaker recogni-

tion is suitable for such applications. Automatic speaker recognition systems can be



used as a preprocessing stage in automatic speech recognition systems, to improve the
performance of the speech recognizer. They can be used for machine identification
of participants in meetings, conferences or conversations. They can also be used in
conjunction with automatic speech recognizers for analyzing multi speaker data, to
obtain a record of speech uttered by different speakers. In law enforcement, speaker
recognition systems can be used to help identify suspects. Thus, speaker recognition

systems have a number of important applications.

1.1 SPEAKER RECOGNITION BY HUMANS

An insight into the ability of human beings to identify speakers from their speech may
offer clues for automatic speaker recognition. Human beings can recognize speakers
from their voices with ease, given a certain degree of familiarity. This is due to their
ability to extract specific cues for a given speaker, and also due to their ability to inte-
grate higher sources of knowledge such as context, manner of speaking and language.
In [1], 2-3 seconds of speech was observed to be sufficient for subjects to identify famil-
iar voices, while the performance of recognition decreased for unfamiliar voices. Also,
when the utterances were played backward, the performance of recognition reduced
drastically, thus highlighting the importance of timing and articulatory cues. Human
beings can easily perceive mimicry of familiar voices [2]. The ability of human beings
to recognize familiar voices in adverse conditions is remarkable [2]. However, the per-
formance of machines can exceed that of human beings, when the test utterance is
short and the speakers are unfamiliar. This is because the time required by human

beings to learn a new voice is normally long and machines may be trained much faster.



1.2 CATEGORIES OF AUTOMATIC SPEAKER RECOGNITION

Automatic speaker recognition can be divided into two categories: speaker identifica-
tion and speaker verification. The speaker identification task is to determine if the
speaker of an unknown (test) utterance is present in a given set of speakers, and if so,
to establish the identity of that speaker. The task is called closed-set identification, if
it is known that the speaker is always a member of that set. If the speaker need not
be a member of that set, then the task is called open-set identification. The speaker
verification task is to determine if the speaker is indeed the person he / she claims
to be, i.e., to validate the claim of the speaker. In speaker identification, the number
of decision alternatives is equal to the size of the population, whereas in verification
there are only two alternatives, acceptance or rejection of the claim.

Speaker recognition can be performed in a text-dependent or text-independent
manner. A text-dependent system requires a speaker to utter a set of predefined
phrases or sentences while collecting the training and test utterances. A text-independent
system does not depend on the text of the training or test utterances. The objective

of this thesis is to address issues in text-independent speaker verification.

1.3 ISSUES IN AUTOMATIC SPEAKER VERIFICATION

As mentioned in Section 1.1, human beings extract certain cues from the speech of a
speaker, that help them to identify the speaker. But the exact nature of these cues is
not fully understood. Moreover, the tools available for speech processing are not ade-
quate to represent the higher sources of knowledge, such as the speaking mannerisms
of the individual. Hence, automatic speaker recognition is approached as a statisti-
cal pattern recognition problem. In this section, we discuss the general approach to

automatic speaker verification and issues involved in the task.



Automatic speaker verification entails the following steps:
1. Representation of speaker-specific characteristics and their efficient measure-
ment from the speech signal, known as feature extraction

2. Development of a model (prototype) for each speaker using reference features

extracted from the speech of that speaker, known as modeling

3. Comparison between the reference features and the features extracted from a

test utterance, called matching
4. Decision mechanism for verification based on the score obtained during match-

ing, known as scoring

The objective of feature extraction is the quantitative representation of speaker-
specific properties and the efficient measurement of these properties from the acoustic

speech signal. Tt is desirable that these features have the following properties [3]:

e High interspeaker-to-intraspeaker variability

Robustness to the characteristics of transmission channel, microphone and am-

bient noise

Ease of extraction from the speech signal

Robustness to aging of the speaker

Not subject to mimicry

Typically, short-time analysis of speech is performed to extract features which represent
the characteristics of the two components of speech production mechanism, namely,
the excitation source and the vocal tract system. Although high-level features such as
speaking rate, accent and verbal mannerisms of the speaker convey significant speaker-

specific information, the existing techniques of feature extraction are not adequate to



represent such information. Most of the current speaker recognition algorithms are
based on short-time features extracted from speech signal.

Once the features are extracted from the speech signal, the next step is to develop
a model to represent the set of features. Models can be classified as parametric or
nonparametric models. Parametric models assume a structure characterized by certain
parameters, which are estimated from the given features. In general, a model may
represent any information derived from the set of features. For example, the model

may represent, the following:
e Statistical average of the features computed over long utterances (of several
seconds or minutes) of speech
¢ Estimate of the probability density function of the features in the feature space

e Estimate of the temporal information present in the sequence of features
Some issues in the choice of models are as follows:

e The choice of features for modeling speaker-specific characteristics

e The amount of speech data required to reliably estimate the parameters of the

model

e The ability of the model to generalize the characteristics of the speaker from

the given set of features

The model of a given speaker is presented with the features extracted from a test
utterance, whose speaker is unknown. Comparison between the reference features and

the test features depends on the nature of the model. The following cases are possible:

o If statistical averages of the features are used, a distance metric is required for

comparison.



e If the model represents an estimate of probability density function of the fea-
tures, then likelihood is one measure of similarity between the reference and test

features.

e If the model represents an estimate of the temporal information, then temporal

matching score or likelihood can be used as measures of similarity.

The comparison generates a score that indicates the similarity between the refer-
ence features and the test features. Based on this score, a decision needs to be made
on the validity of the claim. Due to differences in the reference and the test utter-
ances, the score needs to be calibrated before setting a threshold for decision. Hence,

normalization and scoring methods are needed for this purpose.

1.4 ISSUES ADDRESSED IN THIS THESIS

The objective of this research work is to address certain issues related to a text-
independent speaker verification system. The focus of research is: (a) To explore
features for effective representation of speaker-specific characteristics and (b) to ex-
plore techniques of score normalization for verification. The significance of the position
of window for analyzing speech is discussed. Pitch synchronous analysis of speech is
studied for accurate estimation of short-time spectral characteristics. Difference cep-
stral coefficients are proposed as a feature for speaker verification, by deemphasizing
the linguistic information present in the speech signal. The ability of this feature
to provide complementary information for speaker verification is also demonstrated.
Speaker-specific models based on autoassociative neural networks are used to estimate
the probability density function of feature vectors. The problem of score normaliza-
tion for speaker verification is discussed. Techniques for normalization of scores are
proposed, and a comparison with the existing methods is presented. Most speaker ver-

ification systems use a single feature for representing speaker-specific information. In



this work, evidences due to several complementary features are combined for increasing

discrimination between genuine and impostor speakers.

1.5 ORGANIZATION OF THE THESIS

The thesis is organized as follows:

In Chapter 2, a brief review of the existing approaches to speaker verification is pre-
sented.

Chapter 3 describes a baseline system for speaker verification using spectral features
and autoassociative neural network models, and describes a few refinements for per-
formance enhancement of the system.

Chapter 4 discusses pitch synchronous analysis of speech for extraction of short-time
spectral features, and illustrates its advantages over the traditional block-based anal-
ysis.

In Chapter 5, the development of difference cepstral coefficients for speaker-specific
characterization is described. A speaker verification system based on the above fea-
ture is also discussed.

In Chapter 6, methods for normalization of scores are proposed and evidences due to
different features are combined for speaker verification.

Chapter 7 presents a summary of the work and outlines the scope for further research.






CHAPTER 2

REVIEW OF APPROACHES FOR SPEAKER

VERIFICATION

This chapter presents a brief review of approaches for speaker verification. In par-
ticular, features for speaker verification, methods for modeling speaker-specific char-
acteristics and techniques for score normalization are reviewed. Features for speaker
verification are mostly obtained by short-time analysis of speech, which normally repre-
sent the characteristics of excitation source and vocal tract system. These are reviewed
in Section 2.1. Speakers can be modeled with features derived from speech signal, us-
ing parametric or nonparametric models. Section 2.2 reviews approaches for modeling
speaker-specific characteristics. Due to mismatch between training and test data, the
scores resulting from the models cannot be compared to a common threshold for de-
cision. Hence, the scores are calibrated using methods of normalization. Section 2.3

reviews the issue of normalization and some existing methods of normalization.

2.1 FEATURES FOR SPEAKER VERIFICATION

Speech is produced by exciting a time-varying vocal tract system with a time-varying
input. Speaker-specific information is present in both these components of speech
production mechanism. Short-time analysis of speech is an effective tool for extraction

of such information.



2.1.1 Features Based on Vocal Tract System

The vocal tract system can be considered as a cascade of cavities of varying cross
sections. The size and shape assumed by the vocal tract while producing various sound
units is a characteristic of the sound unit and the speaker. Formants are resonances
of the vocal tract system. They vary in frequency, bandwidth and relative amplitude,
depending on the sound unit being produced and the speaker uttering the sound.
However, accurate extraction of formants from speech signal is a difficult task [4] [5],
and distances based on formant frequencies are not sufficiently discriminative between
speakers for text-independent systems.

Linear prediction (LP) analysis of speech [6] provides an approximation to short-
time spectrum of the transfer function of the vocal tract filter, as well as the source
of excitation to the filter. In [7], different parametric representations of speech de-
rived from LP analysis of speech were investigated for their effectiveness for automatic
speaker recognition. These were, the predictor coefficients, the impulse response of
the vocal tract system, the autocorrelation of the impulse response and the cepstrum
derived from the logarithmic transfer function of the vocal tract system. In [8], long
term averaging of reflection coefficients (obtained during LP analysis) was shown to in-
crease the ratio of interspeaker-to-intraspeaker variability. In [9], adaptive component
weighting cepstral coefficients were proposed, to emphasize the formant structure of the
speech spectrum obtained by LP analysis and attenuate the broad bandwidth spectral
components. In [10], a method called orthogonal linear prediction was proposed and
a small subset of the resulting orthogonal coefficients was shown to exhibit significant
interspeaker variation. In [11], principal spectral components were derived from LP co-
efficients for speaker verification task. In [12], cepstral coefficients extracted by means
of LP analysis, called linear prediction cepstral coefficients (LPCC) were shown to yield

nearly the same performance of speaker recognition as that due to cepstral coefficients

10



obtained by short-time analysis using DFT. In [12] and [13], orthogonal polynomial
representations were proposed to characterize transitional spectral information. Mel-
frequency cepstral coefficients (MFCC) have been used for speaker recognition [14].
They are obtained by warping the frequency scale in such a way as to resolve the

spectrum finely at lower frequencies and relatively coarsely at higher frequencies [15].

2.1.2 Features Based on Excitation Source

During the production of speech, the vibration of vocal folds provides quasi-periodic
impulse-like excitation to the vocal tract system. Linear prediction (LP) residual,
obtaining by inverse filtering the speech, is an approximation to the source of excita-
tion of the vocal tract system. In [16], a feature called real cepstrum was computed
from the LP residual by ignoring the phase information, retaining the amplitude spec-
trum and by introducing a logarithmic nonlinearity. Long-term average of the real
cepstrum was shown to have a low intraspeaker and high interspeaker variability. In
[17], a nonlinear prediction model based on neural networks was used to compute an
error signal. Certain measures were defined over LP residual, such as mean square
error, mean absolute error and variance of the residue, that were shown to reduce
the error rate in speaker recognition. Liljencrants-Fant (LF) model has been used as
a parametric model to characterize glottal flow derivative [18]. In [19], estimate of
glottal flow derivative was obtained using LF model to capture its coarse structure,
while the fine structure was represented by energy and perturbation measures. Both
coarse and fine-structure glottal features were shown to result in the reduction of er-
ror in a speaker identification system, when used in conjunction with Mel-frequency
cepstral coefficients. However, in the above methods, the features of excitation source
were modeled using a probabilistic framework. In [20], excitation source information

present in the LP residual was extracted using autoassociative neural network models.
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Here, the goal was to capture the higher order relationship existing among the samples
of the LP residual. The effect of the order of LP analysis on speaker verification was
studied. An experimental study on the significance of excitation sources correspond-
ing to different sound units was also conducted, and some sounds were observed to be
more significant for speaker verification than others.

