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Abstract

Speech signal contains two kinds of information. They are: (i) The message the
speaker wants to convey to the listener and (ii) the characteristics of the speaker.
In this thesis we focus on the analysis and manipulation of speaker characteristics
embedded in the speechsignal for voice conversion. Voice conversion involves trans-
formation of the speaker characteristics in the speech uttered by a speaker (source
speaker), so as to generate speech having the voice characteristics of the desired
speaker (target speaker). Voice characteristics lie at the linguistic, suprasegmental
and segmental levels. The speaker characteristics at the linguistic and supraseg-
mental levels are learned features. Hence they are difficult to derive from data and
model. Speaker characteristicsat the segmental level can be attributed to the speech
production mechanism and they are reflected in the source and system characteris-
ticsof the physical system. The interspeaker variations of the vocal tract system can
be modeled as transformation operations. Speech synthesized from the transformed
parameters reflect the voice characteristics of the target speaker. The present study
focuses on the transformation of the vocal tract system characteristics between two
speakers and incorporation of the transformed characteristics in a voice conversion
system. A major issuein this transformation task isto arrive at a suitable represen-
tation of the vocal tract system. For this we have selected formants as they provide
a good representation of the vocal tract shape and at the same time can be easily
extracted from the speech data.

We first explore the possibility of using linear transformations for transform-
ing formants corresponding to steady voca tract shapes (such as vowels) between
speakers. While testing we have observed that if we use asingle linear transform the
error in the transformed formants is high. We noted that this error in transforming
formants can besignificantly reduced by using piecewise linear transformations. But
piecewise linear transformations have the disadvantage of introducing discontinuities
while transforming transitionsin the formants. Thisisbecause, even for steady vocal

tract shapes, the scaling of formants between speakers is highly nonlinear. We have



explorecl the possibility of using ainultilayer feedforward neural network to capture
these nonlinear transformations of the formants. Using proper training data it is
possible to design a network to transform not only the steady formants but also
the formant transitions in dynamic sounds. Issues involved in implementing these
transformations in a voice conversion system are addressed. Finally, we present the

performance of the system for converting speech from one voice to another.

The major contributions of the thesis are: (i) Interspeaker variations in the
formant locations are analyzed to show that the formant transformation between two
speakers is highly nonlinear. (ii) A neural network-based formant transformation
scheme is developed which works well even for formant transitions occurring in
continuous speech. (iii) A method for measuring the generalization capability of the
resulting network is proposed. (iv) A method for modifying the linear predictive

coeflicients(LPCs) is proposed to incorporate the transformation of formants in a

voice conversion system.

(3]



Chapter 1

| ntroduction

1.1 Objective of the study

The purpose o speech is communication (communicative intent) [1, 2]. We use
speech for communicating a variety of messages. Speech signal also carries with it
information other than the message which a speaker intends to convey to a listener.
This information includes the identity of the speaker, his emotional state, his phys-
ical state etc. Human beings are able to recognize a familiar speaker effortlessly
from his speech. The focus d our work is to extract the speaker specific information
contained in the speech signal for voice conversion. Voice conversion involves trans-
formation of the speaker characteristics in the speech uttered by a source speaker,
SO as to generate speech in the voice of the desired target speaker. For developing
a voice conversion system one has to identify the speaker dependent features ancl
represent them in a suitable form. This representation is used to transform the
speaker dependent features extracted form the speech o the source speaker into the
features of the target speaker and speech is then synthesized using the transformed
features.



1.2 Background

Speech signal contains mainly two kinds of information. They are: (i) The message
that the speaker intends to convey to thelistener and (ii) the identity of the speaker.
Extracting the message part from the speech signal is the focus of research in the
area of speech recognition and speech understanding [3, 4]. The area of speaker
recognition and verification deals with techniques to extract the speaker dependent

information -from the speech signal [5,6, 7].

In the development of a voice conversion system, speaker dependent. knowl-
edge is acquired in the analysis or learning phase. In the transformation phase,
the acquired (target)speaker dependent knowledge is used to modify the speaker
dependent parameters extracted from the speech of the source speaker. Finally,
speech with the voice characteristics of the target speaker is synthesised using the
transformed parameters. This is relevant in many situations. For example, in a
text-to-speech system, it may be required to generate speech with some desired
voice characteristics. Analysis of speaker dependent characteristics is also useful
for developing speaker recognition and speaker verification systems in security and
forensic applications. Understanding speaker dependent characteristics is useful in

speaker normalization for speaker independent speech recognition systems [§].

Voice conversion could be speaker-dependent or speaker-independent. In both
the cases identity of the target speaker is fixed. In a speaker-dependent voice con-
version scenario, the source speaker is aso fixed. The task is to transform the voice
characteristics in the speech o the source speaker to that of the target speaker. In
speaker-independent voice conversion the task is to transform the characteristics of
any speaker, so that the transformed speech sounds like that o the target speaker.
In a speaker-independent voice conversion scheme the number of source speakers are
unlimited but identity of the target speaker is fixed. In this work we address only
speaker dependent voice conversion.

The major issues involved in the development of a voice conversion system are:



(i) The characteristics o the desired voice have to be identified and specified. This
involves acoustic-phonetic analysis o speech datafor each speaker. (ii) Theacquired
speaker dependent knowledge must be represented in a form suitable for transforma-
tion of speech from the source voiceto the target voice. This may be represented as
transformations which can transform the speaker dependent parameters extracted
from the speech of the source speaker to match with that of the target speaker. The
voice characteristicsaof the target speaker can also be represented as a set of rules, to
incorporate the desired speaker characteristics into the source speech. (iii) Finally
voice conversion is achieved by incorporating features of the target speaker into the

parameters extracted from the source speech, and then synthesizing speech.

For developing a voice conversion system we must identify the factors in the
speech signal which are responsiblefor giving individuality to the speech of a speaker.
Speaker characteristics exist at various levels. Figure 1.1 shows knowledge sources

used at various levelsfor producing and perceiving voice characteristics.

At the highest level, numely the linguistic level, we use factors like, language,
dialect, syntactic structures and semantic context for the identification of « speaker
form his speech. The characteristics of a speaker at thislevel are difficult to analyze
and model, although these characteristics are mainly used by humans for recognizing

speakers from spontaneous speech.

,

There are factors at the acoustic level which can be extracted from the speech
waveform. The acoustic level cliaracterization can be divided further into segmental
and suprasegmental levels. At thesuprasegmental level the prosodic features such as
intonation, duration and stress carry significant speaker-specific information. After
the linguistic factors the prosodic factors are the most important speaker-specific
characteristics which human beings use in recognizing speakers. At the segmental
level the source and system characteristics of the speech production mechanism
reflect the speaker: characteristics. The system characteristics refer to the shape
and size (mainly the effective length) of the vocal tract. Source characteristics refer

to the physiology of the vocal folds. The segmental speaker characteristics have a

)
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Figure 1.1: Line diagram showing the various speaker dependent

knowledge sources.

dynamic and a static part. The dynamic part of the speech production contributes
to speaker characteristics in the speech signal. This includes both the vocal tract
system dynamics and the glottal source dynamics. These dynamic features are
dictated by sound unitsand thus aredetermined by the text to alargeextent. Static
speaker characteristics refer to the average length of the vocal tract system, average
pitch, characteristics of the nasal tract etc. are useful mainly for transforming steady

sounds across speakers.



1.3 Scope of the thesis

Analysis and modeling of speaker characteristics at the linguistic and suprasegmen-
tal levels are difficult tasks. The speaker characteristics at the linguistic level gains
importance when we deal with spontaneous speech. In this work we are concentrat-
ing only on read speech, where the speaker is asked to read aloud given sentences.
Thus we eliminate speaker characteristics at the linguistic level from the speech

data.

The interspeaker variations at the prosodic level can be attributed to several
complex mental phenomena (learning). These variations have no relation to any
physical system. The prosodic characteristics o the speaker are derived by analysing
large amount o speech data. This knowledge acquisition process involves significant
manual effort.

The segmental characteristics are directly related to the physical system,
namely the vocal tract system. Therefore at the segmental level features of the
source speaker can be transformedinto featurescorresponding to the target speaker.
In this work we will be modeling the interspeaker variations at the segmental level
across speakers as transformation functions. The emphasis is on transforming the
characteristics o the vocal tract system. Only some gross features of source char-
acteristics are considered in this thesis.

The problem o voice conversion using information at segmental level can be
understood from the nature of the speech production mechanism and from the man-
ifestation o the production characteristics in the speech signal. We now briefly
present the fundamentals of speech production mechanism. The organs involved
in the production of speech are shown in Figure 1.2. If the vocal tract system is
excited by quasi-periodic vibrations of the vocal folds, then the resulting speech is
caled voiced (eg. vowels /a/ and /i/). The periodicity o the vocal cord vibration
is called the pitch of the voice source. If the excitation of the voca tract system

isdue to turbulence o air (frication) at a narrow constriction, the resulting speech
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Figure 1.2: Organs of speech production

is said to be unvoiced (eg. /s/ and /z/). On the other hand if the vocal tract is
closed at some point and the built up pressure is released suddenly the resulting
speech is called a stop sound (eg. /p/ and /t/). Figure 1.3 shows a typical speech
waveform where the three types of sounds are illustrated. During normal speech
production the time varying source produces varying pitch frequency (Fo). Thisis
called intonation contour or pitch contour as illustrated in Figure 1.4(a) and (b).
The time varying vocal tract system characteristics are reflected as time varying
resonances (formants) of the vocal tract system. These formant changes can be
seen in a spectrographic display of speech signal as shown in Figure 1.4(e) and (f).
Spectrogram is a display o the distribution of spectral information with respect to
time. In a spectrogram time and frequency are represented in the x and y axes
respectively while the amplitude is noted by the darkness of the picture. Formants
appear as dark horizontal bands. Figure 1.4 shows the pitch contour and formant

contour for two speakers uttering the vowd sequence /ai/. The problem of voice
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Figure 1.3: Waveform of the utterance 'sky'.

conversion using parametersat the segmental level isillustrated using the Figure 1.4.
Figure 1.4(¢c) and (d) show the acoustic waveform of the speech sound /ai/ uttered
by a male and a female speaker respectively. The Fy contour extracted from these
utterances are shown in Figure 1.4 (a) and (b). We can observe that the average Fo
of the male speaker is significantly lower than the Fqo of the female speaker. Thus,
in order to perform a voice transformation across two voices, the average Fy must
be appropriately modified. Apart from the interspeaker variations in the source
characteristics, the vocal tract system also contributes to speaker variability. The
interspeaker variations in the vocal tract system are manifested as variations in the
formant frequency (vocal tract resonances). Figure 1.4 (e) and (f) illustrates this
with the help of spectrograms. The dynamics of the vocal tract system is mani-
fested in the spectrogram in the form of smooth formant transitions. By comparing
Figure 1.4(e) and (f), we observethat theformant frequencies is significantly.higher
for femal e speech in comparison with male speech. Hence we note that for realising
voice conversion, the formants extracted from the speech of the source speaker have
to be appropriately transformed. Our aim is to capture a transformation operation
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conversion using parameters at the segmental level isillustrated using the Figure 1.4.
Figure 1.4(c) and (d) show the acoustic waveform of the speech sound /ai/ uttered
by a male and a female speaker respectively. The Fy contour extracted from these
utterances are shown in Figure 14 (a) and (b). Wecan observe that the average Fo
of the male speaker is significantly lower than the Fo of the female speaker. Thus,
in order to perform a voice transformation across two voices, the average Fy must
be appropriately modified. Apart from the interspeaker variations in the source
characteristics, the vocal tract system also contributes to speaker variability. The
interspeaker variations in the vocal tract system are manifested as variations in the
formant frequency (vocal tract resonances). Figure 1.4 (e) and (f) illustrates this
with the help of spectrograms. The dynamics of the voca tract system is mani-
fested in the spectrogram in the form o smooth formant transitions. By comparing
Figure 1.4(e) and (f),we observe that theformant frequencies is significantly-higher
for female speech in comparison with male speech. Hence we note that for realising
voiceconversion, the formantsextracted from the speech of the source speaker have

to be appropriately transformed. Our aim is to capture a transformation operation
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which will transform the formant frequencies extracted from the speech of the source
speaker to match with that of the target speaker. This transformation is to be cap-
tured from a limited amount of formant data and at the same time the captured
transformation must be able to transform formants extracted from any utterance of
the source speaker. Moreover such a transformation must not introduce distortions

to smooth formant transitions occurring in continuous speech.

