GENERALIZATION CAPABILITY
OF FEEDFORWARD NEURAL NETWORKS
FOR PATTERN RECOGNITION TASKS

A THESS
submitted for the award d the degree

of

MASTER OF SCIENCE

by
NEEHARIKA ADABALA

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, MADRAS.

AUGUST 199%



giffmey  adwEsd |
AGA=SALIHE AR T T4 1891

sarvendriya-guna-drastre
sarva-pratyaya-hetave

asatd cchayayoktiya
sad-abhasdya te namah

sarva-indriya-guna-drastre—unto the seer of all objectives pursued
by the senses; sarva-pratyaya-hetave—who is the solution to al doubts
(and without whose help one cannot solve all doubts and inabilities);
asata—with the manifestation of unreality or illusion; chayayd—Dbe-
cause of the resemblance; uktdya—called; sat—of reality; dbhasaya—
unto the reflection; te— unto You; namah—1 offer my respectful obei-
sances.

TRANSLATION

My Lord, You are the observer of al the objectives of the senses.
Without Y our mercy, thereisno possibility of solving the problem
of doubts. The material world is just like a shadow resembling
You. Indeed, one accepts this material world as real because it gives
a glimpse of Your existence.

Srimad-Bhagavatam [Canto 8, Ch. 3



THESIS CERTIFICATE

This is to certify that the thesis entitled Generalization
Capability of Feedforward Neural Networks for Pattern Recognition
Tasks submitted by Neeharika Adabala to the Indian Institute
of Technology, Madras for the award o the degree o Master of
Science is a bona fide record of research work carried out by her under my
supervision. The contents o this thesis, in full or in parts, have not been
submitted to any other Institute or University for the award of any degree or

diploma.

Madras 600 036 (B.Yegnanarayana)

Date: A'VJ', 5_, L1996



To my parents



ACKNOWLEDGEMENTS

| gratefully thank my supervisor, Prof. B. Yegnanarayana, for his valuable guidance,
and the time he spent in discussions with me despite his busy schedules. His dedication
to work will always inspire me.

| thank my GTC members for their encouragement.

| thank, Mr. Manish Sarkar, for introducing meto theinteresting field of fuzzy theory,
and for the useful discussions | had with him.

| thank all the members of Speech and Vision Lab and Microprocessor Lab for the

times they have helped me. | also thank my friends who have made my stay in Madras
an enjoyable one.



ABSTRACT

One of the main advantages o Artificial Neural Networks (ANN) approach to pattern
recognition task is the ability to learn from a few examples and generalize to give correct
output for new examples. This property, known as generalization, is the focus d this
work. There are various types of pattern recognition tasks. Generalization is possible
in these pattern recognition tasks because of the presence o features in input data. In
this thesis, we focus on the generalization capability of feedforward neural networks for
pattern association tasks.

Although we expect good generalization performance o feedforward neural networks,
it isnot always possibleto realizeit. Analytical studieson the generalization studies make
use o a model o learning from examples o synthetic data, which may not contain any
features. Thus, the results obtained have limited application to many real world pattern
recognition problems.

Practical implementations df learning from examples minimize certain objective func-
tions in order to achieve better generalization. Methods to improve the generalization
capability o neural networks involve manipulation o the parameters o the network so
that better minimization o the objectivefunction is achieved. The use o variable block
sizes d data is suggested to improve the minimization o the objective function. But
convergence to low value o the objective function does not aways guarantee good gen-
eralization, as it may result in overtraining. To overcome this problem use o weight
perturbation method and an alternative stopping criterion to error minimization are sug-
gested. In all these methods, no importance is given to the features present in the data,
and hence, there can only be a marginal improvement in the generalization. Apart from
this, an objective function obtained from theoretical studiesis used to evaluate the gener-
alization capability o the network. An alternative method to quantify the generalization,
called fuzzy generalization index, is proposed.

Generalization capability d a neural network can be significantly improved by ap-
proaches which incorporate knowledge about the problem into the neural network. Incor-
poration df knowledge into the network enables us to take care d the presence of features
in the input data. The resulting generalization behavior is then comparable to the case
d modeling d a system represented by data. This kind d behavior is preser * - some



extent in Radial Basis Function Neural Networks (RBFNN). The closeness property is
incorporated, as knowledge about the problem, into the first layer of the RBFNN for
clagsification tasks. When RBFNN is used for function approximation, the knowledge in
the form of smoothness property o the function is incorporated into the networli using a
regularization term.

Knowledge about the problem can also be used for obtaining proper representation
of data, to achieve good generalization. Here the data representation has to be chosen
such that the network is able to capture the features present in the data rather than
memorizing thedata. 'Thisisillustrated by considering speech data. It isobserved that the
generalization performanceis better wher features that primarily represent the vocal tract
system are used rather than when features that primarily represent the signal are used.
Thus, the need to adopt a problem dependent approach to obtain good generalization in
neural networks is brought out in this study.
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Chapter 1

INTRODUCTION

1.1 Concept of Generalization

Generalization is an intuitive concept unique to human learning. For example, we learn
the concept o addition of numbers by looking at several examples of addition along with
some explanation provided by the teacher. Likewise, we learn the concept embedded in
the written character, by observing and by writing several examplesd the same character.
We also learn the concept of a curve or a surface by observing several samples (sometimes
noisy) of the points on the curve or the surface and with the additional knowledge o
the class or classes of the objects to which the curve or surface belong. Thus learning
from examples with additional knowledge many times forms the basis o the concept o

generalization.

Generalization in learning from examples is possible because o some inherent features
embedded in the input patterns or because d some constraints inherent in the mapping
function. Learning and hence generalization, is not possible if weare presented with a set

of random dataas our examples. Thus, al problem situations are not generalizable.

Once we have learnt, that means we are capable of dealing with new situations such
as a new addition problem or a new sample d character or a new point on the curve or
surface. Our ability to deal with new situations can be evaluated by testing ourselves with
several new examples, for which we know the answers for comparison. If our performance
with this so called test data is better then we can say that out ability to generalize is
better.

In most pattern recognition tasks, the performance o the pattern recognition system
depends on its ability to generalize from training examples. Generalization concept isin-
volved in all pattern recognition tasks, such as classification, mapping, storage, clustering,

etc.



1.2 Generalization in Pattern Recognition Tasks

Pattern recognition has been an active area of research over the past few decades [6],
[13]. Pattern recognition is a key element of many engineering solutions [4], e.g., speech
recognition [43], image processing [53], [46], diagnostic application, seismic studies. Pat-
tern recognition has been extensively studied because of this wide range of applicability.
Pattern recognition tasks are broadly categorized into three different types [58], [19].

namely:

1. Clustering: Data Clustering aims at discovering and emphasizing structure which
is hidden in a data set [7], [28]. The structural relationships among individual data
vectors are detected in an unsupervised method. In clustering the patterns of the
same cluster possess some characteristics that make them exhibit some structure
spatially. Generalization is possible here because new patterns have features similar

to some known patterns, thus enabling the assignment to an existing cluster.

2. Pattern Storage/Retrieval: The task hereisto store the patterns, and retrieve
the corresponding original pattern when a partial/distorted pattern is given [19],
[20]. This process by which an original pattern is recovered from a partial/distorted
pattern can be viewed as generalization. Here it is possible to recover the original

pattern because of features present in the given partial/distorted pattern.

3. Pattern Association: Here we associate with each pattern a corresponding re-
sponse which may be interpreted as another pattern. Generalization is possible in
these tasks because of presence of features in the data or because of certain charac-
teristics in the mapping function between input and output patterns. Generalization

for these kinds of problems forms the focus o this work.

1.3 Generalization Capability of Neural Networks

Various approaches to solve pattern recognition problems are investigated in literature
[6], [53], [32]. Machines are still not able to perform pattern recognition tasks as effi-
ciently as human beings do. This led to the development of the field of artificial neural
networks that make use of mathematical models inspired by the functioning of the bio-

logic | neural networks. An artificial neural network (ANN) can be defined as a system of



interconnected processors (p;) or nodes [31]. The network has n inputs, which correspond
to the elements of an n-dimensional input vector x € ", and one or more output nodes.
Each processor or node p, has associated with it a vector of weights w, having real valued
elements. Various types of neural network architectures have been developed to solve dif-
ferent pattern recognition problems [58], [33]. Fig.1.1 illustrates a typical neural network
with both feedback and feedforward connections. The ANN approach to pattern recogni-
tion problems has many advantages, namely, ability to deal with a wide variety of data
(probabilistic, fuzzy and noisy data), fault tolerance, parallel processing, ability to learn
fromexamplesand 'generalization'capability [25]. Most pattern recognition problems are
too complex to solve entirely by handcrafted algorithmsto take care o all the variations
in data explicitly. Therefore, the ability of neural networks to learn from examples 1s a
promising alternative [32]. Generalization capability of an ANN refers to its ability to
learn from a few examples and give the desired output for samples that were not used in
its learning phase [25]. Generalization is an important property in the context of learn-
ing from examples or modeling from examples, where we use a few examples to develop
a model, that is able to give the desired output for patterns that were not used in the
learning or modeling phase. This property isimportant because most pattern recognitioii
tasks involve a variety of data, and it is not possible to train the neural network on all

the examples.