Pitch is the fundamental frequency of vibration of vocal folds. Pitch is a unique
characteristic of each speaker due to the differences in physical structure of vocal folds
among different speakers. It can also be different due to speaking style and accent
imposed by different speakers. A summary of various algorithms for pitch extraction
was presented in [21]. Unlike spectral features that are affected by channel variations,
noise and distance between the speaker and microphone, pitch is insensitive to the
above factors. In [22], linear transformation of vectors representing the pitch contours
was shown to improve the ratio of interspeaker to intraspeaker variance, for a text-
dependent speaker recognition system. In [8], long-term averages of pitch and standard
deviation of pitch were shown to be speaker dependent. In [23], a lognormal distribu-
tion of pitch was proposed instead of a Gaussian distribution. A probabilistic model
for estimated pitch was suggested, using a mixture of three lognormal distributions
with tied means and variances.

Variation of pitch as a function of time is called intonation. While a speaker’s
average pitch may be mimicked, it is difficult for an impostor to mimic the local varia-
tions of pitch. Intonation has been more useful in text-dependent speaker recognition.
In [22] and [24], similarity between the intonation patterns of reference and test ut-
terances was measured using dynamic time warping algorithm. Two other features
related to pitch are jitter and shimmer. Jitter is defined as the perturbation of pitch,
while shimmer represents the variation in peak amplitudes of the signal in successive

pitch periods [25].
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2.2 MODELING SPEAKER CHARACTERISTICS

Parametric and nonparametric models have been studied for speaker verification. In
[26], a nearest-neighbour distance measure was proposed, based on the similarity of dis-
tributions of features extracted from reference and unknown utterances. The measure
did not assume any form of the distributions involved. A relationship was established
between the distance measure and Kullback-Leibler divergence [27].

In [28], vector quantization (VQ) codebook was used as a means for characterizing
the short-time spectral features of a speaker. A VQ codebook was developed for each
speaker. The decision on the identity of the unknown speaker was based on a minimum
distance classification rule. The effect of different parameters on the performance of
verification was studied. These parameters were the codebook size, phonetic content
of the text and difference in recording sessions.

In [14], Gaussian mixture models (GMM) were proposed for text-independent
speaker identification. The basis for such a model is that the individual Gaussian
components of a GMM represent speaker-dependent spectral shapes that are useful
for modeling speaker identity, and also that Gaussian mixtures can model arbitrary
densities. The experiments reported in [14] deal with algorithmic issues such as model
initialization, variance limiting and model order selection. Techniques such as cep-
stral mean subtraction, difference coefficients and frequency warping were applied to
compensate for spectral variability due to telephone channel and handsets.

The methods mentioned above model only the distribution of feature vectors and
do not make use of the temporal correlations that exist in the sequence of feature
vectors. In [29], a hidden Markov model (HMM) was proposed to incorporate temporal
correlations in the V( model. In this approach, short-term stationary regions were
modeled by states, while the slower variations of the signal were modeled by the

transitions between such states. The signal in each state was modeled by a type of
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HMM called linear predictive HMM.

Artificial neural network models with different topologies can perform different
pattern recognition tasks [27] [30]. In [31], the ability of a neural network model to
discriminate between patterns of different classes was exploited for speaker recognition.
A global classifier for a set of speakers was developed, whose utility was limited to a
small number of speakers. Each model was trained to discriminate between speech
data of the given speaker and a small set of impostors. In [32-34], mapping ability of
neural network models was exploited to capture speaker-specific knowledge. In [35],
the ability of AANN models to estimate arbitrary densities was demonstrated. It was
illustrated experimentally that a network can be designed such that the training error
surface relates to the distribution of the given data, depending on the constraints
imposed by the structure of the network. The effectiveness of AANN models for
speaker verification was also demonstrated. In [20] [36], AANN models were used to
acquire the temporal relationship between the samples of linear prediction residual, to
model speaker-specific characteristics.

Methods based on speaker-specific mapping of features have been used for speaker
verification. The goal of this approach was to capture speaker-specific information by
mapping a set of feature vectors specific to linguistic information (message part) in
the speech, on to a set of feature vectors representing both the linguistic and speaker-
specific information. In [37], a nonlinear vectorial interpolation function was pro-
posed for text-dependent speaker recognition using the mapping property of a multi-
layer feedforward neural network (MLFFNN), to obtain the interpolation vector for
each speaker. In [32], speaker-specific mapping approach was investigated for text-
independent speaker recognition , using cepstral coefficients derived from perceptual
linear prediction (PLP) as features. In [33], parameters for representing linguistic in-

formation and linguistic plus speaker-specific information were extracted from speech.
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Speaker-specific information was captured by nonlinear mapping using a multilayer

feedforward neural network.

2.3 DECISION LOGIC FOR VERIFICATION AND IDENTIFICATION

Once a model is developed for a speaker, decision on the validity of the claim is made
based on the output score obtained from the model for a test utterance. Due to
mismatch between training and test data, this score is specific to the model and the
test utterance. The objective of score normalization is to transform the scores into a
range where a common threshold for decision may be set, which is valid for any pair

of training and test data.

2.3.1 The Problem of Score Normalization

Given a speech utterance z and a claimed identity )\, the objective of speaker veri-
fication is to decide if x was uttered by the genuine speaker A, or by an impostor.
This decision can be based on the comparison of a similarity measure (or a distance
measure) between the speaker’s model and the utterance z to a threshold. In the
probabilistic framework, let O denote the set of observations corresponding to the
test utterance x and let M denote the statistical model corresponding to speaker .

According to Bayes theorem,
P(M/O)p(0) = p(O/M)P(M), (2.1)

where P(M/O) is the a posteriori probability of the hypothesized speaker model M
given the set of observations O, p(O) is the probability density function of the ob-
servations, p(O/M) is the likelihood of M with respect to O and P(M) is the prior
probability of occurrence of the model M. For speaker verification, we need to eval-

uate P(M/O). However, the output of a statistical model is an estimate of p(O/M).
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Assuming the occurrence of each model to be equally likely, the identity claim can be

accepted if

p(O/M) > B, (2.2)

and rejected otherwise, where (3 is the decision threshold. This decision rule cannot

be used in practice due to the following reasons:

1. Due to differences in the training data of different speakers, the resulting mod-
els are not equally representative of the speaker-specific characteristics. The
assumption is that with sufficient speech, the distribution of features in the fea-
ture space is a good representation of the sounds of the speaker. The amount
of speech data available to model a speaker may not always conform to this
assumption. The ability of a model to represent the distribution of features
of a speaker is also affected by the intraspeaker variability of sounds within
the speaker. Thus, some speakers are difficult to model, while some are easily

modeled [38].

2. Due to mismatch between training and test data, the identity claim can be
rejected due to a low likelihood score, even if the claim is legitimate. The main
source of this mismatch is the channel through which speech is received, which
induces variability in the features, causing them to move around in the feature
space. Another source of this mismatch is that, some sound units occurring in
the test data of a speaker might not have occurred adequately in the training
data of that speaker. This results in poor modeling of that sound unit and

consequently, a low likelihood score.

The objective of normalization is to transform the scores to a range where a common

threshold can be determined for all tests.
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2.3.2 Approaches to Score Normalization

Speaker verification systems based on Gaussian mixture models achieve a certain de-
gree of normalization by using a speaker-independent world model M, to model speech

in general. A normalized log-likelihood score is obtained as
S(M,0) =log(p(O/M)) — log(p(O/M,)) (2.3)

Here, the mismatches that occur between the test utterance and the model M will have
a corresponding effect on the world model M,,, thus removing the bias in p(O/M) [39].
A similar approach used a set of cohort speakers who were close to the target speaker,
thus viewing the cohorts as replacement for the world model [40]. The selection of
cohorts can be done during training or testing. During training, a similarity measure
was used to compare the speaker model with cohort models [41] [42].

In zero normalization (Z-norm) method [43] [44], a model was tested against exam-
ple impostor utterances and the log-likelihood scores were used to estimate the mean
pr and standard deviation o; of the impostor distribution. The quantities u; and o;
are specific to the model of each speaker and can be estimated offline. The normalized
score was computed as

S(M,O) — Hr

or

S = (2.4)

Zero normalization is equivalent to scaling the distribution of speaker-specific scores.

In test normalization, the objective is to estimate the statistics of an impostor
for a given test utterance, which can be used to discriminate the genuine speaker
from impostors. In T-norm [43], a given test utterance was presented to a set of
background models, and the mean and variance of the resulting scores were computed.
The normalized score was computed in a manner similar to that of zero normalization.

The use of variance parameter is to estimate the distribution of the background scores
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more accurately. Also, acoustic mismatch between training and test utterances, that
is still possible in zero normalization method is avoided here.

In the review of approaches, the scope is limited to review of algorithms / tech-
niques for speaker verification and it does not include the review of speaker verification
systems developed in other laboratories over the world, and industries. In this regard,
[45] and [46] are useful references for the interested reader. These sources briefly discuss
the speaker recognition systems being developed at various research laboratories, and
also provide a performance comparison for the NIST Speaker Recognition Evaluation

task.

2.4 MOTIVATION FOR THE PRESENT WORK

In this chapter, a brief review of the standard approaches to speaker verification was
presented. In general, spectral and source features are extracted from speech signal
to represent speaker-specific characteristics. Most of the methods analyze speech over
uniform blocks of 10-30 ms duration for extracting spectral features. These methods
use an arbitrary positioning of the window of analysis for feature extraction. In this
thesis, pitch synchronous analysis is studied to obtain an accurate estimation of the
short-time spectral features. The existing spectral features do not aim to specifically
represent the characteristics of the speaker, since they also contain information about
the sound unit. We propose a method to deemphasize the speech-specific information
present in the short-time spectrum. Most of the existing approaches model the prob-
ability density function of feature vectors using a parametric model such as GMM.
This approach assumes that the number of clusters in the feature space of the speaker
is known a priori, and that the probability density function of these clusters is Gaus-
sian in shape. In the present work, AANN models have been used for estimation of

probability density function of the features. AANN models do not make assumptions
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about the nature the of probability density function of features. Score normalization
methods help in reducing the effect of acoustic and channel related mismatch between
training and test utterances. Existing methods are based on scaling the distribution of
the scores of genuine and impostor speakers and they give equal weightage to all the
frames of the test utterance. We propose normalization methods to weight the scores
of different frames of the test utterance. Most speaker verification systems are based
on a single feature. In this work, we discuss the importance of complementary sets of
features for speaker verification. Combination of evidences from complementary sets

of features is shown to improve the performance of speaker verification.
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CHAPTER 3

A BASELINE SPEAKER VERIFICATION SYSTEM

In this chapter, we describe a baseline text-independent speaker verification system
using spectral features and autoassociative neural network (AANN) models, which
provides a framework for further experiments and performance evaluation. Section 3.1
describes the components of the baseline system. The database used for experiments
and the metrics for performance evaluation are discussed in Sections 3.2 and 3.3 re-

spectively. Certain refinements to the baseline system are proposed in Section 3.4.

3.1 COMPONENTS OF THE BASELINE SYSTEM

3.1.1 Feature Extraction

Speech signal is preemphasized and frames of 20 ms duration are Hamming windowed
with a window shift of 5 ms. Short-time analysis of speech is performed using 14"
order linear prediction analysis. A 19 dimensional weighted linear prediction cepstral
coefficient (LPCC) vector is computed from the linear predictor coefficients (LPC) of
each frame of data [15]. Cepstral mean subtraction is performed to minimize the effect

of slowly varying characteristics of transmission channel [12].

3.1.2 AANN Models for Speaker Verification

Autoassociative neural networks (AANN) are feedforward neural networks that per-
form an identity mapping of the input space [30]. A three-layer AANN model with

linear units can capture the principal orthogonal components of a feature set, while a
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five-layer AANN with nonlinear units in the hidden layers can capture the probability
surface of the feature vectors [30]. The backpropagation learning algorithm for multi-
layer feedforward neural networks is described in Appendix A of this thesis. Fig. 3.1

shows a five-layer AANN model that performs nonlinear principal component analysis.

Compression
Layer

Input Layer Output Layer

Fig. 3.1: A five-layer AANN model.

The ability of AANN models to capture nonlinear subspaces was demonstrated in
[35]. The importance of error surface of the training data in the feature space was
studied. Tt was observed that the average error was lower for the most frequently oc-
curring input vectors than for the less frequently occurring ones. It was demonstrated
experimentally that a network can be designed such that the training error surface
relates to the distribution of the given data, depending on the constraints imposed on
the structure of the network. AANN models are advantageous compared to Gaussian
mixture models (GMM), when the surface representing the distribution of features is
highly non-linear. This is because, GMMs assume the shape of the components of the
distribution to be Gaussian, which need not be the case. Moreover, a GMM requires
specification of the number of mixtures a priori.