In order to capture the vocal tract system transformation between two speakers
the vocal tract must he represented in a suitable manner. At one extreme the vocal
tract can be represented by the envelope of the short time spectrum. But this
representation is not motivated by the mechanism of speech production. Moreover,
the short-time spectrum contains information related to both the vocal tract system
and the voice source. The vocal tract system may be characterized by a linear time
varying system represented by a set o time varying parameters. From a parametel
extraction point of view, it is convenient to represent the system as a linear digital
filter, for example an all-pole model. This representation takes into account the
speech production mechanism upto some extent by modeling the vocal tract system
as an al-pole filter. However, from a transformation point of view, it is desirable
to represent the system with articulatory parameters. But articulatory parameters
are difficult to extract from speech signal. Hence as a compromise, formants are
proposed for representing the vocal tract system information. Formants are the
resonances o the vocal tract system and thusthey are very close to the physiology of
speech production. At thesame timein comparison with the articulatory parameters

they are easy to extract from the speech signal.

In the context of speech perception the voiced segments, especially vowels,
carry moreinformation related to thespeaker than consonants [9, 10]. There are two
major reasons for this. They are: (i) Vowesare spectrally well defined and thuscarry
significant information about the vocal tract shape [3]. Since the vocal tract shape
vary across speakers we can conclude that vowels and vowd like sounds (semivowels

and dipthongs) carry unportant speaker specific information. (ii) Consonants are

11



dynamic in nature and their durations are less in comparison with the durations
of vowels. Hence while perceiving a consonant, the listener pays more attention in
comprehending the message, 1.e, recognizing the consonant. This causes the listener
to ignore the speaker characteristics embedded in a consonant. In the case of vowels,
since the duration is relatively large, the listener can pay attention to the voice
characteristics also. This argument need not be valid for consonants like laterals
and nasals which carry significant speaker specific information. But in these cases it
is difficult to extract the speaker dependent parameters (for example, estimation of
nasal resonant frequency). Hence in our studies we will be considering only voiced

regions, especially vowels, for extracting the speaker characteristics.

[t must be noted that even though gross speaker characteristics are attributed
to the segmental factors, the rea voice characteristics of a speaker are due to the
manner of production acquired by the speaker over years. These learned factors may
be present either through out an utterance (gross prosodic features) or only in some
specific segments (segment specific prosodic features! of an utterance. Hence for
voice transformation, both the gross and the segment based prosodic characteristics
o thetarget speaker haveto beincorporated into the synthesised speech, in addition
to the segmental speaker characteristics. Performance of a voice conversion system
critically relieson how well features that reflect the speech production mechanism
can be extracted from speech. The quality of the transformed speech also depends
on the synthesis scheme. In this work we use standard parameter extraction and

synthesis procedures for voice conversion.

We first attempt to obtain transformation between vocal tract system of the
source and target speakers using a single linear transformation. The linear trans-
formation is derived using formants extracted from isolated utterances of vowels.
Theerror in the transformed formants can be reduced significantly by using piece-
wise linear transformations. But piecewise linear transformations are capable of
transforming formants extracted from steady vowelsonly. This transformation will

introduce discontinuities in formant transition regions. These studies on linear for-

12



mant transformation show that the formant scaling between two speakers is highly
nonlinear. Since afeeclforward neural network with nonlinear computing elements is
capabledf capturing any arbitrary functional relationship, we used such anetwork to
capture the inherently nonlinear formant transformation function. The network can
be trained using formantsextracted from isolated utterances of vowels. Even though
such a network is capable of transforming formant transitions without introducing
discontinuities, the transformed formant transitions were not as smooth asthe target
transitions. Thisfailured the network in transforming formant transitions properly
is due to lack of the generalization capability of the network. We circumvent this
problem by using appropriate training data to train the neural network. In this
context we propose a method to test thegeneralization capability of the network by
using synthetic test patterns. We also present a method by which the trained neural
network can be efficiently used for voice conversion. This is done by using the net-
work to modify the linear predictive coefficients (LPCs) extracted from the source
speech and using the modified LPCs for synthesizing the transformed speech. Fi-
nally, we test this schemedf voiceconversion by performing transformation between
different speakers.

1.4 Review of related work

1.4.1 Introduction

Thefirst attempt in voicetransformation was reported in theclassical paper by Atal
and Hanauer [11]. In their paper Atal and Hanauer described the application of the
LPC - vococler in modifying voice characteristics. In an experiment speech uttered
by a male speaker was analysed to extract pitch, forinants and bandwidths. These
parameters were modified using fixed scale factors. Speech was synthesized using
these modified parameters to simulate a female voice. Seneff [12] deinonstrated a
method by which the spectrum, the speaking rate and the pitch of speech signals

13



could be modified even without extracting pitch. Even though this was a new speech
analysis/synthesis system which was capable o independent manipulation of Fy and

the spectral enveiope, no study was carried out on its application to voice conversion.

In the above described efforts the main aim of the authors was not to convert
the voice characteristics d a speaker to sound like that o another. They discuss
voice conversion as an application of new methods of speech processing. The work
reported by Childerset al (1985)[13] can be considered asone dof thefirst attemptsin
voice conversion, since they werethefirst to focus on the problem o voice conversion

initsown right. The followingsections summarizestudies made on voice conversion.

1.4.2 Voice conversion in a simple L P-synthesis framework

In this method, [14, 13] analysis was carried out on sentences uttered by the source
and the target speakers to extract the speaker dependent information. From elec-
tro gloto graph(EGG) measurements, the average values of parameters T, and T,
corresponding to the Fant's model [15] were measured, for different segments of the
utterances o both the source and the target speakers. The values of the first three
formantsfor different ssgmentsdf the utterancedf the sourceand the target speakers
were determined. From this the scale factors for the three formants were computed.

From the average pitch of the source and the target speakers, an average pitch scale

factor was computecl.

In the transformation phase parameters extracted from speech of the source
speaker were modified to correspond to the target speaker. The pitch was modified
by the averagepitch scalefactor and the pitch contour was edited to match with that
of the target pitch contour. The linear predictive coefficient(LPC) polynomial was
solved to get the LPC roots. The roots which correspond to the first three formants
were shifted in the z-plane in accordance with the scale factors computed during
the analysis phase. The LPCs were recomputed from the modified roots. Then

speech in the voice of the target speaker was synthesized using the modified LPCs,



average pitch and pitch contour. To excite the LPC - vocoder, Fant's model was
used during voiced segments and random noise for unvoiced segments. While using
Fant's model, those model parameters (T, and T,) which were measured during the
analysis phase from the speech of the target speaker were used. According to the
authors this method produced speech of good quality and the transformed speech
possessed the speaker characteristics of the target speaker.

In a similar work done by Slifka and Anderson (1995), the scale factors for
modifying the LPC roots were computed statistically. But theauthors have reported

that this method was not suitable for transforming the dynamic characteristics of
the vocal tract [16).

1. 4.3 Voice conversion by vector quantization

The method for voice conversion proposed by Abe et al [17] considers pitch, en-
ergy and spectril parameters as speaker dependent features. Spectral parameters
were extracted from the utterances o the source and the target speakers and vector
qguantized. Similarly the extracted pitch values were scalar quantized. The corre-
spondence between framesaf the words uttered by thesource and the target speakers
were established by dynamic time warping (DTW) algorithm. This correspondence
between the vectors of the source and the target speakers was accumulated as his-
tograms. The histogram was used to represent each vector in the source speaker's
codebook as a linear weighted sum of the vectorsin the target speaker's code book.
This correspondence is termed as the mapping code book. In the case of pitch fre-
guency and gain, scalar quantization was used and the mapping codebooks for these

parameters were defined based on the maximum occurrence in the histogram.

In the transformation phase, the speech of the source speaker was analysed
to extract the speaker dependent parameters and were vector quantized using the
source speaker's code hook. Using the mapping code book the corresponding vectors

in the target speaker’s code book were determined. Speech was synthesized using



these parameter vectors.

In a similar work done by Savic and Nam (1991) the mapping code book was
realized by a neural network [18].

In a later work done by Mizuno and Abe {1994), formant frequency modifica-
tion was done by piecewise linear transformation rules to achieve voice personality
transformation [19, 20]. The basic methodology of this technique is same as that
suggested by Abe et al [17) except for the following points: (i) Instead of using LPCs
formants were used. (ii) Spectral tilt was also considered for conversion. (ii) Instead
of a mapping codehook, piecewise linear formant transformation rules were used to

transforin the formant frequencies and the spectral tilt.

144 Cross- language voice conversion

The objective in this work was to preserve the voice characteristics, when speech
is translated from one language to another language an<d synthesised in the target
language (21]). Hence the aim was to preserve the source speaker's characteristics
in the synthesised speech across languages. The authors call this effort as cross -

language voice conversion.

The major issue, related to the manipulation of speaker characteristics, liesin
the incorporation of speaker characteristics into the speech synthesis system, which
was used to synthesize the translated speech. The authors attempted a translation
from Japanese to English. The translated text was synthesised using the MItalk
system. The aim was to modify the output speech of the MItalk system so that the
speech sounds like that of the Japanese speaker. To accomplish this voice trans-
forrnation they used the mapping code book technique (17]. To build a mapping
codehook, two speakers have to utter a set of training words. In this case the target

speaker was a Japanese and the MItalk system represented the source speaker.

The converted speech was reported to be as intelligible as the Mltalk output.

In the case were the Japanese speaker was afemale, the translated speech was judged
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by listeners as female speech.

1.4.5 Segment based voice conversion

Abe (1992) described a voice conversion system that used speech segments as the
conversion units [22]. The speech of the source speaker was given to a speech
recognition system for segmentation and labelling. To produce speech in the target
voice, speech segments identified by the speech recognition system was replaced by
the speech segments uttered by the target speaker. This sysiem has a drawback

that it depends on a speech recognition system for its performance.

