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Abstract 

Speech signal coiitains two kinds of information. They are: (i) The message the 

speaker wants to convey to the listener and (ii) the characteristics of the speaker. 

In this thesis we focus on the analysis and manipulation of speaker characteristics 

embedded in the speech signal for voice conversion. Voice conversion involves trans- 

formation of the speaker cllaracteristics in the speech uttered by a speaker (source 

speaker), so as to generate speech having the voice characteristics of the desired 

speaker (t,arget speaker). Voice characteristics lie at the linguistic, suprasegmental 

and segmental levels. The speaker characteristics at the linguistic and supraseg- 

mental levels are learned features. Hence they are difficult to  derive from data  and 

model. Speaker characteristics at the segmental level can be attributed to the speech 

production mechanism and they are reflected in the source and system characteris- 

tics of the physical system. The interspeaker variations of the vocal tract system can 

be modeled as transfornlation operations. Speech synthesized froin the transformed 

parameters reflect the voice characteristics of the target speaker. The present study 

focuses on the transformation of the vocal tract system characteristics between two 

speakers and incorporation of the transformed characteristics in a voice coilversioi~ 

system. A major issue in this transformation task is to arrive at a suitable represen- 

tation of the vocal tract system. For this we have selected formants as they provide 

a good representation of the vocal tract shape and at the same time can be easily 

extracted from the speech data. 

We first explore the possibility of using linear transfornlations for transform- 

ing formants corresponding to steady vocal tract shapes (such as vowels) between 

speakers. While testing we have observed that if we use a single linear transform the 

error in the transformed formants is high. We noted that this error in transforming 

formants can be significantly reduced by using piecewise linear transformations. But 

piecewise linear transformations have the disadvantage of i~itroduci~ig discontinuities 

while traiisforming transitions i11 the forrna.nts. This is because, even for steady vocal 

tract shapes, the scaling of formants between speakers is highly nonlinear. We have 



explorecl the possibility of using a inultilayer feedforward neural network to capture 

these nonlinear transformations of the formants. Using proper training data it is 

possible to design a network to transform not only the steady formants but also 

the formant transitions in dynamic sounds. Issues involved in implementing these 

t,ransformations in a voice conversion system are addressed. Finally, we present the 

performance of the system for converting speech from one voice to another. 

The major contributions of the thesis are: (i) Interspeaker variations in the 

formant locatio~ls are analyzed to show that the formant transformation between two 

speakers is highly nonlinear. (ii) .4 neural network-based formant transformation 

scheme is developed which works well even for formant transitions occurring in 

continuous speech. (iii) A method for measuring the generalization capability of the 

resulting network is ~ r o ~ o s e d .  (iv) A method for modifying the linear predictive 

coefficients(LPCs) is proposed bo incorporate the transformation of formants in a 

voice conversion system. 



Chapter 1 

Introduction 

1.1 Objective of the study 

The purpose of speech is com~llunication (communicative intent) [I, 21. We use 

speech for communicating a variety of messages. Speech signal also carries with it 

information other than the message which a speaker intends to convey to a listener. 

This information includes the identity of the speaker, his emotional state, his phys- 

ical state etc. Human beings are able to recognize a familiar speaker effortlessly 

from his speech. The focus of our work is to extract the speaker specific information 

contained in the speech signal for voice conversion. Voice conversion involves trans- 

formation of the speaker characteristics in the speech uttered by a source speaker, 

so as to generate speech in the voice of the desired target speaker. For developing 

a voice conversion system one has to identify the speaker dependent features ancl 

represent them in a suitable form. This representation is used to transform the 

speaker dependent features extracted form the speech of the source speaker into the 

features of the target speaker and speech is then synthesized using the transforniecl 

features. 



Background 

Speech signal contains mainly two kinds of information. They are: (i) The message 

that the speaker intends to convey to the listener and (ii) the identity of the speaker. 

Extracting the message part from the speech signal is the focus of research in the 

area of speech recognition and speech understanding [3, 41. The area of speaker 

recognition and verification deals with techniques to extract the speaker dependent 

information .from the speech signal [5 ,  6, 71. 

In the development of a voice conversion system, speaker dependent. knowl- 

edge is acquired in the analysis or learning phase. In the transformation phase, 

the acquired (target)speaker dependent knowledge is used to modify the speaker 

dependent parameters extracted from the speech of the source speaker. Finally, 

speech with the voice characteristics of the target speaker is synthesised using the 

transformed parameters. This is relevant in many situations. For example, in a 

text-to-speech system, it may be rec!!~ired to generate spec(-h with some desired 

voice characteristics. Analysis of speaker dependent characteristics is also useful 

for developing speaker recognition and speaker verification systems in security and 

forensic applications. Understanding speaker dependent characteristics is useful in 

speaker normalization for speaker independent speech recognition systems [S]. 

Voice conversion could be speaker-dependent or speaker-independent. In both 

the cases identity of the target speaker is fixed. In a speaker-dependent voice con- 

version scenario, the source speaker is also fixed. The task is to transform the voice 

characteristics in the speech of the source speaker to that of the target speaker. I11 

speaker-independent voice conversion the task is to transform the characteristics of 

any speaker, so that the transformed speech sounds like that of the target spea.ker. 

In a speaker-independent voice conversion scheme the number of source speakers are 

unlimited but identity of the target speaker is fixed. In this work we address only 

speaker dependent voice conversion. 

The major issues involved in the developmeilt of a voice conversion system are: 



(i) The characteristics of the desired voice have to be identified and specified. This 

involves acoustic-phonetic analysis of speech data for each speaker. (ii) The acquired 

speaker dependent knowledge must be represented in a form suitable for transforma- 

tion of speech from the source voice to the target voice. This may be represented as 

transformations which can transform the speaker dependent parameters extracted 

from the speech of the source speaker to match with that of the target speaker. The 

voice characteristics of the target speaker can also be represented as a set of rules, to 

incorporate the desired speaker characteristics into the source speech. (iii) Finally 

voice conversion is achieved by incorporating features of the target speaker into the 

parameters extracted from the source speech, and then synthesizing speech. 

For developing a voice conversion system we must identify the factors in the 

speech signal which are responsible for giving individuality to the speech of a speaker. 

Speaker characteristics exist at various levels. Figure 1.1 shows knowledge sources 

used a t  various levels for producing and perceiving voice characteristics. 

At the highest level, ~~iimely the linguistic level, we use factors like, language, 

dialect, syntactic structures and semantic context for the identification of i i  speaker 

form his speech. The characteristics of a speaker at this level are difficult to analyze 

and model, although these characteristics are mainly used by humans for recognizing 

speakers from spontaneous speech. 
# 

There are factors at the acoustic level which can be extracted from the speech 

wavefornl. 'The acoustic level cliaracterization can be divided further into segmental 

and suprasegmental levels. At the suprasegmental level the prosodic features such as 

i~ltonation, duration and stress carry significant speaker-specific information. After 

the linguistic factors the prosodic factors are the most important speaker-specific 

characteristics which human beings use in recognizing speakers. At the segmental 

level the source and system characteristics of the speech production mechanism 

reflect the speaker- characteristics. The system characteristics refer to the shape 

and size (nlainly the effective length) of the vocal tract. Source characteristics refer 

to the physiology of the vocal folds. The segmental speaker characteristics have a 
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Figure 1.1: Line diagram showing the various speaker dependent 

knowledge sources. 

dynamic and a static part. The dynamic part of the speech production contributes 

to speaker characteristics in the speech signal. This includes both the vocal tract 

system dynamics and the glottal source dynamics. These dynamic features are 

dictated by sound units and thus are determined by the text to a large extent. Static 

speaker characteristics refer to the average length of the vocal tract system, average 

pitch, characteristics of the nasal tract etc. are useful mainly for transforming steady 

sounds across speakers. 



1.3 Scope of the thesis 

Analysis and modeling of speaker characteristics at  the linguistic and suprasegmen- 

tal levels are difficult tasks. The speaker characteristics at the linguistic level gains 

importance when we deal with spontaneous speech. In this work we are concentrat- 

ing only on read speech, where the speaker is asked to read aloud given sentences. 

Thus we eliminate speaker characteristics at the linguistic level from the speech 

data. 

The interspeaker variations at the prosodic level can be attributed to several 

complex mental phe~iomena (learning). These variations have no relation to any 

physical system. The prosodic characteristics of the speaker are derived by analysing 

large amount of speech data. This knowledge acquisition process iilvolves significant 

manual effort. 

The segmental characteristics are directly related to the physical system, 

namely the vocal tract system. Therefore at the segmental level features of the 

source speaker can be tram formed into features corresponding to the target speaker. 

In this work we will be modeling the interspeaker variations at  the segmental level 

across speakers as transformation functions. The emphasis is on transforming the 

characteristics of the vocal tract system. Only some gross features of source char- 

acteristics are considered in this thesis. 

The problem of voice conversion using information at segmental level can be 

understood from the nature of the speech production mechanism and from the man- 

ifestation of the production characteristics in the speech signal. We now briefly 

present the fundamentals of speech production mechanism. The organs involved 

in the production of speech are shown in Figure 1.2. If the vocal tract system is 

excited by quasi-periodic vibrations of the vocal folds, then the resulting speech is 

called voiced (eg. vowels /a/ and /i/) .  The periodicity of the vocal cord vibration 

is called the pitch of the voice source. If the excitation of the vocal tract system 

is due to turbulence of air (frication) at a narrow constriction, the resulting speech 



Figure 1.2: Organs of speech production 

is said to be unvoiced (eg. /s/ and /z/). On tihe other hand if the vocal tract is 

closed at some point and the built up pressure is released suddenly the resulting 

speech is called a stop sound (eg. /p/ and I t / ) .  Figure 1.3 shows a typical speech 

waveform where the three types of sounds are illustrated. During normal speech 

production the time varying source produces varying pitch frequency (Fo). This is 

called intonation contour or pitch contour as illustrated in Figure 1.4(a) and (b). 

The time varying vocal tract system characteristics are reflected as time varying 

resonances (formants) of the vocal tract system. These formant changes can be 

seen in a spectrographic display of speech signal as shown in Figure 1.4(e) and ( f ) .  

Spectrogram is a display of the distribution of spectral information with respect to 

time. In a spectrogram time and frequency are represented in the x and y axes 

respectively while the amplitude is noted by the darkness of the picture. Formants 

appear as dark hol-izontal bands. Figure 1.4 shows the pitch contour and formant 

contour for two speakers uttering the vowel sequence /ail. The problem of voice 
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conversion using parameters at the segmental level is illustrated using the Figure 1.4. 