For the baseline system, a 5-layer AANN model is developed for each speaker.
The structure of the model is 19L 38N 4N 38N 19L, where the numbers indicate the
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number of nodes in each layer. The symbols L and N denote, respectively, linear and
nonlinear nature of the activation function of the nodes in each layer. The models are
trained using backpropagation learning rule [27]. Each model is trained for 50 epochs,
where one epoch denotes that all the feature vectors are presented to the model exactly

once.

3.1.3 Normalization of Scores

In the baseline speaker verification system, two existing methods, Z-norm and T-
norm, are applied for normalization of scores [43] [44]. For Z-norm, the impostor data
collected from background speakers is presented to a claimant model, and the mean
and variance of the scores are computed. For test normalization, 20 background models
are used. A given test utterance is presented to the 20 background models along with
the claimant model. The mean and variance of the scores of the background models

are computed. The normalizations are performed as described in Section 2.3.

3.2 DATABASE FOR SPEAKER VERIFICATION

The database used in this study was selected from NIST 2003 speaker recognition
evaluation [46]. The speech data was collected over cellular channel and sampled at
8 kHz. The database contains 149 male and 191 female speakers. The duration of
training data for each speaker is about 2 minutes. The duration of a test utterance
is between 15 and 45 seconds. 500 test utterances of male speakers are considered
for verification. Each test utterance has 11 claimants, and the speaker of the test
utterance may or may not be present among these 11 claimants. There are no cross
gender tests. When a test utterance is presented to the model of a claimant speaker,
a score is obtained which indicates the probability that the claimant speaker is the

speaker of the test utterance. Thus, claimants are categorized as genuine and impostor
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claimants.

3.3 PERFORMANCE EVALUATION

The score resulting from a model is compared against a threshold, for accepting or
rejecting the claim of the model. Two types of errors are possible in a speaker verifica-
tion system: (a) False acceptance or false alarm error where an impostor is identified as
the genuine speaker, and (b) false rejection or missed detection error, where a genuine
speaker is classified as an impostor. The cost of false acceptance is higher than that
of false rejection. For a low value of threshold, false rejection error is low but false
acceptance error is high. As the threshold is increased, false rejection error increases
but false acceptance error decreases. For a particular threshold, the two types of error
are equal. The error at that threshold is called equal error rate (EER). Smaller the
value of EER, better is the performance of the system.

The probability of false acceptance can be plotted against that of false rejection
to observe the error characteristics. Detection error trade-off (DET) curves plot the
normal deviates corresponding to the error probabilities [47]. These curves are linear
and help in comparing the performance characteristics of different systems. On the
DET curve, the point where the line y = x intersects the curve indicates the EER.
The DET curves for the normalized and unnormalized scores obtained for the baseline
system are shown in Fig. 3.2.

The EER measure can be used to evaluate the performance of a speaker verification

system. In this work, EER is computed for three types of scores:

1. Raw (unnormalized) scores obtained from the models
2. Normalized scores obtained by calibrating the raw scores

3. Scaled scores which are obtained as follows: For each test utterance, all the 11
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Fig. 3.2: DET curves for the unnormalized (raw) and normalized scores, for
the baseline system.

raw scores are scaled by the maximum value among the 11 scores.

In addition, the percentage of the first ranks obtained by the genuine speakers is also
computed over all the test utterances. These ranks are computed for the raw scores.
The significance of scaled scores is that they transform the scores of all test utterances
between zero and one. In all those test cases where the genuine speaker has obtained
the first rank, the scaled score of the genuine speaker is one. Thus, scaling is equivalent
to test normalization, which brings about a reduction in EER. This is observed from
Table 3.1, which lists the performance of the baseline system. The scaled scores act
as a reference against which the performance of normalized scores can be compared.

Normalized scores are discussed greater detail in Chapter 6.
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Table 3.1: Performance of baseline speaker verification system.

% of first | EER(%) for EER(%) for EER(%) for

ranks raw scores | normalized scores | scaled scores

72.2 26.1 16.1 12.9

3.4 REFINEMENTS TO THE BASELINE SYSTEM

In this section, we propose certain refinements to the baseline system in the manner of
selecting features for training the AANN models. These refinements are based on the
interpretation that the feature space for a given speaker consists of a set of clusters of

varying locations and densities.

3.4.1 Temporal Smoothing of Feature Vectors

Feature vectors extracted from the speech signal can be viewed as points in a mul-
tidimensional feature space. For each speaker, the feature vectors extracted from a
given category of sound unit can be expected to form a cluster in the feature space.
Temporal smoothing of features can be performed to make the clusters more cohesive
in the feature space. Such smoothing reduces the effect of outliers generated during
the extraction of features. As a result, the training error of AANN models is reduced,
during the estimation of probability density function of feature vectors. This is il-
lustrated in Fig.3.3, where the training error is plotted for AANN models trained on
LPCC features and smoothed LPCC features, for a given speaker. It is evident that
the models trained on smoothed LPCC features attain a lower value of training error.
However, for a given vowel sound, there is overlap between formant frequencies of dif-

ferent speakers, leading to an overlap of clusters in the feature space. If this overlap
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between two speakers is significant, then the discrimination between them is reduced

due to the smoothing of feature vectors.
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Fig. 3.3: Training error curves, when LPCC features and smoothed LPCC
features were used for training AANN models for a given speaker.

Table 3.2 compares the performance of speaker verification for LPCC and smoothed
LPCC features. Due to smoothing, the confidence scores of genuine and impostor
models for a given test utterance increase, but the discrimination is nearly the same
as the case without smoothing. Thus, the advantage of smoothing is offset by the loss

of discrimination.

3.4.2 Selection of Feature Vectors for Training

When the parameters of AANN models (initial weights and learning rate) are selected
suitably, the training error surface is representative of the probability density function

of feature vectors. In [35], it was observed that the training of AANN models is
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Table 3.2: Performance of speaker verification system after the refinements.

Speaker verification system based on

LPCC Temporal smoothing | Selection of LPCCs

features of LPCCs during training
% of first 72.2 72.9 70.1
ranks
EER for scaled 12.9 13.0 13.3

scores (%)

influenced by the patterns that occur more frequently. Also, the training error was
lower for the patterns occurring more frequently. Hence, these patterns may be more
important for the estimation of probability density function as compared to the less
frequently occurring ones. The former may be viewed as the denser regions of the
feature space, while the latter may be termed as outliers. For speaker verification,
features extracted from steady voiced regions of speech signal can be considered to lie
in the denser regions of a cluster in the multidimensional feature space, while feature
vectors extracted over weak voiced, unvoiced or noisy speech segments can be treated
as outliers. The influence of such outlier patterns should be minimized, since they do
not contain significant speaker-specific information.

The outliers in the multidimensional feature space can be eliminated to a certain
extent while training the AANN model. While training, the mean and standard devi-
ation of error is computed at regular intervals (10 epochs) for all the training patterns.
Patterns having a higher deviation from the mean error are progressively eliminated
from the training set. Thus, after every subsequent 10 epochs, certain number of out-

liers are pruned out. The model is now trained on those patterns that are significant
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for estimation of probability density function. The criterion for stopping the training is
that either a certain number of epochs (50) be completed, or a certain minimum change
in error between successive epochs is achieved, whichever happens earlier. While the
elimination of outliers during training may lead to a better representation of the dis-
tribution of feature vectors, it may also reduce the possibility of matching between
training and test data. This is because, the training data available for a given speaker
is often limited and may not adequately represent all the categories of sound units.
Due to acoustic and channel variabilities, an exact matching between the clusters of
training and test data may not be achieved. The effect of mismatch seems to offset
the advantage gained by the elimination of outliers, as indicated in Table 3.2.

Thus, the advantage of the methods discussed in Section 3.4.1 and the present
section is that they reduce the effect of outliers in the training of AANN models.
However, these methods may also reduce the feeble discrimination between the speak-
ers even further. Hence, no major improvements are observed. Since the exact form
of the probability density function of the feature vectors is not known, it is difficult to

analyze the effects of these methods.

3.5 SUMMARY

This chapter described a baseline speaker verification system using LPCC features and
AANN models. AANN models are used to estimate the probability density function of
feature vectors. The database and performance measures to evaluate the system were
discussed. Refinements were suggested, based on smoothing the feature vectors and
selection of feature vectors for training. This highlights the issues of mismatch and
loss of discrimination. These issues are addressed during the normalization of scores

which is described in Chapter 6.
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CHAPTER 4

PITCH SYNCHRONOUS ANALYSIS OF SPEECH

The goal of this chapter is to study the importance of the position of analysis window
for extraction of features from speech signal. In Section 4.1, we discuss the impor-
tance of the position of analysis window with respect to the production characteristics
of speech signal for accurate estimation of the vocal tract characteristics of a speaker.
The instant of glottal closure, a significant event in the production of voiced speech,
is described in Section 4.2, and a method to derive the same from voiced speech is re-
viewed. The ability of pitch synchronous analysis to accurately bring out the temporal
variations of the spectral characteristics is illustrated in Section 4.3. A quantitative
measure is also described, to denote the ability of a feature for effectively representing
speaker-specific information. Features extracted from two methods, namely, block-
based analysis and pitch synchronous analysis, are compared using quantitative mea-
sure. A speaker verification system based on pitch synchronous extraction of features

is described in Section 4.4.

4.1 SIGNIFICANCE OF PITCH SYNCHRONOUS ANALYSIS OF

SPEECH

Short-segment analysis of speech is performed to extract spectral information present
in the signal. For this purpose, speech signal is windowed in time domain. The size
of the window is dictated by the desired resolution in frequency domain and also, by

the region over which speech signal can be considered quasi-stationary. The shape of

31



the window is chosen so as to reduce the edge effects, that manifest in the frequency
domain due to abrupt termination of the signal. For segmental analysis of speech, the
size of the window is typically chosen in the range containing 2-4 pitch periods (30 ms)
during which the characteristics of speech can be considered nearly stationary. There
is another important aspect of analysis, namely, the position of the window relative to
the speech signal, that is not given due consideration.

The position of analysis window is critical for extracting the dynamic source and
system characteristics from speech signal. Block processing methods consider 10-30
ms of speech to estimate the characteristics of the vocal tract system in that interval.
However, this smears the information within the analysis window. Consequently, the
estimate of the spectrum corresponds to an average behaviour and is not accurate
[48]. For instance, if the analysis window contains a region of dynamic sound, accu-
rate temporal variation of the spectral characteristics can not be obtained by block
processing. Secondly, if the analysis window contains more than one pitch period, the
resulting spectrum estimate is influenced by the fundamental frequency. This is more
pronounced in the case of high-pitched voices, where the short-time spectral envelope
and the linear-prediction spectrum are affected by the pitch harmonics [49]. Thus,
apart from the size and shape of the analysis frame, the position of the window with
respect to the signal is important for accurate estimation of short-time spectrum.

In order to position the analysis window suitably, it is necessary to locate well
defined events in the production of speech signal. The instant of significant excitation
of the vocal tract system is one such event. For voiced sounds, the instants of significant
excitation correspond to the instants of glottal closure. Once such successive events
are derived from the speech signal, the analysis window can be placed relative to
the events. This ensures that the segments chosen for analysis are always at the same

relative position in each pitch period. Hence, the estimated spectral characteristics are
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more consistent across successive pitch periods. Also, temporal variation of spectral

characteristics can be obtained more accurately.

4.2 DETERMINATION OF INSTANTS OF SIGNIFICANT

EXCITATION

The instants of glottal closure are manifested in the voiced regions of speech. During
the production of voiced sounds, air expelled from the lungs is chopped by the vibration
of vocal folds, causing a quasi-periodic excitation to be delivered to the vocal tract
system. The degree of opening and closing of vocal folds regulates the amount of
excitation delivered to the vocal tract system. While the opening of vocal folds is
gradual, the closing is relatively abrupt. It is at the instant of complete closure of
vocal folds that the maximum excitation is delivered to the vocal tract system. This is
called the instant of glottal closure (GC), or the instant of significant excitation [50].
This is a well manifested event in the voiced regions of speech signal, and one that can
be derived from the speech signal accurately. Here, an algorithm for the determination
of the instants of significant excitation is briefly reviewed.