1.4.6 PSOLA-based voice conversion

In this method proposed by Valbret et al (1992), the classical source-system decom-
position was exploited to perform prosodic and spectral transformations [23, 24].
Prosodic modifications were applied on the excitation signal using TD-PSOLA [25)
technique. The converted speech was then synthesized using the transformed spec-

tral parameters.

For the spectral transformation, sentences uttered by the source and target
speakers were time aligned by DTW. This procedure defines a mapping between
the acoustic spaces of the two speakers. From this mapping the required spectral
transformation was learned by first partitioning the acoustic space of the reference
speaker by means of vector quantization (VQ) and by approximating the trans-
formation within each class. The transformations associated with different classes
were modeled in the training phase. Two methods were investigated for learning
such a transformation, namely, Linear Multivariate Regression(LMR) and Dynamic

Frequency Warping(DFW).

During the transformation phase, cepstral coefficients were extracted from each

of the analysis frames of the input speech. The class to which the cepstral vector
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belongs was then identified by finding the nearest code vector. Then the transform
related to this class was applied to the cepstral vector. This can beeither the linear
transformation(captured by the LMR technique) or the warping function (captured
by the DFW technique). An LPC parameter set was extracted from the transformed
cepstral or spectral vector, which was used in the synthesis of speech to reflect the
voice characteristics of the target speaker.

This method worked well for short words. But in the case of sentences, due to
differences in pronouncing, time alignments were imprecise and thus it was reported

that the quality of the spectral transformation was degraded.

1.4.7 Comments

From the discussion of different approaches for voice conversion, it can be observed
that none of them has addressed the issues related to voice characteristics in detail.
All these methods were based on the use of existing signal processing techniques

(likeVQ, DTW, LMR) for performing voice conversion.

Most of the voice conversion algorithms found in the literature {17, 14, 21, 18,
22, 23, 19] depend critically on vector quantization of spectral parameters. Thus
the source speaker's acoustic space was divided into separate nonoverlapping regions
and for each such region a transform is statistically estimated. This transform is
used to modify source spectral vectors belonging to that region, to match with
that of the target speaker’s spectral characteristics. It must be noted that spectral
features directly correspond to the vocal tract characteristics. Hence separating the
spectral space of the source speaker into discrete areas and transforming vectors
of these areas separately would introduce discontinuities to the transformed vocal
tract shape contour. Therefore the transformed spectral parameters may represent
a discontinuous movement of the vocal tract and hence speech synthesized from such
aset of parameters will he poor in quality. Onesolution isto increase the number of

code vectors, which is equivalent to separating the spectral space rnore finely. Such



an approach has the following disadvantages.

1. Increasing the number of code vectors would cause an increase in the storage

requirements.

o

It will also increase the time required to search through a code book.

3. Most importantly, an increase in the number of code vectors will decrease
the number of spectral vectors from which the transformation related to each
o the distinct spectral spaces is estimated. Since this computation is done
statistically, the estimated the transform will become poorer as you separate

the source speaker's spectral space into finer and finer regions.

Hence it is clear that better methods for transforming spectral vectors (vocal tract
system information) are needed. All the voice conversion methods discussed above
were successfully applied only to words or syllables. The issues in transforming the

complex dynamics of the vocal tract system characteristics were left unaddressed.

The work reported by Childerset al [14] provides agood model for synthesizing
speech from a set of acoustic parameters. In this method these acoustic parameters
wereextracted from the source speaker and transformed. Speech is synthesized using
the transformed parameters. But the problem of learning these transformations were
not addressed. In this thesis we mainly concentrate in the development of a neural
network based system which could learn this transformation functions automatically.
Emphasis is given to issues related to faithful transformation of the the dynamic

features of the vocal tract system.

1.5 Organization of the thesis

The thesis is organized as follows. Chapter 2 cliscusses methods to capture linear

functions which could transform the steady vocal tract system characteristics of the
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source speaker to that of the target speaker. This chapter also points out the ad-
vantages and drawbacks in approximating formant transformation by linear scale
factors. The next chapter begins with an emphasis on the need for nonlinear ap-
proximation of formant transformation, and goes on to discuss methods for learning
a nonlinear formant transformation using feedforward neural networks. Chapter 4
extends the application o feedforward neural networks for transforming formants
extracted from dynamic speech sounds. Chapter 5 deals with incorporation of for-
mant transformation into a voice conversion system and presents results of voice
conversion between voices. Chapter 6 summarizes the work.
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Chapter 2

Linear approximation of formant

transfor mation

2.1 Introduction

This chapter discusses methods to capture the relation between formants derived
from the speech of two speakers using linear transformation. We consider only the
transformation of steady vocal tract shapes. For this purpose, formantsareextracted
from isolated utterances of steady vowelsdf the source and target speakers. We also
describe a method for modifying the average pitch using a simple linear transforma-
tion. We first assume that the scaling corresponding to the vocal tract dimensions
(mainly the effective vocal tract length) between speakers is linear, and hence the
scaling of formants will also he linear. A simple linear formant transformation is
captured using the least mean square algorithm (LMS). The transformation is same
for all theformants. Error analysisis made to show that such a simple linear trans-
form cannot efficiently transform the formants. We describe experiments to study
the performance of using separate linear transformation for each formant. The error
performance of the formant-dependent linear transformation is significantly better

than the simple linear formant transformation. The shape arid the effective length

n)]
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of the vocal tract system is different for different vowels. The five vowels, /a/, /€/,
/1/, /o/ and /u/ areconsidered in thisstudy. Thevocal tract system transformation
can be represented more efficiently by capturing linear transformations separately
for each of the five vowes. Thus the entire formant transformation is represented by
fifteen different linear transformations (3 formants x 5 vowels). This representation
of the formant transformation, which is piecewiselinear, is based on the assumption
that the scaling of the vocal tract dimensions corresponding to the different vocal
tract shapes(vowels) are nonuniform. A better approximation is obtained by using
piecewise linear transformation instead of a simple linear transformation for each
formant. In the case of piecewiselinear transformation we need to know a priori the
vowel from which the formant isextracted before applying the appropriate transfor-
mation. This isone of the drawbacks of piecewise linear transformation. Study of
transformation of formant transitions show that the transformed formant transitions
were not continuous. That is, piecewise linear transformations introduce disconti-
nuities while transforming smooth formant transitions as in vowel sequences. These

discontinuities are perceived during listening of the transformed speech.

The chapter isorganized asfollows. The next section givesa brief introduction
to the LMS algorithm used for linear functional approximation. Section 2.3 describes
the studies conducted in approximating the formant transformation using simple
linear transformations. Experiments in capturing and testing the piecewise linear
formant transformation is described in Section 2.4. Section 2.5 discusses a linear
transformation to modify the average pitch of the source speaker to match with that
o the target speaker. Synthesisexperiments conducted to evaluate the performance
of various linear and piecewise linear formant transformation schemes are discussecl
in Section 2.6. The drawbacks in approximating the inherently nonlinear formant
transformation by linear functions are discussed in Section 2.7.



2.2 Basics of linear functional approximation

The problem of capturing a linear rnapping function which maps the speaker de-
pendent parameters extracted from the speech of the source speaker to those of the

target speaker isformulated as follows:

Let the parameters extracted from the speech of the source and target speakers
be represented by s", for n =1,2... N and t",for n = 1, 2 ... N respectively. It
must he noted that s© and t’ are extracted from the corresponding speech segments
uttered by the source and the target speakers. The problem is to find a linear

function in the following form.
y* = ko + kys™ (2.1)

The linear transformation given by equation (2.1) can also be implemented as a
linear network. The objective is to compute the weights of this linear network (kg
and k,;) such that the squared error given by

J = éE(t" —y")?

4

is minimum. In the above equation E denotes expectation and t" represents the
desired output. Theerror J as afunction of kg and k is called the error surface. It
can be shown that the shape of this error surface is a paraboloid. Getting a least

square solution involvesfinding the global minimum of the error surface.

Thesolution can be ohtained iterativelyfrom any initial randomn weight setting.
This can be clone by the classical LMS algorithm [26]. The weight updation is given
by

k?-H = k? —nVi ( .

(S
SV
S—

where

_ o
Vi= ok
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l. Initialization
ko=0
k=0
for iteration number i=1,2 ...
don=1,2 ... N
I1. Filtering
Compute
y" = kg + kyst
et = t" - yn
I11. Weight adjustment
Compute
kptt = kp T (tn-y7)
kP = kit (67 y)st

enddo

until weights converge

Figure 2.1: Algorithm for computing a linear transformation func-
tion using the LMS algorithm.

In equation 2.2 the superscript represents the iteration number and n represents the
learning rate which isa small constant. The weight isadjusted in the direction of the
instantaneous gradient of error. From equation 2.2 and 2.3 the weight adjustment

becomes
kP = kY 4 (8™ — y")s?. (2.4)

The LMS algorithm, for converting the source parameters to target parameters is

given in Figure 2.1.



2.3 Learning linear formant transfor mations

Data for this study consists of isolated utterances o vowels /i/, /&/, /a/. /6/, and
/t/ from five male and five female speakers. Each of these vowels was repeated by
every speaker twenty times. Out of these twenty sets of vowe data, fifteen sets were
labeled as the training set and the remaining were considered as the test set. The
first three formants were extracted using a method based on minimum phase group

delay functions [27].

In the first attempt. a simple linear network was trained using the LMS al-
gorithm to transform all the formants in the same manner. A male speaker was
considered as the source speaker and a female speaker as the target speaker. The
error between the source and the target formants before and after the application
of the linear transformation is shown in Table 2.1. Let the source, target and the
transformed formants be denoted by by F!, F} and F} fori =1, 2 ... N, respec-
tively. N is the number of frames from which the formant data was extracted. The
error in percentage between the the target and the source formants is calculated as
Lo, e

T Similarly the error in percentage between the target and the trans-
Fl _F‘I

formed formants is given by ﬁ Zﬁ-\il I-'“p‘—‘-l From the table we can note that even
though the application of thelinear transformation brings the source formants closer
to the target formants, the error is still large. Thisisevident in the case of F, for
the vowel /e/ and F, for the vowel /a/. Also note that in some cases (F, of vowel
/o/ and F, of vowd /e/), the error between the source and the target formant is
less than the error between the transformed and the target formant. It means that
in these cases the application o the transformation to the source formants moves it
farther away from the target formant location.

For reducing the error in the transformation, three separate linear networks were
trained to capture transformations corresponding to each of the three formants.
Thus the formant transformation now consists o a set of three linear functions.