Figure 1.4(c) and (d)  show the acoustic waveform of the speech sound /ST/ uttered 

by a male and a female speaker respectively. The Fo contour extracted from these 

utterances are shown in Figure 1.4 (a)  and (b). We can observe that the average Fo 

of the male speaker is significantly lower than the Fo of the female speaker. Thus, 

in order to perform a voice transformation across two voices, the average Fo must 

be appropriately modified. Apart from the interspeaker variations in the source 

characteristics, the vocal tract system also contributes to speaker variability. The 

interspeaker variations in the vocal tract system are manifested as variations in the 

formant frequency (vocal tract resonances). Figure 1.4 (e) and ( f )  illustrates this 

with the help of spectrograms. The dynamics of the vocal tract system is mani- 

fested in the spectrogram in the form of smooth formant transitions. By comparing 

Figure 1.4(e) and (f) ,  we observe that the formant frequencies is significantly. higher 

for female speech in comparison with male speech. Hence we note that for realising 

voice conversion, the formants extracted from the speech of the source speaker have 

to  be appropriately transformed. Our aim is to capture a transformation operation 
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utterances. (e) and ( f )  show the cor.responding spectrograms. 
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which will transform the formant frequencies extracted from the speech of the source 

speaker to match with that of the target speaker. This transformation is to be cap- 

tured from a limited amount of formant data and at the same time the captured 

transformation must be able to transform formants extracted from any utterance of 

the source speaker. Moreover such a transformation must not introduce distortions 

to smooth formant transitions occurring in continuous speech. 

In order to capture the vocal tract system transformation between two speakers 

the vocal tract must he represented in a suitable manner. At one extreme the vocal 

tract can be represented by the envelope of the short time spectrum. But this 

representation is not motivated by the mechanism of speech production. Moreover, 

the short-time spectrum contains information related to both the vocal tract system 

and the voice source. The vocal tract system may be characterized by a linear time 

varying system represented by a set of time varying parameters. From a parametel 

extraction point of view, it is convenient to represent the system as a linear digital 

filter, for example an all-pole model. This representation takes into account the 

speech production mechanism upto some extent by modeling the vocal tract system 

as an all-pole filter. However, from a transformation point of view, it is desirable 

to represent the system with articulatory parameters. But articulatory parameters 

are difficult to extract from speech signal. Hence as a compromise, formants are 

proposed for representing the vocal tract system information. Formants are the 

resonances of the vocal tract system and thus they are very close to the physiology of 

speech production. At the same time in comparison with the articulatory parameters 

they are easy to extract from the speech signal. 

In the context of speech perception the voiced segments, especially vowels, 

carry more information related to the speaker than consonants [9,10]. There are two 

major reasons for this. They are: ( i )  Vowels are spectrally well defined and thus carry 

significant information about the vocal tract shape 131. Since the vocal tract shape 

vary across speakers we can conclude that vowels and vowel like souncls (semivowels 

and dipthongs) carry ilnportant speaker specific information. ( i i )  Consonants are 



dynamic in nature ancl their durations are less in comparison with the durations 

of vo~~rels. Hence while perceiving a consonant, the listener pays more attention in 

comprehending the message, i.e, recognizing the consonant. This causes the listener 

to ignore the speaker characteristics embedded in a consonant. In the case of vowels, 

since the duration is relatively large, the listener can pay attention to  the voice 

characteristics also. This argument need not be valid for consonants like laterals 

and nasals which carry significant speaker specific information. But in these cases it 

is difficult to extract the speaker dependent parameters (for example, estimation of 

nasal resonant frequency). Hence in our studies we will be considering only voiced 

regions, especially vowels, for extracting the speaker characteristics. 

I t  n u s t  be noted that even though gross speaker characteristics are attributed 

to  the segmental factors, the real voice characteristics of a speaker are due to the 

manner of production acquired by the speaker over years. These learned factors may 

be present either through out an utterance (gross prosodic features) or only in some 

specific segments (segment specific prosodic features! of an  utterance. Hence for 

voice transformation, both the gross and the segment based prosodic characteristics 

of the target speaker have to be incorporated into the synthesised speech, in additioli 

to the segmental speaker characteristics. Performance of a voice conversion system 

critically relies on how well features that reflect the speech production mechanism 

can be extracted from speech. The quality of the transformed speech also depends 

on the synthesis scheme. In this work we use standard parameter extraction and 

synthesis procedures for voice conversion. 

We first attempt to  obtain transformation between vocal tract system of the 

source and target speakers using a single linear transformation. T h e  linear trans- 

formation is derived using formants extracted from isolated utterances of vowels. 

The error in the transformed formants can be reduced significantly by usirig piece- 

wise linear transformations. But piecewise linear transformations are capable of 

transforming forrnailts extracted from steady vowels only. This trarlsformation will 

introduce discontinuities in formant transi tiori regions. These studies on linear for- 



mant transforimation show that the formant scaling between two speakers is highly 

~lonlinear. Since a feeclforward neural network with no~llinear computing elelnents is 

capable of capturing any arbitrary functional relationship, we used such a i~etwork to 

capture the inherently nonlinear formant transformation function. The network can 

be trained using formants extracted from isolated utterances of vowels. Even though 

such a network is capable of transforming formant transitions without introducing 

discontinuities, the transformed formant transitions were not as smooth as the target 

transit,ions. This failure of the network in transforming formant transitions properly 

is due to lack of the generalization capability of the network. We circulnvent this 

problem by using appropriate training data to  train the neural network. In this 

corltext we propose a method to test the generalization capability of the network by 

using synthetic test patterns. We also present a method by which the trained neural 

network can be efficiently used for voice conversion. This is done by using the net- 

work to modify the linear predictive coefficients (LPCs) extracted from the source 

speech and using the modified LPCs for synthesizing the transformed speech. Fi- 

nally, we test this scheme of voice conversion by performing transformation between 

different speakers. 

1.4 Review of related work 

1.4.1 Introduction 

The first attempt in voice transformation was reported in the classical paper by Atal 

and Hanauer [ll]. In their paper Atal and Hanarler described the application of the 

LPC - vococler in modifying voice characteristics. In an experiment speech uttered 

I>y a ~na le  speaker was analysed to extract pitch, forinants and bandwidths. These 

parameters were moclified using fixed scale factors. Speech was syilthesized using 

these modified para~neters to si~nulate a female voice. Seneff [I%] deinonstrated a 

method by which the spectrum, the speaking rate and the pitch of speech signals 



could be lrlodified even without extracting pitch. Even though this was a new speech 

analysis/synt,hesis system which was capable of independent manipulation of Fo and 

the spectral enveiope, no study was carried out on its application to voice conversion. 

In the above described efforts the main aim of the authors was not to convert 

the voice characteristics of a speaker to sound like that of another. They discuss 

voice conversion as an application of new methods of speech processing. The work 

reported by Childers et a1 (1985) [13] can be considered as one of the first attempts in 

voice conversion, since they were the first to focus on the problem of voice conversion 

in its ow11 right. The following sections summarize studies made on voice conversion. 

1.4.2 Voice couversiou in a simple LP-synt hesis framework 

In this method, [14, 131 analysis was carried out on sentences uttered by the source 

and the target speakers to extract the speaker dependent information. From elec- 

tro gloto graph(EGG) measurements, the average values of parameters TI and T2, 

corresponding to the Fant's model [15] were measured, for different segments of the 

utterances of both the source and the target speakers. The values of the first three 

formants for different segments of the utterance of the source and the target speakers 

were determined. From this the scale factors for the three formants were computed. 

From the average pitch of the source and the target speakers, an average pitch scale 

factor was computecl. 

In the transformation phase parameters extracted from speech of the source 

speaker were modified to correspond to the target speaker. The pitch was ~nodifiecl 

by the average pitch scale factor and the pitch contour was edited to match with that 

of the target pitch contour. The linear predictive coefficient(LPC) polynomial was 

solved to get the LPC roots. The roots which correspond to the first three formants 

were shifted in the z-plane in accordance with the scale factors computed during 

the a~ialysis phase. The LPCs were recomputed from the lnodified roots. Then 

speech in the voice of the target speaker was synthesized using the modified LPCs, 



average pitch ancl pitch contour. To excite the LPC - vocoder, Fant7s model was 

used during voiced segments and random noise for unvoiced segments. While using 

Fant's model, those model parameters (TI  and Tz) which were measured during the 

analysis phase from the speech of the target speaker were used. .According to the 

authors this method produced speech of good quality and the transformed speech 

possessed the speaker characteristics of the target speaker. 

In a similar work done by Slifka and Anderson (1995)' the scale factors for 

modifyirlg the LPC roots were computed statistically. But the authors have reported 

that this nlethod was not suitable for transforming the dynamic characteristics of 

the vocal tract [16]. 

1.4.3 Voice conversion by vector quantization 

The method for voice conversion proposed by Abe et a1 [17] considers pitch, en- 

ergy and spectr;l.l parameters as speaker dependent features. Spectral parameters 

were extracted from the utterances of the source and the target speakers and vector 

quantized. Similarly the extracted pitch val~ies were scalar quantized. The corre- 

spondence between frames of the words uttered by the source and the target speakers 

were established by dynamic time warping (DTW) algorithm. This correspondence 

between the vectors of the source and the target speakers was accumulated as his- 

tograms. The histogram was used to represent each vector in the source speaker's 

codebook as a linear weighted sum of the vectors in the target speaker's code book. 

This corresl,ondence is termed as the mapping code book. 111 the case of pitch fre- 

quency and gain, scalar qiiantization was used and the mapping codebooks for these 

parameters were defined based on the maximum occurrence in the histogram. 

In the transformation phase, the speech of the source speaker was analysed 

to extract the speaker dependent parameters and were vector quantized using the 

source speaker's cork hook. Using the mapping code book the correspondirlg vectors 

in the target speakel-'s code book were determined. Speech wa.s synthesized using 



these parameter vectors. 

In a similar work done by Savic and Nam (1991) the mapping code book was 

realized by a neural network [IS]. 

In a later work done by hdizuno and Abe (1994), formant frequency modifica- 

tion was done by piecewise linear transformation rules to  achieve voice personality 

transformation (19, 201. The basic methodology of this technique is same as that 

suggested by -4be et a1 [17] except for the following points: (i) Instead of using LPCs 

formants were used. ( i i )  Spectral tilt was also considered for conversion. (ii) Instead 

of a mapping codehook, piecewise linear formant transformation rules were used to  

transform the formant frequencies and the spectral tilt. 

1.4.4 Cross - language voice conversion 

The objective in this work was to preserve the voice characteristics, when speech 

is translated from one language to another language anil synthesised in the target 

language [21]. Hence the aim was to preserve the source speaker's characteristics 

in the synthesised speech across languages. The authors call this effort as cross - 

language voice conversion. 

The major issue, related to the manipulation of speaker characteristics, lies in 

the incorporation of speaker characteristics into the speech synthesis system, which 

was used to synthesize the translated speech. The authors attempted a translation 

from Japanese to English. The translated text was synthesised using the RiIItalk 

system. The aim was to modify the output speech of the MItalk system so that the 

speech souuds like that of the Japanese speaker. To accomplish this voice trans- 

forrnation they used the mapping code book technique [17]. To build a mapping 

codehook, two speakers have to utter a set of training words. In this case the target 

spea.ker was a Japanese and the MItalk system represented the source speaker. 

The colivertecl speech was reported to be as intelligible as the MIta.lk output. 

In the case were the Japanese speaker was a female, the trallslated speech was judged 



hy listeners as female speech. 