A group-delay based method for determining the instants of significant excitation
from speech signals was proposed in [51] [52]. Here, the speech signal is preemphasized
and 10" order LP analysis is performed on frames of 10 ms duration, with a shift of 5
ms. Speech signal is inverse filtered to obtain the LP residual signal. For each frame

of LP residual of 10 ms duration, the group delay ¢ (w) is computed using the relation

) Xr(w)Yg(w) + X (w)Y7(w)

TR @) -y

where X (w) = Xg(w) + jX7(w) and Y (w) = Yr(w) + jY7(w), X(w) is the Fourier
transform of the LP residual signal z(n), Y (w) is the Fourier transform of nz(n),

n=20,1,..., N — 1. The length of the signal z(n) is N samples. This computation is
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repeated for successive frames which are obtained by sliding the window with a shift
of one sample at a time. Thus, the group delay is obtained as a function of time. The
average group delay for each frame known as phase slope function is computed. The

phase slope function is smoothed with an 8-point (N =8) Hamming window given by

2
w(n) = 0.54 — 0.46c0s (Nm1> , 0<n<N-1 (4.2)

The positive zero crossings of the phase slope function are hypothesized as the instants
of glottal closure. Certain spurious instants can also be hypothesized as instants of
glottal closure, in both nonspeech and speech regions. Cues based on frame energies,
strength of the instants and time difference between successive instants are used to

eliminate spurious instants.
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Fig. 4.1: (a) A segment of speech of vowel /a/. (b) Its LP residual and (c)
the corresponding estimate of the glottal waveform. The vertical lines in (c)
indicate the instants of glottal closure.
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Fig. 4.1 shows a segment of speech signal of vowel /a/ for a male speaker, the
corresponding LP residual and an estimate of glottal waveform. The estimate of the
glottal waveform is obtained by integrating the LP residual. The instants of glottal
closure are also marked on the estimate of glottal waveform. The abruptness of the

glottal closure event can be observed from the glottal waveform.

4.3 EFFECTIVENESS OF PITCH SYNCHRONOUS ANALYSIS

Once the instants of glottal closure are derived from the speech signal, the next step
is to select a region for analysis that encloses one pitch period. For this purpose, the
analysis window is placed from a few samples to the left of a GC instant to a few
samples to the left of the next GC instant, thus enclosing one complete pitch period.
During the linear prediction analysis of speech, the autocorrelation coefficients evalu-
ated using pitch synchronous window represent the properties of only the chosen pitch
period, and do not suffer from the effects of smoothing as in block processing. For
steady voiced regions, the spectrum does not vary appreciably from one pitch period
to another. Hence, the effect of smoothing of autocorrelation coefficients due to block
processing is not pronounced. However, in voiced regions with spectral transitions,
block processing does not allow an accurate estimation of the spectrum. This is il-
lustrated in Fig. 4.2. Here, a segment of speech corresponding to the word ‘they’ (in
the sentence ‘have they come ?’) uttered by a male speaker is collected at 8 kHz. For
the segment of 80 ms duration, 12 order LP spectra are computed for block based
analysis and pitch synchronous analysis. For block based analysis, a window of 20 ms
was chosen with a shift of 10 ms. The effect of smoothing due to block processing can
be clearly observed in Fig. 4.2(a). Pitch synchronous analysis brings out the spectral
variations between successive pitch periods better than block processing. Also, peaks

of the second and third formants are sharper, as shown in Fig. 4.2(b). In contrast,
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block processing smears the spectrum in the second and third formants, as observed

from their bandwidths.
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Fig. 4.2: LP spectra (12! order) for successive frames in the word ‘they’, for

a male speaker, obtained by (a) block processing and (b) pitch synchronous

analysis.
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Analysis of speech for closed glottis and open glottis regions was investigated in
[48]. It was observed that the tracking of damped formants could be effectively done
by analyzing successive frames of closed glottis. This is mainly due to the decoupling
between the source of excitation and the vocal tract during the interval of closed glottis
. The effectiveness of pitch synchronous analysis for high-pitched voices was also dealt
with in [48]. Here, due to a short analysis frame, covariance estimates were averaged
over a few successive pitch periods for reliable extraction of the vocal tract parameters.

The significance of pitch synchronous analysis for applications such as prosody
manipulation and speech enhancement has been demonstrated in the literature [53]
[54]. In the above applications, the effectiveness of the method of analysis is reflected
in terms of the perceptual quality of the resulting speech. On the other hand, text-
independent speaker verification task is based on the matching between reference fea-
tures and test features. In this section, a measure of within-speaker to across-speaker
dissimilarity of sounds is described, that can be used to measure the effectiveness
of a feature for speaker characterization [55]. Then, features extracted using block
processing and pitch synchronous analysis can be compared, based on this measure.

Let us consider a set of L speakers given by S = {si,s9,...,s.}. Let V =
{v1,v9,...,vpr} denote the set of M different sounds. For each speaker, let there be
N utterances of each sound. Let v;; denote the k' utterance of the i" sound. The

within-speaker dissimilarity of a given sound v;, for all the speakers, is given by

11 L N N
w(v;) = Zﬁm;kzh%d Viks S1)s (Vims 1)), (4.3)

where, d((vik,S1); (Vin, 1)) is the dissimilarity between the (sound, speaker) pairs

(Vig, s1) and (vin,s;). The across-speaker dissimilarity of a given sound v; is given

by
11 { LN I N
a(v;) = ZNL——ZZZZCI Vi, S1)s (Vims 85))- (4.4)
I—1k=1jAln=1
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The within-speaker to across-speaker dissimilarity (WAD) ratio is given by

av;) = . (4.5)

The overall WAD ratio, across all sounds, is given by
1 M
v = Mlzzl a(v;). (4.6)
In the above equations, the sounds can be represented by any feature, and the WAD
ratio is computed for that feature. A small value of v (less than 1), for a given
feature indicates the ability of the feature to provide better discrimination between
speakers. Hence, the feature can be deemed more suitable to represent speaker-specific
information. A larger value of v (greater than 1) indicates that the interspeaker
variability of the feature is less, and hence the feature is more suitable for representing
speech information. In our experiments, a data set containing L. = 5 speakers was
considered. For every speaker, isolated utterances of M = 5 voiced sounds (vowels
/a/, /i/, /u/, /e/ and Jo/) were collected. For every speaker, N = 5 utterances
(examples) of each sound were collected. Two approaches of analysis of speech, namely,
block-based analysis and pitch-synchronous analysis were performed. For block-based
analysis, frames of 20 ms were considered with a shift of 10 ms. For pitch synchronous
analysis, the instants of glottal closure were determined using the algorithm described
in Section 4.2. Then, a region anchored around two successive instants was chosen as
an analysis frame. An LP analysis of 12" order was performed using each approach
and 19-dimensional LPCCs were computed. Every utterance was characterized by a
unimodal, multivariate Gaussian probability density function, using the feature vectors
extracted from voiced regions of that utterance. The Kullback-Leibler distance [27]
was used as a measure of dissimilarity between the distributions.
Table 4.1 lists the WAD values for five sounds, computed for both the approaches

of analysis. Although both the approaches compute LPCCs due to 12" order LP
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Table 4.1: Comparison of features extracted by block-based and pitch syn-
chronous methods of analysis, in terms of within-speaker to across-speaker
dissimilarity values.

WAD ratio
Ja/ /i/ Ju/ /e/ /o/ | Overall
LPCCs (block based) 0.153 | 0.1919 | 0.2165 | 0.0928 | 0.136 | 0.158
LPCCs (pitch synchronous) | 0.1269 | 0.1350 | 0.1620 | 0.0234 | 0.0845 | 0.1064

analysis, pitch synchronous analysis results in lesser values of the WAD ratio. This
can be observed for the different sounds, and hence, for the overall WAD ratio. Thus,
pitch synchronous spectral features seem to be better suited for speaker verification

compared to those obtained by block processing.

4.4 SPEAKER VERIFICATION STUDIES

For speaker verification studies, the database described in Section 3.2 is considered. For
feature extraction, the instants of glottal closure are derived and pitch synchronous
spectral features (LPCCs) are computed. The features are modeled using AANN
models. Each utterance is tested against 11 claimants. The performance of verification
is evaluated in terms of the percentage of first ranks obtained by genuine speakers, and
EER for the scaled scores. The performance of pitch synchronous analysis for speaker
verification is listed in Table 4.2. Tt is evident that there is only a slight improvement
in the performance. The consistently lower values of WAD ratio suggested that pitch
synchronous LPCCs may be more suited than block-based LPCCs. However, it is
likely that the averaging of feature vectors in block-based LPCCs, which is an artifact
of block processing, may actually be working to its advantage. The smoothing of

spectrum due to block processing (especially the high frequency formants) may lead
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to a better match between training and test feature vectors. This was observed in
Fig. 4.2(a). Thus, the advantage of pitch synchronous LPCCs may be offset. However,
pitch synchronous analysis is important from the perspective of accurate estimation

of short-time spectral characteristics for representing speaker-specific information.

Table 4.2: Comparison of block processing and pitch synchronous analysis
in terms of the performance of speaker verification system.

LPCCs computed by

Block-based | Pitch synchronous
analysis analysis
% of first ranks 72.2 71.1
EER (%) (scaled scores) 12.9 12.2

4.5 SUMMARY

This chapter described the significance of the position of analysis window for accurate
estimation of short-time spectral features. A method to detect the instants of glottal
closure from voiced speech was reviewed. These instants serve as anchor points around
which short-time spectral features can be extracted. The ability of pitch synchronous
analysis to track the temporal variations of spectral characteristics, especially for dy-
namic sounds, was illustrated. A measure called within-speaker to across-speaker dis-
similarity (WAD) was described, which reflects the suitability of a feature for speaker
verification. The WAD values obtained on a sample dataset indicate that LPCCs ex-
tracted by pitch synchronous analysis are better suited for speaker verification, com-
pared to those extracted by block processing. Pitch synchronous LPCCs performed

better than those due to block processing for speaker verification experiments.
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CHAPTER 5

EXPLORING FEATURES FOR REPRESENTATION OF

SPEAKER-SPECIFIC INFORMATION

The primary step in speaker verification is the extraction of features from the speech
signal. These features should characterize speaker-specific information, and they
should also be robust to channel variations. Typically, spectral features such as MFCCs
and LPCCs extracted from segmental analysis of speech are used for speaker verifi-
cation. However, these features do not aim to specifically represent speaker-specific
characteristics. In this chapter, difference cepstral coefficients are proposed as a feature
for speaker verification, with the objective of highlighting speaker-specific characteris-
tics. Section 5.1 describes the logical development of the proposed feature. A speaker
verification system based on the above feature is described in Section 5.2. The ability
of the proposed feature to add complementary evidence to the existing feature (LPCC)

is also demonstrated.

5.1 DIFFERENCE CEPSTRAL COEFFICIENTS FOR SPEAKER CHAR-

ACTERIZATION

In this section, a brief review of linear prediction (LP) analysis of speech is presented.
This is followed by a discussion on gross and fine spectra of speech, which are computed
from lower and higher orders of LLP analysis, respectively. This provides motivation

for the extraction of difference cepstral coefficients.
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5.1.1 Linear Prediction Analysis of Speech

Linear prediction analysis of speech signal [6] [15] predicts a given speech sample
at time instant n as a linear weighted sum of the previous p samples, and the predicted

sample is given by

$(n) = ki ags(n — k) (5.1)

where s(n) is the speech sample at time n, and {ax}, £ = 1,2, ...p, is the set of predictor
coefficients [6].

The prediction error e(n) is defined as

e(n) = s(n) — §(n). (5.2)

by

E=> é(n). (5.3)

Minimizing E with respect to the set of predictor coefficients {ay} results in a set of
p normal equations. The set of predictor coefficients {a;} is obtained by solving the p
normal equations.