Figure 2.2 shows the three learned functions. They are represented as straight lines.
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Table 2.1: Error analysis for the single linear formant transforma-

tion.
vowels Error in percentage be- Error in percentage be-
tween the target and the tween the target and the
source'formants transformed formants
F, F, Fs Fy F, F3
/1] 27.1 14.3 4.8 9.0 3.6 6.8
/€] 7.0 32.9 18.8 19.8 16.2 5.4
/a/ 42.0 21.0 10.1 25.3 18.0 3.8
/6/ 7.3 4.9 5.4 9.9 12.0 5.6
/a/ 21.5 4.2 9.3 14.4 11.2 3.7

Note that the three lines shown in the Figure 2.2 have different slopes. Thisshows
that the scaling factors for the three formants are different even for steady vowels.
These functions were used to transform the formants of the test set. Table 2.2 gives
the errors between the source formants and the target formants before and after the
application of the threelinear transforms. By comparing Table 2.1 and Table 2.2 it
is clear that by using separate linear networks for the three formants we have been
ableto reduce theerror in the transformed formants significantly. Thisimprovement
issignificant in the case of second formant (compare the sixth columns of Table 2.1
and Table 2.2). For some cases the formant-dependent transforniation gives larger
error in comparison with the case of a single linear transformation (for example, I,
of vowe /i/ and F3 of vowel /i/). But if we consider the overall error, the use of

formant-dependent transformation outperforms the single linear transformation.
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Figure 2.2: The formant dependent transforrnation function. Fig-
ure showing the transformation functions corresponding to thefirst
(kl), second(k2) and the third(k3) formants.

2.4 Piecewise linear formant transformation

The voca tract shape and effective length are significantly different for different
vowels. Therefore the vocal tract system transformation can be improved signifi-
cantly by using separatelinear transformationsto transform formants corresponding
to different vowels. Thisisequivalent to making the transformation of each formant
piecewise linear. For five vowels and three formants, the number of linear functions
will be fifteen. Thus we have trained fifteen linear networks to capture the formant
transformations for all the five vowels. Each of thesefifteen networks is expected to
transform a formant (first, second or third) extracted from one of the five prototype
vowels (/a/, /€/, /i/, /6/ or [a/). Figure 2.3 shows the resulting piecewise linear
transformation function. The figure shows the scale factors of the formants for five
prototype vowels. Scale factors refer to the amount by which the source formants

corresponding to different prototype vowels are scaled by the transformation. In
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Table 2.2: Error analysis for the formant dependent linear trans-

formation.

Vowels  Error in Eentage be- Error in percentage be-
tween the target and the tween the target and the
source formants transformed formants
F, F, Fa F, F, F3

/i/ 27.1 14.3 4.8 12.0 4.8 5.1

/e/ 7.0 32.9 18.8 16.2 6.8 4.6

/a/ 42.0 21.0 10.1 21.0 4.5 4.7

/o] 7.3 4.9 5.4 7.0 3.2 4.2

Ji/ 21.5 4.2 9.3 11.0 2.6 3.9

this study we have considered five different sets of source and target speakers. The
scale factors shown in the figure correspond to transformation of formantsof a male
speaker to those of a female speaker. These results show that the scale factors are
dependent both on theformant (first, second or third) and the quality of the vowel.
The variations o the three scale factors show similar trend across different sets of
male and female speakers. A notable deviation from the uniform scaling o the for-
mants is the large scalefactor for thefirst formant corresponding to the open vowel
/a/ in comparison with the dosed vowels /ii/ and /i/. The scale factor for the
second formant is high for front vowels /i/ and /e/. Note that for the back vowels
/u/ and /6/ the value of the second formant scale factor is less than unity. This
means that the second formant frequency for back vowels /i/ and /3/ is higher for
male speakers than for the female speakers. These observations are consistent with
a similar study conducted by Fant [28].

In order to transform a set of formants using piecewise linear transform, it is

necessary to first identify the vowd from which the formants were extracted. We
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Figure '2.3: The piecewise linear formant transformation function
(a) Scalefactor for thefirst formant (b) Scale factor for the second
formant (c) Scale factor for the third formant. Each set corresponds
to one pair (male-female) of speaker data.

have used a simpleclassification schemefor recognizing the vowd from the formants.
Figure 2.4 shows the classification scheme used for transforming the source formants
using the piecewiselinear transformation. Wefirst compute the mean of the formant
values for different vowels. The formant vectors F;, F,, F,, F,, and F, represent
the mean of formant vectors corresponding to the vowes /1/, /&/, /af, /5/, and
/i/. Now given a formant vector F', we compute the Euclidean distance between
this unknown formant vector and the mean formant vectors corresponding to the
prototype vowels. We recognize the unknown speech sound as the vowel whose
mean formant vector is closest to the formant vector extracted from the unknown
speech sound. Once speech sound is recognized as one of the vowels, the appropriate
linear transformation is applied to each of the formants. Table 2.3 gives the error
analysis of the piecewise linear transformation. From Tables 2.1, 2.2 and 2.3, it can
be observed that when the formant transformation function is approximated by a
single linear function the error during testing is the highest. When we use three

separate linear fuuctions for the three formants, the error reduces. The error was
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Figure 2.4: Block diagram showing the transformation of the for-
mants extracted from vowels using the piecewise linear transforma-

tion.

found to be least when these functions themselves were made piecewise linear.

2.5 Pitch transformation

Average pitch also contributes to the voice characteristics and thus for synthesizing
speech in the voice of the target speaker, the average pitch of the source speaker
has to be modified. In this section we describe a simple procedure to modify the

average pitch of the source speaker, using linear networks.

The task istofind a linear transformation using a linear network which could
modify the average pitch extracted from the speech of the source speaker to match
with that of the target speaker. For this, pitch was extracted from the training
set of isolated utterances of vowels. For extracting pitch we have used the SIFT

algorithm [29]. The F, data correspontling to the source and the target speakers is
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Table 2.3: Error analysis for the piecewise linear formant transfor-

mation.

vowels  Error in percentage be

tween the target and the

source formants

Error in percentage be-
tween the target and the
transformed formants

Fy F F3
/1/ 27.1 14.3 48
/8/ 7.0 32.9 18.8
/a/ 42.0 21.0 . 10.1
/o] 7.3 4.9 5.4
/i/ 21.5 4.2 9.3

represented by Fj,,fori =1,2...N and Fj, fori =1, 2... N respectively, where
N is the total number of training values of Fq. The weights of the linear network
were computed using the LMS algorithm described in Section 2.2. Once we have
captured the linear pitch transform, the next issue is to validate the function for its
capability to transform the average Fyo. For evaluation, Fy contours are extracted
from the test utterances of both the source and the target speakers. The source
pitch contours are transformed using the linear pitch transformation. Table 2.4
shows the error in the average Fo of the source and the target pitch coritours before
and after the application of the transformation function. From the table it is clear

that the average pitch transformation is able to modify the average pitch of the

Fy Fy Fs
3.8 1.7
4.2 2.3 3.2
9.2 1.2 3.4
3.3 1.9 2.3
4.8 2.5 1.9

source speaker to match satisfactorily with that of the target speaker.



Table 2.4: The error analysis on the linear Fy transformation.

vowels Error in percentage between Error in percentage between the

the target and the source Fy the transformed Fy and the target Fy

1/ 51.2 9.2
[/ 45.4 " 7.3
/a/ 50.9 8.2
/o/ 40.4 7.1
/a/ 47.8 6.9

2.6 Synthesis experiments

Error analysis gives only a quantitative idea of the performance of the learned func-
tion. A more useful way of evaluating the transformation is to synthesize speech
from the transformed formants and the transformed pitch. We have extracted for-
mants, pitch and gain from a set of vowels uttered by the source speakers (male).
The pitch was transformed by the learned linear function. The formants were mod-
ified using the three different methods of formant transformation scheme described
in Section 2.3. The speech was synthesized with the modified average pitch and
formants. A standard glottal source model was used to excite the formant vocoder.
Informal listening of the transformed speech was used to judge the quality of the
voice conversion. When a single linear function was used to transform the source
formants, the voice characteristics in the converted speech was quite different from
that of the target speaker. But by using three separate functions for modifying the
three formants the quality of the voice conversion improved. When piecewise linear
functions were used to modify the source formants, the voice characteristics of the

converted speech were close to that of the target speaker.



2.7 Limitationsof linear formant transformation

From the formant scale factors captured by the linear network it is clear that the
scaling of the formants is dependent on the voca tract shape. Even for trans-
forming steady speech sounds like vowes the formant transformation is nonlinear.
Hence we have used piecewise linear functions to approximate the inherent nonlin-
ear formant transformation function. There are mainly two disadvantages in using
a piecewise linear formant transformation. They are: (i) If we are using separate
linear transforms for different vowels, we will have to identify the speech sound as
one of the vowels before applying the appropriate transformation to the formants
extracted from that speech segment. (ii) If we use a piecewise linear function to
approximate the inherent nonlinearity in the transformation, the resulting formant

transformation function will have discontinuities.

Figure 2.5 shows the effect of transforming various types of formant transi-
_tions using the piecewise linear formant transformation. The first column shows the
formant contours extracted from the speech of the source speaker corresponding to
the vowe sequences /ai/, /ai/ and /61/. The third column shows the correspond-
ing target formant transitions. The source formant transitions were transformed
using the piecewise linear transformation. The second column of the figure shows
the transformed formant transitions. Note that the transformed formant transitions
show discontinuities. These discontinuities are significant in the case of the third
formant corresponding to the vowe sequences /ai/ and /61/. These discontinuities
occur between the tenth and the eleventh frames. Thisis due to the use of two sep-
arate linear functions to transform the two different parts of theformant transition.
It must be noted that such a discontinuous formant contour represents an abrupt
change in the vocal tract system which is undesirable, as it degrades the quality o

the synthetic speech generated from such discontinuous formant contours.
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Figure 2.5: Figureillustrating the problem of formant discontinuity. (a),(d) and (g)
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2.8 Summary

In this Chapter we have discussed methods to capture linear functions for transform-
ing formants and average pitch of the source speaker. The major advantage of using
a linear network to capture a mapping function is that, the convergence is guaran-
teed while searching the weight space for the optimum solution. The disadvantage
is the large error in the transformed formants when we use a single function to ap-
proximate the required transform. If piecewise linear transform is used, the error in
the transformed formants will be reduced. But we have to know a priori the speech
sound from which the formants were extracted in order to apply the appropriate
transformation. If we use such a piecewise linear transform to modify a formant
transition, the transformed formant contour will have discontinuities. When this
transformed formant contour is used for synthesizing speech, the synthetic speech
will represent an abrupt change in the voca tract movement and thus will be un-
natural. In the next chapter we describe how a neural network can be trained to

capture the inherently nonlinear transformation o the formants.
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Chapter 3

Neural network for formant

transformation,

3.1 Introduction

This chapter describes neural network models to capture the nonlinear formant
transformation function. In the previous chapter we found that if we use a linear
transformation on source formants, then the resulting error in the transformed for-
mants is very high. Thisis because the transformation from maleformants to female
formants or vice versais highly nonlinear. A rnultilayer feedforward neural network
with nonlinear processing elements is capable of capturing any arbitrary mapping
function [30]. Hence we propose to use such a network to capture the mapping
function which transform the formants o the source speaker to those of the target
speaker. We describe how such a network can be trained to capture the required
formant transformation operation. Formants extracted from isolated utterances o
vowels are used to train the network. In the case of neural network-based fbrmant
transformation, the network can be used to transform a formant vector without
knowing the class of the input. vector. This is an advantage in using a neural net-

work in transforming formants. Such a network is useful for transforming formant
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Figure 3.1 The architecture of a multilayer feedforward neural

network.

transitions also. We will obtain smooth transformed formant transition as in nat-
ural speech although they may be significantly different from the target formant

transition.