ANNs offer promising results in a wide variety of recognition tasks. In this thesis
we investigate the generalization capability of feedforward neural networks for pattern
association tasks. In thefollowing section we describe various kinds of pattern association

tasks.

1.4 Pattern Association by Neural Networks

Pattern association problems involve association of input vectors with output. vectors.
The neural networks that are used to solve the pattern association problems capture the

input-output relation. Pattern association problems are  two major types:

1. Problems where it is possible to list all input-output pairs, for example, XOR prob-

lem.
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Figure 1.1: Typical neural network: with three inputs z; to z3 and three

outputs y; to y3. The processors or nodes are denoted by p; to ps.

2. Problems where it is not possible to list all the input-output pairs, for example, a

large dimension parity problem.

In thefirst caseall the patterns and the corresponding outputs can be stored and recalled,
whereas it is not possible to do so in the second case. In the latter case, we require
the neural network to give the desired output for inputs, without actually learning all
possible input-output pairs. The network should capture the desired characteristics of all
inputs from a few examples so that it can perform the desired association, 1.e., it should

generalize.

It is not always possible to generalize from a few examples [25]. Some examplesof the

problems where it is not possible to generalize are:



e An unsmooth mapping function where there is no apparent method to interpolate

between given examples of the function.

e A large dimension parity problem where the feature is deep and hidden due to many

surface features.

e |nput-output associations like names and numbers in the telephone directory where
there is no common property to capture from examples in the training set and

generalize to yield the desired output for examples not present in the training set.

There exist various types of pattern association problems, where generalization is
essential. In this thesis we focus on two types of pattern association tasks, namely,
pattern classification and pattern mapping/function approximation, where generalization

is possible. These tasks are described in the following two subsections.

1.4.1 Pattern Classification

In this type of pattern association problems we learn a many-to-one mapping from a
training set consisting of input-output .pairs. The grouping of inputs is done based on
some underlying similarity in theexample. Heregeneralization is possible because of the
common features in the patterns of the same class which are transformed into proximity

in some feature space.

1.4.2 Pattern Mapping/Function Approximation

In these problems, we are given a training set consisting o examples of an unknown
function f(x) in the form of input values of X and corresponding output y. A pattern
association system is required to approximate this function based on the training set,
such that it gives the desired output for samples not present in the training set. That is,
generalize from a few examples to find the desired function f(x). This is possible if the
function f (x)exhibits smoothness. It shouid be noted that, the roughness o the function

being approximated determines the scope for generalization.

Table 1.1 summarizes the properties which enable neural networksto generalize in the

context of various pattern recognition tasks.



Pattern Recognition Tasks Reason wWhy Generalization is Possible

|. Pattern Clustering Common structure in data belonging
to same cluster.
2. Pattern Storage/Retrieval Features in the partial/distorted pattern.
3. Pattern Association
e Tasks where generalization Random associations with no features
is not possible involved or tasks where the features
are deeply hidden.
e Tasks where generalization
IS possible
- Pattern Classification Similar features in the patterns of same class.

- Pattern Mapping/Function Smoothness in the mapping function.

Approximation

Table 1.1: Properties which enable neural networks togeneralize in the context

of various pattern recognition tasks.

1.5 Scope of this Thesis

In this thesis we address the issues of generalization in feedforward neural networks for
pattern recognition tasks. First a conceptual understanding of generalization in the con-

text of various pattern recognition tasks is provided.

The property of generalization is discussed from the point of view o learning from
examples. The model of learning fromexamplesis discussed along with results of some an-
alytical studies on generalization. Limitations of the current implementations of learning

from examples with respect to the issue of generalization are discussed.

Some methods of improving generalization capability are studied. Limitations of
problem-independent methods for improving generalization are discussed. It is shown
that an intuitively good generalization can be obtained only if knowledge of the problem
isincorporated into the network. Methods for improving generalization in pattern map-
ping and pattern classification tasks are presented. The results are discussed with special

reference to problems in speech recognition.



Fig.1.2 gives a brief overview of the work presented in this thesis.

1.6 Organization of the Thesis

In this chapter we have presented the conceptual understanding of generalization in the
case Of pattern recognition tasks.

In chapter 2 we present the theoretical studies on generalization. A model of learn-
ing from examples and some theoretical results are reviewed. Limitations in practical

application of the theoretical studieson generalization are discussed.

In chapter 3 we propose problem-independent methods for improving generalization
capability of neural networks. A new method of quanlifying generalization capability
that makes use of fuzzy set theory is proposed. Limitations of the suggested method are
discussed.

In chapter 4 the problem dependence of the generalization phenomenon is described.
The desired generalization behavior of neural networks is discussed by considering an
analogy with modeling of a system represented by data. We focus on the pattern mapping
and pattern classification problems.

Chapter 5 illustrates studies on problem-dependence of generalization with examples

from speech recognition problems.

We summarize the work in chapter 6 and propose suggestions for future work.



for Pattern Recognition Tasks

1. Concept of Generalization in Pattern Recognition Tasks: Clustering,

Pattern Storage/Retrieval and Pattern Association
2. Analytical Studies: Computational learning and Statistical approach
e Consider synthetic data and artificial pattern associations
3. Generalization in Feedforward Neural Networks:

e Problem independent approaches to improve generalization:

— Multiple block update mode
— Weight perturbation approach

— Alternative stopping criterion
e Alternative method to quantify generalization

— Fuzzy generalization index

4. Problem Dependence of Generalization:

e Anaogy with modeling of a system represented by data
e Problem-dependent methods of improvement o generalization
— Pattern Classification: Radial Basis Functions for classification

— Pattern Mapping: Regularization

5. Application to Speech:

® Pattern Classification: Vowd classification

e Pattern Mapping: Voice Conversion

Figure 1.2: Overview o the ideas described in this thesis.




Chapter 2

GENERALIZATION: REVIEW OF SOME
ANALYTICAL STUDIES

2.1 Introduction

In this chapter some analytical studies on the property of generalization are reviewed.
Although a relatively small fraction of the overall work done on neural networks is on
theoretical analysis of generalization, these studies are marked by a variety of approaches.
Some of the significant approaches are the computational learning theory approach [16],
[5] and the statistical approach [27], [49]. These studies consider synthetic models of
pattern recognition tasks and analyze the behavior of learning modelsfor such tasks. The
learning model s optimize certain objectivecriteriaformulated with respect to thesynthetic
data. The studies on generalization try to predict the generalization performance of the
learning model. In this chapter we review some analytical results on generalization which
give us an idea of the factors on which generalization capability depends in the existing

approaches of learning from examples.

In section 2.2 we review some measures of generalization which are necessary for
studies on generalization. A model of learning from examples is presented in section 2.3.
Theoretical results obtained from computational learning theory approach and statistical
theory approach are reviewed in section 2.4. A discussion on these results and their
limitations, including reasons for the lack of direct applicability of the results to real
world pattern recognition tasks is presented in section 2.5. Section 2.6 gives a summary

of this chapter.



2.2 Overview of some M easures of Generalization

In order to study generaiizaiion capability we should be able to quantify it, that is, it
should be possible to evaluate a network and decide when its generalization is 'good'.
However, the notion of 'good' or 'reasonable’ is itself not well defined. It varies from
person to person and is problem dependent. For example, when the desired output is
obtained on most occasions it is considered as 'good' generalization certain times, while
in certain other types of problems generalization is considered to be 'good' if the network
gives the desired output for a very rare situation which never occurred before. Various
methods of measuring generalization are used in practice [34], [38].

In thissection wegivea brief overview o somed themeasuresthat are used to quantify
generalization. The subsection 2.2.1 is on Kullback-Leibler Measure, which is difficult to
implement as it requires prior knowledge about the actual function being realized. In
subsection 2.2.2, the Cross-Validation measure is described which can be implemented in
practice but is computationally expensive. The generalization measures that are used in

theoretical studies are presented in the section 2.2.3.