Linear prediction analysis of speech provides a reasonable approximation to both
the components of speech production mechanism, namely, the source of excitation and
the vocal tract system. The vocal tract system is modeled as an all-pole filter whose
spectral response is described by the set of predictor coefficients {a;}. The prediction
error signal e(n), also known as linear prediction residual, is a model for the source
of excitation to the vocal tract system. The prediction order p has significant bearing
on the ability of the all-pole filter to closely approximate the short-time spectrum of
speech. Typically, the vocal tract system can be characterized by a maximum of five

prominent resonances in the 0-4 kHz range. For very small orders of prediction such as
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2 or 4, the LP spectrum may represent only one or two resonances. For larger values
of p from 16 to 30, the LP model tries to match spurious spectral peaks of the speech
signal and also the individual pitch harmonics. Therefore, an LP order of 10 to 14 is
appropriate for speech signal sampled at 8 kHz to estimate the short-time spectrum,

although the exact order is not very critical.

5.1.2 Interpretation of Gross and Fine Spectra of Speech Signal

The short-time spectrum of speech for a voiced sound has two components: Harmonic
peaks due to periodicity of voiced speech, and gross envelope of the spectrum that
reflects the vocal tract response and glottal-pulse shape [56]. The periodicity of voiced
speech is due to the vibration of vocal folds, which is a property of the source of
excitation. The spectral envelope is shaped by formants, that reflect the resonances of
the vocal tract. Formant locations and bandwidths show variation between different
speakers, even for a given category of sound unit [57]. This is due to the varying vocal
tract shapes and lengths for different speakers. This variation is more pronounced
in the finer fluctuations of the spectral envelope, as compared to the gross spectral
envelope. To illustrate this point, speech utterances for vowel /a/ were collected from
two speakers (one female and one male) over a microphone. Four such utterances
were collected from each speaker at a sampling rate of 8 kHz. The instants of glottal
closure were detected, and both 6" order and 14" order LP spectra were computed
over pitch synchronous windows. Figs. 5.1(a) and (b) show the LP spectra for a female
speaker, obtained by 6" and 14" order of LP analysis, respectively. Both the spectra
are computed for the same region of speech. Similarly, Figs. 5.1(c) and (d) show the

corresponding LP spectra for the male speaker. The following are observed:

1. For different utterances of a given speaker, the corresponding 6 order LP spec-

tra are similar. The 6" order LP spectra of the two speakers are also similar.
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This is observed from Figs. 5.1(a) and (c).

2. While the 14" order LP spectra are similar for different utterances of the same
speaker, there are significant differences between the 14" order LP spectra of

the two speakers. This is evident from Figs. 5.1(b) and (d).

The above observations imply that the similarity between 6 order LP spectra of the
two speakers is due to the same underlying sound unit, while the differences between
the 14" order LP spectra of the two speakers is due to the speaker-specific character-
istics which are different.

Fig. 5.2 shows the 6 order and 14" order LP spectra for five different speakers, for
vowels /a/ and /i/. For the 6" order LP analysis, the spectra for all the speakers are
mostly similar for a given sound unit. This can be seen from Figs. 5.2(a) and (c). But,
for the 14" order LP analysis, the spectra of the speakers are significantly different
even for the same sound unit. This is observed from Figs. 5.2(b) and (d). Thus,
the gross spectrum estimated by 6 order LP analysis can be viewed as representing
information specific to the speech sound, while the fine spectrum estimated by the 14
order LP analysis represents both sound unit information as well as speaker-specific

information.
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Fig. 5.1: (a) and (b) are, respectively, the 6 order and 14" order LP
spectra for four different utterances of the same vowel /a/, as uttered by a
female speaker. (c) and (d) are similar plots for a male speaker. The sampling
frequency is 8 kHz.
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Fig. 5.2: (a) and (b) are, respectively, the 6!* order and 14" order LP spectra
of five different speakers, for the vowel /a/. (¢) and (d) are similar plots for
vowel /i/. In each plot, the first speaker is female and the remaining speakers
are male. The sampling frequency is 8 kHz.
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5.1.3 Extraction of Difference Cepstral Coefficients

In order to deemphasize the influence of the sound unit, the difference of the fine
spectrum and the gross spectrum is considered. This difference still preserves the finer
spectral variations that represent speaker-specific characteristics. For the purpose of
representation, this subtraction is done in the cepstral domain. Firstly, the set of cep-
stral coefficients is derived from the LP coefficients [15]. Cepstral coefficients provide
a compact representation of the resonances and the spectral roll-off characteristics of
the vocal tract system. The set of cepstral coefficients {c,}, £ = 0,1, ..., m, is obtained
from the set of predictor coefficients {ax}, k = 1,2, ..., p, using the following recursive
relation:

Ch = lOgEmin
k-1 .

Cp — —ak+2%cjak_j 1§k§p
7=1
k—1 ]
TR e p<k<m (5.4)
j=k—p

where m is the number of cepstral coefficients, and E,,;;, is minimum mean squared
prediction error.

The set of difference cepstral coefficients {dy}, k = 1,2, ...,m can be expressed as
dy = k() —ch) I1<k<m (5.5)

where {c'} is the set of cepstral coefficients due to a higher order of LP analysis, {ci}
is the set of cepstral coefficients due to a lower order of LP analysis. The comparable
range of amplitudes of the cepstral coefficients of the two spectra leads to noise in
the difference cepstral coefficients. Hence, the difference cepstral coefficients d; are
averaged over a window of M contiguous frames of a region of voiced speech, as

follows:
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it
Z dk,i 1<k< m, (56)
M

i=j— M

d = o
where {CZ,”} is the set of averaged difference cepstral coefficients for segment j of the
region of voiced speech, and {dj;} is the set of difference cepstral coefficients for frame
1.

The differencing of the cepstra also reduces the influence of the transmission chan-
nel characteristics on the speech signal. This obviates the need for cepstral mean
subtraction, that is normally employed to remove the mean of the time trajectory of

each cepstral coefficient [12] [7].

5.2 SPEAKER VERIFICATION USING DIFFERENCE CEPSTRAL CO-

EFFICIENTS

A speaker verification system is developed using difference cepstral coefficients, on
similar lines to that of the baseline system described in Section 3.1. Difference cepstral
coefficients are extracted as described in Section 5.1.3. A 5-layer AANN model of
structure 19L 38N 4N 38N 19L is used, which is trained using difference cepstral
coefficients. This choice of the structure of AANN model for LPCC features was
based on a study reported in [58]. In that study, the number of units in layers 2 and 4
were chosen empirically to be twice the dimension of the input vector. The number of
units in the compression layer was arrived at, after systematic experimentation. The
study was repeated for difference cepstral coefficients and it was observed that the
same structure of AANN model was suitable. Each model is trained for 50 epochs.
Each utterance is tested against 11 claimants.

The rank of the genuine speaker among the 11 claimants is computed for each test

utterance. The number of test utterances where the genuine speaker secures the first
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Table 5.1: Performance of speaker verification for LPCCs and difference
cepstral coefficients.

Speaker verification system based on

LPCC Difference cepstral | Combination using
features coefficients OR logic
% of first ranks 72.2 67.3 7.7

rank is also computed. A combination of the ranks is performed using OR logic. Table
5.1 compares the performance of LPCC features and difference cepstral coefficients, in
terms of the percentage of first ranks. The figure in the third column represents the
percentage of first ranks obtained by the genuine speaker, using either LPCC features
or difference cepstral features or both. It is observed that the combination results
in an improved performance of verification. This indicates that difference cepstral
coefficients do contain speaker-specific features that are complementary in nature to
LPCC features. Here, the combination of ranks has been performed using the OR
logic. This is only to establish that difference cepstral coefficients indeed contain
speaker-specific information that is complementary to LPCC features. However, when
considering a system that uses both LPCC features and difference cepstral coefficients,
the performance analysis in terms of EER requires that the scores due to the two
features be combined suitably. This is a combination at the level of measurements and
is not as straightforward as a logical OR operation performed on the ranks. Hence,
the combination of evidences due to multiple features, and the performance analysis

of such a system are discussed in Section 6.3.
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5.3 SUMMARY

In this chapter, the development of a feature for representing speaker-specific informa-
tion was described. The gross spectrum was shown to be representative of the sound
unit, while the fine spectrum was shown to contain both speech and speaker-specific
characteristics. These spectra were estimated using different orders of LP analysis. Dif-
ference cepstral coefficients were extracted from the cepstral representations of gross
and fine spectra. A speaker verification system based on difference cepstral coefficients
was shown to provide some complementary evidence for verification.

In Chapters 4 and 5, extraction of features for speaker verification was discussed.
Probability density function of the feature vectors was estimated using autoassociative
neural network models. Once a model is built, it is presented with the feature vectors
derived from an unknown utterance. The decision for accepting or rejecting the claim
is based on the score output by the model. In the next chapter, we discuss the issue

of score normalization for speaker verification.
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CHAPTER 6

SCORE NORMALIZATION FOR SPEAKER

VERIFICATION

The decision mechanism for speaker verification depends on the score output by the
model of a speaker, when presented with an unknown (test) utterance. This score is
compared to a threshold in order to accept or reject the claim of the speaker. But
generally, the scores obtained from different models and test utterances are not in
the same range. The task of computing a calibrated score is known as score nor-
malization. In Section 6.1, the need for score normalization in speaker verification is
discussed. Some methods for score normalization are proposed in Section 6.2. The
performance of the proposed approaches is compared against that of the existing ap-
proaches. Section 6.3 discusses combination of evidences from complementary features
for improving the performance of speaker verification. Section 6.4 compares the per-
formance of the speaker verification system described in this thesis with that of a few

other systems.

6.1 NEED FOR SCORE NORMALIZATION

The raw scores obtained from the models can not be used for decision making as

discussed in Chapter 2. To summarize:

1. The nature of training data differs from one speaker to another. Specifically,
the difference is due to the amount of training data, composition of the data in

terms of acoustic categories, and the channel effects.
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2. Mismatch between the training and test data can lead to low scores, even from
the model of genuine speaker. This is due to channel effects, or inadequate

representation of certain acoustic categories in the training data.

The ability to discriminate between genuine and impostor speakers differs among
models. This ability also differs among test utterances for a given model. To illustrate
the effect of these factors, the distributions of the confidence scores of genuine and
impostor speakers are observed for the baseline system. Fig. 6.1 shows the estimated
distributions of the confidence scores for genuine and impostor speakers. If a significant
overlap exists between the two, it makes the task of setting a decision threshold diffi-
cult. Thus, there is need to improve the discrimination between the scores of genuine

and impostor speakers for reliable decision-making. Table 6.1 shows the EER obtained

- -~ Impostor
/3 —— Genuine

p(x)

0.4 0.5 0.6 0.7 0.8 0.9
Score (x)

Fig. 6.1: Estimated distributions of the confidence scores of genuine and
impostor speakers.

for the raw and scaled scores. Each test has 11 claimants, and the scaled scores are

obtained by dividing all the 11 scores by the maximum. The scaling of scores serves
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as a normalization because genuine speakers who are winners in their respective tests,
have the same score of 1 after normalization. This normalization is reflected in the
value of EER for scaled scores. However, the decision of verification should be based
on the score of a given model alone. Hence, scaling the scores as mentioned above is
not appropriate. This necessitates the need for a common threshold for a given speaker

verification system.

Table 6.1: Performance of speaker verification for raw and scaled scores.

% of first EER(%) for raw | EER(%) for scaled
ranks scores scores
72.2 26.1 12.9

6.2 METHODS FOR SCORE NORMALIZATION

Methods of score normalization can be classified as model normalization and test
utterance normalization. In model normalization, a speaker’s model is tested against
example impostor utterances and the resulting scores are used to estimate speaker-
specific statistics. In test utterance normalization, the test utterance is compared
against the model of a claimant speaker, and also, background/cohort models. The
scores of the background models are used to normalize the speaker’s score for that
utterance. In this section, three different methods of score normalization are proposed.
Section 6.2.1 describes a method of model normalization. Sections 6.2.2 and 6.2.3

describe two methods of test utterance normalization.
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6.2.1 Modeling Speaker-specific Distribution of Impostor Scores

The training data available to develop a model differs from one speaker to another.
Hence, the likelihood/confidence scores resulting from different models cannot be com-
pared to a single threshold for acceptance or rejection. The task of model normalization
is to compute the calibrated scores, so that a common threshold for decision can be
used across all the speakers.