In Section 3.2 the theory of backpropagation (BP) algorithm is presented
briefly, as the algorithm forms the basis for training the neural network. Section 3.3
discusses the studies conducted to capture the formant transformation by a neural

network. Section 3.4 summarizes the results of this chapter.

3.2 Backpropagation(BP) algorithm

Figure 3.1 shows the structure of a feedforward neural network. The network shown
in the figure has two hidden layers besides the input and output layers. The nodes
in the input layer are linear, whereas the nodes in the hidden and output layers
are nonlinear processing units. Figure 3.2 shows the nonlinear output (sigmoidal)
function used in the nodes of the hidden and output layers. The output of each of

the nodes is given to the input of each of the nodes in the next layer after linearly
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Figure 3.2. The sigmoidal nonlinearity used as output function in
the nodes.

weightingit. Theoutput of each of the nodes, other than theonesin the input laver,

is obtained by adding up all the inputs and passing the sum through the sigmoidal
nonlinearity shown in Figure 3.2.

It has been proved that a network as shown in Figure 3.1 is capable of repre-
senting any arbitrary function [30]. The next issue is how to capture the required
input-output relation from a limited amount of data. Backpropagation algorithm
or the generalized delta rule [31, 32] is an algorithm which can be used to adjust.
the weights of the network, so that the network captures the implicit function rep-
resented by a set of input-output vectors.

The weights are initialized to randorn values. The first training input X! is

given as input. Theinput, vfi, to the i** node in the I** layer is computed by the
following equation.

o = ol
;
where y!~! is the output of the j** node in the (1 - 1)** layer arid w;}" is the weight
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connecting the :** node in the (** layer and the j** node in the ({ — 1)** layer. The
output of a node in the input layer is same as the input of the node. The output

of the nodes in the hidden and the output layers are calculated using the following
equation.

v = o(v})

where ¢(.) is the nonlinear output function.

This forward computation will give the output, y* for +=1,2 ... N, of the network.

1

Here L is the number of layers and N is the number of nodes in the output layer.

Then theerror at the output layer is given by
eiL:(li—yi[‘ 1=1,2,...N.

Theerror ef isused toadjust theweights. For adjusting weights, a weight correction

Aw;; is defined by the generalized delta rule, which is added to the weight w;;:

(Weight correction) = (learning parameter).(local gradient).

(input to that weight)
which becomes
Awfj = n&f“y},

where 7 is the learning parameter and /! is the local gradient. The local gradient

at any node i in the output layer is given by
L L, L L
&; :eiyj(l—yj ).
Then the weights are acljusted using the following formula.
w{[f‘(n +1)= w,-LJ-'l(n) + n&iLyf‘l (3.1)

The local gradient at any node : in the layer (hidden) ! is given by

S =yl -y &t wtt.
k
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then the weight adjustment becomes
I _ 41, 1 q
wij(" +1) = wij(n) + nd; Y;- (3.2)

Thus, the output weights and the hidden weights are adjusted after presenting the
training patterns. If all the training vectors are presented to the network and the
weights are adjusted as given in equations 3.1 and 3.2, then we say that an epoch
of training is over. Training will have to be done for several such epochs until
the weights converge. Generally the back propagation algorithm is very dow in
converging to asolution. By introducing a momentumterm in the learning equation
3.2, the rate of convergence can be improved significantly. Then the equation 3.2
becomes

wf»]-(n + 1) = wfj(n) + mpﬁyﬁ. + a[wfj(n) - ij(n -N1, (3.3)

where a is a small positive constant.

3.3 Studies in formant transformation using the
BP network

Figure 3.3 gives the block diagram which shows the computation of the required
transformation function using a neural network trained using the back propagation
algorithm. In the training phase we input formant values extracted from isolated
utterances of vowels of the source speaker to the network. The desired output is the
formant values extracted from the corresponding utterances of the target speaker.
Data used for this study is same as that used in Section 2.3. After training, it is
expected that the neural network would have captured a function which maps the
formants of the source speaker to that of the target speaker. A multilayer feed for-
ward neural network with two hidden layers was used for this purpose. We have

used three elements each in the input, hidden and output layers. The steps involvetl
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i

Figure 3.3: Training a neural network for capturing a mapping
function which transforms the formants of the source speaker to

that of the target speaker.

in training a neural network for capturing the formant transformation function are
shown in Figure 3.4. Figure 3.5 shows the transformation learned by the network.
The transformation is shown in the form of scale factors by which the source for-
mants corresponding to the various prototype vowels are scaled by the network.
We have considered here a male-to-female formant transformation. Comparing the
transformation learned by the neural network (Figure 3.5) and the piecewise linear
transformation (Figure2.3), we observe that the shape of these functions are nearly
the same. Thisshows that formants extracted from steady vowelsare transformed in
asimilar fashion hy both the piecewiselinear transformation and the neural network.
Hut it must he notecl that the way in which the transformation is carried out by
the linear transformation and the neural network are significantly different. In the

case of piecewise linear transform, the transformation is described by a set of fifteen
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repeat
For each set of formant data
begin
Step - |
The formant values (F, to F3) corresponding to
the source speaker are given as input
Step - 11
The formants extracted from the
same vowel uttered by the target speaker are fed as
the desired output
Step - 111
The weights are adjusted using the backpropagation algorithm
end

until weights converge

Figure 3.4: Algorithm for training the feedforward network to cap-
ture formant transformation function.

simple linear transforms. In order to transform a formant vector we need to know
the vowel class of the speech segment from which the formant vector is extracted.
Moreover, the piecewise linear nature of the formant transformation function will in-
troduce discontinuities while transforming smooth formant transitions. In the case
o neural network the formant transformation is captured as a single continuous
nonlinear fiinction. Hence it is not necessary to classify the input formant vector
before transforming it. Since the transformation captured by the network is inher-
ently nonlinear, the network will transform the formants appropriately depending
upon the value of the formant. This avoids the necessity of knowing the class of the

input formant vector. This is a significant advantage of using neural networks for
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capturing the inherently nonlinear formant transformations. This will be evident

while transforming formant transitions.

Scale tactor
~
—
4///
\\A
Scale factor K2
T T
1
Scale factor K3
—
rd
d\

m 2] fo] [v) (] le] la} ol o} ] e fa) o] u

Pratotype vowals Pratotype vowals Prototyps vowels

(a) (b) (c)

Figure 3.5: The scale factors learned by the network. (a), (b) and
(c) show the scale factors for first, second and third formants.

It is necessary to study how far the network is successful in capturing the re-
lation between the formants of the source and the target speakers. For testing the
network formants were extracted from test utterances of the source speakers (male).
and were transformed using the trained neural network to get the transformed for-
mants. We compared the error between (a) the target and the source formants and
(b) between the target and the transformed formants. Table 3.1 shows the percent-
age error between the formants of the target speaker and the source speaker before
and after the application of the transformation learned by the neural network. From
thistable it is clear that the application of the transformation learned by the neural
network to the source speaker's formants has resulted in a significant reduction in

the error between the transformed and the target formants.

We have also examined the capability of the network to transform formant
transitions. For this we have extracted formants from vowel sequences, /ai/, /au/
and /o1/ for the source and the target speakers. The formant contours obtained

from the speech of the source speaker was transformed using the trained network.



Table 3.1: Error analysis on the network which was trained using

formants extracted from vowels uttered in isolation.

Vowels  Error in percentage be- Error in percentage be-
tween the target and the tween the target and the
source formants transformed formants
F, F, F; F, F, Fj

/i/ 27.1 14.3 4.8 4.0 2.7 2.1

/e/ 7.0 32.9 18.8 1.0 2.4 2.3

/a/ 42.0 21.0 10.1 4.1 1.4 2.4

/o/ 7.3 4.9 5.4 3.0 2.1 1.3

/af 21.5 4.2 9.3 3.2 2.4 2.0

Figure 3.6 illustrates the problems of discontinuity in the transformed formant con-
tours. The first column of the figure shows the source formant transitions. The
second column shows the formant transitions obtained by transforming the source
formant contour by using a trained neural network. The corresponding target for-
mant transition isshown in the third column of thefigure. From thefigureit isclear
that the network is capable of transforming formant transitions without introducing
discontinuities. But we have noted that the transformed formant contour is not
same as that of the target contour. The deviation is more pronoutrced in the case

o the second formant corresponding to the sounds /ai/ and /6i/.

34 Summary

In this chapter we have described a neural network model to capture the inherently
nonlinear transformation of the formants across speakers. The backpropagation al-

gorithm was used to train the network with the formants extracted from steady
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Figure 3.6; Problems of formant contour smoothness. (a),(d) and (g) show the
source (male) formant contours corresponding to the vowe sequences /ai/, /au/
and /o1/. (b),(e) and (h) show the corresponding transformed formant contour
using the trained network. (c),(f) and (i) show the corresponding target formant
contours (female).
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vowels. We have demonstrated that such a network is capable o overcoming some
o the problems posed by linear approximation of the formant transformation. Even
though the trained network can transform formant transitions without introduc-
ing discontinuities into the formant contour, it was observed that the transformed
formant transitions were steeper than the target formant transitions. Hence it be-
comes clear that a network trained using the formants extracted from steady vowel
sounds is not capable of transforming formant transitions. In the next chapter we
discuss methods to train a feedforward network to capture a transformation which
can transforni not only steady formants but also formants extracted from dynamic

speech sounds.
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Chapter 4

Transformation of dynamic sounds

4.1 Introduction

In natural speech the vocal tract system continuously changes its shape. This is
manifested as transitions in the formant contours extracted from continuous speech.
In order to transform the formants extracted from continuous speech, it is necessary
to transform the formant transitions as well. This chapter focuses on the problem
of capturing the dynamic characteristics of the vocal tract system. In Chapter 3
we have observed that a neural network trained using the formants extracted from
steady vowels was not able to transform formant transitions properly. Hence in this
chapter we explore methods for transformation of the dynamic characteristics of the

vocal tract system, which are manifested as formant transitions.

The failure to capture formant transitions by a network trained with {ormants
data extracted from steady vowels is due to lack of generalization in the network.
Generalization in a network refers to the ability of the network in giving correct
outputs to inputs for which it was not trained. This lack of generalization capability
in turn is clue to nonrepresentative nature of the training data, when collected from
steady vowe regions. In this chapter we demonstrate that a BP network trained

with representative data can transform not only steady formants but also formant



transitions. We also address the issue of testing the generalization capability of such
a network. It isnot possible to test the performanceof the network by using formant
transitions because the target and the transformed formants cannot be compared
directly due to warping in time. Moreover, there may be variations in the formant
trajectories due to interspeaker variations and coarticulation. We propose a method
using synthetic formant transition data to test the generalization capability of the

network.

The following section gives a brief introduction to the notion of generalization.
A method to improve the generalization is discussed in Section 4.3. Section 4.4
discusses the proposed method for testing the generalizati‘on capability of a network

in the context of transforming formant transitions.