2.2.1 Kullback-Leibler Measure

The measure discussed in this subsection is defined for networks used for classification
purpose. When a neural network isanalyzed as a classifier we can view it as a probabilistic
model which captures the probabilistic behavior of thesystem that generates the examples
used for training. From this point of view, a measure o generalization is defined which
measures the difference between theactual probabilisticsystem parametersand thesystem
obtained by training the neural networks on the training examples [18]. This method of
measuring generalization is caled Kullback-Leibler measure and is defined as follows:

The class conditional probability distribution of the sample space is given by = (y|x),
the probability distribution of X is«(x) and the joint probability distribution is 7(x,y) =
m(y|x)m(x). It is assumed that y given X is identically independently distributed (%.i.d).
The function approximated by the neural network, after training, is given by fw(y[x),
where w is the weight vector o the neural network that is available to adjust and min-
imize the error function according to the training set Ty = {(x1,¥1),..., (X, ¥%)} coOn-
sisting of k examples. The Kullback-Leibler measure gives the distance between the two



functions = (y|x) and f, (y|x). This can be exploited as a measure of generalization error
because it gives how well the actual system generating the examples is approximated.
Mathematically, the Kullback-Leibler measure (ex) is given by the following equation:

ew = — [ n(x, Sw(ylx)n N
= [ oo | S 2

where the integral is over the input-output space. The equation (2.1) can be written as.

ext = ~ E [log (fu(y[x))] + E [log(r(y[x))] (2.2)

in which the expectation is with respect to (X,y).

The value of e IS equal to zero when the function approximated by the neural net-
work is equal to the actual function, i.e., fw(y|x) = #(y|x). As the weights w are
adjusted according to a, training set Ty which has examples selected at random, the term
—E[log(fw(y|x))] isarandom variable. Therefore, thefirst term in equation (2.2) can be
used to define the generalization error (Er) as follows:

Er = —E[log(fu(ylx))] (2.3)

with expectation taken over (x,y) in 7.

The Kullback-Leibler measure requires us to know the underlying probability distri-
bution =(x,y), which is unknown in most cases. Therefore an alternative method of
measuring generalization is needed. One such measure, the cross-validation measure is
discussed in the following subsection.

2.2.2 Cross-Validation Measure/Error Rate

Cross-validation is a method of estimating the generalization error by making use of the
training/test data [34]. In this method, generalization error, Er, given by equation (2.3),
can be estimated as follows:

1 .
Eremp(Tk, [W]) = % > log(fw_i(yilxi)) (2.4)
(xi,y:)€T:

Notation Er.n, iS used because it gives an empirical estimate of Er. In the equation
(2.4), w_; is the weight vector obtained by learning a training set 7, with its ith sample



deleted. Here |w| indicates number of adjustable parameters, i.e., weights [w| € M where
M is a set of all models under consideration. The weight vector w_; is called jack knife
estimator. The above formula gives an estimate of the average predictive error on all
examples, and —log( fw_, (y:|x:)) is the estimate of the predictiveerror on the ith sample
by the rest of the samples in the training set, which are used to calculate the optimal
weights w_;. It can be shown that Er.., is an unbiased estimate of the generalization
error Er as follows:

1

E(Ereny (T WD = =7 3 E [log(fu_.(yilx)] (2.5)
(xi,y:) €Tk

= —E [E(log(fu_,(yilx:)))] (2.6)

~ —FE[Eemp (Tk,|W|)] = Er (2.7)

In equation (2.5) the expectation is taken with respect to (x,y) in Tx. Equation (2.7)
is obtained by using equation (2.4) and equation (2.3). For test data S, = {(xi,y;),t =

1,...,n} we have the expectation of error on test data set as,
1
El—— > log(fw(yilx:))| = —E[log(fw(y1x))] = E [Eremp(Tk, [w])]  (2.8)
(%i,¥:i)ESn .

which is the expectation taken with respect to (x,y) in T, S,. Thus, Ere,, is also
an unbiased estimate of the expectation of the error on the test data set. Due to these

properties we can use Er.,,, as an unbiased estimator of the generalization error.

But this method of cross validation to estimate generalization error involves training
the network again. and again by deleting different data examples from the training set.

Thisis a time consuming and a computationally expensive procedure.

The most commonly used measure of generalization for pattern classification task
is the percentage misclassification of the test samples or the error rate measure. It is
assumed that the test samples are not used for the training of the network. This measure
is extensively used because it is simple and easy to implement. It can be viewed as a
variation of the cross validation measure.

In the following subsection we define some of the measures of generalization that are
used in theoretical studies.

12



2.2.3 Other Measures of Generalization

Generalization error can be measured by considering it as the probability that the network
trained on k examples o the training set gives the output for the (k& + 1)th sample
incorrectly [2], [23]. If we represent this error by e,(w, k) then it isgiven by thefollowing

equation:

eg(W, k) = Pr{fw(Xk1) # Yk+l}] (2.9)

where f, isthe function output calculated by the neural network with weights equal to
w. When the probability of misclassification is high the generalization error value given
by the above equation is high and vice versa.

Another method of generalization measureis to consider the entropic error or entropic
loss [26]. It is defined as the negative logarithm o the probability of correct classification
of (kT 1)th pattern. That is, if entropic error is denoted by e;(w, k) then,

eg(w,k) = —log(Probability of correct classification)
= —log(1 — Probability o wrong classification)
= —log(1 — e,(w,K)) (2.10)

It isclear that when the probability of correct classification isone, thevalue df the entropic

error is zero.

As methods to quantify generalization are known, we give a learning model in the
following section which abstracts the process of learning and makesit possible to theoret-
icaly study the concept of generalization. The model of learning from examples makes
it possible to theoretically study the process of learning by using some of the measures
discussed in this section.

2.3 Model of Learning from Examples

Learning from examples is a complex process which is not easy to understand. In order to
analyzeit, a rnodel of iearning from examplesis used. One of the main results of learning
from examples is the ability to generalize to give desired output for examples not used
for learning. Thus, studies of generalization make use of a model of learning, and the



key idea is to compute the probability that the network gives the correct output for new

samples after learning from a training set.

The concept o learning from examples is modeled through three components:

1. A system which generates random vectors on some fixed unknown probability dis-
tribution = (x).

2. A supervisor that returns an output vector y for every input vector x according
to a conditional probability distribution function =(y|x), which is aso fixed but
unknown. This includes the case when the supervisor uses a function y = f(x).

3. A learning machine capable of implementing a set of functions f(x,w), w € A,
where A is the parameter space of learning machine.

Learning consists of selecting a function from a set of functions the learning ma-
chine can implement, such that the response of the machine is similar to the super-
visor's response. This selection is done by using a training set of & :.z.d observations
Tr = {(x1,¥1),...,(xk, ¥&)} drawn according to 7(X,y) = x(x)r(y|x).

In order to choose the best approximation to the supervisor's response the difference
between the output o the learning machine and the supervisor is minimized. Let = (z)
represent the probability distribution on input-output space Z. Consider aset of functions
Q(z,w), w € A. Thegoa isto minimize the risk functional,

R(w) = /Q(z,w)dw(z) weA (2.11)

If the probability measure x(z) is unknown, the minimization is done on a set of ¢...d

examples z,, z;, ... ,2zx Where z is an example from the input-output space, i.e., (x,y).

All learning problems are particular cases of this general problem of minimizing the
risk functional on the basis of empirical data. Learning theory addresses the following

issues with regard to the model of learning from examples given above,

1. Consistency of learning process.
2. Rate of convergence of learning process.

3. Generalization ability of learning process.



4. Development of learning algorithms.

Details about issues 1, 2 and 4 can be found in {55] and references thereof. In this work
we concentrate on the third issue. Variations of the model of learning from examples
presented in ihis section are analyzed to obtain results on generalization. Some analytical

results on generalization are reviewed in the following section.

2.4 Some Results from Theoretical Studies on Gen-
eralization

At present there is no single complete theory of generalization, because theinterpretations
given to the functioning of the neural network vary. In the following two subsections we
state results obtained from theoretical studies o networks using different approaches o

analyses.

2.4.1 Results from Computational Learning

The discussion in this section makes use of the following intuitive idea of generalization
[21]: Consider a network which has been satisfactorily trained using a sequence of training
examplesfrom a particular problem. If thereisa'high enough', probability that the actual
error of the network for future samples drawn from the same problem is 'small enough'

then we say that the network generalizes.

This idea of the concept of generalization is used in the Probably Approximately
Correct (PAC) learning theory [16], which is based on the learning model introduced
by Valiant [54]. In this section we define some terms that are essential to understand
the theoretical results obtained in PAC theory. We give the definitions that follow in
the context of neural networks for easier understanding. In the following definitions, F
denotes the class of functions that can be implemented by a neural network, and fw
representsone of the members of this class for a particular value of weight vector w. Sis
the input space.