Let a sequence of feature vectors X = {xy, Xs, ..., xn}, derived from the speech of
one or more impostors, be presented to the model of a speaker, denoted by M. Speech
from 50 impostors was used, with 20 seconds of speech for each impostor. The model
M outputs a corresponding sequence of scores C' = {¢y, ¢, ..., ¢x}, whose mean and
standard deviation are denoted by m; and o; respectively, where the subscript ¢« denotes
impostor. The idea of presenting the model M with the feature vectors derived from
impostors is to estimate the behaviour of the model for impostors. This is typically
done offline. During verification, feature vectors derived from a test utterance are pre-
sented to the model M. Let this sequence of test feature vectors Y = {y1,y2,..., ¥},
when presented to the model M, result in a sequence of scores S = {sy, s9,..., 5.}
having a mean m; and standard deviation o;, where the subscript ¢ denotes the test

utterance. The existing method of normalization (Z-norm) [43] computes the normal-

ized score as Cpopm = =22, where s = %Zle sg. This method uses only the average
value s to compute the normalized score and does not exploit the distribution of the
scores C' and S. Instead, a method is proposed where the probability density functions
of the scores are estimated from C' and S. Observation of histograms of scores obtained
from C and S for several cases showed that the histograms can be approximated by
Gaussian probability density functions. For estimation of p;(c), features are collected

offline and typically, the number of feature vectors (and hence, the number of scores)

is in excess of 1,00,000. For estimation of p;(c) from the test data, the number of
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scores is typically above 10,000 and almost always, above 5000. This is large enough
to obtain the histogram of scores, by dividing the interval 0 to 1 into 10 equally spaced
bins.

Thus, the probability density functions of the scores obtained from C and S can be
modeled as Gaussian densities. Let p;(c) and p;(c) represent the estimates of the prob-

ability density functions of the scores C' and S, respectively. Then, p;(c) = N(m;, 0;?)

and p;(c) = N(my,0;?), where N(m,o?) = \/2;0_2 exp (*(IQ;;“)Q), represents a normal
(Gaussian) density with mean m and standard deviation . Due to the availability
of substantial amount of data from impostors, p;(c) is a good estimate of the actual
probability density function. If the test utterance belongs to an impostor, then p;(c) is
expected to match p;(c) closely. However, if the test utterance belongs to the genuine
speaker of model M, the match between p;(c) and p;(¢) should reduce, with m; > m,.
Thus, the decision for verification can be based on the degree of match between p,(c)

and p;(c). Fig. 6.2 illustrates a case where a model is presented with three different

test utterances. When comparing p;(c) and p;(c), the following cases were observed:

. @) " (b) a (D]
—— p© —— p©® [N ()
— .. pi© — .. p© _ .. p©
3.5 - 3.5 - 3.5 -
‘ / /
/A AN A
3F \ Bl 3F \ Bl 3F \ Bl
p,(c), ’ AW !
t ! ! \ ! \
pi(C) 2.5 ! \ - 2.5 ! \ - 2.5 ! \ -
! / {
{ \ \
! I : i
2 | \ - 2 . \ - 2 ; \ -
i ! ! ! ! !
1.5 \ B 1.5 \ B 1.5 y B
/ ! !
! \ I \ !
1k - 1 ! - 1 ! -
/ ! / [ | \
\ \ \
/ / /
0.5 ; \ E 0.5 / \ B 0.5 / \ E
/ \ / \ / \
\ \ \
o = i ~ o . i . o - i ~
o 0.5 1 o 0.5 1 o 0.5 1

Score (©)

Fig. 6.2: Estimated densities ps(c) and p;(c) of test scores and impostor
scores respectively. The test scores (a) dominate, (b) lag and (c) compete
against the impostor scores.
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1. pi(c) has a significant region that does not overlap with p;(¢), and m; > m;, as
shown in Fig. 6.2(a). It is likely that the test utterance belongs to the genuine
speaker, and the model M reasonably represents the distribution of feature
vectors of the training and test data. Though less likely, it is also possible
that the test utterance belongs to an impostor. This indicates that, due to
intraspeaker variability or the effects of the channel, the test feature vectors

now ‘fall’ more often into the clusters represented by the model M.

2. pi(c) and p;(c) overlap mostly, with m; < m;, as shown in Fig. 6.2(b). The more
likely inference here is that the test feature vectors belong to an impostor, since
feature vectors from the genuine speaker should have resulted in a better match
with the model M. A less likely inference is that the test utterance belongs to

the genuine speaker.

3. The distributions p;(c) and p;(c) lie very close, but py(c) ‘crosses over’ p;(c) as
shown in Fig. 6.2(c). This indicates a good match between p;(c) and p;(c) leading
to the inference that the test utterance belongs to an impostor. However, in
the region of high scores (say, 0.6 < ¢ < 1), p;(c) exceeds p;(c). The scores of
pi(c) in this region may correspond to those frames of the test utterance that
closely match the model M. Thus, it is still possible that the test belongs to

the genuine speaker.

The above cases are not exhaustive, but they are representative of the general be-
haviour. Based on these observations, a matching score needs to be computed for
verification. A quantitative measure of the match between the two distributions can
be computed from the plots of p;(¢) —p;(c). Figs. 6.3(a), (b) and (c) show p;(c) for three
different tests, against the same model. The corresponding plots of p;(c) — p;(c) are
shown in Figs. 6.3(d), (e) and (f), respectively. If the area under the curve p;(c) — p;(c)

is positive in the region of high scores, as in Fig. 6.3(d), then the test utterance is

o8



likely to belong to the genuine speaker. If this area is negative as shown in Fig. 6.3(e),

then the test speaker is likely to be an impostor.

(a) (b) ()
o G o ) o )
_p0© _.p0© _.p0©
4 4 4
pt(c)’ 7\
(© ’ "
pl / \
2
1
0
0 1
x10° () x10®  (8) X107 ()
1 1 1
p(c) - p(©)
0 0 0
-1 -1 -1
0 0.5 1 0 0.5 1 0 0.5 1

Score (c)

Fig. 6.3: Plots (a), (b) and (c) show p;(c) for three different test utterances,
for a given model. p;(c) is estimated a priori for the given model. Plots (d),
(e) and (f) show p;(c) — p;(c) for (a), (b) and (c) respectively.

Figs. 6.3(c) and (f) show a case where p;(c) ‘crosses over’ p;(c) in the region of
higher scores. Here too, a positive area exists in the region of higher scores, indicating
that the test speaker may be genuine. Thus, positive area under the curve p;(c) —p;(c),

in the region of high scores, should be considered for scoring. The normalized score

1

can be obtained as chorm = X eepn, ¢(Pi(c) — pi(c)). The lower limit of ¢ is chosen as m;

to exclude non-contributing scores. Multiplication by c is intended to provide more
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weightage to the scores of greater magnitude. The algorithm for model normalization

is summarized in Table 6.2.

Table 6.2: Sequence of steps involved in model normalization.

1. Present X = {x1,Xg,...,Xy} to M, to obtain C' = {c;, co, ..., cn }.
2. Compute m; and o; from C.

3. Present Y = {yi1,y2,...,¥5} to M, to obtain S = {sy, s, ..., sp. }.

4. Compute m; and o; from S.

5. Obtain the estimates p;(c) = N(m;, 0;%) and p;(c) = N(my, 04?).

6. Compute Cnorm = Y eep, c(pi(c) — pi(c)).

Table 6.3 compares the performance of the proposed method against Z-norm. It
is observed that the proposed method does not result in appreciable improvement in
EER, compared to that obtained from Z-norm. The logic behind model normalization
is that the example impostor utterances can represent the response of a given model for
any impostor data. However, the conditions under which the test speech is collected
may differ from those of the example impostor utterances. Thus, the acoustic mismatch
between the test utterance and the example impostor utterances limits the effectiveness

of model normalization. This issue is addressed in test normalization.

Table 6.3: Performance of different model normalization methods.

Raw scores Z-norm Proposed model
normalization
EER (%) 26.1 24.0 23.5
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6.2.2 Rank-based Normalization of Scores

A disadvantage of the existing test normalization methods (notably T-norm) is that
they consider only the average value of the scores output by a model for a given
test utterance [43] [44]. This provides equal weightage to all the frames of the test
utterance. However, it is not necessary that all frames of the test utterance are equally
important for speaker verification. Some methods consider the sum of only the top M
ranked scores, where M is less than the number of segments in the test utterance [59].
Such methods help in eliminating the less significant frames, but a disadvantage is that
the sum of top M ranked scores is not normalized across different test utterances. In
the proposed method, a set of N background models is used for score normalization.
Background models help in estimating the behaviour of impostors. These background
models are randomly chosen and are common to all the test utterances. A given test
utterance is presented to a claimant model along with the N background models. For
every frame of the test utterance, the score due to the claimant model is ranked among
the scores due to the N background models. Thus, the rank of the claimant can vary
between 1 and N + 1. The normalized score is computed as the percentage of the total
number of frames where the genuine speaker wins over all the background models.
The choice of N, the number of background models, should result in a reasonable
estimate of the behaviour of impostors. A large value of NV such as 50 dilutes the
evidence due to the genuine speaker. On the contrary, with a small value of N such as
5, the possibility of an impostor obtaining as many first ranks as the genuine speaker
is high. Thus, not enough background models are there to challenge the genuine
or impostor speakers. In this experiment, 20 background models have been chosen.
Fig. 6.4 shows the fraction P(r) of the total number of frames to have obtained rank
r. To illustrate, two test utterances are considered. Fig. 6.4(a) shows a case where

an utterance is tested against the genuine speaker, 5 impostors and 20 background
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models. The genuine speaker scores over the impostors, as observed from the value
of P(1). Fig. 6.4(b) shows another case where Impostor 1 has a slightly higher value
of P(1) as compared to that of the genuine speaker, leading to false acceptance. The
choice of P(1) as the normalized score implies that only those frames that rank first
are considered for normalization. However, the number of frames that rank second or
third may still be important for discrimination. This issue is addressed in Section 6.2.3.
The algorithm of rank-based normalization of scores is summarized in Table 6.4.
Experiments were conducted on NIST 2003 database, and normalized scores were
evaluated for genuine and impostor speakers. Fig. 6.5 plots the estimates of probability
density functions, of scores obtained from the models of genuine and impostor speakers.
Figs. 6.5 (a), (b) and (c) show, respectively, the densities of raw scores, normalized
scores due to the existing methods (Z-norm + T-norm), and normalized scores due
to the proposed rank-based approach. From Figs. 6.5 (a) and (c), it is evident that
the proposed method significantly improves the discrimination between genuine and
impostor speakers, as compared to the raw scores. Figs. 6.5 (b) and (c) indicate that
the scores of impostors have lesser variance for the proposed method, compared to the
existing method. This is significant for setting the decision threshold. This indicates
some uniformity in the behaviour of the normalized scores of impostors. For genuine
speakers, the variance of the normalized scores is greater than that of the raw scores,
because the degree of discrimination between genuine and impostor speakers may vary
from one genuine speaker to another. The performance of this method will be discussed

in Section 6.2.4.
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Fig. 6.4: P(r) is that fraction of the total number of frames, which has
obtained rank r. (a) A test utterance where the genuine speaker scores over
the impostors. (b) A test utterance where impostors (1 and 2) compete with
the genuine speaker.
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Table 6.4: Sequence of steps involved in rank-based normalization.

1. Select an appropriate number (N) of background
models.

2. Present the test utterance to the claimant model and N
background models.

3. For each frame, compute the rank (r) of the claimant among the
N background models.

4. Compute P(r), r =1,2,..., N + 1, i.e., that fraction of
the total number of frames which has obtained rank r.

5. P(1) is the normalized score.

6.2.3 Method Based on Frame-level Weighting of Scores

The degree to which a test utterance matches the corresponding (genuine) speaker
model varies for different test utterances. To an extent, this degree of match depends
on the nature of the test utterance. In test normalization, the objective is to estimate
the average behaviour of impostors for the test utterance. The test normalization
scheme T-norm described in [43] computes the mean and standard deviation of the
average scores of several background models for a given test utterance. By averaging
the scores due to all the frames, this method provides equal weightage to all the
frames of the test utterance. However, some frames of the test utterance may contain
greater speaker-specific information compared to other frames. In [60], it is shown that
statistical modeling of speaker-specific characteristics using only two broad phonetic
categories (vowel + diphthongs and glides + nasals) resulted in better verification
performance than the case when all the phonetic categories were used. The phonetic

categorization of frames was achieved by using an automatic speech recognizer. Apart
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from phonetically less-significant frames, the test utterance may also contain spurious
frames in nonspeech regions of the signal, inspite of using a good speech-nonspeech
detection in the preprocessing stage. This is possible in the case of energy based-
methods of speech-nonspeech detection. The removal of such spurious frames may
be achieved by using a suitable signal-processing algorithm. The aim of the current
experiment is to weight the frames of the test utterance at the scoring level.