4.2 The problem of generalization

The generalization capability of the network is mainly determined by the following

four factors [32]:

1. Training deta: This refers to how well the training data set represents the

input-output mapping.

2. Architecture of the network: The ar hitecture refers mainly to the size of the
network. If one uses a network size which is too large, it may lead to memo-
rization of the examples used for training and thus will result in poor gener-
alization.

3. Training methodology: The training algorithm also influences the generaliza-
tion performance of a network. If we assume that the standard backpropaga-
tion algorithm is used for training, then the issue is when to stop the training.
Overtraining of a network will cause overfitting of the training data and in

turn will lead to poor generalization.
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Table 3.1: Mean (M) and variance (V) o the formant frequencies
extracted from steady vowels uttered in isolation by the source and

the target speakers.

Vowels Source speaker Target speaker

F, F, F, F, F, Fs
M V. M VvV M V. M V M V M \
/E_/ @ 728 16 1244 48 2773 17 922 32 1419 25 2895 48
/e/ 554 24 1919 24 2587 17 525 21 2540 61 3055 99
/,7 333 15 2245 37 2985 40 470 19 2722 37 3298 110
/o/ 549 9 1098 18 2738 21 592 22 1099 29 2893 63
8 1059 51 2595 18 542 27 1079 28 2833 65

3. The inherent complexity of the problem: The comy:iexity of the mapping func-

tion which one wants to capture also influences the generalization performance.

The failure of a network, trained using the formants extracted from steady
vowels, in transforming formant transitionsisconsidered as thelack of generalization
capability of the trained network. The primary cause for this lack of generalization
can be attributed to the nonrepresentative nature of the training data. Table 4.1
shows the mean and variance of the formant data used to train the BP network
described in the previous chapter. These formants were extracted from isolated
utterances of vowels corresponding to the source and target speakers. In the table
the columns marked M and V refer to the mean and variance, respectively. From
the table we can observe that the variance of formant frequencies extracted from
isolated utterances of vowelsis very small. In the following section we show that by
using a more representativetraining set, the generalization capability of the network

can be improved.



4.3 Improving generalization — Use of represen-

tative data set

This section describes how the generalization capability of a network can be im-
proved by using a formant training data set which represents the required formant
transformation operation effectively. Our aim is to train a network in such a way
that the trained network must be able to transform formant transitions besides
transforming steady formants. A straightforward method is to train the network
with formants extracted from nonsteady regions of speech also, for example, for-
mants extracted from vowe to vowe ti-ansition regions. A major problem in using
formants extracted from nonsteady regions of speech is that of finding correspon-
dences between the formants extracted from the speech of the source speaker and
those from the target speaker. This problem can be circumvented using dynamic
timewarping(DTW) algorithm [33] to compute the correspondences between frames.
But experimentsshowed that the DTW algorithm can give wrong correspondences
which may affect adversely the training of the network [23]. The following section
describes the use of a training set which will improve the generalization capability

of the network and also circumvent the problem of determining correspondence.

4.3.1 Speech data for improving generalization

Continuous sentences uttered by both the source and the target speakers were seg-
mented manually to mark steady vowel regions. Thefirst three formants extracted
from the frame having the maximum energy in each of the steady vowe regions con-
stitutes the data for the present study. In this way formant data was collected from
fifty sentences. We had nearly five hundred pairs of formant vectorsfor training the
neural network. Theadvantaged using such a dataset is that the natural variability
of the formants are captured in the data set. Table 4.2 shows the mean and variance

of this clata set. Comparing Table 4.1 and Table 4.2 we note that the variance of
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Table 4.2: Mean and variance of the formant frequencies extracted

from steady vowels occurring in continuous speech.

Vowels Source speaker Target speaker
F F, F;3 F, F, s

M \% ' M \% M \% M V M Vv M \%
=) /1] 637 86 1334 92 2379 145 873 92 1556 115 2773 73
/€/ 475 54 1980 89 2674 72 590 114 2218 200 2890 122
S/a/ 324 26 2194 59 2792 59 403 28 2586 94 3173 132
/o/ 534 81 1226 104 2459 96 628 126 1232 135 2735 158
/a/ 372 31 1191 116 2436 85 462 46 1176 139 2894 75

the training data, set has significantly increased when formants were extracted from
vowels occurring in sentences. For example this increase is significant in the case
of F3 corresponding to the vowel /i/ (compare seventh columns of Table 4.1 and
Table 4.2) and F; of /&/ (compare eleventh column of Table 4.1 Table 4.2). Thus
we expect this training data set to help the network in improving the generalization

capacity.

4.3.2 Training procedure

A multilayer feedforward neural network with two hidden layers was used to capture
the implicit nonlinear formant transformation function. The network consists of
three elements each in the input and output layers, and eight elements in each of
the hidden layers. The formant data used for this study is same as that described
in Section 4.3.1. Figure 4.1 shows the way in which this network was trained to
capture the required transformation. In the training phase we present formant

values extracted from the steady vowel regions of the source speaker. The desired
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Figure 4.1: Training procedure of a feedforward network using
the formants extracted from steady vowels occurring in continu-

ous speech.

output is the formants extracted from the corresponding steady vowel region of the
speech of the target speaker. After training, it is expected that the neural network

would have captured a function which is capable of transforming not only steady
vowes but also formant transitions.

For capturing theformant transformation function, weare training the network
with formants extracted from steady vowe regions. But we expect the trained
network to he able to transform formant transitions as well. That is, we expect
the trained network to transform input formant vectors for which it has not been
trained. This implies that the network must be trained in such a way that it learns
enough from the training set, so that it can generalize what it has learned from the
training set. In order to achieve good generalization, it must be ensured that the
training does not cause an overfitting of the input-output data set. A statistical

tool called cross validation [32] was used to train the network in such a way that
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it doesn't overfit the training data [32]. In this method training set is partitioned
into two sets, (i) a set for estimation and (ii) a set for validation. The network is
trained using the data in the estimation set. After each iteration the network is
tested on the data in the validation set. The error in the output of the network for
input data in the training set is termed as the training error and the error given
on the validation set is the generalization error. Figure 4.2 shows the plot of the
training and the generalization errors versus iteration number. From the figure it
can be observed that even though the training error reduces, the generalization error
shows a rising trend after a certain number of iterations. This indicates that after
a certain number of iterations the network parameters are adjusted to overfit the
datain thetraining set. Hencethe training is stopped when the generalization error

startsincreasing, even though further training will result in a reduced training error.

4.3.3 Testing generalization capability of the network

In this section we describe a procedure to evaluate the generalization capability of
the trained network in the context of transforming formant contours. In the specific
problem of formant transformation, generalization capability of the network refers
to the ability to transform formant transitions without introducing discontinuities
or other distortions, even though the network is trained using formants extracted
from steady sounds (vowels). We can extract formants from speech utterancesof the
source speaker corresponding to vowd sequences and transform it using the trained
network. The transformed formant contour can then be compared with the formant
contour for the target speaker corresponding to the same sound segments. Theerror
between the transformed and the target formant contour will give a measure of the
generalization capacity of the network. But there are two major problems in using
formant transitions extracted from natural speech. Firstly, the source and the target

speech will be typically warped in time and thus we can't directly compare the target
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as training progresses.

and the transformed formants. Moreover, there may be individual variationsin the
formant trajectories clue to interspeaker variations and coarticulation, which the
network may not have captured. Thus, in order to test the generalization capability
o the trained network we propose to use synthetic formant contours.

Assume that the source and target training set consists of formant data rep-
resented by £, fori =1,2...N and F!, for i =1, 2 ... N where v can be one of
the five vowels /a/, /e/, /1/, /o/ or [/u/ and N represents the number of formant

data set used for training. We compute the mean formant vector corresponding to
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the various vowels for both the source and the target speakers in the following way.

US -

N
L

1N
Fo = ~ ;
A source formant transition, for example, corresponding to the vowe sequence /ai/,
is derived by interpolating F,, and F, by a monotonically increasing/decreasing
function. We represent this synthetic formant contour by F7: , for n = 1,2...1,
where 1 is the number of points used to interpolate F,, and F;,. The corresponding
target formant is derived by interpolating F,, and F;, by the same function which
was used to interpolate the source mean formant vectors, and is represented by FJ: ,
forn=1, 2...l. Now the synthetic source formant transition F7:, corresponding to
the vowe sequence /ai/, istransformed using the trained network. The transformed
formant transition is represented by F7: ,forn=1,2...l. Thegeneralization error

for the formant transition corresponding to the vowe sequence /ai/ is given by

1 l Fn _ Fn
— aier L S 4.1
1 g ma:v(Fg‘,”,F;‘,') (4.1)

Thetotal generalization error isgiven by adding the generalization error correspond-
ing to all possible vowe to vowe formant transitions. Figure 4.3 gives the detailed
algorithm of the proposed generalization test. We have conducted the above test
of generalization on a network trained using formants extracted from isolated ut-
terances of steacly vowes and also on a network,trained using the formant data
describecl in Section 2.3. Table 4.3 shows the generalization errors for the two net-
works, one trainecl using isolated utterances of steady vowelsand the other using the
steady vowels extracted from continuous speech. The results show a significant re-
duction in the generalization error for the second case. Figure 4.4 shows the results
obtained in transforming formants extracted from the source speaker corresponding
to the vowel sequences /ai/, /au/ and /oi/. Henceit isclear that, even though the
network was trained with formants extracted from the steady vowels occurring in

continuous sentences, it has faithfully transformed formant transitions as well.

35



The training set consists of

Fi, F3, i=1,2...N
Step |: Calculation of the mean formant vectors corresponding to the five vowels
for al v
begin
Fus = % ; Fss
.
th =N ~ Fg:t
end

Step [I: Computation of all the possible vowel to vowd formant transitions
for all combinations of v; and v,

begin
FIZU?S = C‘S(Fvlsﬂ FuQs, n) n= ]., 2 A l
Fr o = CS(Fy, Fopum) N=12.-1

CS represents the cubic spline interpolation operation
end
Step III: Transformation of the source formant transitions
for al possible combinations of v; v,
begin
Fr e = f(F2 ) n=121
f(.) is the function learned by the network
end

Step 1V: Calculation of the generalisation error

for all possible combinationsof v, and v,

begin
GE — 1 i P:vatr_l-:y“@l
Vv T man(FR o FD )
end

Figure 4.3: Algorithm for testing the generalization capability in the context of
formant transformation. 56
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Figure 4.4: Illustration of the capability of a neural network to faithfully transform

formant transitions. (a),(d) and (g) show the formant contour corresponding to the

vowel sequences /ai/, /au/ ancl /6t/ extracted from the speech of the source speaker

(male). (b), (e)ancl (h)show the corresponding transformed formant contour using

the trained network. (c),(f) and (i) show the corresponding target formant contours

(female).
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Table 4.3: Table showing the capability of arepresentative training

data set in improving the generalization capability of a network.