1.4.5 Segment based voice conversion 

,4be (1992) described a voice conversion system that used speech segments as the 

conversion units [22]. The speech of the source speaker was given to a speech 

recognition system for segmentation and labelling. To produce speech in the target 

voice, speech segments identified by the speech recognition system was replaced by 

the speech segments uttered by the target speaker. This sys ten~ has a drawback 

that it depends on a speech recognition system for its performance. 

1.4.6 PSOLA-based voice conversion 

In this method proposed by Valbret et al (1992), the classical source-system decom- 

position was exploited to perform prosodic and spectral transformations [23, 241. 

Prosodic modifications were applied on the excitation signal using TD-PSOLA [25] 

technique. The converted speech was then synthesized using the transformed spec- 

tral parameters. 

For the spectral transformation, sentences uttered by the source and target 

speakers were time aligned by DTW. This procedure defines a mapping between 

the acoustic spaces of the two speakers. From this mappirig the required spectral 

transformation was learned by first partitioning the acoustic space of the reference 

speaker by means of vector quantization (VQ) and by approxinlating the trans- 

formation within each class. The transformations associated with different classes 

were  nodel led in the training phase. Two methods were investigated for learning 

such a transformation, namely, Linear Multivariate Regression(LMR) and Dynamic 

Frequency Warping(DFW). 

During the transformation phase, cepstral coefficients were extracted from each 

of the analysis frames of the input speech. The class to which the cepstral vector 



belongs was then identified l>y finding the nearest code vector. Then the transform 

related to this class was applied to the cepstral vector. This can be either the linear 

transformation(captured by the LMR technique) or the warping function (captured 

by the DFW technique). An LPC parameter set was extracted from the transformed 

cepstral or spectral vector, which was used in the synthesis of speech to reflect the 

voice characteristics of the target speaker. 

This method worked well for short words. But in the case of sentences, due to 

differences in pronouncing, time alignments were imprecise and thus it was reported 

that the quality of the spectral transformation was degraded. 

From the discussion of different approaches for voice conversion, it can be observed 

that none of them has addressed the issues related to voice characteristics in detail. 

. All these methods were based on the use of existing signal processing techniques 

(like VQ, DTW, LMR) for performing voice conversion. 

Most of the voice conversion algorithms found in the literature [17, 14, 21, 18, 

22, 23, 191 depend critically on vector quantization of spectral parameters. Thus 

the source speaker's acoustic space was divided into separate nonoverlapping regions 

and for each such region a transform is statistically estimated. This transform is 

used to modify source spectral vectors belonging to that region, to match with 

that of the target sl~eaker's spectral characteristics. It must be noted that spectral 

features directly correspond to the vocal tract characteristics. Hence separating the 

spectral space of the source speaker into discrete areas and transforming vectors 

of these areas separately would introduce discontinuities to the transformed vocal 

tract shape contour. Therefore the transformed spectral parameters rrlay represent 

a discontinuous movement of the vocal tract and hence speech synthesized from such 

a set of parameters will he poor in quality. One solution is to increase the number of 

code vectors, wllicll is equivalent to separating the spectral space rnore finely. Such 



an approach ha.s the following disadvantages. 

1. Increasing the number of code vectors would cause an increase in the storage 

requirements. 

2. It will also increase the time required to search through a code book. 

3. Most importantly, an increase i11 the number of code vectors will decrease 

the number of spectral vectors from which the transformation related to each 

of the distinct spectral spaces is estimated. Since t,his computation is done 

statistically, the estimate of the transform will become poorer as you separate 

the source speaker's spectral space into finer and finer regions. 

Hence it is clear that better methods for transforming spectral vectors (vocal tract 

system information) are needed. All the voice conversion methods discussed above 

were successfully applied only to words or syllables. The issues in transforming the 

complex dynamics of the vocal tract system chai.acteristics were left unaddressed. 

The work reported by Childers et  a1 [14] provides a good model for synthesizing 

speech from a set of acoustic parameters. In this method these acoustic parameters 

were extracted from the source speaker and transformed. Speech is synthesized using 

the transformed parameters. But the problem of learning these transformations were 

not addressed. In this thesis we mainly concentrate in the development of a neural 

network based system which could learn this transformation functions automatically. 

Emphasis is given to issues related to faithful transformation of the the dynamic 

features of the vocal tract system. 

1.5 Organization of the thesis 

The thesis is organized as follows. Chapter 2 cliscusses methods to capture linear 

functions which coulcl transfornl the steady vocal tract system characteristics of the 



source speaker to that of the target speaker. This chapter also points out the ad- 

vantages and drawbacks in approximating formant transformation by linear scale 

factors. The next chapter begins with an emphasis on the need for nonlinear ap- 

proximation of fArmant transformation, and goes on to discuss methods for learning 

a nonlinear formant transformation using feedforward neural networks. Chapter 4 

extends the application of feedforward neural networks for transforming formants 

extracted from dynamic speech sounds. Chapter 5 deals with incorporation of for- 

mant transformation into a voice conversion system and presents results of voice 

conversion between voices. Chapter 6 summarizes the work. 



Chapter 2 

Linear approximation of formant 

transformation 

2.1 Introduction 

This chapter discusses methods to capture the relation between formants derived 

from the speech of two speakers using linear transformation. We consider only the 

transforniation of steady vocal tract shapes. For this purpose, formants are extracted 

from isolated utterances of steady vowels of the source and target speakers. We also 

describe a method for modifying the average pitch using a simple linear transforma- 

tion. We first assume that the scaling corresponding to the vocal tract dimensions 

(mainly the effective vocal tract length) between speakers is linear, and hence the 

scaling of formants will also he linear. A simple linear formant transformation is 

captured using the least mean square algorithm (LMS). The transformation is sarne 

for a11 the formants. Error analysis is made to show that such a simple linear trans- 

form cannot efficiently transforun the formants. We describe experiments to study 

the perfornlar~ce of using separate linear transformation for each formant. The error 

performance of the formant-dependent linear transformation is significantly better 

than the simple linear for~llalit transforlnation. The shape arid the effective lengt 11 



of the vocal tract system is different for different vowels. The five vowels, /a/ ,  /e / ,  

/T/ ,  /6/ and /i/ are considered in this study. The vocal tract syste~n transfornlatio~l 

can be represe1:ted Inore efficiently by capturing linear transformations separately 

for each of the five vowels. Thus the entire formant transformation is represented by 

fifteen different linear transformations (3  formants x 5 vowels). This representatiorl 

of the formant transformation, which is piecewise linear, is based on the assumption 

that the scaling of the vocal tract dimensions corresponding to the different vocal 

tract shapes(vowe1s) are nonuniform. A better approximation is obtained by using 

piecewise linear transformation instead of a simple linear transformation for each 

formant. In the case of piecewise linear transformation we need to know a priori the 

vowel from which the formant is extracted before applying the appropriate transfor- 

mation. This is one of the drawbacks of piecewise linear transformation. Study of 

transformation of formant transitions show that the transformed formant transitions 

were not continuous. That is, piecewise linear transformatiolls introduce disconti- 

nui ties while transfornling smooth formant transitions as in vowel sequences. These 

discontinuities are perceived during listening of the transformed speech. 

The chapter is organized as follows. The next section gives a brief introduction 

to the LMS a.lgorithn1 used for linear functional approximation. Section 2.3 describes 

the studies conducted in approximating the formant transfornlation using simple 

linear transformations. Experiments in capturing and testing the piecewise linear 

formant transformation is described in Section 2.4. Section 2 .5  discusses a linear 

transformation to modify the average pitch of the source speaker to match with that 

of the target speaker. Synthesis experiments conducted to evaluate the performailce 

of various linear and piecewise linear formant transformation schemes are discussecl 

in Section 2.6. The drawbacks in approximating the inherently nonlinear formant 

transformation by linear functions are discussed in Section 2.7. 



2.2 Basics of linear functional approximation 

The probleln of capturing a linear rnapping function which maps the speaker de- 

pendent parameters extracted from the speech of the source speaker to those of the 

target speaker is formulated as follows: 

Let the parameters extracted from the speech of the source and target speakers 

be represented by s n,  for n = 1, 2 . . . N and t n ,  for n = 1, 2 . . . N respectively. It 

must he noted that sJ and t J  are extracted from the corresponding speech segments 

uttered by the source and the target speakers. The problem is to find a linear 

function in the following form. 

The linear transformation given by equation (2.1) can also be implemented as a 

linear network. The objective is to compute the weights of this linear network (ko 

a,nd k,) such that the squared error given by 

is minimum. In the above equation E denotes expectation and t n  represents the 

desired output. The error J as a function of ko and kl is called the error surface. It 

can be shown that the shape of this error surface is a paraboloid. Getting a least 

scluare solution involves finding the global minimurn of the error surface. 

The solution can be ohtailled iterativelyfrom any initial randoin weight setting. 

This can be clone by the classical LhlS algorithm (261. The weight updation is given 

by 

where 



I. Initialization 

ko = 0 

kl = 0 

for iteration number i=1,2 ... 
do n=1,2 ... N 

11. Filtering 

Compute 

yn = ko + kls: 

en = tn - yn 

111. Weight adjustment ' 

Compute 

kg+' = k;; + q (tn - yn)  

kn+' 1 = k; + q ( t n  - yn) 

enddo 

until weights converge 

Figure 2.1: Algorithm for computing a linear transformation func- 

tion using the LMS algorithm. 

In equation 2.2 the superscript represents the iteration number and q represents the 

learning rate which is a s~nall  constant. The weight is adjusted in the direction of the 

instantalleous gradient of erros. From equation 2.2 and 2.3 the weight adjustment 

becomes 

The LMS algorith111, fos converting the source parameters to target parameters is 

given i l l  Figure 2. I .  



2.3 Learning linear formant transformations 

Data for this study consists of isolated utterances of vowels IT/, /e / ,  /a / .  / 6 / ,  and 

/ii/ from five ~rlale and five fen~ale speakers. Each of these vowels was repeated by 

every speaker twenty times. Out of these twenty sets of vowel data,  fifteen sets were 

labeled as the training set and the remaining were considered as the test set. The  

first three fornlants were extracted using a method based on minimum phase group 

delay functio~is [27]. 

111 the first attempt. a simple linear network was trained using the LMS al- 

gorithm to transform all the formants in the same manner. A male speaker was 

considered as the source speaker and a female speaker as the target speaker. T h e  

error between the source and the target formants before and after the application 

of the linear transformation is shown in Table 2.1. Let the source, target and the 

transforr~lecl formants be denoted by by F,', F,' and Fk for i = 1, 2 . . . N, respec- 

tively. N is the 1iu111ber of frames from which the formant data was extracted. The  

error in percentage betwetrl the the target and the source formants is calculated as 
1 N - s. 

i I F ;  . ~milarly the error in percentage between the target and the trans- 
N (F:,-F;I formed formants is given by $ C,=l 

F: 
. From the table we can note that even 

though the application of the linear transformation brings the source formants closer 

to the target fornlants, the error is still large. This is evident in the case of Fl for 

the vowel / e l  and F2 for the vowel /a/. Also note that in some cases (F2 of vowel 

/6/ and Fl of vowel /el) ,  the error between the source and the target formant is 

less than the error between the transformed and the target fol.mant. It means that 

in these cases the application of the transformation to the source formants moves it 

farther away from the target formant location. 