Definition 1= (Dichotomy) Given a finiteset S € " and some function fw € F, we
define the dichotomy (S*, S™) of S, where S* and S~ are disjoint subsets & S, such that,
StUS- =Sand x € St if fu(x)=1, whereas, X € S™ if fw =0.



Definition 2: The hypothesis h,, associated with a function fw is the subset o R" for
which fw(x)=1, that is,

he = {x € R"|fw(x) =1} (2.12)
The hypothesis space H computed by the neural network is the set given by,
H = {hy|w € R* (2.13)

It isthe set of all hypothesis, where |[w| is the total number of weights in the network.
Definition 3: Given a hypothesis space H and a finite set SC ", we define Ag(S) as

the set,
Ap(S) = {hw N S|hw € H} (2.14)

We say that Sis shattered by H, if Ag(S) = 2!SI where |S] is the number of elements of
theset S.

Definition 4: (Growth Function) The growth function, Ag(?), is defined on the set
of positive integers as,

Ap(i) = _max (|Ax(S)]) (2.15)

SCRn |S|=i

The growth function gives the maximum number of distinct dichotomies induced by H
for any set of ¢ points.

Definition 5 (Vapnik-Chervonenkis Dimension) The Vapnik-Chervonenkis dimen-
sion or VC dimension of the hypothesis space H, denoted by VCdim(H), is the largest
integer i such that Ag(z) = 2'. In the case when no such ¢ exists VCdim(H) is infinity.

A hypothesis space, H, is directly related to a class o functions, 3,s0 we can apply

the definitions of growth function and VC dimension to 3.

Fig. 2.1 illustrates the shattering of 3 noncolinear points by straight lines. A set of 3
noncolinear points isthe largest set of points that can be shattered in 2 dimensional space
by straight lines, thereforethe VC dimension of the set of straight lines with respect to a
set of noncolinear points in 2 dimensional space is 3.

VC dimension is a combinatorial parameter which measures the expressive power o

the network. VC dimension has been used extensively to obtain results that tell us about



Figure 2.1:. Shattering o three noncolinear points by straight. lines. Thus
VC dimension is three for straight lines in two dimensional space on a set o

noncolinear points [25]

the ability of a classifier to generalize after it has been trained [5], [50], [3]. It has been
shown [5] that it is not the sizedf the set of computable functions but the VC dimension
of the functions that is crucial for good generalization, in the context of PAC learning
model [5]. The resultsthat follow use probabilistic definition of generalization error, given
by equation (2.8), and give the worst case bounds o this error. The following key results
on the bounds of the generalization error are given by Haussler, et a. [17]:

VCdim(L)

2.1
k+1 (2.16)

E[ey(w’ k)] <

where E is the expectation, £ is the class of target functions and & is the number of

training patterns.
The bound given in the equation (2.16) has been further improved and is given by

1 VCdim(L)

Bleg(w, k)] < 57

(2.17)

The results given by equation (2.16) and equation (2.17) are tighter bounds on the gen-

eralization error than the more powerful results obtained previously by Haussler et al.



[15] where fewer assumptions are made. It should be noted that the results given above
are obtained by assuming that the neural networks performance is optimum when it im-
plements a Bayes Optimal Classification algorithm [13]. The Bayes optimal classification
algorithm makes use of finite training set to give an optimal prediction for a new sample.
and it is different from a Bayes classifier that requires complete statistics of a classification
problem. The use of £, aclass of target functions, models the fact that the classifier can

be applied to a selection of different problems.

These results have been compared with the performance o neural networkson a classi-
fication task and the second bound has been found to be a moderately good approximation
of the worst case generalization error {22]. The experiments conducted by Holden and
Niranjan {22] were performed on Peterson/Barney Data which is real data unlike the

synthetic data which is considered for analysis.

Themain problem with the resultsgiven aboveisthat the VC dimension of thefunction
that we are approximating, is required. But this function is unknown. Consequently, the
value of the bound cannot be calculated correctly. Apart from this, the calculation of VC
dimension of various classes of functions is not easy. VC dimensions of some classes of

functions are given in [2], [50], [57].

2.4.2 Theoretical Results on Asymptotic Behavior of Learning

Curves

When the performance of the neural network is plotted against the training patterns
then the resulting curve is known as a learning curve. The learning curve shows how
quickly a learning network improves behavior that isevaluated by the generalization error
[27]. Thus, study of the behavior of the curves gives us an idea about the generalization
capability.

A universal result on the behavior of the entropic error e;(w, k) with increase in the
training examplesin the training set isgiven by Amari [26]. Accordingto this result, when
every weight of a neural network is contributing to the performance of the neural network,

that is under the condition o regularity, theentropic learning curveisasymptotically given
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(ex(w, b)) ~ 1 (2.18)

where |w| stands for number of weights, k isthe number of patterns the network is trained
on and (e;(w, b)) indicates the average over al training with different training sets. It
should be noted that this result isindependent of the architecture of the neural network

and the learning algorithm used to train it.

2.4.3 Discussion

In the above two subsections we gave two results on the behavior of generalization error.
In this section we bring out some similarities in the results which were obtained from

different approaches of analysis.

The VC dimension of a network can be regarded asa measure df capacity or expressive
power of a neural network. The number of weights also indicates the capacity of a neural
network. So both the results show that the generalization error is directly proportional
to the capacity of the network. Moreover, both results show that the generalization error

isinversely proportional to the number of patterns used to train the neural network.

It has been shown that, in case of Radial Basis Functions Neural Networks (RBFNN),
lw| — 1 < VCdim(F) < |w|, where Bis the family of functions that a network can
approximateand |w| isthe number of weights [2]. Inthecasedf polynomial basis networks,
VCdim(F) = |w|. Based on the above results on VC dimension one can see that, the
bounds o the generalization error obtained from computational learning and the behavior
d the learning curves essentially give similar results. But, in computational learning the
worst case behavior of the error is studied whilein the latter case the average behavior is
analyzed [21].

Relationship between these theoretical methods are discussed by Sueng et al. [49]. In
the following sections we present the limitations of the theoretical studies with respect to

real world pattern recognition problems.
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2.5 Limitations of Theoretical Studies

As generalization capability of a neural network is an important property, it is useful to
have analytical results which can be utilized as tools in the design of neural networks for
practical applications. But the analytical results presented in this chapter are not directly
applicable for this purpose because of the following reasons:

e They are obtained by considering synthetic data generated by a model or by con-
sidering random data associations that do not model actual pattern recognition
problems which exhibit some features that can be generalized in them. All bounds,
on the number of training examples needed to guarantee good gener lization are
found to be large compared to the number of examples that are usually required
in practice. Thisis mainly because random associations of data are also consid-
ered while finding the bounds. Apart from this, theoretical studies usually make an
assumption of noise free data which is an unlikely situation in real world pattern

recognition problems.

e The learning process is tailored to the synthetic data. Usually such data does not
exhibit features. Consequently, the objective functions which are minimized during
the selection of the parametersfor the learning machine are not designed to capture

the featuresin the data, that enable generalization.

e One of the key assumptions, that is made in analytical studies of generalization
in neural network, is that every weight contributes to the approximation of the
function. But when large networks are considered, one cannot ensure that every
weight is contributing to the function approximation. Some weights mayahave values
that negate the effect of each other during the calculation o the output, so they just
bal ance each other, and thus do not contribute to the function approximation. Such
weights contribute to the variability of the output of the neural network for samples
not encountered during the training phase. Hence, theoretical studies cannot give

accurate results with regard to such networks.

Thus, it can be concluded that the theoretical studies make several assumptions. that
are not usually accurate in practice, to obtain results. Also, another main reason for

their pessimistic prediction of bounds on the geueralization error, is due to considering
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simulated/synthetic random pattern associations which cannot be generalized without a.

large number of examples.

2.6 Summary and Conclusions

In this chapter we have briefly reviewed some of the recent theoretical results on the

generalization capability of neural networks.

Sinceit is not possible to study theory on generalization without quantifying general-

ization, we initially gave an overview of some measures of generalization.

Then we described a model of learning from examples used in theoretical studies.
Some attempts to provide a theoretical framework for the concept of generalization were
discussed. To provide a theoretical framework for the study of generalization in pattern
recognition tasks, synthetic models of pattern recognition tasks are assumed. The train-
ing data is generated from these models with some assumed characteristics. Measures o
generalization are proposed based on some objective criteria, and the performanceof gen-
eralization has been obtained in stochastic sense as closed form expressions as a function
of parameters of the model as well as the training set. All these studies are made us-
ing theoretical formulations without actually training the pattern recognition system and
testing it for its performance. Some results obtained from computational learning theory
and behavior of learning curves were reviewed. The relation of generalization ability of a
network to the capacity of the network and the size of the training set used to train the

network is given.