Vowel Generalization Generalization er-
sequences  error given by a network ror given by the network
trained using formants trained using formants
extracted from isolated extracted from vowels
utterances of vowels occurring in continuous
speech
F, - Fs F, Fy Fs
/ag/ 8.8 11.8 5.0 1.7 6.6 2.6
/ai/ 13.9 11.8 4.4 1.8 5.8 3.1
/ao/ 3.3 11.7 7.2 2.1 4.1 1.4
/at/ 6.7 15.5 3.6 1.9 6.1 3.0
Je1/ 8.7 7.3 5.8 1.3 3.0 1.0
/eo/ 6.9 13.3 6.5 1.8 3.1 1.4
/eu/ 11.0 11.8 4.0 0.6 2.4 1.4
/16/ 7.6 14.0 5.6 1.9 3.8 1.9
J1a/ 11.2 11.4 3.1 1.0 4.3 1.3
/ou/ 26.8 23.1 7.9 1.2 3.0 1.5

44 Summary

In Chapter 3 we had shown that a neural network trained using formants extracted
from steady vowels is not capable of transforming formant transitions faithfully .
The reasou for the failure is due to lack of generalization capability of the network.
In this chapter we have demonstrated that by using representative training data
set the generalization capability of the network can be improved significantly. In

this context we have proposed a method to measure the generalization capacity of
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a trained network. From the results of the experiments in this chapter it can be
concluded that a BP network trained using formants extracted from steady vow-
els occurring in continuous speech is capable of transforming not only the steady
formants but formant transitions also. In the next chapter we describe a method
to incorporate the formant transformation learned by a neural network into a voice

conversion system.
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Chapter 5

| mplementation of voice

transformation

5.1 Introduction

There are two phases in the development of a voice conversion system, a learning
phase and a transformation phase. In the learning phase various factors that are
responsible for voice personality are identified and the speaker specific knowledge
is acquired and represented in a proper form. In the transformation phase the
given speech signal is modified using the knowledge acquired during the learning
phase. In this chapter we describes the various issues in the development of the
transformation phase. We focus particularly on the incorporation and testing of the
vocal tract system transformation. We first use the transformed formants directly
to synthesize speech with a formant synthesizer. Then the segmental quality of the
transformed speech will be poor due to lack of bandwidth information and also due
to errors in the extraction of formants. We propose a method in which we use a
trained neural uetwork to modify the LPCs extracted from the speech of the source
speaker. These modified LPCs are then used to synthesize the transformed speech.

In ortler to perceive the quality of voice conversion we have to incorporate source
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characteristics also into the speech. We have used a simple linear transformation
to modify the average pitch. But interspeaker variations are not limited to the
segmental level. Hence for evaluating the quality o the transformation done at the
segmental level we have to mask the speaker characteristics at the suprasegmental
level. We propose an algorithm to normalize the intonational features between two
speakers. Finally, we test the performance of the proposed voice transformations

between several pairs of speakers.

The following section tlescribes the voice conversion system. Section 5.3 pro-
poses an algorithm for modifying the LPCs extracted from the speech of the source
speaker to effect the vocal tract system transformation. Section 5.4 emphasizes
the need for normalizing interspeaker variations in the suprasegmental features for
evaluating the quality of the voice transformation derived using information at the
segmental level. Section 5.4.1 briefly mentions the features of intonation patterns
with reference to Hintli. The algorithm to normalize these patterns between speak-
ers is described in Section 5.4.2. Experiments for evaluating the quality o voice

conversion are described in Section 5.5.

5.2 Voice transfor mation system

The transformation phase of voice conversion involves: (i) Extraction of speaker
dependent parameters from the speech of the source speaker and (ii) modifying
these parameters to match those o the target speaker. The modification is done
using the speaker-dependent knowledge acquired during the learning phase. After
the modification of the speaker-dependent parameters, speech in the voice of the

target speaker is synthesizetl using the modified parameters.

Figure 5.1 gives the block diagram o the transformation phase of voice con-
version. The first operation done on the speech signal is a voiced/unvoiced labeling.

After this preliminary analysis, parameters are extracted from the source speech sig-

61



Formant )
Extraction Trained Network
|
Source Pitch Linear Formant Transformed
—
Extraction Transformation Synthesis Speech
Speech
.
Gain
Extraction

Figure 5.1: The block diagram showing the transformation phase

of voice conversion.

nal. For parameter extraction we have used a sliding window of duration 25.6 nisecs
and a shift of 6.4 msecs. The parameters are pitch, energy and formants. The SIFT
algorithm [29] was used to extract pitch. The first three formants are extracted
using an algorithm based on the properties of minimum phase group delay functions
[27]. The extracted parameters are transformed to incorporate the characteristics
of the target speaker. It is reasonable to assume that speaker specific information

is mainly in the voicecl segments of speech [9]. Hence only those parameters which
are extractetl from voicetl frames are modified.

5.3 Incorporation of formant transformation

As shown in the Figure 5.1, the formant transformation can be incorporatetl in a
straight forward manner. A direct transformation of formants and the use of the

transformed formants to synthesize speech will lead to poor quality in the synthe-
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Random noise 1
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Voiced/unvoiced W

, switch . Synthetic
LP--Synthesis »  Speech

Glottal pulse 1
train generator J

Figure 5.2: The basic structure of an LPC - vocoder.

sised speech. The reasons for the poor quality of synthetic speech is due to lack of
bandwidth information and unreliability in the estimated formants. In this context,
we propose to use an LPC - vocoder [11], since it produces better quality speech. We
discuss the salient features o an LPC - vocoder. Then we describe an algorithm to
modify the LPCs extracted from the speech of the source speaker. Figure 5.2 shows
the basic structure of an LPC - vocoder. The vocal tract system is represented by
a time-varying digital filter. Thisfilter is specified by the LP coefficients as follows:

o G
COA() 1+ 4z

where p is tlieorder o the all-pole system. This filter is excited with random noise

during unvoiced frames and with a train of periodic glottal pulses during voiced

H(z)

(5.1)

frames to generate synthetic speech. The roots of the linear prediction polynomial
A(z) will have real and complex conjugate roots. The complex conjugate roots
represent the vocal tract systenr resonance (formants). Suppose a complex conjugate

root is represented hy ref®, then the corresponding vocal tract resonant frequencies
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Figure 5.3: Block diagram showing the various steps involved in
the modification of LPCs using a trained network.

and bandwidths are given by

0
= — 5.2
—logr
b= — (5.3)

where 7' is the sampling period. From equation (5.3) it isevident that 6 is directly
proportional to the formant frequency. Hence by shifting the complex pole in the
z-plane we can implement a formant transformation. Figure 5.3 shows the block
diagram of the LPC modification algorithm. LPCs (10** order) are extracted from
the speech of the sourcespeaker along with theother parametersdescribed in Section
5.2. Suppose the source formants extracted from a frame of speech are represented
by F}, fori =1, 23. These source formantsare transformed using the trained neural
network to get the transformed formants represented by Fy, for i = 1, 2, 3. From

the source and the transformed formants we compute a set of formant scale factors



given by o', for i = 1, 2, 3, where

i _ Fiy
Fv

(a4

(5.4)

o' represents the scaling factor corresponding to the it" formant. Thus for each
frame we get a set of as which gives the amount by which the source formants
extracted from that frame need to be scaled. It must be noted that the as vary
significantly across a sentence. This variation is shown in the Figure 5.4. Thefigure
shows the a contour corresponding to the all voiced sentence "We were away a year

ago".

between speakers. These scale factors are used to modify the LPCs extracted from

This also shows the highly nonlinear nature of the formant transformation

each of the frames.

First the roots of the linear prediction polynomial are obtained. The complex
conjugate pole pairs correspontl to the vocal tract resonances. In order to effect a
vocal tract system transformation these complex roots are modified or shifted using
the scale factors. In this procedure the rea roots are left unaltered. Suppose that
r'e? isa complex root corresponding to the it formant, where r corresponds to the
formant bandwidth and O corresponds to the formant location (center frequency).

Thus using the formant scale factors we will be modifying only the Gs, using the

following equation

. “T—01 . ‘
i = [1 +(1-a) 2 }0’ if of >1 (5.5)
v

b = o0 if o' <1 (5.6)

!

If there are more than three complex conjugate pairs of roots, then the complex
roots corresponding to the fourth and higher formants are modified in a similar way
by using the scale factor corresponding to the third formant. The detailed algorithm
used for the modification of the LP-roots is given in Figure 5.5. The way in which

the complex roots are shifted in the z-plane isillustrated in the Figure 5.6.
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The source formant vectors are given by
Fi l=1,2...3
Step |
Transformation of the source formant vectors using the trained network:
Fr = f(F))

where f() represents the function learned by the network

Step 11
Computation of the scale factors
of = e

Step 111
Root solving o the LPC polynomial
re’? represents a complex pole corresponding
to the i formant
Step IV
Root modification
Tmod = T
Oha=[1T(1-a)=L]e il a>1
0,00 = 0'0" it o<1
Step V

Recomputation of the LPCs from the modified roots

Figure 5.5: Algorithin to modify the LPCs using the trained net-
work.
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Figure 5.6: Illustration of the way in which the poles are shifted in

the z-plane.

5.4 Normalization of intonational features

In orcler to assess the quality of the voice transformation we compare the voice qual-
ity of transformed sentences with the same sentences uttered by the target speaker.
Since the converted speech is synthetic we cannot compare it with the natural ut-
terance of the target speaker. Hence we synthesize speech from the pitch, gain
ancl LPCs extracted from the test utterance of the target speaker using an LPC
vocoder. By informal listening we compare the transformed speech with the speech
synthesized using the parameters extracted from the target speaker's utterance. In
such a comparison, the interspeaker variations at the suprasegmental level must be

eliminated from the test utterance, in order to make a good judgement on the effec-
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tiveness of the transformation done at the segmental level. At the suprasegmental
level intonation plays a major role in providing an individuality to the speech of
a speaker. Hence we propose a method by which the intonational characteristics
in a sentence uttered by both the source and the target speakers are normalized
automatically. The aim is to modify the intonation pattern of the test utterance of
the target speaker so that it matches with that of the source speaker. In order to
normalize the intonation pattern of the target speaker we use the general features
of theintonation patterns of Hindi sentences [34, 35], which are briefly described in

the following section. The discussion is applicable only for utterances in Hindi.