For reducing the error in the transformation, three separate linear networks were 

trained to capture t~.ansformations corresponding to each of the three forlnants. 

Thus the formant transfornlation tiow consists of a set of three linear functions. 

Figure '2.2 shows the three learned fu~lctions. They are represented as straight lines. 



Table 2.1: Error analysis for the single linear formant transforma- 

tion. 

vowels Error in percentage be- Error in percentage be- 

tween the target and the tween the target and the 

source 'formants transformed formants 

F1 F2 F3 F1 F2 F3 

/ i /  27.1 14.3 4.8 9.0 3.6 6.8 

Note that the three lines shown in the Figure 2.2 ha\-e different slopes. This  shows 

that  the scaling factors for the three formants are different even for steady vowels. 

These functions were used to transform the formants of the test set. Table 2.2 givcs 

the errors between the source formants and the target formants before and after the 

application of the three linear transforms. By comparing Table 2.1 and Table 2.2 it 

is clear that by using separate linear networks for the three formants we have been 

able to reduce the error in the transformed formants significantly. This improvenlent 

is sigilificailt in the case of second fornlailt (compare the sixth coluillns of Table 2.1 

and Table 2.2). For some cases the formant-dependent transforniation gives larger 

error in comparison with the case of a single linear trailsformation (for example, FI 

of vowel /i/ and Fg of vowel /u/). But if we consider the overall error, the use of 

formant-dependent transformation outperforms the single linear transformation. 
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Source formant (Hz) 

Figure 2.2: The  formant dependent transforrnation function. Fig- 

ure showing the transformation functions corresponding to  the first 

( k l ) ,  second(k2) and the third(k3) formants. 

2.4 Piecewise linear formant transformation 

T h e  vocal tract shape and effective length are significantly different for different 

vowels. Therefore the vocal tract system transformation can be improved signifi- 

cantly by using separate linear transformations to transform formants corresponding 

to different vowels. This is equivalent to  making the transformation of each formant 

piecewise linear. For five vowels and three formants, the number of linear functions 

will be fifteen. Thus we have trained fifteen linear networks to capture the formant 

transformations for all the five vowels. Each of these fifteen networks is expected to 

transform a formant (first, second or third) extracted from one of the five prototype 

vowels (/a/ ,  /el, /i/, /6/ or /GI). Figure 2.3 shows the resulting piecewise linear 

transformation function. The  figure shows the scale factors of the formants for five 

prototype vowels. Scale factors refer to  the amount by which the source formants 

corresponding to different prototype vowels are scaled by the transformation. In 



Table 2.2: Error analysis for the formant dependent linear trans- 

formation. 

Vowels Error in percentage be- Error in percentage be- 

tween the target and the tween the target and the 

source formants transformed formants 

this study we have considered five different sets of source and target speakers. The 

scale factors shown in the figure correspond to transformation of formants of a malc 

speaker to those of a female speaker. These results show that the scale factors are 

dependent both on the formant (first, second or third) and the quality of the vowel. 

The variations of the three scale factors show similar trend across different sets of 

male and fenlale speakers. A notable deviation from the uniform scaling of the for- 

mants is the large scale factor for the first formant corresponding to the open vowel 

/a/ in comparison with the closecl vowels /ii/ and /i/. The scale factor for the 

second formant is high for front vowels /i/ and /el. Note that for the back vowels 

/ii/ and /6/ the value of the second formant scale factor is less than unity. This 

means that the second formant frequency for back vowels /ii/ and / 6 /  is higher for 

male speakers than for the female speakers. These observations are consistent with 

a sinlilar study conducted by Fant [28]. 

In order to transfornl a set of formants using piecewise linear transform, it is 

necessary to first identify the vowel from which the formants were extracted. We 
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Figure '2.3: The piecewise linear formant transformation function 

(a) Scale factor for the first formant (b) Scale factor for the second 

formant (c) Scale factor for the third formant. Each set corresponds 

to one pair (male-female) of speaker data. 

have used a simple classification scheme for recognizing the vowel from the formants. 

Figure 2.4 shows the classification scheme used for transforming the source formants 

using the  piecewise linear transformation. We first compute the mean of the formant 

values for different vowels. The formant vectors Fi, F,, Fa, F,, and F:, represent 

the mean of formant vectors corresponding to the vowels /i/, /el, /a/, / 6 / ,  and 

/ii/. Now given a formant vector F ,  we compute the Euclidean distance between 

this unknown formant vector and the mean formant vectors corresponding to the 

prototype vowels. We recognize the unknown speech sound as the vowel whose 

mean forinant vector is closest to the formant vector extracted from the unknown 

speech sound. Once speech sound is recognized as one of the vowels, the appropriate 

linear transforrrlatioii is applied to each of the formants. Table 2.3 gives the error 

analysis of the piecewise linear tra.nsformation. From Tables 2.1, 2.2 and 2.3, it can 

I>e observed that when the formant transformation furlction is approximated by a 

single linear function the erros during testing is the highest. When we use three 

separate linear ful~ctions for the three formants, the error reduces. The error was 
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Figure 2.4: Block diagram showing the transformation of the for- 

mants extracted from vowels using the piecewise linear transforma- 

tion. 

found to be least when these functions themselves were made piecewise linear. 

Pitch transformation 

Average pitch also contributes to the voice characteristics and thus for synthesizing 

speech in the voice of the target speaker, the average pitch of the source speaker 

has to  be modified. In this section we describe a simple procedure to modify the 

average pitch of the source speaker, using linear networks. 

The  task is to find a linear transformation using a linear network which could 

modify the average pitch extracted from the speech of the source speaker to match 

with that of the target speaker. For this, pitch was extracted from the training 

set of isolated utterances of vowels. For extracting pitch we have used the SIFT 

algorithnl [29]. The Fo data correspontling to the source and the target speakers is 



Table 2.3: Error analysis for the piecewise linear formant transfor- 

mation. 

vowels Error in percentage be- Error in percentage be- 

tween the target and the tween the target and the 

source formants transformed formants 

F1 F2 F3 F 1 F2 F3 

/ i /  27.1 14.3 4.8 3.8 1.7 1.7 

represented by F;,, for i = 1, 2 . . . N and Fit,  for i = 1, 2 . . . N respectively, where 

N is the total number of training values of Fo. The weights of the linear network 

were co~nputed using the LMS algorithm described in Section 2.2. Once we have 

captured the linear pitch transform, the next issue is to validate the function for its 

capability to transform the average Fo. For evaluation, Fo contours are extracted 

from the test utterances of both the source and the target speakers. The source 

pitch contours are transformed using the linear pitch transformation. Table 2.4 

shows the error in the average Fo of the source and the target pitch coritours before 

and after the application of the transformation function. From the table it is clear 

that the average pitch transformation is able to modify the average pitch of the 

source speaker to match satisfactorily with that of the target speaker. 



Table 2.4: The error analysis on the linear Fo transformation. 

vowels Error in percentage between Error in percentage between the 

the target and the source Fo the transformed Fo and the target Fo 

/i/ 51.2 9.2 

2.6 Synthesis experiments 

Error analysis gives only a quantitative idea of the performance of the learned func- 

tion. A Inore useful way of evaluating the transformation is to synt1)esize speech 

from the transformed formants and the transformed pitch. We have extracted for- 

mants, pitch and gain from a set of vowels uttered by the source speakers (male). 

The pitch was transformed by the learned linear function. The formants were mod- 

ified using the three different methods of formant transformation scheme described 

in Section 2.3. The speech was synthesized with the modified average pitch and 

formants. A standard glottal source model was used to excite the formant vocoder. 

Informal listening of the transformed speech was used to judge the quality of the 

voice conversion. When a single linear function was used to transform the source 

formants, the voice characteristics in the converted speech was quite different from 

that of the target speaker. But by using three separate functions for nlodifying the 

three formants the quality of the voice conversion improved. When piecewise linear 

functions were used to modify the source formants, the voice characteristics of the 

converted speech were close to that of the target speaker. 



2.7 Limitations of linear formant transformation 

From the formant scale factors captured by the linear network it is c1ea.r that the 

scaling of the formants is dependent on the vocal tract shape. Even for trans- 

forming steady speech sounds like vowels the formant transformation is nonlinear. 

Hence we have used piecewise linear functions to approximate the inherent nonlin- 

ear formant transformation function. There are mainly two disadvantages in using 

a piecewise linear formant transformation. They are: (i) If we are using separate 

linear transforms for different vowels, we will have to identify the speech sound as 

one of the vowels before applying the appropriate transformation to the formants 

extracted from that speech segment. (ii) If we use a piecewise linear function to 

approximate the inherent nonlinearity in the transformation, the resulting formant 

transformation function will have discontinuities. 

Figure 2..5 shows the effect of transforming various types of formant transi- 

.tions using the piecewise linear formant transformation. The first column shows the 

formant contours extracted from the speech of the source speaker corresponding to 

the vowel sequences /%i/, /au/ and /oil. The third column shows the correspond- 

ing target formant transitions. The source formant transitions were transformed 

using the piecewise linear transformation. The second column of the figure shows 

the transformed formant transitions. Note that the transformed formant transitions 

show discontinuities. These discontinuities are significant in the case of the third 

formant corresponding to the vowel sequences / ~ i /  and /oil. These discontinuities 

occur between the tenth and the eleventh frames. This is due to the use of two sep- 

arate linear functions to transfor~n the two different parts of the formant transition. 

It must be notecl that such a discontinuous formant contour represents an abrupt 

change in the vocal tract system which is undesirable, as it degrades the quality of 

the synthetic speech generated from such discontinuous formant contours. 
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Figure 2.5: Figure illustrating the problem of formant discontinuity. (a ) , (d)  and (g)  

show the source(rna1e) forrna~it contours corresponding to the vowel sequences /ST/, 

/au/  and /oil. (b) , (e)  and (h)  show the corresponding transformed formant contours 

using the piecewise linear transformation. (c), (f)  and ( i )  show the corresponding 

target formant contours (female). 
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2.8 Summary 

In this Chapter we have discussed methods to capture linear functions for transform- 

ing formants and average pitch of the source speaker. The major advantage of using 

a linear network to capture a mapping function is that,  the convergence is guaran- 

teed while searching the weight space for the optimum solution. The  disadvantage 

is the large error in the transformed formants when we use a single function to ap- 

proximate the required transform. If piecewise linear transform is used, the error in 

the transformed formants will be reduced. But we have to know a priori the speech 

sound from which the formants were extracted in order to apply the appropriate 

transformation. If we use such a piecewise linear transform to modify a formant 

transition, the transformed formant contour will have discontinuities. When this 

transformed formant contour is used for synthesizing speech, the synthetic speech 

will represent an abrupt change in the vocal tract movement and thus will be un- 

natural. In the next chapter we describe how a neural network can be trained to 

capture the inherently nonlinear transformation of the formants. 