Reasons for the limited applicability of the analytical results as tools while design-
ing neural networks to solve pattern recognition problems are discussed. The difference
between real world pattern recognition problems and pattern associations with synthetic
data used in analytical studiesisoned the main reasons for thisdrawback. Despite these
limitations, the theoretical results give us some idea about the extent of influence of size

and architecture of neural networks and size of training set on generalization.
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Chapter 3

GENERALIZATION IN FEEDFORWARD
NEURAL NETWORKS

3.1 Introduction

Many models of neural networks have come into existence over the past few decades [58],
[33], [25]. Most of these models have evolved from basic models like the Hopfield net-
work {19} and perceptron [18] which were adapted to solve specific problems. The neural
network models can be classified into feedforward and feedback models. In this thesis
we concentrate on feedforward models of neural networks that use supervised learning.
Fig.3.1 illustrates a typical feedforward neural network with 3 inputs, 3 outputs and 4
hidden nodes. The weights of the network are adjusted using supervised |earning.

Supervised learning is a method of learning in which the training set consists of input-
output pairs. These input-output pairs may be any arbitrary association of some input
with an output. These pairs of examples may correspond to a mapping function, or a set
of patterns and the classes to which they belong. In supervised learning the error between
the network output and the target output is reduced in order to obtain desired output

for the corresponding input.

Formally, the training set of size k can be represented as Tx = {(X1,¥1)s+ .., (Xx,¥x)}
where X; € R™ are the input vectors of dimension n and y; € ™ are the output vectors
of dimension m, and R represents the set of real numbers. Let f, represent the function
realized by a neural network with weights w, then our aim in supervised learning is to
adjust the weights such that, fw(x:) =Y, V(x:,¥y:) € Tk, under the assumption that the
training examples are noise free. If the examplesare not noisefree, then the error between

fw(xi) and y; for all the training examples is minimized.

This kind o learning process is especially useful in the case of pattern association
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Figure 3.1: Typical feedforward neural network with 3 inputs z; to z3 and 3
outputs ¥ to y3. The processors or nodes are denoted by p; to pr.

problems, where inputs and corresponding desired outputs are known.

From the above discussion we observe that objective function proposed for theoretical
study has been applied to learning in neural networks from examplesof data. In this case,
only the training data is available and no model is assumed for the pattern recognition
system. A criterion based on theobjectivefunction is used to fix the weights o the neural
networksduring the training phase. A cross validation measureis used for testing the gen-
eralization ability of the neural network from the given training data. The generalization
performance is poor for training samples consisting of purely random data. Even when
the training data belongs to the generalizable problem, the ability of a neural network to
generalize depends critically on the nature of the problem, the number of parameters in
the network, the number of training examples, the objective criterion used in training, the
manner of presentation of examples in training, etc. Moreover, cross validation measure
itself may not be adequate to evaluate the generalization behavior of the network. In this
chapter we study generalization capability in feedforward neural networks. We concen-
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trate on the property of generalization o the network without taking into consideration
the problem that is being solved by the network.

In the section 3.2 we discuss the issues related to generalization capability of feed-
forward neural networks. Generalization can be improved using a problem-independent
approach or by taking into consideration knowledge about the problem. We discuss the
problem-independent approaches to improve generalization in section 3.3. Some problem-
independent methods for improving generalization are presented in section 3.4. The lim-
itations o problem-independent approaches to improve generalization are also discussed
in this section. Issues in quantifying generalization are described in section 3.5 and a
new measure of generalization which makes use o fuzzy theory is proposed. We give a

summary o this chapter in section 3.6.

3.2 Feadforward Neural Networks - Limitations in
the Context of Generalization

Pattern recognition tasks are usually complex, and cannot be solved by designing a single
algorithm that takes care of al the variations in the patterns [32]. Therefore, methods
of learning from examples have developed. Learning algorithms generally perform better
in lower dimensional space. Thus, it isimportant that the patterns can be transformed
to lower dimensional space so that the learning can be performed well. This enables
us to view the pattern recognitions tasks as consisting o two parts, namely, a feature
extraction part and a pattern association parts. Feature extraction is problem-dependent.
The performance o the pattern associator dependson how wel the features are chosen by
the designer. The neural network approach to pattern recognition tasks tries to overcome
this dependence on a designer for selection of featuresfrom the patterns. For this purpose
a learning algorithm is used to adjust the weights of a feedforward neural network using
training examples. It is hoped that the neural network isableto extract certain features by
itself (without aid from a designer), from the training examples as a result of learning, and
generalizes to give thedesired output for new samples. But in most o theimplementations
of learning, the goa o the learning process is to minimize an objective function which
has been obtained from analytical studies on synthetic data [55]. Thus, the method does
not take into consideration extraction of features. Thisisone o the major limitation of



generalization in most neural network methods used for pattern association.

Despite the above limitation, neural networks perform reasonably well for pattern asso-
ciation problems because of their ability to learn complex mappings in higher dimensional
space. Thisgeneralization performance o a neural network is improved by manipulating
parameters of the network, which include:

e Architecture of a neural network
e Training set - sizeand quality

e Learning algorithm

e Criterion for stopping training

These approaches to improve generalization arediscussed in detail in thefollowing section.

3.3 Approachesto Improve Generalization

Even though ANNs have the limitation of not being specifically designed to capture fea-
tures and to generalize, several effortshave been made to improve generalization perfor-
manceof neural networks using an objective criterion for training data, and error rate on
test data for measuring the generalization capability o the network. The generalization
performance is evaluated by varying the free parameters of the neural network and the
learning algorithms. In this section we discuss some approaches to improve generalization

considering the key issues in generalization that they try to overcome.
The methods suggested to improve generalization in neural networks may be of two

types:

e Problem-Independent: These methods deal with the functioning of a neural
network, method of presentation of data, etc.

e Problem-Dependent: These methods include special design of a neural network
taking into consideration available knowledge about the problem [14], [45].

In thischapter we concentrate on the problem-independent approaches to improve gen-
eralization. The problem-independent methods manipulate the parameters o the network

as follows:
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e Architecture of Neural Networks: Neural networks can be thought of as non-
parametric estimators of functionsfrom a given set of values of thefunctions, namely,
thetraining set. Nonparametricestimators do not make assumptions of a model for
the training data. To be truly nonparametric, we should use large networks that
give more flexibility to the functions realizable by learning from examples. Many
training examples are required to achieve good generalization when a large network
is used. But it is not always possible to obtain a large number of examples to train
the network. Hence, there is a need to reduce the number of parameters of the
network such that the available training set is sufficient for good generalization.
The architecture of the neural network controls the number d parameters. Hence,
choice df an optimum architecture isone d the major approaches to improve gener-
alization. Oneof the key existing methods of optimizing the architectureis pruning

which is discussed in detail in the survey paper by Reed [47].

e Training Set - Size and Quality: Asdiscussed aboveit isadvantageousto havea
large number of training examples to train the network. Methods, that manipulate
the training set such that more data is available to train a network, are extensively
studied for improving generalization. One such method is introduction o noiseinto
the training examples to generate new training examples which can be used to train
the network [24]. It has also been shown that the training set has to be a good
representation of the examples that occur in the problem being addressed to ensure

good generalization [36].

e Learning Algorithm: In many existing modelsdf neural networksitisnot possible
totrain the neural network when the number of examplesislarge. Thetimerequired
to train the network becomes very large. So, methods to accelerate the learning
algorithm arestudied in an effort to train the network with large number of examples

in finite time [29).

e Criterion for Stopping Training: Decrease in error on the training set during
learning phase does not always ensure good performance on a test set. The phe-
nomenon by which decrease in training error results in increase in generalization
error istermed as overtraining. Fig.3.2 gives generic graphs that show the behavior

of training and test error with number of training iterations. Overtraining occurs be-
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Figure 3.2: Graph depicting overtraining. There is an increase in general-
ization/test error even though the error on training set decreases with larger
number of training iterations.

yond the optimum point indicated. Overtraining is attributed to the memorization
of training examples by the neural network due to overfitting of function realized by
the network to the noisy training data examples. Finding o a criterion for stopping
training when generalization is the best, and thus avoiding overtraining, is a key
issue of the generalization in feedforward neural networks.

In the following section we propose some methods to improve generalization which are
independent of the problem to which the network is being applied.