54.1 Characteristics of intonation patterns in Hindi

This section presents a model for intonation patterns in Hindi [34]. The important
components in the description of intonation patterns in Hindi are: (i) Declination,
(ii) Local fall-rise, (iii) Resetting and tapering effect (34, 36]. These features inde-
pendently and collectively represent important linguistic information and character-
ize an individual’s voice. Figure 5.7 illustrated the intonation pattern of a typical
declarative sentence:

atma amar ha $err nasvan hai
soul immortal is body mortal is — (literal translation)

The soul is immortal and the body is mortal — (meaning)

The Fy which sets off (about 115 Hz) from the onset of the periodicity of the signal
assumes the maximum Fy level (about 170 Hz) at thefina syllableof the first word
(/-ma/ in/atma/). The Fqy contour drifts down from this point towards another on
the initial syllable of the next content word (/a- /in /amar/) to about 115 Hz.
Again, it rises towards a higher point (about 130 Hz) in the final syllable (/-mar/ in
/amar/) of the word. The Fy contour falls off towards a lower point (about 105 Hz)

and rises towards another point within the same word (/hai/) and finaly it tapers
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Figure 5.7: Pitch pattern of a typical declarative sentence.

off toabout 110 Hz. The Fy contour ot the utterance is characterized by a few target
points. The target points are thelocal maximaand minimaof Fo which result in rise
and fall of Fo movements. The loca minima and maximaare called valleys and peaks
respectively. They are connected by transition lines. If two imaginary grid lines are
drawn in a declarative sentence, one connecting all the peaks and the other all the
valleys, it is possible to say that the Fg contour drifts down as a function of time
till the occurrence of a major syntactic or semantic break (at the end of /atma amar
hai/ and at tlie end of tlie sentence), which is also marked by a significant pause
of a duration of about 300 ms. The grid lines show an upward trend in the case
of interrogative sentences. The valleysand peaks alternate each other till the entl
of the sentence. They may occur within the region of a syllable or across syllables.
Thisiscalled fal-rise pattern and this isdetermined by the phonological patterns of
tlie constituent words of tlie utterance and other linguistic factors, The difference

between the Fy values measuretl at a valley and the following peak is called the Fy
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off to about 110 Hz. The F; contour of the utterance is characterized by a few target
points. The target pointsare theloca maximaand minimaof Fo which result in rise
and fall of Fy movements. The loca minimaand maximaarecalled valleysand peaks
respectively. They are connected by transition lines. If two imaginary grid lines are
drawn in a cleclarative sentence, one connecting all the peaks and the other all the
valleys, it is possible to say that the Fy contour drifts down as a function of time
till the occurrence of a major syntactic or semantic break (at theend of /atma amar
hai/ and at the end of the sentence), which is also marked by a significant pause
of a duration of about 300 ms. The grid lines show an upward trend in the case
of interrogative sentences. The valleysand peaks alternate each other till tile end
of the sentence. They may occur within the region of a syllable or across syllables.
Thisiscalled fall-rise pattern and thisis determined by the phonological patterns of
the constituent words of the utterance and other linguistic factors. The difference

between the F, values measured at a valley and the following peak is called the I,



range. The Fy range is another important feature which carries a lot of speaker
specific information and speaking style [37, 38, 39].

If we assume that the rate of fall of Fy values is constant, then we can model
the valleys and peaks as points on two separate lines, the base line and the top line,
respectively. Thus if P, and P, are the two peak Fo values measured at times T,
and T, then the equation of the top line [40] becomes:

P - P

P(t) =
(t) P1+T2~T1

(t—"T). (5.7)

Thus, once we model the pitch contour using the above equation, it is possible to
predict the Fy value of any peak if we know the position(time) at which it occurs.
Similarly the base line is modeled by the following equation.

V, - W

Vit) =
(t) V1+V2-—Vl

(t—T). (5.8)

where V, and V, are the Fo values o two valleys, and T, and T, are the time

instants at which these valleys occur.

5.4.2 An algorithm for intonation normalization

Figure 5.8 shows the block diagram of the proposed intonation normalization algo-
rithm.

From the pitch contours of the target and the source utterances the vowel
nuclei are identified using an algorithm described in [35]. The pitch values at this
vowel nuclei is considered as the saddle points of the entire pitch contour. These Fy
values corresponding to the source and the target formants is represented by F¢, for
i =1,2...N and F(;', for i = 1,2... N, respectively. N is the number of syllables
in the sentence. Note that perceptually significant feature in an intonation pattern
is the relative values of the 'y, measured at the vowd nuclel and not the absolute
Fo values. Hence we modify the range that is defined by Fo values measured at the
vowel nucleus of successive syllables.
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Figure 5.8. Block diagram showing the various steps involved in

the proposed intonation normalization algorithm.

Fg, is not modified. F3, is modified so that the range between F§, and F2,
measured in semitones becomes equal to the range between Fj, and F2,. This
modification is continued till we modify the range between F),~! and FJ. From the
modified saddle points, Fy values d the other voiced frames are computed using a

cubic spline interpolation [41]. The detailed algorithm is given in the Figure 5.9

5.5 Evaluation of voice transformation

In this section we describe the voice conversion studies performed between pairs of
speakers. The following voice conversions were carried out.

Case A: Male to Female

Case B: Female to Male

Case C: Mde to Male

Case D: Female to Female

-]
[V



Step |

Extraction of the source and the target Fo contours
Step 11

Identification of the saddle points using the algorithm described in [35]
The Fy saddle points are given by

£, i=1,2...N
Fg, i=1,2..N
Where N is the number o syllables in the sentence
Step 111
Modification of Fj,
Ftnorm = Fy,
fori=2...N
begin
o = Fir* 22
end
' Step [V

Construction of the entire pitch contour

Construct the normalized pitch contour from the modified saddle point$
by cubic spline interpolation

Figure 5.9: Algorithin for intonation normalization scheme.
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The basic objective is to asses the quality o the transformation for all the above
cases. Speech data corresponding to fifty sentences spoken by two male and two
femal e speakers were collected. Formant transformation corresponding to the above
described types of transformations were captured as mentioned in Chapter 4. The
Corresponding linear pitch transformations werealso obtained. The learned formant
and pitch transformations were used in the four cases of voice conversion. The
transformed speech was obtained for the following conditions.

1. Average pitch modification: Speech with modified average pitch and original

vocal tract system characteristicsd the source speaker.

2. Formant transformation: Speech with original pitch and the transformed for-
mants.

3. Average pitch and formant transformation: Speech with modified average pitch

and transformed formants.

These were compared with the speech synthesized from the natural utterancesof the
target speaker. The pitch contour used to synthesize this was normalized to match
with that of the source pitch contour using the algorithm described in Section 3.
Informal listening shows that for the third case which includes both formant trans-
formation and the average pitch modification does indeed bring in the characteristics
of the target speaker in the synthesized speech.

It was noted that whenever the target speaker is a female, the conversion
quality becomes poor. This is consistent with the observations in [14, 42]. The
reason for this can be attributed to the general problems in synthesizing female
speech [43]. The quality of voice conversion was found to degrade in the order
shown in the Figure 5.10.
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Female to Male |

Male to Male

Male to Female

Female to Female |

Figure 5.10: Figure showing the way in which the quality of voice
conversion decreases depending on the type of conversion being
attempted.

5.6 .Conclusion

In this chapter we have described a system for incorporation of vocal tract transfor-
mation to realize a voice conversion. We have observed that by combining formant
transformation and LP-synthesis we can develop an effective way of transforming
the vocal tract system characteristics of the source speaker to match with those of
the target speaker. This method uses both the formant and LPC representations of
the vocal tract system characteristics. The need for normalizing the suprasegmen-
tal characteristics for evaluating the effectiveness of conversion has been discussed.
We have also proposed an algorithm to normalize the intonation patterns of the
transformed and the target speech. Informal listening showed that the quality of
transformation is highest while converting female voice to male voice. We have
observed a degradation in the quality of the transformed speech when the target
speaker is female.



Chapter 6

Conclusion

6.1 Summary

In this thesis we have addressed issues related to the problem of voice conversion.
The various factors responsible for voice characteristics were discussed. Since the
speaker characteristics at the linguistic and suprasegmental levels are learned fea-
tures, it is difficult to model interspeaker variations at these levels and capture
them as transformations. Voice characteristics at the suprasegmental level can be
captured only by manual analysisof large amount of speech data. However speaker
characteristics at the segmental level can be attributed mainly to variations in the
characteristicsof thevocal tract system and thus can be modeled as a transformation
operations. The specific objective of the work was to capture the transformation of
the vocal tract system characteristics between two speakers, so that the speech of
the source speaker can be transformed or modified to incorporate thefeatures of the

target speaker.

We have used linear function approximation to capture the formant transfor-
mation corresponding to steady vowes. We have found that even for steady vowe
sounds the formant transformation is highly nonlinear. Approximating the trans-
formation by piecewise linear transforms results in discontinuities in the formant
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contours. Moreover, to apply this piecewise linear transformation to any set of

formants, we should know the vowd class from which the formants were extracted.

A multilayer feedforward neural network with nonlinear processing elements
can capture any arbitrary input output mapping function. We have proposed such
a network to capture the implicit formant transformation function across the source
and the target formants. We have demonstrated that such a network is capable of
reducing some of the problems in linearly approximating the formant transforma-
tion. Even though a neural network is capable of transforming formant transitions
without introducing discontinuities into the formant contour, the transformed for-
mant transitions were steeper than the target formant transitions. Thefailureof the
neural network for capturing theformant transitions shows the lack of generalization
capability of the trained network. The main reason for this lack of generalization is
due to poor representation o the transformation information in the training data
set. Thegeneralization capability o a network can be improved by using a more rep-
resentative set of training data. For this we have used formants extracted from the
steady vowel regions occurring in continuous speech for training the network. The
advantage of using such a training dataset isthe variability introduced into the data
set which will help improve generalization. We have demonstrated that a feedfor-
ward network trained with the above mentioned data set provides an improvement
in generalization capability and thus can transform formant transitionsfaithfully. In
this context we have suggested a method for measuring the generalization capability
of a network trained to capture the nonlinear formant transformation, by testing the

network using synthetic formant transitions.

Finally we have discussed issues in incorporating the formant transformation
into a voice conversion system. Since it is easier to synthesize better quality speech
with LPCs, we have proposed a method for modifying the LPCs to transform source
formants to match with those of the target. This method of transforming the vocal
tract system characteristics takes into account the advantages of two different meth-

ods of representing the vocal tract system,.namely, using LPC and using formants.



6.2 Future directions

The objective of the thesis was to capture the implicit nonlinear transformation of
the vocal tract system characteristics across speakers. We have focused only on the
transformation of formant frequencies, where as formant bandwidths also contribute
to the voice characteristics [44]). Thus extraction and transformation of formant
bandwidths can improve the quality of the transformation. Similarly nasalization
is another factor which is used by humans in differentiating speakers from their
voices. The dynamicsd the glottal source aso contributes to voice characteristics.
If one could extract parameters corresponding to these features and transform them
reliably, then the quality of voice transformation will improve significantly. The
main difficulty in the use of these features for voice conversion is lack of reliable

algorithms to extract parameters corresponding to these features.

Even though in this work we have focused only on the segmental aspects of
voice conversion, theintricate speaker characteristicslieat higher levelsof knowledge
(linguisticand suprasegmental levels). Moreover humansextensively use the speaker
characteristich at these levels for identifying speakers from their voices. Hence for
accomplishing the task of voiceconversion it isvery important to analyze and model
the speaker characteristics at the linguistic and suprasegmental levels.

We haveestimated thequality of the voicetransformation by informal listening
tests. A challenging problem in voice conversion is to develop an objective measure
of voice characteristics.

As far as voice conversion at the segmental level is concerned, it is evident
that the limit on the quality of conversion is set by lack of reliable methods for
extracting speaker dependent parameters from speech on the one hand and by the
quality of the synthetic speech on the other hand. Thus it can be concluded that
any improvement in the field of parameter extraction or speech synthesis will lead

to an improvement in the quality of voice transformation.
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