Chapter 3 

Neural network for formant 

transformation, 

3.1 Introduction 

This chapter describes neural network models to capture the nonlinear formant 

transformation function. In the previous chapter we found that if we use a linear 

transformation on source formants, then the resulting error in the transformed for- 

mants is very high. This is because the transformation from male formants to female 

formants or vice versa is highly nonlinear. A rnultilayer feedforward neural network 

with nonlinear processing elements is capable of capturing any arbitrary mapping 

function [30]. Hence we propose to use such a network to capture the mapping 

function which transform the formants of the source speaker to those of the target 

speaker. We describe how such a network can be trained to capture the required 

formant transformation operation. Formants extracted from isolated utterances of 

vowels are used to train the network. In the case of neural network-based fbrmant 

trallsfor~llatio~l, the network can be used to transform a formant vector without 

knowing the class of the input. vector. This is an advanta.ge in using a neural net- 

work in transforming formants. Such a network is useful for transforming formant 
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Figure 3.1: The  architecture of a multilayer feedforward neural 

network. 

transitions also. We will obtain smooth transformed formant transition as in nat- 

ural speech although they rnay be significantly different from the target formant 

transition. 

In Section 3.2 the theory of backpropagation (BP) algorithm is presented 

briefly, as the algorithm forms the basis for training the neural network. Section 3.3 

discusses the studies conducted to  capture the formant transformation by a neural 

network. Section 3.4 summarizes the results of this chapter. 

3.2 Backpropagation(BP) algorithm 

Figure 3.1 shows the structure of a feedforward neural network. The  network shown 

in the figure has two hidden layers besides the input and output layers. The  nodes 

in the input layer are linear, whereas the nodes in the hidden ancl output layers 

are nonlinear processing units. Figure 3.2 shows the nonlinear output (sigmoidal) 

function used in tile nodes of the hidden and output layers. The  output of each of 

the nodes is given to the input of each of the nodes in the next layer after linearly 
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Figure 3.2: The  sigmoidal nonlinearity used as output function in 

the nodes. 

weighting it. The  output of each of the nodes, other than the ones in the input la!,cr, 

is obtained by adding up all the inputs and passing the sum through the sigmoidal 

nonlinearity shown in Figure 3.2. 

It has been proved that a network as shown in Figure 3.1 is capable of repre- 

senting any arbitrary function [30]. The  next issue is how to capture the  required 

input-output relation from a limited amount of data. Backpropagation algorithm 

or the generalized delta rule [31, 321 is an algorithm which can b e  used to  adjust. 

the weights of the network, so that the network captures the implicit function rep- 

resented by a set of input-output vectors. 

T h e  weights are initialized to randorn values. The  first training input X1 is 

given as input. The  input, vfi, to the i th  node in the l th  layer is computed by the 

following equation. 

where y:-l is the output of the j th  node in the ( 1  - l ) t h  layer arid tul;' is the weight 



connecting the  ith node in the  l th  layer and the j th  node in the  ( I  - l ) t h  layer. T h e  

ou tpu t  of a node in the  input layer is same as the input of the  node. T h e  output  

of t he  nodes in the  hidden and the  output layers are calculated using the  following 

equation. 

where v ( . )  is t he  nonlinear output function. 

This  forward computation will give the output, y"or i=l,f! . . . N, of the  network. 

Here L is the  number of layers and N is the number of nodes in the  ou tpu t  layer. 

Then  the  error a t  the  output  layer is given by 

T h e  error ef is used t o  adjust the weights. For adjusting weights, a weight correction 

Awij  is clefined by the  generalized delta rule, which is added t o  t he  weight wij: 

(kVeiyh,t correction) = ( learning parameter).(local yl, .c~dient). 

( input  to  that  we igh t )  

which becomes 

1 I t 1  I Awij =q6 ,  yj, 

where 77 is the learning parameter and 6:'' is the local gradient. T h e  local gradient 

a t  ally node i in the  output layer is given by 

'I'hen the  weights are acljusted using the  followiilg formula. 

T h e  local graclie~lt a t  any node i in the  layer (hidden) 1 is given by 



then the weight atlj us tment becornes 

Thus, the output weights and the hidden weights are adjusted after presenting the 

training patterns. If all the training vectors are presented to the network and the 

weights are adjusted as given in equations 3.1 and 3.2 , then we say that an epoch 

of training is over. Training will have to be done for several such epochs until 

the weights converge. Generally the back propagation algorithm is very slow in 

converging to a solution. By introducing a momentum term in the learning equation 

3.2, the rate of convergence can be improved significantly. Then the equation 3.2 

becomes 

1 1 1 1  1 
tuij(n + 1 )  = tu i j (n)  + qvjyj  + o [ w j j ( n )  - w i j ( n  - l ) ] ,  (3 .3)  

where a is a srnall positive constant. 

3.3 Studies in formant transformation using the 

BP network 

Figure 3.3 gives the block diagram which shows the computation of the required 

transformation function using a neural network trained using the back propagation 

algorithm. In the training phase we input formant values extracted from isolatetl 

utterances of vowels of the source speaker to the network. The desired output is the 

formant values extra.cted from the corresponding utterances of the target speaker. 

Data ased for this study is same as that used in Section 2.3. After training, it is 

expected that the neural network would have captured a function which maps the 

fornlants of the source speaker to  that of the target speaker. A multilayer feed for- 

~varcl neural network with two hidden layers was used for this purpose. We ha,ve 

used three e l e~ne~ i t s  each in the input, hidden and output layers. The  steps involvetl 
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Figure 3.:3: Training a neural network for capturing a mapping 

function which transforms the formants of the source speaker to  

that of the target speaker. 

in training a neural network for capturing the formant transformation function are 

shown in Figure 3.4. Figure 3..5 shows the transformation learned by the network. 

The transformation is shown in the form of scale factors by which the source for- 

mants corresponding to the various prototype vowels are scaled by the network. 

We have consiclerecl here a ~nale-to-female formant transformation. Comparing the 

transformation learned by the neural network (Figure 3.5) and the piecewise linear 

transformation (Figure 2.3), we observe that the shape of these functions are nearly 

the same. This shows that formants extracted from steady vowels are transformed in 

a similar fashion hy both the piecewise linear transformation and the 11eural network. 

Hut it must he notecl that the way in which the transformation is carried out by 

the linear transfornlation ancl the neural network are significantly different. In the 

case of piecewise linear transfosrn, the transformation is described by a set of fifteen 



repeat 

For each set of formant data 

begin 

Step - I 

The formant values (FI to F3) corresponding to 

the source speaker are given as input 

Step - I1 

The formants extracted from the 

same vowel uttered by the target speaker are fed as 

the desired output 

Step - I11 

The weights are adjusted using the backpropagation algorithm 

end 

until weights converge 

Figure 3.4: Algorithm for training the feedforward network to  cap- 

t ure formant transformat ion function. 

simple linear transforms. In order to transform a formant vector we need to know 

the vowel class of the speech segment from which the formant vector is extracted. 

Moreover, the piecewise linear nature of the formant transformati011 function will in- 

troduce discontinuities while transforming smooth formant transitions. In the case 

of neural network the forillant transformation is captured as a single continuous 

nonlinear fiinction. Hence it is not necessary to  classify the input formant vector 

before transforming it. Since the transformation captured by the network is inher- 

ently nonlinear, the network will transfornl the formants appropriate\y clepellding 

upon the value of the formant. This avoids the necessity of knowing the class of the 

input formant vector. This is a significant advantage of using neural networks for 



capturing the i~iherently nonlinear formant transformations. This will be evident 

while transforming formant transit ions. 

Figure 3.5: The scale factors learned by the network. ( a ) ,  ( b )  and 

(c) show the scale factors for first, second and third formants. 

It is necessary to study how far the network is successful in capturing the re- 

lation between the formants of the source and the target speakers. For testing the 

network formants were extracted from test utterances of the source speakers (male). 

and were transformed using the trained neural network t o  get the transformed for- 

mants. We compared the error between (a)  the target and the source formants and 

(b) between the target and the transformed formants. Table 3.1 shows the percent- 

age error between the formants of the target speaker and the source speaker before 

ant1 after the application of the transformation learned by the neural network. From 

this table it is clear that the application of the transformati011 learned by the neural 

network t o  the source speaker's formants has resulted in a significa~lt reduction in 

the error between the transformed and the target formants. 

We have also exalllilletl the capability of the network to transfornl formant 

transitions. For this we have extracted formants from vowel sequences, /ail, /aii/ 

ant1 /6i/ for the source a11t1 the target speakers. The formant colltours obtained 

from the speech of the source speaker was transformed using the trained network. 



Table 3.1: Error analysis on the network which was trained using 

forrnarlts extracted from vowels uttered in isolation. 

Vowels Error in percentage be- Error in percentage be- 

tween the target and the tween the target and the 

source formants transformed formants 

Figure 3.6 illustrates the problems of discontinuity in the transformed formant con- 

tours. The first column of the figure shows the source formant transitions. The 

second column shows the formant transitions obtained by transforming the source 

formant contour by using a trained neural network. The corresponding target for- 

mant transition is shown in the third column of the figure. From the figure it is clear 

that the network is capable of transforming formant transitions without introducing 

discontinuities. But we have noted that the transformed formant contour is not 

same as that of the target contour. The deviation is more pronoutrced in the case 

of the seconc-l formant corresponclitig to the sounds /%i/ and /0i/. 

3.4 Summary 

I11 this chapter we have described a neural network rriodel to capture the irtlrerently 

tloriliriear transformation of the formants across speakers. The backpropagation al- 

gorithm was used to train the network with the formants extracted from steady 
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vowels. We have de~rionstrated that such a network is capable of overcoming some 

of the problems posecl by linear approximation of the formant transformation. Even 

though the trained network can transform formant transitions without introduc- 

ing discontinuities into the formant contour, it was observed that the transformed 

formant transitions were steeper than the target formant transitions. Hence it be- 

comes clear that a network trained using the formants extracted from steady vowel 

sounds is not capable of tra~isforming formant transitions. In the next chapter we 

cliscuss methods to train a feedforward network to capture a transformation which 

can transforni not only steady formants but also formants extracted from dynamic 

speech sounds. 



Chapter 4 

Transformation of dynamic sounds 

4.1 Introduction 

In natural speech the vocal tract system continuously changes its shape. This is 

manifested as transitions in the-'formant contours extracted from continuous speech. 

In order to transform the formants extracted from continuous speech, it is necessary 

to transform the formant transitions as well. This chapter focuses on the problem 

of capturing the dynamic characteristics of the vocal tract system. In Chapter 3 

we have observed that a neural network trained using the formants extracted from 

steady vowels was not able to transform formant transitions properly. Hence in this 

chapter we explore methods for transformation of the dynamic characteristics of the 

vocal tract systerrl, which are manifestecl as formant transitions. 

The failure to capture formant transitions by a network trained with Iormants 

data extracted from steady vowels is due to lack of generali,-atioia in the network. 