In the proposed method, a test utterance is presented to a claimant model and
a set of N background models. For every frame of the test utterance, average of the
scores of background models is computed. The reason for computing the average of
frame-level scores of background models is to provide different weightages to different
frames of the test utterance. This will be described later in this section.

The first issue is the number of background models to be selected. In the exper-
iment, utterances were tested against varying number of background models. Each
utterance was tested against 5, 10, 20, 40, 60, and 100 background models, and frame-
level average of scores was computed. Figs. 6.6(a) and 6.6(b) show the plots of frame-
level scores averaged over different number of background models. It is observed that
the variation of the average of frame-level scores is not significant beyond 20 back-
ground models. Hence, a set of 20 background models is used in further experiments

on test normalization.
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Fig. 6.6: Frame-level average of scores for varying number of background
models, for a given test utterance. (a) For 5, 10 and 20 background models.
(b) For 20, 40 and 100 background models. Legend indicates the number of
background models.
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Once the average of frame-level scores of the background models is computed, the
next step is to compute the normalized score. Let {¢x},k = 1,2,..., L represent the
sequence of frame-level scores obtained when a test utterance is presented to a claimant
model. Let {b;},k =1,2,..., L represent the sequence of average of frame-level scores
of the background models for the same utterance. Here, L denotes the total number

of frames in the test utterance. The difference score can be defined as
dk :Ck—bk k:1,2,...,L (61)

To select only those frames where the claimant score exceeds the average of background

scores, we define

1, dp>0, k=1,2,..,L

fr=

0, otherwise.

The normalized score can be computed as

1 L
k=1

However, all such frames are given equal weightage in the above scoring scheme.
Hence, a weighting function is derived using the frame-level average of background

scores, as follows:

wy = bk = bnin_ k=1,2,..0L. (6.3)

bmax - bmzn
The difference scores are then weighted with this function for only those frames where
the claimant score exceeds the average of background scores. The final score is com-

puted as

1L
Snorm = ZZ fkwkdk (64)

k=1

The algorithm is summarized in Table 6.5.
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The reason for computing the weight function is the following: If a test frame is
poor / spurious, it is likely to result in a lower value of confidence score from most
of the background models. If the test frame belongs to a well-manifested region of
speech, it is likely to result in a higher value of confidence score from most of the
background models. Thus, the frame-level average of scores of background models is a
representative of the nature of the test utterance. Fig. 6.7 shows the variation of frame-
level confidence scores for a given test segment for genuine and impostor speakers. The
percentage of frames, where the frame-level score exceeds the frame-level average of
the backgrounds, is a factor of normalization. The performance of this method of

normalization is discussed in Section 6.2.4.

_1 1 1 1
0 200 sample number 400 600

©)

0 20 Frameindex 40 60

Fig. 6.7: (a) A segment of test speech signal. The corresponding framewise
confidence scores obtained from the model of (b) genuine speaker and (c), (d)
impostor speakers, shown by solid lines. In (b), (c) and (d), the broken lines
represent the framewise average of scores of background models.
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Table 6.5: Sequence of steps involved in frame-level weight-
ing of scores.

1. Select a suitable number of background models,
by experimentation.

2. Present the test utterance to claimant model, to
obtain the scores {c¢x}, k=1,2,..., L.

3. Present the test utterance to N background models
and compute the frame-level average of background
scores {bx}, k=1,2,..., L.

4. Compute the difference score dy = ¢, — by,
k=1,2,.., L.

5. Compute the binary weight {fx},k =1,2,..., L.

6. Compute the weight function {wx}, k=1,2,..., L.

7. Compute the normalized score as

1 L
Snorm = ZZk:l fkwkdk-

6.2.4 Results and Discussion

In this section, we discuss the performance of the proposed methods of test normal-
ization. Table 6.6 lists the results of the proposed methods of test normalization,
along with the existing (Z-norm + T-norm) scheme. The performance of the rank-
based approach is better than that of T-norm, and comparable to T-norm + Z-norm
scheme.

The existing approach estimates the mean and variance of the scores of background
models, using all the frames of the test utterance. In comparison, the rank-based
method described in Section 6.2.2 considers only those frames for computing the score,

that consistently win over the background models. Also, the normalized score is limited

70



to a range of 0 to 1. On the other hand, in Z-norm and T-norm, the scaling of scores
by variance causes the normalized scores to acquire a greater range.

A limitation of the rank-based approach is that it does not consider those frames
for scoring that are ranked second or third. To overcome this limitation, the normalized
score was computed as a weighted average of the percentage of first, second and third

ranks. However, this did not result in the reduction of EER.

Table 6.6: Performance of different test normalization methods.

T-norm Z-norm Rank Frame-level
+ T-norm based weighting

normalization of scores

EER (%) | 19.1 16.1 16.5 15.2

This may be due to the extent of discrimination between the genuine and impostor
speakers for different frames of the test utterance. For example, all the frames that
secure first ranks may not be equally significant in terms of speaker-specific informa-
tion. Similarly, frames securing second and third ranks may also be useful for decision,
although the rank-based method does not use this information.

The method based on frame-level weighting of scores overcomes this limitation to a
certain extent. The selection of only those frames where the claimant scores exceed the
average of background scores, is a policy that is similar to the rank-based approach.
Yet, it is not as harsh as ignoring the second and third ranked frames altogether. The
weight function derived from the background scores serves as a measure of significance
of each frame for scoring. The improvement obtained by this method over the existing

methods is indicated in Table 6.6.
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6.3 COMBINING EVIDENCES FROM MULTIPLE FEATURES

The goal of speaker verification is to validate the identity of a speaker, based on
the voice characteristics of the speaker. Traditionally, speaker verification systems
use a single feature to represent speaker-specific information and a single modeling
technique. In pattern classification problems, studies have shown that it is possible to
improve the reliability of classification by using different types of features and models
simultaneously [61-63]. In the context of speaker verification, different features can
be extracted from speech to represent speaker-specific information. These features
may represent the vocal tract system or the source of excitation. The features may be
extracted over different levels of analysis. For instance, combination of evidences due
to subsegmental, segmental and suprasegmental features has been studied for text-
dependent speaker verification [24] [64]. For speaker verification, it is advantageous if
the features are complementary in nature, i.e, they represent different aspects of voice
characteristics of a speaker.

The method of modeling may depend on the description of features. Due to differ-
ent representations, it may not be possible to model different features within a single
framework. Hence, different models can be used for different features, and the result-
ing evidences can be combined. The effectiveness of combining the evidences due to

different features for speaker verification depends on the following factors:

1. Effectiveness of the individual features for speaker verification
2. Complementary nature of the features

3. Method of combining the scores due to individual features

In the present study, we discuss the combination of evidences due to three different

features extracted from the speech signal. These are:

1. Linear prediction cepstral coefficients (LPCC)

72



2. Difference cepstral coefficients

3. Excitation source features present in the linear prediction (LP) residual [36] [20]

The LPCCs obtained by the 14th order LP analysis represent the resonant frequencies
of the vocal tract system and their bandwidths. The LPCCs contain information about
the sound unit as well as the speaker. Difference cepstral coefficients are obtained
by deemphasizing the gross spectral envelope from the fine spectrum, to suppress
the sound unit information while preserving the finer variations of the short-time
spectrum. The excitation source features are derived from the 12" LP residual. These
features represent the characteristics of the glottal vibrations, and are uncorrelated
with the characteristics of the vocal tract system. Thus, the three features can be
viewed to provide somewhat complementary information about the characteristics of
the speaker. The development of AANN models for speaker verification based on
LPCCs and difference cepstral coefficients was described in Sections 3.1.2 and 5.2,
respectively. In Section 6.3.1, we briefly review the development of AANN models
to represent the excitation source features present in the LP residual of speech signal.
Combination of evidences for speaker verification due to the three features is described

in Section 6.3.2.

6.3.1 Excitation Source Features for Speaker Verification

Linear prediction analysis of speech results in the LP coefficients which represent the
vocal tract characteristics. The error signal obtained by inverse filtering the speech
signal is termed as LP residual. LP residual contains excitation source information,
which can be captured using a five-layer AANN model [20]. Consecutive blocks of
samples of the LP residual are presented to an AANN model, and the blocks are
separated by a shift of one sample. When raw data such as the samples of LP residual

are presented to the AANN, the interpretation of the behaviour of AANN in terms of

73



capturing the distribution of feature vectors is not appropriate. The reason is, though
the adjacent frames may be widely separated in the input space, temporal relationship
still exists among the adjacent frames since the samples of the LP residual are not
entirely decorrelated. Thus, the objective of training the AANN model using the
samples of LP residual is to acquire the higher order relations among the samples, that
may contain useful speaker-specific characteristics. The effectiveness of the features of
excitation source for speaker verification has been demonstrated in [20] [36]. In [20],
significance of the regions of LP residual around the instants of glottal closure was also

illustrated for speaker verification.

6.3.2 Approaches for Combining Evidences

An important issue in combining evidences from different classifiers is the nature of
output associated with each classifier. The output of a classifier could be a class label,
or a set of ranks corresponding to different labels, or a set of measurements to indicate
the confidence of the classifier in a given class label. The strategy for combining the
evidences depends on the representation of the outputs. If only the class labels or
the label rankings are available, a majority vote is used [65] [66]. If continuous out-
puts like a posteriori probabilities are available, an average or linear combination or
a Bayes classifier could be used [67] [63]. When the classifier outputs are available as
fuzzy values or belief values, belief functions and Dempster-Shafer techniques are used
[68] [69]. In [70], a theoretical framework was suggested for classifier combination. It
was shown that the commonly used schemes of combination such as the product rule,
sum rule, min rule, max rule and the majority voting are special cases which can be
derived from the given framework under different assumptions and approximations. It
was found that the sum rule outperformed other classification schemes, and was re-

silient to estimation errors, under certain assumptions. In our experiments on speaker
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verification, the sum rule is used for combining evidences.

The ability of difference cepstral coefficients to provide complementary evidence
for speaker verification was illustrated in Section 5.2, in terms of the first ranks secured
by the genuine speakers. Table 6.7 lists the performance of combination of evidences

due to LPCCs and difference cepstral coefficients. A reduction in EER is achieved due

to the combination.

Table 6.7: Combining evidences from LPCCs and difference cepstral coeffi-

cients.

Table 6.8: Combining evidences from LPCCs, difference cepstral coefficients

LPCCs Difference | Combination
cepstral by sum-rule
coefficients
EER (%) 16.1 20.2 15.0

and excitation source features.

LPCCs Difference | Excitation | Combination
cepstral source by sum-rule
coefficients | features
EER (%) 16.1 20.2 21.5 13.4

Table 6.8 lists the performance of combination of evidences due to LPCCs, differ-
ence cepstral coefficients and excitation source features. Although the error rates due
to difference cepstral coefficients and source features are higher compared to that of

LPCCs, the combination provides significant improvement. This is due to nature of
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speaker-specific information represented by these two features, which is complemen-
tary to that of spectral features (LPCCs). The performance of speaker verification for

individual features and the result of combination of evidences is indicated in the DET

curve in Fig. 6.8.
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Fig. 6.8: DET curves indicating the performance of speaker verification

based on LPCCs, difference cepstral coefficients, excitation source features
and combination of evidences.
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6.4 PERFORMANCE COMPARISON OF SPEAKER VERIFICATION

SYSTEMS

In this section, the speaker verification system discussed in this thesis is compared
with certain contemporary speaker verification systems, in terms of the performance
achieved on a common dataset, namely, the NIST 2003 dataset. Table 6.9 lists a
few systems, along with the features, models and normalization methods used for

developing those systems.

Table 6.9: Comparison of performances of speaker verification systems.