3.4 Suggested M ethodsfor Improving Gener alization

As already discussed in the previous section, we can improve generalization by manipu-
lating certain parameters of the network. In this section we study the effects of different
stopping criterion and also the manner o presentation of data on the performance o



generalization. We show that the proposed stopping criterion and methods o presenta-
tion of training data may sometimes improve the performance. But in such cases the

improvement is marginal.

In subsection 3.4.1 we propose a new stopping criterion for training. In subsection
3.4.2 we give a method d using multiple blocks o data for weight updation during the
training phase. The use d two training sets, one to train the network and another to
perturb the weights once the network is trained, improves generalization capability of the

neural network. This method is discussed in subsection 3.4.3.

In this section we consider the feedforward neural network trained using backpropa
gation algorithm to study the effectivenessdf the approaches to improve generalization
in the context o a classification problem. The problem o classification of vowes'a, '€,
i, ‘o’ and ‘u’ uttered by three different speakers is addressed. We use formants which
are resonances o the vocal tract as features. The input is a three dimensional vector
consisting of thefirst three formants. We train the neural network on a training set con-
sisting of three hundred examples. The generalization capability of the neural network is
evaluated based on its performance on a test set which consists of examples that did not
occur in the training set. In the experiments conducted in this section we used a test set

consisting of 1800 examples.

3.4.1 Stopping Criterion for Training

The method of updating weights does not ensure that thereis an improvement in gener-
alization. That is why overtraining occurs. In literature we find various stopping criteria.

used to stop the learning process {25). Some o the criteria used are:

1. Magnitude of gradient: Thismethod is used in gradient descent approaches of Iearn-
ing. Here the learning algorithm is terminated when the magnitude of gradient is

sufficiently small, since by definition the gradient is zero at the minima.

2. Cost function below certain minimum value: When the cost function is minimized
during the training process, a certain threshold value is chosen, and training is
stopped when the cost function value is below this value. However this requires the
knowledge about the minimal value that the cost function can reach, which is not

usually known. In pattern recognition problems one can stop training as soon as all
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the training data are classified correctly. Many times the network may not manage
to classify all the examples in the training set. correctly, and even ii it does, this

does not ensure that it will giveits best performance on the test set.

3. Fired number of iterations. Here the training is stopped after a fixed number of
iterations. This method does not guarantee that the algorithm terminates when the

best solution is reached.

4. Performance on test set: Herethe datais split into two sets: a training set which is
used to train the network and a test set which is used to measure the generalization
performance of the network. During learning the performance of the network on
the training set continuously improves but its performance on test set improves to a
certain point, beyond this point it starts degrading. At thisstage the network begins
to overfit the training data, and so training is stopped. This method is sometimes
called cross validation, but it should not be confused with the actual cross validation
which has already been discussed in section 2.2.2.

Thefirst threecriteria are sensitiveto thechoicedf parameters, and if not chosen properly
theresults can be very poor dueto premaiture termination o training. Thefourth method,
however, does not suffer from this kind of premature termination, but results in good
generalization performance d the network. However, checking performance on a test set.
Iscomputationally intensive. Further, if the number of data samplesislimited, it reduces

size df the training set.

In this section we propose an alternative stopping criterion for feedforward networks
used for pattern classification. It can be shown that when the least square error is min-
imized during training, the outputs o the network tend to converge to the a posteriori
class probability =(c|x) [39]. The proof of this result is given in Appendix A. It is aso
observed that although thereis noexplicit constrain imposed on the sum of the outputs of
the neural network, its value tends to become close to unity when error between network
output and desired output is small. In the proposed stopping criterion we make use of
this observation and stop training when the surn o the outputs of the network is within
a 'small' closed interval [e;,a,]) around 1, instead of the error between network output
and desired output tending towards zero. An example o a typical values of the interval
[a1, @] is [0.95,1.05].
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The use of this method does not force the netwc%ig function to fit all the data points
exactly. Thereforeit helps to alleviate the problem o overfitting. The performance o a
network that uses this stopping criterion is given in Table 3.1. It can be observed that it
does gives only a marginal improvement in the performance on the test set. Especially
when the network issmall, thereis no improvement as there is no scope for overtraining.
But in the case of large networks there is comparatively more improvement in general-
ization. This method may be suitable when there are a large number of outliersin the
training set., which if learned till the network gives low error, cause the generalization to

be poor.
Percentage Correct
Classification
Sl. Number of Error Reduction | Suggested Stopping
No. | Hidden Nodes | Stopping Criterion Criterion
1 5 86.3% 86.3%
2 10 87.2% 81.2%
3 40 88.8% 90.7%
4 50 89.4% 90.1%
5 60 89.4% 91.0%
6 70 89.2% 90.8%
7 80 88.7% 91.2%
8 90 88.2% 92.8%

Table 3.1: Comparison of error reduction stopping criterion with suggested

stopping criterion.

3.4.2 Variable Bl ock Size Update Mode

There are two modes of updating weights in the feedforward networks that use gradi-
ent descent algorithms for learning, namely, the pattern mode and the block mode [18].
In the following discussion we restrict our attention to the backpropagation learning al-
gorithm. In the pattern mode the weights are updated after the presentation o each
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pattern, whereas in the block mode the weight changes are accumulated till the end of
one cycle through all the training examples and then the weights are updated. These two
methods have been studied extensively, and each of these methods has its advantages and
disadvantages [19]). The pattern mode requires less memory and, since the patterns are
presented in random to the network, the search for the solution is stochastic and there
is less chance of the network getting stuck at a local minima. On the other hand, in
the block update mode the estimate of the gradient vector is better; so each updation of

weights generally results in decreasein error without much oscillation.

In the proposed method we combine the advantages of both these methods by using
blocks of data to update the weights. In the normal block update method the whole
training set is treated as a single block and, updating of weights is done after the whole
training set is presented to the network and weight changes are accumulated. In the
proposed method wetreat the training set as consisting of blocks, and the weight updation
isdone at the end of each block by considering all the changes in weights for that block.
The behavior of neural networks, after training them with varying size of blocks of input
data, isinvestigated here. In this approach, at each stage a better estimate of the gradient
is made and also the updation retains its random nature because the blocks of data are

still random as they consist of a few patterns.

It has been reported that when presentation of the data isin random from the data
set, there is an improvement in the generalization performance. Here we investigate use
of the same patterns in each block for repeated training iterations and also the use of
different patterns in each block for repeated iterations. We call the former method as

fixed block mode and the latter as random block mode.

Table 3.2 gives the comparative performance of the fixed block and random block
modes of weight update. Column one gives the performance of fixed block mode and
column two gives the performanceof random block mode for various sizes of the blocks of
training data set consisting of 300 examples. When pattern by pattern mode of update is
used, the network classifies 87.7% of the test set samples. From thetableit can beinferred
that when blocks of data are used to train the network, the performance on the test set
improves. This can be seen from thefirst six rows of the table. But as the size of blocks
increase the generalization, as evaluated by error rate on test set, decreases. Also, it is

observed that use of the random blocks of data to update weights results in marginally
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Percentage Correct
Classification

Sl. | Sized | Fixed Block | Random Block
No. | Block Mode Mode
1 5 90.0% 91.1%
2 10 91.0% 93.1%
3 20 91.1% 93.8%
4 30 91.4% 93.2%
) 40 90.3% 93.5%
6 50 88.1% 93.7%
7 100 78.0% 77.6%
8 150 74.6% 75.0%
9 | 200 70.5% 70.5%
10 250 66.8% 64.4%
11 300 69.7% 69.7%

Table 3.2: Comparison between the fixed bock and random block modes of
update of weights. Training was done for 5000 iterations on a training set
consisting of 300 examples. The performance for pattern by pattern update is
87.7%. The test set consisted of 1800 examples.

better generalization than the fixed blocks of data. However, it should be noted that, as
thesizeof blocksincreasesthe performanceof the random block mode decreases compared

to that of fixed block mode for the same number of training iterations.

3.4.3 Waeght Perturbation with Training Examples

One of the main issues of generalization in feedforward neural networks is overtraining.
In this situation the network constructs a curve that passes through most of the data
samples, and this results in poor generalization because the data is usually noisy. Fig.3.3
illustrates poor generalization due to overfitting. This problem of overfitting, that occurs

when error on training set reduces, has motivated the suggestion o using two sets of



(a) correct fit (b) overfitting of
o noisy data noisy data

Figure 3.3: Illlustration of overfitting. (a) Actual function that fits the noisy
data. (b) The curvethat fitsthe data well, but isa poor approximation of the

actual function.

examples to train the network. In this method the network is trained on one set of
examples till low error is reached, and the second set of examples is used to train the
network for a few number of iterations. The reason for performing a few iterations on
the second set of training examples is to perturb the weights that have been obtained by
training on the first training set. This perturbation will disturb the function learned by
the network which may be overfitting for thefirst training set. Since the perturbation is
done according to the examples of the function being approximated, it is hoped that the
resulting disturbed function approximates the actual function in a better way.