C:eneralization in a network refers to the ability of the network in giving correct 

outputs to inputs for which it was not trained. This lack of generalization capability 

in turn is clue to nonrepresentative nature of the training data, when collected fro111 

steady vowel regions. In this chapter we demonstrate that a BP network trained 

with representative data can transform not only steady formants but also formant 



transitions. We also address the issue of testing the generalization capability of such 

a network. It is not possible to test the performance of the network by using formant 

transitions because the target and the transformed formants cannot be comparecl 

directly due to warping in time. Moreover, there may be variations in the formant 

trajectories due to interspeaker variations and coarticulation. We propose a method 

using synthetic formant transition data to test the generalization capability of the 

network. 

The followiilg section gives a brief introduction to  the notion of generalization. 

A method to improve the generalization is discussed in Section 4.3. Section 4.4 

discusses the proposed method for testing the generalizatibn capability of a network 

in the context of transforming formant transitions. 

The problem of generalization 

The generalization capability of the network is mainly determined by the following 

four factors [:32]: 

1. Training data: This refers to how well the training da t a  set represents the 

input-output mapping. 

2. Architecture of the network: The ar

c

hitecture refers mainly to  the size of the 

network. If olie uses a network size which is too large, it may lead to  memo- 

rization of the examples used for training and thus will result in poor gener- 

alization. 

:3. Training methodology: The training algorithm also influences the generaliza- 

tion pel-formance of a network. If we assume that the standard backpropaga- 

tion algorithnl is used for training, then the issue is when to stop the training. 

Overtraining of a network will cause overfitting of the training data  and in 

turli will lead to poor generalization. 



Table 3.1: bIea11 ( M )  and variance ( V )  of the formant frequencies 

extracted from steady vowels uttered in isolation by the source and 

the target speakers. 

Vowels Source speaker Target speaker 

3. The inherent corr~plexity of the problem: The com1,lexity of the mapping func- 

tion which one wants to capture also influences the generalization performance. 

The failure of a network, trained using the formants extracted from steady 

vowels, in transforming formant transitions is considered as the lack of generalization 

capability of the trained network. The primary cause for this lack of generalization 

can be attributed to the nonrepresentative nature of the training data .  Table 4.1 

shows the mean and variance of the formant data used to train the BP network 

described in the previous chapter. These formants were extracted from isolated 

utterances of vowels corresponding to the source and target speakers. In the table 

the columns marked M and V refer to the mean and variance, respectively. From 

the table we can observe that the variance of formant frequencies extracted from 

isolated utterances of vowels is very small. In the following section we show that by 

using a more representative training set, the generalization capability of the network 

ca.n I>e in~provetl. 



4.3 Improving generalization - Use of represen- 

tative data set 

This section describes how the generalization capability of a network can be im- 

proved by using a formant training data set which represents the required formant 

transformation operation effectively. Our aim is to train a network in such a way 

that the trained network must be able to transform formant transitions besides 

tra.nsforming stea.dy formants. A straightforward method is to train the network 

with formants extracted from nonsteady regions of speech also, for example, for- 

ma.nts extracted from vowel to vowel ti-ansition regions. i4 major problem in using 

formants extracted from nonsteady regions of speech is that of finding correspon- 

dences between the formants extracted from the speech of the source speaker and 

those from the target speaker. This problem can be circumvented using dynamic 

time wa.rping(DTW) algorithm [33] to compute the correspondences between frames. 

, But experiments showed that the DTW algorithm can give wrong correspondences 

which may affect adversely the training of the network [23]. The following section 

describes the use of a training set which will improve the generalization capability 

of the network and also circumvent the problem of determining correspondence. 

4.3.1 Speech data for improving generalizatioil 

Continuous sentences uttered by both the source and the target speakers were seg- 

nlentecl manually to mark steady vowel regions. The first three formants extracted 

from the frame having the maximum energy in each of the steady vowel regions con- 

stitutes the data for the present study. In this way formant data was collected from 

fifty sentences. We had nearly five hundred pairs of formant vectors for training the 

neural network. The advantage of using such a data set is that the natural variability 

of the formants are captured in the data set. Table 4.2 shows the mean and variance 

of this clata set. Comparing Table 4.1 and Table 4.2 we note that the variance of 



Table 4 . 2  Mean and variance of the formant frequencies extracted 

from steady vowels occurring in continuous speech. 

Vowels Source speaker Target speaker 

F1 F 2 F3 F1 F2 F3 
M V ' M V M V M V M V  M V 

the training data, set has significantly increased when formants were extracted from 

vowels occurring in sentences. For example this incl..ease is significant in the case 

of F3 corresponding to the vowel /i/ (compare seventh colun~ns of Table 4.1 and 

Table 4.2) and F2 of /e/ (compare eleventh column of Table 4.1 Table 4.2). Thus 

we expect this training data set to  help the network in improving the generalization 

capacity. 

4.3.2 Training procedure 

A multilayer feedforward neural network with two hidden layers was used to  capture 

the implicit nonlinear formant transformation function. The  network consists of 

three elements each in the input and output layers, and eight elements in each of 

the hidden layers. The  formant data used for this study is same as that described 

in Section 4.3.1.  Figure 4.1 shows the way in which this network was trained to  

capture the required transformation. In the training phase we present fornlant 

values extracted fro111 the steady vowel regions of the source speaker. The desired 
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output is the formants extracted from the corresponding steady vowel region of the 

speech of the target speaker. After training, it is expected that the neural network 

would have captured a function which is capable of transforming not only steady 

vowels but also formant transitions. 

For capturing the formant transformation function, we are training the network 

with formants extracted from steady vowel regions. But we expect the trained 

network to he able to transform formant transitions as well. That  is, we expect 

the trained network to transform input formant vectors for which it has not been 

trained. This implies that the network must be trained in such a way that it learns 

enough from the training set, so that it call generalize what it has learned from the 

training set. In  orcler to achieve good generalization, it must be ensured that the 

training does not cause an overfitting of the input-output data set. A statistical 

tool called cross validation [32] was used to train the network in such a way that 



it doesn't overfit the training data [32]. In this method training set is partitioned 

into two sets, ( i )  a set for estimation and (ii) a set for validation. The  network is 

trained using the data  in the estimation set. After each iteration the network is 

tested on the data  in the validation set. The  error in the output of the network for 

input da ta  in the training set is termed as the training error and the error given 

on the validation set is the generalization error. Figure 4.2 shows the plot of the 

training and the generalization errors versus iteration number. From the figure it 

can be observecl that even though the training error reduces, the generalization error 

shows a rising trend after a certain number of iterations. This indicates that after 

a certain number of iterations the network parameters are adjusted to  overfit the 

da t a  in the training set. Hence the training is stopped when the generalization error 

s tar ts  increasing, even though further training will result in a reduced training error. 

4.3.3 Testing generalization capability of the net,work 

In this section we describe a procedure to evaluate the generalization capability of 

the trained network in the context of transforming formant contours. In the specific 

problem of formant transformation, generalization capability of the network refers 

to  the ability to transform formant transitions without introducing discontinuities 

or other distortions, even though the network is trained using formants extracted 

from steady sounds (vowels). We can extract formants from speech utterances of the 

source speaker corresponding to vowel sequences and transform it using the trained 

network. The  transformed formant contour can then be compared with the formant 

contour for the target speaker corresponding to the same sound segments. The  error 

between the transforlned and the target formant contour will give a measure of the 

generalization capacity of the network. But there are two major problems in using 

formant transitions extracted from natural speech. Firstly, the source and the target 

speech will be typically warped in timeand thus we can't directly compare the target 



Figure 4.2: Variation of the training and generalization errors vary 
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the various vo~rels for both the source ancl the target speakers in the following way. 

A source formant transition, for example, corresponding to the vowel sequence /a:/, 

is derived by interpolating E,  and E ,  by a monotonically increasing/decreasing 
-+ 

function. We represent this synt,hetic formant contour by F z , ,  for n = 1,2 . . . l ,  

where 1 is the number of points used to interpolate c, and E,. The corresponding 

target formant is derived by interpolating Et and Fit by the same function which 
-+ 

was used to interpolate the source mean formant vectors, and is represented by F z t ,  

for n = 1, 2 . . . l .  Now the synthetic source formant transition F:* corresponding to 

the vowel sequence / Z / ,  is transformed using the trained network. The transformed 
-3 

formant transition is represented by Fztr, for n = 1, 2 . . . l .  The generalization error 

for the formant tra.nsition corresy>onding to the vowel sequence /ai/ is given by 

The total generalization error is given by adding the generalization error correspond- 

ing to  all possible vowel to vowel formant transitions. Figure 4.3 gives the detailed 

algorithm of the proposed generalization test. We have conducted the above test 

of generalization on a network trained using formants extracted from isolated ut- 

terances of steacly vowels and also on a network, trained using the formant data 

describecl in Section 2.:3. Table 4.3 shows the generalization errors for the two net- 

works, one trainecl using isolated utterances of steady vowels and the other using the 

steady vowels extra.ctec1 from continuous speech. The results show a significant re- 

duction in the generalization error for the second case. Figure 4.4 shows the results 

obtained in t rarrsforrnirlg formants extracted from the source speaker corresponding 

to the vowel sequences I%/, /au/ and /oi/. Hence it is clear that,  even though the 

network was trainecl with formants extracted from the steady vowels occurring iri  

continuous sentences, it has faithfully transformed formant transitions as well. 



The training set consists of 

FiS, Fit i = l l  2 . . .  N 

Step I: Calculation of the mean formant vectors corresponding to the five vowels 

for all v 

begin 

Step 11: Computation of all the possible vowel to vowel formant transitions 

for all combinations of vl and v2 

begin 
-. 

FGvZs = C S ( ~ ~ , ~ ~  F~~~~ n )  n = 1, 2 . . .  1 
-. 

F:,, = CS(Fttltl F u , t ,  n )  n = 1, 2 - - .  1 

CS represents the cubic spline interpolation operation 

end 

Step 111: Transformation of the source formant transitions 

for all possible colnbinations of vl v2 

begin 

f ( . )  is the function learned by the network 

entl  

Step IV: Calculation of the generalisation error 

~ for all possible combinations of v, and v2 

I end 

Figure 4.3: Algorithm for testing the generalization capability in the context of 

formant transformation. 5 6 
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Table 4.3: Table showing the capability of a representative training 

da ta  set in improving the  generalization capability of a network. 

Vowel Generalization Generalization er- 

sequences error given by a network ror given by the  network 

trained using formants trained using formants 

extracted from isolated extracted from vowels 

utterances of vowels occurring in continuous 

speech 

4.4 Summary 

In Chapter 3 we had shown that  a neural network trained using formants extracted 

from steady vowels is not capable of transforming fornlant transitioils faithfully . 
T h e  reas011 for the failure is due to  lack of generalization capability of the network. 

In this cha.pter we have demonstrated that  by using representative trairiing da ta  

set the  ge~ieraliza.tion capability of the  network can be improved significantly. In 

this context we have proposed a method to  measure the  generalization capacity of 



a trained network. From the results of the experiments in this chapter it can be 

concluded that a BP network trained using fornlants extracted from steady vow- 

els occurring in continuous speech is capable of transforming not only the steady 

formants but formant transitions also. In the next chapter we describe a method 

to incorporate the formant transformation learned by a neural network into a voice' 

conversion system. 