System | Features Channel Models Normalization | EER (%)
compensation methods
methods
IIT™M LPCC, CMS AANN Z-norm, 13.4
ESF, DCC T-norm
MITLL | MFCC, RASTA, GMM-UBM, Z-norm, 6.5
DC FM SVM T-norm
DDRD MFCC, CMS PCA, AANN, T-norm 8.0
DC GMM-UBM
IBM LPC - GMM-UBM Z-norm, 7.5
T-norm
IRISA LFCC RASTA GMM-UBM | Z-norm, Tnorm, 8.5
D-norm
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A glossary of the abbreviations used in the table is as follows:

LPCC - Linear prediction cepstral coefficients

ESF - Excitation source features
DCC - Difference cepstral coefficients
DC - Delta cepstrals

MFCC - Mel frequency cepstral coefficients
LFCC - Linear filter-bank cepstral coefficients
CMS - Cepstral mean subtraction

RASTA - Relative spectral

FM - Feature mapping

AANN - Autoassociative neural network
GMM - Gaussian mixture model

UBM - Universal background model
SVM - Support vector machine

PCA - Principal component analysis

D-norm - Distance normalization

Details about these systems can be found in [45] and [46]. It is evident that most
of these systems use spectral features, especially MFCC and DC, and are based on
GMMs. In this sense, the system described in this thesis (II'TM) attempts to explore
novel features. The best performance of speaker verification obtained for NIST 2003
dataset, as reported in [46], is an EER value of 6.5 %. The main reasons for the better

performance of these systems could be the following:

1. Some systems pool data from all types of channels to develop channel-dependent
models. For the unknown utterance, the channel is detected and the features

are mapped into a channel-independent space. This may reduce the mismatch
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between the training and test patterns.

2. Some systems use an automatic speech recognizer to categorize speech into dif-
ferent sound units. Separate models are then developed for the different cate-
gories of sound units. Speaker-dependent language models are also developed

using the output of the recognizer.

3. Modeling prosodic features such as intonation and duration has been shown to

be effective for speaker verification.

6.5 SUMMARY

In this chapter, the issue of score normalization was discussed. Three methods of
normalization of scores were proposed. In the model normalization method, model-
specific statistics were estimated from example impostor utterances. However, model
normalization suffers from the mismatch between the example utterances and the
test utterance. Hence, methods of test normalization were investigated. A method
based on the rank of claimant scores among the background models was proposed,
to exclude non-competitive scores for normalization. Another method was proposed,
based on framewise weighting of scores. Evidences due to complementary features

were combined to improve the performance of speaker verification.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

The objective of automatic speaker verification is to validate a speaker’s claim of iden-
tity based on the speaker’s voice. Speaker verification consists of three steps, namely,
feature extraction, modeling and score normalization. In this thesis, we have addressed
issues related to feature extraction and score normalization. In feature extraction, sig-
nificance of the position of analysis window was discussed for accurate estimation of
short-time spectral characteristics. A feature for speaker verification was developed
based on the difference between fine and gross spectra of speech. Autoassociative neu-
ral network models were used to estimate the probability density function of feature
vectors in the feature space. Methods of model normalization and test normalization
were proposed for calibrating the scores obtained from the models. Evidences were
combined from three different features, which represent complementary information

for speaker verification.

7.1 CONTRIBUTIONS OF THE WORK

1. Pitch synchronous analysis of speech was studied for accurate estimation of
short-time spectral characteristics. Pitch synchronous LPCC features yielded
a lower value of within-speaker to across-speaker dissimilarity, as compared to

LPCCs obtained by block processing.

2. Difference cepstral coefficients were proposed as a feature for speaker verifica-

tion. The ability of these features to add complementary evidence for speaker
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7.2

verification was illustrated.

. Methods for model normalization and test utterance normalization were pro-

posed.

. Evidences from three features were combined, namely, LPCC features, differ-

ence cepstral coefficients and excitation source features. The features are com-
plementary sources of information and hence, their combination improves the

performance of verification.

SCOPE FOR FUTURE WORK

. Features that are robust to channel variations need to be extracted from speech

signal. This can help reduce the mismatch between training and test utterances

caused by channel effects.

. Certain categories of sounds may be more important for speaker recognition

than others. Thus, for each speaker, speech can be classified into a few broad
categories of sound units. This may be done in an unsupervised manner rather
than explicitly using a speech recognizer. A separate model can be developed
for each category, and the evidences due to different models can be combined

for speaker verification.

. The temporal variation of feature vectors may contain useful speaker-specific

information. Methods based on modeling the probability density function of
feature vectors overlook this aspect. Hence, methods are needed to represent

and model the temporal information.
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APPENDIX A

BACKPROPAGATION ALGORITHM FOR
FEEDFORWARD NEURAL NETWORKS

Multilayer feedforward neural networks are an important class of neutral networks.
Typically, a multilayer feedforward neural network consists of a set of sensory units
(source nodes) that form the input layer, computation nodes that form one or more
hidden layers, and computation nodes that form the output layer. The input signal
propagates through the network in a forward direction, on a layer-by-layer basis. The
error between the desired pattern and the output pattern is used to update the weights
of the network, using a method called backpropagation algorithm. The objective of
this appendix is to discuss the backpropagation learning algorithm. A detailed discus-
sion of multilayer feedforward neural networks can be found in [27] and [30].

In multilayer feedforward neural networks, each neuron is characterized by an activa-
tion function that could be a linear or a nonlinear function of the inputs to the neuron.
Let v; denote the induced local field (i.e., the weighted sum of all synaptic inputs plus
the bias) of neuron j, and let y; denote the output of the neuron. Then, an example
of nonlinear activation function is the sigmoidal nonlinearity defined by the logistic

function:

1

Yi= 1 + exp(—v;)

The necessary condition here is that the nonlinearity should be smooth, i.e., differen-

tiable everywhere. In the present work, the following nonlinearity has been used:

y; = tanh(Av;),



where A = 0.66 has been chosen, based on experiments.

The neurons of the hidden layers are not part of the input or the output layer.
However, the hidden neurons enable the network to learn complex tasks by extracting
progressively meaningful features from the input patterns. Also, it is important to
distinguish between function signals and error signals. A function signal is an input
signal that comes in at the input end of the network, propagates forward through
the hidden layers of the network, and emerges at the output end of the network as
an output signal. An error signal originates at an output neuron of the network and

propagates backward, layer by layer, through the network.

In the remaining part of the appendix, derivation of the backpropagation algorithm
is presented. In Section A.1, a summary of the notations used in the derivation is

presented. Section A.2 discusses the derivation of the algorithm.

A.1 NOTATION

e The indices i, 7 and k refer to different neurons in the network. The signals
propagate through the network from left to right, neuron j lies in a layer to the
right of neuron 2, and neuron £ lies in a layer to the right of neuron j when

neuron j is a hidden unit.
e In iteration n, the n'® training pattern is presented to the network.

e E(n) refers to the instantaneous sum of error squares at iteration n. The average

of E(n) over all values of n is denoted by the average energy E,,.
e ¢;(n) refers to the error signal at the output of neuron j of iteration n.

e d;j(n) refers to the desired response for neuron j and is used to compute e;(n).
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A.2

y;(n) denotes the function signal appearing at the output of neuron j at iteration

n.

wj;(n) denotes the synaptic weight connecting the output of neuron i to the input
of neuron j at iteration n. The correction applied to this weight at iteration n

is denoted by Awj;(n).

The induced local field of neuron j at iteration n is denoted by v;(n). It is the

signal applied to the activation function associated with neuron j.

The activation function describing the input-output functional relationship of

the nonlinearity associated with neuron j is denoted by ¢;(.).

The bias applied to neuron j is denoted by b;. Its effect is represented by a

synapse of weight w;y = b; connected to a fixed input equal to +1.

The i element of the input vector (pattern) is denoted by ;(n).

The k™ element of the overall output vector (pattern) is denoted by ox(n).
The learning-rate parameter is denoted by 7.

m; denotes the number of nodes (size) in layer [ of the network where, | =

0,1,...,L and L denotes the depth (number of layers) of the network.

BACKPROPAGATION ALGORITHM

The error signal at the output of neuron j at iteration n is defined by

ej(n) = d;j(n) = y;(n), (A1)

where neuron j is an output node. The instantaneous sum of error squares over all

neurons in the output layer is given by

B(n) = 5 X e*(n), (A2

jeC
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where the set C' includes all the neurons in the output layer of the network. The

average squared error energy is obtained as

1 N
=¥ X Fln (A.3)

where N denotes the total number of patterns contained in the training set. For a
given training set, E,, represents a cost function. The objective of the learning process

is to adjust the free parameters of the network to minimize E,,.

Neuron |

o)

yjn) -1

V2

—— O

Fig. A.1: Signal-flow graph highlighting the details of output neuron j.

Figure A.1 depicts neuron j being fed by a set of function signals produced by a
layer of neurons to its left. The induced local field v;(n) produced at the input of the

activation function associated with neuron j is given by
n) = iji(”)yi(”)a (A.4)
i=0
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where m is the total number of inputs applied to neuron j, excluding the bias. Thus,
the function signal y;(n) appearing at the output of neuron j at iteration n is given

by

yi(n) = ¢;(v(n)). (A.5)

The gradient or the partial derivative ai?(?g) can be expressed, using the chain rule of
Ji

calculus, as follows:

DE(n) _ 0E(n) de;(n) dy;(n) dv;(n)

= ) A6
()~ 0e;(n) Dy (n) 9y ) Dy () A0
The various partial derivatives in the above equation are obtained as follows:
0E(n) _
der(n) e;(n). (A7)
Oe;(n)
=1 A8
dy;(n) (A8)
dy;(n) _
Ov;(n)
() yi(n). (A.10)

Substituting for the various partial derivatives in the expression for BZE-(ZB)’ we obtain
7t

JFE(n)
8wji(n)

= —¢;(m)}(v3(n)yi (n). (A1)

The correction Aw;;(n) applied to w;;(n) is defined by the delta rule as follows:

OFE(n)
—n 8wﬂ (n) ’

87



where 7 is the learning-rate parameter of the backpropagation algorithm, and the use

of minus sign accounts for gradient descent in weight space. Thus,

Awji(n) = nd;(n)yi(n),
where the local gradient d,(n) is defined by

dj(n) = —

(A.13)

(A.14)

It is seen that the local gradient is dependent on the corresponding error signal. For

the nodes of the output layer, the computation of the error signal is straightforward,

since the desired response is known. The situation for nodes of hidden layers is

in Figure A.2, which depicts a neuron j as a hidden node of the network.

Neuron | Neuron k

dy(n)
o) WY g
> O > > O ek(n)

Fig. A.2: Signal-flow graph highlighting the details of output neuron k
connected to hidden neuron j.
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The local gradient 6,(n) for hidden neuron j is redefined as

5,(n) = _8E(n) dy;(n)

= 22 s (). (A.15)

The instantaneous sum of error squares F(n) is given by
E(n) = 5 > ei(n), (A.16)
keC
where k denotes a neuron in the output node. Now, differentiating the above equation

with respect to the function signal y;(n), we get

JE(n) Jeg(n)
— _ A7
ou,(m) ~ 2= “a (n) (A.17
Using the chain rule for the partial derivative gZ’;Ezg, the above equation can be rewrit-
ten as
OFE(n) de(n) Ovg(n)
=) exn A.18
a0, ~ 2= 30, (m) (o) (.18
Also,
ex(n) = di(n) — ye(n)
= di(n) = dr(vk(n)), (A.19)
where neuron k is an output node.
Hence
Jeg(n) )
= - . A2
e 0) (A.20)
The induced local field for neuron £ is given by
v(n) = wi;(n)y;(n), (A.21)
=0
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where m is the total number of inputs (excluding the bias) applied to neuron k.

Differentiating the above equation with respect to y;(n) yields

Thus, the desired partial derivative of E(n) is obtained as

3E("; _ —Zek n) ¢y (vi (n))wyj (n)

= - Z (Sk wkg (A23)

dy;(n

where the definition of the local gradient has been used for the nodes of the output
layer.

Finally, the backpropagation formula for the local gradient d,(n) is given by

dj(n) = Z Ok (n)wy; (n (A.24)

where neuron j is hidden.

Thus, the local gradients are computed backward, starting from the hidden layer pre-
ceding the output layer.

The correction Awj;(n) applied to the weight connecting neuron i to neuron j is defined

by the delta rule as follows:
Awji(n) = nd;(n)y;(n). (A.25)
To summarize the backpropagation algorithm:

1. If neuron j is an output node, §;(n) equals the product of the derivative d)’j(v]-(n))

and the error signal e;(n), both of which are associated with neuron j.

2. If neuron j is a hidden node, 6,(n) equals the product of the associated derivative
qﬁ;(vj(n)) and the weighted sum of the ds computed for the neurons in the next

hidden or output layer that are connected to neuron j.
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