Table 3.3 illustrates the performanced the network for which this method of presen-
tation of data is implemented. The first row of the table gives the performance of the
network when it is trained on a single training sets. The successive rows indicate the
performance for various sizes of the first and second training set. It has been observed
that the performance is usually better when the second training set is small. Moreover,
the performance usually decreases with increased number o training iterations on the
second training set. In the table the performance value has been obtained by performing
about 20 training iterations on the second training set. It should be observed from the



Sl. | Sizeof first | Size of second | performance
No. | training set | training set of network
1 300 0 87.7%

2 250 50 92.6%

3 200 50 91.4%

4 200 100 87.1%

5 100 20 90.7%

6 100 50 91.8%

7 100 100 77.4%

Table 3.3: Performanceof neural network trained with two training sets. The
first row of the table indicates the performance when a single training set is
used. Successive rows indicate the performance for different sizes of the first

and second training set.

third, fourth, fifth and sixth rows of the table that a better performance is achieved by
the network trained by the proposed method even though a small training set is used. For
example, we achieve 91.8% classification by using 150 examples as indicated by the sixth
row 'entry of the table as against the 87.7% classification achieved by using 300 examples

as a single training set.

3.5 Quantification of Generalization

In section 2.2 somelimitations of measuring generalization werestated and a brief overview
of some measures of generalization was given. In this section we look at some of the de-
ficiencies in the existing approaches to evaluate the performance of generalization. We
discuss an intuitively appealing approach to judge the generalization behavior of a net-
work, although the proposed approach has limitations to apply in practice. The approach
is based on using the concepts of fuzzy sets and also the newness of test samples. A brief

overview of relevant fuzzy set concepts is given in Appendix B.
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3.5.1 Issuesin Measure of Generalization
The difficulties that arise during thc measure of generalization are:

o Lack of Proper Definition of Generalization: We come across two definitions
of generalization [25] that are used in related studies, namely:

1. Ability to produce accurate resultson new examples not present in the training

set.

2. How wel the network performs on the actual problem once the training is

complete.

There is a subtle difference between these two definitions. This difference can be
highlighted by considering the case when generalization is considered to reach a high
value in by each of these definitions. In the case o generalization given by the first
definition, the value is high when the network gives desired output for samples that
did not occur in thetraining set. Hereit is independent of probability of occurrence
of the samples. In contrast to this, generalization given by the second definition is
high if the network isableto yield the desired output for the most frequent examples
that occur in the problem being addressed. It indicates the ability of the network
to give the desired output for any input from the input domain. This quality is

influenced by probability of occurrence of the sample.

e Need to Consider Quality of Training Set: Generalization in neural networks
depends on how well the training set represents the input domain. Further the
output error is minimized during the training phase of the network so that the
network gives the desired output for the training examples. Consequently, if the
test set contains samples similar to the training examples, then the network is
able to classify them properly. Thus, the generalization capability of the network
appears to be high if we measure generalization using methods which do not take
into consideration quality of the training set. Therefore, thereisa need to consider
the quality of training set used to train the network, and accordingly interpret the

performance on test set,

e Inherent Fuzzy Nature of Generalization Measure: When a trained neural
network is tested on new samples, its output may not be exactly what is desired
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or completely different from the required output, instead it may be correct to some
extent, i.e., partially correct. All existing approaches to measure of generalization
capability do not make allowance for the partial correctness, they only consider
whether a sample gives the desired output or not. The suggested measure takes
partial correctness into consideration by the use d fuzzy approach.

In the following section we propose a method of quantifying generalization that tries to

take into account these limitations of measuring generalization.

3.5.2 Fuzzy Generalization Index

The generalization index developed in this section quantifies the ability of a neural net-
work to produce the desired results on test samples not used in the training set. The
formulation of thisindex takesinto consideration both the fuzzy nature of generalization
and the influence d the size and quality of the training set. The objective o measuring
generalization capability of a network is to determine the extent to which we can rely on
the output o the network for all the samples in the input domain of a given problem,
once the training is complete. Sincethe number o patterns of theinput domain is usually
large, we try to evaluate generalization based on a finite set d test samples. In order to
accomplish this task, we compute the network output for each test sample and compare

it with the desired output.

Based on the information obtained from each test sample, an estimate is made about
the generalization capability of the network. Fusion of evidence obtained from.each test
sample is achieved using a fuzzy aggregation operator. To derive an index for generaliza-
tion (G), thereis a need to calculate the extent of generalization (gi) for each test input
(xi).

Before presenting the proposed method of measuring generalization, some elementary
properties that should be satisfied are stated. The following notations are used for stating

the properties:

Z = set of all possibleinput-output pairs
T = {(xi,¥:),¢=12,...,k} isthetrainingset, T, C Z

S, = set d ntest input-output pairs, S, C Z
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gi = generalization value attributed to the ¢th test sample pair (%, ¥4)

G = generalization index

1. G=0 if and only if no test samplesother than the examples in the training set give
the desired output. That is,

9 =0, Vi{xpyi) ¢ Tx & G=0 (3.1)

2. G =1if and only if g;=1 for every new test sample. Hence,

el

g =1, ¥Yixyy) ¢ T & G=1 (3.2)

3. There are no constraints on accuracy o learning on the training set imposed by G.

4. G is not influenced by the probability of occurrence of the examples.

The first property substantiates the fact that the generalization index quantifies the
ability o the neural network to classify new samples. Therefore, it states that when no
new sample gives the desired result, the index is zero. An interesting implication o this
property is that ¢ = 0 when T, = Z, because there is no test sample (x,,y,) ¢ Tx.
Thisisintuitively appealing, because, when all possible examplesare used in training the
network, there is no need for generalization. The second property states that every new
example should givea value 1 for the generalization index. The third property highlights
the fact that the performance on training set can not significantly affect theindex . The

final property requires that G is independent o the frequency o occurrence of samples.

The proposed method of measuring generalization in now presented. First, the value
g; for each test sampleisdetermined. Thegeneralization value g; attributed to theith test
sample depends on two factors, namely, "how new the test sample is' and the "degree o
correctness'. Degree of correctness makes allowance for the fact. that the output may be
partially correct. The second factor enables us to account for the quality of the training
set. The factor "how new the test sample is" also indirectly accounts for the size of the
training set. It enables distinguishing between a network that requires large number of
training examples to perform well and a network that requires a few training examplesfor .

similar performance. The concept of newness o a test, sampleisfuzzy in nature, because
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there is a gradual change from similar pattern to "more or less new" type of pattern.
Consequently, fuzzy membership can be used to model the newness concept. We define
newness of @ pattern by pinew, Where fipe, : £ — [0, |]. Here newness o an example
is represented by considering the Euclidian distance in the input space from the nearest
training example belonging to the same class. This distance is normalized so that its
vaue is aways in [0, 1]. The membership value p e, is transformed to pmot new (mol
new represents more or less new) using a fuzzy hedge [40] operator to accommodate the
fact that certain patterns are "more or less" new. The fuzzy hedge is modeled using the

function [40],

1

Hmol new = (‘unew)g (33)

where # € N, here N is the set o natural numbers.

Similarly, we can express the output of a test sample as a fuzzy membership. Let «
represents the normalized output error of the neural network. Then (1- &) represents the
correctness of the examples. This membership function can be transformed, if necessary,
using a fuzzy hedge operator, to a membership function (fmot correct)- We observe that
the generalization value of the network for a test sample should be high when both the
degree d correctness and the newness d the test sample are high. In all other cases,
generalization value for an example should be low. A fuzzy AND operator is used to
combine fmol correct AN fmot new- This ANDing isrealized by a multiplication operation.
From the above discussion, it is clear that g; isin [0, 1]. Hence g; can be viewed as a

fuzzy membership function with domain S, [10].

To determine the generalization of the network (G), we combine the information ob-
tained from g;s of each test sample. We accomplish this task by using a fuzzy operator
hs [30]. Thus, G is given by,

= ho(g1,92,- .., Gn
g (91,92 g =

o o ay 1/
\
wherea € £ (a# 0). The parameter o can be used to control the softness of the operator.