Chapter 5 

Implementation of voice 

transformation 

5.1 Introduction 

There are two phases in the development of a voice conversion system, a learning 

phase and a transformation phase. In the learning phase various factors that are 

responsible for voice personality are identified and the speaker specific knowledge 

is acquired and represented in a proper form. In the transformation phase the 

given speech signal is modified using the knowledge acquired during the learning 

phase. In this chapter we describes the various issues in the developme~lt of the 

transformation phase. We focus particularly on the incorporation and testing of the 

vocal tract system transformatio~l. We first use the transformed For~nants directly 

to synthesize speech with a formant synthesizer. Then the segmental quality of the 

transformed speech will be poor due to lack of bandwidth information and also due 

to errors in the extraction of fornlants. We propose a method in which we use a 

trained neural ~ietwork to lnotlify the LPCs extracted from the speech of the source 

speaker. These motlified LPCs are then used to synthesize the transfornled speech. 

In ortler to perceive the quality of voice co~iversion we have to incorporate source 



characteristics also into the speech. We have used a simple linear transformatioil 

to modify the avera.ge pitch. But interspeaker variations are not limited to the 

segmental level. Hence for evaluating the quality of the transformation done at the 

segmental level we have to mask the speaker characteristics at the suprasegmental 

level. We propose an algorithm to normalize the intonational features between two 

speakers. Finally, we test the performance of the proposed voice transformations 

between several pairs of speakers. 

The following section tlescribes the voice conversion system. Section 5.3  pro- 

poses an algorithm for modifying the LPCs extracted from the speech of the source 

speaker to effect the vocal tract system transformation. Section 5.4 emphasizes 

the need for normalizing interspeaker variations in the suprasegmental features for 

evaluating the quality of the voice transformation derived using information at the 

segmental level. Section .5.4.1 briefly mentions the features of intonation pat terns 

with reference to Hintli. The algorithm to normalize these patterns between speak- 

ers is described in Section 5.4.2. Experiments for evaluating the quality of voice . 

conversion are described in Section 5.5. 

5.2 Voice transformation system 

The transfornlation phase of voice conversion involves: ( i )  Extraction of speaker 

c-lepenc-lent paranlet,ers from the speech of the source speaker and ( i i  ) modifying 

these parameters to match those of the target speaker. The ~nodificatio~i is dolie 

using the speaker-tlepericle~it k~iowledge acquired during the learning phase. After 

the rnodificatioii of the speaker-dependent parameters, speech in  the voice of the 

target speaker is synthesizetl using the modified parameters. 

Figure 5.1 gives the I~lock diagram of the transformation phase of voice con- 

version. The first operatio11 clone on the speech signal is a voiced/u~ivoicecl labeling. 

After this preliminary analysis, parameters are extracted from the source speech sig- 
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Speech 

Figure 5.1: The block diagram showing the transformation phase 

of voice conversion. 

nal. For parameter extraction we have used a sliding window of duration 25.6 rlLecs 

and a shift of 6.4 msecs. The parameters are pitch, energy and formants. The SIFT 

algorithm [29] was used to extract pitch. The first three formants are extracted 

using an algorithm based on the properties of minimum phase group delay functions 

[27]. The extracted parameters are transformed to incorporate the characteristics 

of the target speaker. It is reasonable to assume that speaker specific information 

is nlainly i l l  the voicecl segments of speech [9]. Hence only those parameters which 

are extractetl from voicetl frames are modified. 

5.3 Incorporation of formant transformation 

As shown in the Figure 5.1, the formant transformation can be incorporatetl in a 

straight forward rnanner. A direct transformation of formants and the use of the 

transformecl for niant s to synthesize speech will lead to poor quality iri  tlie s y ~ i  the- 
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Figure 5.2: The basic structure of an LPC - vocoder. 

sised speech. The reasons for the poor quality of synthetic speech is due to lack of 

bandivitlth information and unreliabili ty in the estimated formants. In this context, 

we propose to use an LPC - vocoder [ll], since it produces better quality speech. We 

discuss the salient features of an LPC - vocoder. Then we describe an algorithm to 

modify the LPCs extracted from the speech of the source speaker. Figure 5.2 shows 

the basic structure of an LPC - vocoder. The vocal tract system is represented by 

a time-varying digital filter. This filter is specified by the LP coefficients as follows: 

where p is tlie order of the all-pole system. This filter is excited with random noise 

(luring unvoiced frames and with a train of periodic glottal pulses during voiced 

frames to generate synthetic speech. The roots of tlie linear prediction polynorriial 

A ( = )  will have real and complex conjugate roots. The complex conjugate roots 

represent the vocal tract systenr resonance (formants). Suppose a complex conjugate 

root is represented hy r e f e ,  then the correspondirlg vocal tract resoriarit frequencies 



Figure 5.3: Block diagram showing the various steps involved in 

the modification of LPCs using a trained net.work. 
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and bandwidths are given by 
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where T is the sampling period. From equation (5.3)  it is evident that 8 is directly 

proportional to the formant frequency. Hence by shifting the complex pole in the 

z-plane we  call i~riple~nent a formant transformation. Figure 5 . 3  shows the block 

cliagrarrl of the LPC lnoclification algorithm. LPCs ( l o th  order) are extracted from 

the speech of the source speaker along with the other parameters described in Section 

5.2. Suppose the source for~nants extracted from a frame of speech are represented 

by F,', for i = 1, 2 3 .  These source formants are transformed using the trained neural 

network to get the transfornled formants represented by F,', for i = 1,  2, 3. Froni 

the source and tho transformed formants we con~pute a set of formaot scale factors 

Formant 

Emaction Trained Network 

1 ,  
1 

LPC's 
- Alpha 

~ ~ ~ ~ w j ~ ~  

Root 

modification 
+ Modified 



given by 0'. for i = 1, 2, 3, where 

a' represents the scaling factor corresponding to the i th formant. Thus for each 

frame we get a set of as which gives the amount by which the source formants 

extracted from that frame need to be scaled. It must be noted that the as vary 

significantly across a sentence. This variation is shown in the Figure 5.4. The figure 

shows the ct. coutour corresponding to the all voiced sentence "We were away a year 

ago". This also shows the highly nonlinear nature of the formant transformatio~l 
. .  

between speakers. These scale factors are used to modify the LPCs extracted from 

each of the frames. 

First the roots of the linear prediction polynomial are obtained. The complex 

conjugate pole pairs correspontl to the vocal tract resonances. In order to effect a 

vocal tra.ct system transformation these complex roots are modified or shifted using 

the scale factors. In this proct-cture the real roots are left unaltered. Suppose tha,t. 

riee' is a complex root correspo~~ding to the ith formant, where r corresponds to the 

formant bandwidth and 0 corresponds to the formant location (center frequency). 

Thus using the fornlant scale factors we will be modifying only the Os, using the 

following equation 

If there are more than three complex conjugate pairs of roots, theu the cornplex 

roots corresponding to the fourth and higher formants are modified in a similar way 

I)y usit~g the scale factor corresl>onding to the third formant. The detailed algorithnl 

used for the tnodificatioti of the LP-roots is given in Figure 5..5. The way in which 

the complex roots are shiftec-1 in the z-plane is illustrated i l l  the Figure 5.6. 



Figure 5 .3 :  Illustration of alpha contour. ( a )  Speech waveform 

corresponding to the text "We were away a year ago". (b ) ,  (c) and 

((-1) show the variation of crl ,crz and a3 across the senterlce. 
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correspontling to the test "We were away a year ago". (b) ,  (c) and 

( ( I )  show tlie variation of cr l ,c r2  and a3 across the sentence. 
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The source formant vectors are given by 

F: i = 1, 2 . . .  3 

Step I 

Transformation of the source formant vectors using the trained network 

F t r  = f ( R )  
where f ( )  represents the function learned by the network 

Step I1 

Computation of the scale factors 

Step I11 

Root solving of the LPC polynomial 

r'e~'' represents a complex pole corresponding 

to the i t h  formant 

Step IV 

Root modification 

T:,,~ = rf  

ei,, = [I + (1 - a') +] 6' if a i > l  
i - oi@i  

e n t o n  - if c r i < l  

Step V 

Recorny~itation of the LPCs from the modified roots 

Figure 5.5: Algorith~n to modify the LPCs using the trained net- 

work. 



Figure 5.6: Illustration of the way in which the poies are shifted in 

the z-plane. 

5.4 Normalization of intonational features 

In orcler t o  assess the quality of the voice transformation we compare the voice clual- 

ity of transfornlecl sentences with the same sentences uttered by the target speaker. 

Since the converted speech is synthetic we cannot compare it with the natural nt- 

terance of the target speaker. Hence we synthesize speech from the pitch, gain 

ancl LPCs extracted from the test utterance of the target speaker using an LPC 

vocoder. By informal listening we compare the trarlsformed speech with the speech 

synthesized using the parameters extracted from the target speaker's utterance. In 

such a comparison, the interspeaker variatio~ls a t  the sul>rasegmental level [nust be 

eliminated fro111 the test utterance, in order to make a good judgement on the  effec- 



tiveness of the transformation done at the segmental level. At the suprasegmental 

level intonation plays a major role in providing an individuality to the speech of 

a speaker. Hence we propose a method by which the intonational characteristics 

in a sentence uttered by both the source and the target speakers are normalized 

automatically. The aim is to modify the intonation pattern of the test utterance of 

the target speaker so that it matches with that of the source speaker. In order to 

normalize the intonation pattern of the target speaker we use the general features 

of the intonation pat,terns of Hindi sentences [34, 351, which are briefly described in 

the following section. The discussion is applicable only for utterances in Hindi. 

5.4.1 Characteristics of intona.tion patterns in Hindi 

This section presents a model for intonation patterns in Hindi [34]. The important 

components in the description of intonation patterns in Hindi are: (i) Declination, 

(ii) Local fall-rise, (iii) Resetting and tapering effect [34, 361. These features inde- 

pendently and collectively represent important linguistic information and character- 

ize an indiviclual's voice. Figure 5.7 illustrated the intonation pattern of a typical 

declarative sentence: 

utrn,c nmar hai s'niir nusviin hai 

soul i~nrnortal is body mortal is - (literal translation) 

The soul is immortal and the body is mortal - (meaning) 

The Fo which sets off (about 115 Hz) from the onset of the ~eriodici ty of the signal 

assumes the maximu~n Fo level (about 170 Hz) at the final syllable of the first word 

(/-~riii/ in/itrnii/). The Fo contour drifts down from this point towards another on 

the initial syllabie of the next content word (/a- / in / a ~ n a r / )  to about 115 Hz. 

Again, it rises towards a higher point (about 130 Hz) in the final syllable (/-rrtar/in 

/ariiar./) of tbe word. The Fo contour falls off towards a lower poilit (about 105 Hz) 

and rises to~vartls another point within the same word (/hai/) and finally it tapers 
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Figure 5.7: Pitch pattern of a typical declarative sentence. 

off to about 110 Hz. The Fo contour 01 the utterance is characterized by a few target 

poirzts. The target points are the local maxima and minima of Fo which result in rise 

and fall of Fo movements. The local minima and maxima are called valleys and peaks 

respectively. They are connected by transition lines. If two imaginary grid lines are 

drawn in a declarative sentence, one connecting all the peaks and the other all the 

valleys, it is possible to say that the Fo contour drifts down as a function of time 

till the occurrence of a major syntactic or semantic break (at the end of/ntrnu alnclr 

hni/ and at tlie end of tlie sentence), which is also marked by a significant pause 

of duration of about 300 ms. The grid lines show an upward trend in  the case 

of interrogative sentences. The valleys and peaks alternate each other till the entl 

of the sentence. They may occur within the region of a syllable or across syllables. 

This is called fall-rise pattern antl this is determined by the phonological patterris of 

tlie constituent words of tlie utterauce and other linguistic factors, The difference 

between the Fo values measuretl at a valley and the following peak is called the Fo 



Figure 5.7: Pitch pattern of a typical declarative sentence. 
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points. The target points are the local maxima and minima of Fo which result in rise 

. 

and fall of Fo movements. The local minima and maxima are called valleys and peaks 

respectively. They are connected by transition lines. If two imaginary grid lines are 

drawn in a cleclarative sentence, one connecting all the peaks and the other all the 

va.lleys, it is possible to  say that the Fo contour drifts down as a function of time 

till the occurrence of a major syntactic or semantic break (at the end of/itmk amat. 

hni/ and at the end of the sentence), which is also marked by a significant pause 

of duration of about 300 ms. The grid lines show an upward trencl i r l  the case 

of interrogative sentences. The valleys and peaks alternate each other till tile encl 

of the sentence. They may occur within the region of a syllable or across syllables. 

This is called fall-rise pattern and this is determined by the phonological patterns of 

the constituent worcls of the utterarice and other linguistic factors. The difference 

between the Fo values measured at a valley and the following peak is callecl the Fo 



range. The Fo range is another important feature which carries a lot of speaker 

specific information and speaking style [37, 38, 391. 

If we assume that the rate of fall of Fo values is constant, then we can model 

the valleys and peaks as points on two separate lines, the base line and the top line, 

respectively. Thus if P l  and P2 are the two peak Fo values measured a t  times T 1  , 

and T2, then the equation of the top line [40] becomes: 

Thus, once we model the pitch contour using the above equation, it is possible to  

predict the Fo va.lue of any peak if we know the position(time) at which it occurs. 

Similarly the base line is modeled by the following equation. 

where V1 ancl V2 are the Fo values of two valleys, and T1 and Tz are the time 

instants at  which these valleys occur. 

5.4.2 An algorithm for intonation normalization 

Figure 5.8 shows the block diagram of the proposed intonation normalization algo- 

rithm. 

From the pitch contours of the target and the source utterances the vowel 

nuclei are identified using an algorithm described in [35]. The pitch values a t  this 

vowel nuclei is consitle~~ed as the saddle points of the entire pitch contour. These Fo 

values correspontling to  the source and the target formants is represented by Fi, for 

i = I ,  2 . .  . N aricl Fi, for i = 1:2. .  . N, respectively. N is the number of syllables 

in the seilteiice. Note that ~~erceptually significant feature in an intonation patter11 

is the relative values of the I?,, llleasurecl at the vowel nuclei arid not the absolrite 

Fo va.lues. Herlce we modify the range that is defined by Fo values measured at the 

vowel nucleus of successive syllables. 
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Figure 5.8: Block diagram showing the various steps involved in 

the proposed into~lation normalization algorithm. 

FA, is not modified. Fi, is ~llodified so that the range between FA, and Fit 

measured in semitones becomes equal to the range between FA, and Fi,. This 

modification is continued till we modify the range between I?:-' and F;. From the 

modified saddle points, Fo values of the other voiced frames are computed using a 

cubic spline interpolation [41]. The detailed algorithm is given in the Figure 5.9 

5.5 Evaluation of voice transformation 

In this section we describe the voice conversion studies perforlned between pairs of 

speakers. The following voice conversions were carried out. 

Case A: Male to Fernale 

Case B: Female to Male 

Case C: Male to Male 

Case D: Fe~nale to Female 



Step I 

Extraction of the source and the target Fo contours 

Step I1 

Identification of the saddle points using the algorithm described in [35] 

The Fo saddle points are given by 

FICA . i = 1 , 2  . . .  N 

Fd't i = 1, 2 . . .  N 

Where N is the number of syllables in the sentence 

Step 111 

Modification of Fdt 

Fit norm = Ftt 

fo r i  = 2 ... N 

begin 

end 

I Step IV 

I Construction of the entire pitch contour 

I Construct the normalizecl pitch contour from the modified saddle point; 

by cuhic spline interpolatioil 

Figure 5.9: Algorithm for intonation normalization scheme. 



The basic objective is to asses the quality of the transformation for all the above 

cases. Speech data corresponding to fifty sentences spoken by two male and two 

female speakers were collected. Formant transformation corresponding to the above 

described types of transformations were captured as mentioned in Chapter 4. The 

Corresponding linear pitch transformations were also obtained. The learned formant 

and pitch transformations were used in the four cases of voice conversion. The 

transformed speech was obtained for the following conditions. 

1 .  Average pitch modification: Speech with modified average pitch and original 

vocal tract system characteristics of the source speaker. 

2. Formant transformation: Speech with original pitch and the transformed for- 

mants. 

3. Average pitch and formant transformation: Speech with modified average pitch 

and transformed formants. 

These were compared with the speech synthesized from the natural utterances of the 

target speaker. The pitch contour used to synthesize this was normalized to match 

with that of the source pitch contour using the algorithm described in Section 3. 

Informal listening shows that for the third case which includes both formant trans- 

formation and the average pitch modification does indeed bring in the characteristics 

of the target speaker in the synthesized speech. 

It was noted that whenever the target speaker is a female, the conversion 

quality becomes poor. This is consistent with the observations in [14, 421. The 

reason for this can be attributed to the general problems in synthesizing female 

speech [43]. The quality of voice conversion was found to degrade in the order 

shown in the Figure .?.lo. 
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Figure 5.10: Figure showing the way in which the quality of voice 

conversion decreases depending on the type of conversion being 

attempted. 

5.6 . Conclusion 

In this chapter we have described a system for incorporation of vocal tract transfor- 

mation to  realize a voice conversion. We have observed that by combining formant 

transformation and LP-synthesis we can develop an effective way of transforming 

the vocal tract system characteristics of the source speaker to  match with those of 

the target speaker. This method uses both the formant and LPC representations of 

the vocal tract system characteristics. The need for normalizing the suprasegmen- 

tal characteristics for evaluating the effectiveness of conversion has been discussed. 

We have also proposed an algorithn~ to normalize the intonation patterns of the 

transformed and the target speech. Informal listening showed that the quality of 

transformation is highest while converting female voice to male voice. We have 

observed a degradation in the quality of the transformed speech when the target 

speaker is female. 



Chapter 6 , 

Conclusion 

6.1 Summary 

In this thesis we have addressed issues related to the problem of voice conversion. 

The various factors responsible for voice characteristics ivere discussed. Since the 

speaker characteristics at the linguistic and suprasegmental levels are learned fea- 

tures, it is difficult to model interspeaker variations at these levels and capture 

them as transformations. Voice characteristics at the suprasegmental level can be 

captured only by manual analysis of large amount of speech data. However speaker 

characteristics at the segmental level can be attributed mainly to variations in the 

characteristics of the vocal tract system and thus can be modeled as a transformation 

operations. The specific objective of the work was to capture the transformation of 

the vocal tract system characteristics between two speakers, so that the speech of 

the source speaker can be transformed or modified to incorporate the features of the 

target speaker. 

We have used linear function approximation to capture the formant transfor- 

mation corresponding to steady vowels. We have found that even for steady vowel 

sounds the formant transformation is highly nonlinear. Approximating the trans- 

formation by piecewise linear transforms results in discontinuities in the formant 



contours. Moreover, to apply this piecewise linear transformation to any set of 

formants, we should know the vowel class from which the formants were extracted. 

A multilayer feedforward neural network with nonlinear processing elements 

can capture any arbitrary input output mapping function. We have proposed such 

a network to capture the implicit formant transformation function across the source 

and the target formants. We have demonstrated that such a network is capable of 

reducing some of the problems in linearly approximating the formant transforma- 

tion. Even though a neural network is capable of transforming formant transitions 

without introducing discontinuities into the formant contour, the transformed for- 

mant transitions were steeper than the target formant transitions. The failure of the 

neural network for capturing the formant transitions shows the lack of generalization 

capability of the trained network. The main reason for this lack of generalization is 

due to poor representation of the transformation information in the training data 

set. The generalization capability of a network can be improved by using a more rep- 

resentative set of training data. For this we have used formants extracted from the . 

steady vowel regions occurring in continuous speech for training the network. The 

advantage of using such a training data set is the variability introduced into the data 

set which will help improve generalization. We have demonstrated that a feedfor- 

ward network trained with the above mentioned data set provides an improvement 

in generalization capability and thus can transform formant transitions faithfully. In 

this context we have suggested a method for measuring the generalization capability 

of a network trained to capture the nonlinear formant transformation, by testing the 

network using synthetic formant transitions. 

Finally we have discussed issues in incorporating the formant transformation 

into a voice conversion system. Since it is easier to synthesize better quality speech 

with LPCs, we have proposed a method for modifying the LPCs to transform source 

formants to match with those of the target. This method of transforming the vocal 

tract system characteristics takes into account the advantages of two different meth- 

ods of representing the vocal tract system, ,namely, using LPC and using formants. 



6.2 Future directions 

The objective of the thesis was to capture the implicit nonlinear transformation of 

the vocal tract system characteristics across speakers. We have focused only on the 

transformation of formant frequencies, where as formant bandwidths also contribute 

to the voice characteristics [44]. Thus extraction and transformation of fwmant 

bandwidths can improve the quality of the transformation. Similarly nasalization 

is another factor which is used by humans in differentiating speakers from their 

voices. The dynamics of the glottal source also contributes to voice characteristics. 

If one could extract parameters corresponding to these features and transform them 

reliably, then the quality of voice transformation will improve significantly. The 

main difficulty in the use of these features for voice conversion is lack of reliable 

algorithms to extract parameters corresponding to these features. 

Even though in this work we have focused only on the segmental aspects of 

voice conversion, the intricate speaker characteristics lie at  higher levels of knowledge 

(linguistic and suprasegmental levels). Moreover humans extensively use the speaker 

characteristic5 at  these levels for identifying speakers from their voices. Hence for 

accomplishing the task of voice conversion it is very important to analyze and model 

the speaker characteristics a t  the linguistic and suprasegmental levels. 

We have estimated the quality of the voice transformation by informal listening 

tests. A challenging problem in voice conversion is to develop an objective measure 

of voice characteristics. 

As far as voice conversion at  the segmental level is concerned, it is evident 

that the limit on the quality of conversion is set by lack of reliable methods for 

extracting speaker dependent parameters from speech on the one hand and by the 

quality of the synthetic speech on the other hand. Thus it can be concluded that 

any improvement in the field of parameter extraction or speech synthesis will lead 

to an improvement in the quality of voice transformation. 
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