It is important to note that h is not a T-norm [9], [12], because, it does not satisfy
a property of the T-norm, namely, h(a,1) = a. In our casg, it is essentia that h(a,1) >
a when a # 1 because 1 indicates perfect generalization of a particular test sample and
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by combining thisinformation with a, the generalization value obtained from another test
sample, we should be able to infer that the generalization of the network is better than

that inferred from a single test sample with generalization value a.

In theremaining part of thissection we give a measure of generalization that. quantifies
how well the network performson the actual problem once the training is complete. In
this case, the distinction between training set and test set vanishes once the training is

over.

We represent this generalization measure by M and input space by S. The following

are the fundamental properties of the measure:
1. It is minimum, i.e., zero, when no example is approximated correctly. Thus,
fx)#y: VxiesS = M=0 (3.5)
2. The measure M is 1 when all examples are approximated correctly. Thus,
fx)=yi Vx; €S = M=l (3.6)
3. Generalization measure is influenced by accuracy of training on the training set.

Most measures of generalization that occursin literature satisfy these properties. One

such measure that wefind in literature is defined as follows,

If input sample X occurs with probability =(x) in the input domain, fw represents
the function approximated by the trained neural network and Z = {(x,y)} is the input

domain, it follows that,
M = /x Pr{fuw(x) = y]r(x)dx (3.7)

The major differencebetween generalization index and generalization measure is that
in the former case the error in output space is weighted by the "newness d sample”
whereas in the latter case the error in output space is weighted by the “probability o

occurrence” of the sample.
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3.5.3 Results and Discussion

It is observed that the error rate does not consider the quality of test samples, therefore
unless a large test set is used, there is a higher influence of bias of the test set on this
measure. For example, if the test set consists of only test samplessimilar to the examples
in the training set, the error rate measure gives a large value for generalization, and it
gives a low value if the test samples are very different from the training examples, and
thus do not result in the desired output for the network. There is no method tliat takes
into account the bias induced by the type of test set being used to test the network.
Unlike this, the generalization measure G takes into account the possible bias in the test
set by weighting the contribution of each test sample in it by a measure that depends
on how different it is from the training examples. This also makes the measure more
realistic. However, lower absolute value of generalization index may result. The lower
absolute value of generalization is because the scope to generalize is lowered when the
network is trained on many examples. This enables distinguishing a network, that is able
to classify correctly after being trained on a few examples, from a network which gives

the same performance after being trained on many examples.

Apart form this, when there are training examplesin the test set used for the measure
o generalization, the g;s for these examples are zero, because newness of the test samples
iIszero. Asaresult, when there arealarge number of training examplesin the test set the
valued G calculated by aggregating the g;s decreases, and in the case when the number of
training examplesin test set reduces the value of G increases. Thisis because the test set
with alarge number of training examplesis biased towardsgiving high generalization value
for the network, though no training example can be used to evaluate the generalization
capability of the network because the nature of training ensures good performance on
training examples. Thisisunliketheerror rate calculated on thetest set, where if training
set is used as test set then it results in high value of generalization capability. But we
know that we can not conclude anything about the generalization capability of network
by checking its performance on training set only. Although, it is not always correct that'
the generalization value is low when test set consists of training examples, wefeel that it
may be a better alternative to consider it low than to be misled into the belief that the
network generalizes well after testing with a set of examples biased towards the training

set.
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Experimental observations from an iinplernentation o the generalization measure de-
veloped in this section, for the problem of Opening Bid in Contract Bridge game are given

in Appendix C.

In the following subsection we give some limitations o the proposed generalization

index.

3.5.4 Limitations of Generalization | ndex

Although the proposed generalization measure apparently takes care d the limitations
of generalization measures discussed in subsection 3.5.1, its application to real world
problems is very limited because it assumes that newness o examples can be measured.
In our implementation of the measure we have used Euclidian distance in input space as a
measure of newness. As a result, this measure o newness is applicable only in cases when
similarity of patterns is reflected as closeness o examples in terms o Euclidian distance
in input space. This limits the applicability of the proposed measure, and as a result, we

do not apply it into the pattern recognition problems discussed in the later chapters.

3.6 Summary

In this chapter we presented the current view o generalization in feedforward neural net-
works. We have identified the limitations of generalization in feedforward neural networks
and suggested some methods for improving generalization. We have mentioned briefly the
disadvantage of not considering the problem specific knowledge to improve generalization.

A measure for generalization is proposed which takes into account the fuzzy nature of
generalization and quality of training set used to train the network. The application of
the measure is limited to the tasks where the closeness of samples in space reflects their

similarity. Hence, it has limited application in real world pattern recognition tasks.
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Chapter 4

GENERALIZATION AS A PROBLEM
DEPENDENT PHENOMENON

4.1 Introduction

Methods to improve generalization can be viewed as either problem-independent or problem-
dependent. Problem-independent methods make use of a general structure of neural net-
works and manipulate the parameters o the network to obtain improved generalization.

Such methods have been discussed in chapter 3.

On the other hand, neural networks that use knowledge about the problem can be
developed to achieve good generalization performance. In this case, knowledge about the
problem is incorporated into the network .in the form o constrains on the parameters of
the network. Examples o such networks developed in a problem specific way are found
in [45], [14], [59].

In this chapter we focus on problem-dependent approaches to improve generalization.
Section 4.2 discusses the problem-dependent nature o the generalization phenomenon.
In section 4.3, we describe the desirable generalization behavior due to incorporation of
knowledgeinto theneural network by analogy with modeling a system represented by data.
In section 4.4, we discuss how knowledge is incorporated into the network by considering
Radial Basis Function Neural Networks (RBFNN). Experimental observations regarding
the comparative performance o RBFNN and MLP in the context of classification and
function approximation are given in section 4.5. We summarize the chapter and state the

conclusions in section 4.6.



4.2 Generalization in the Context of Specific
Problems

Problem-independent methods of improvement o generalization do not take into con-
sideration the problem specific knowledge that may improve generalization significantly.
For example, one o the methods by which generalization is improved in a problem-
independent way, is by manipulating the data by adding noise, so that there is apparently
more data available for the training process. But it is not always possible or meaningful,
to obtain more data for training by adding noise. This can be illustrated by considering
a pattern mapping/function approximation problem where a few scattered training ex-
amples are given. In this case it is not possible to obtain a better approximation of the
function by using more training examples created by adding noise. Thisis because, it does
not give us insight into the behavior of the function at points where training examples
are not given. But if we have some additional knowledge about the function behavior,
then we can get a good approximation of the function by incorporating this knowledge
into the network. Thisisillustrated in Fig.4.1.

Thus, we note that many approaches to improve generalization do not correspond to
the human concept o generalization. Most methods dealing with data attempt to load

the datainto the neural network, rather than capturing the pattern behavior in the input
data, leading to a tendency to memorize the input data by the neural network. This

drawback can be overcome by considering problem specific knowledge. Application of
problem knowledge along with data should bring out a trained system whose behavior is

analogous to other problems involving stochastic or deterministic modeling.

The following section substantiates the problem-dependent approach with an analogy
from modeling a system represented by data.

4.3 Analogy with Modeling a System Repr esented by
Data

Modeling a system, based on data obtained fromit, isone of the most common problems
encountered in engineering control systems [52] and pattern recognition. In many real
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training set ezample

curve obtained curve obtained curve obtained

with few examples with more examples that by adding knowledge
are corrupted by adding noise that curve is smooth

° example obtained by adding noise to training set examples

Figure 4.1: lllustration of better generalization obtained by incorporating
knowledge about the problem.

world situations we have access only to the data generated by the system and, attempts
are made to model the system from the data and analyze the system characteristics.

In the case & modeling, a model is first assumed based on some knowledge about
a system that is being modeled. Then the data obtained from the system is used to
determine the parameters o the model. It isobserved that the modeling o the system is
good when the model selected isa good representation o the system, and a large number
of examples, obtained from the system, are used to evaluate the parameters of the model.
Such a system is usually better than a model whose parameters are evaluated by using
less data obtained from the system.

We take the examples o Linear Prediction (LP) analysis [37] and Hidden Markov
Model (HMM) {44] to discuss the above observation.



Linear Prediction (LP) analysis is one of the aspects of time series (signal) analysis.
The goal of this analysis is to model the system that generated the signal. The model
that is developed can be used for prediction or forecasting, control, etc. In this method of
modeling, the signal s, is considered as the output of some unknown system with some
input u, such that the following relation holds [37]:

p
Sn =D GkSnek + Gy (4.1)

k=1
where a;, 1 < k < p and the gain G are the parameters of the hypothesized system.
The above equation implies that the signal s, is predictable from a linear combination of
past p outputs s,_; to s,_, and input u,. The order oi the model issaid to be p, where
p is the number of previous signal samples that are used to predict the present signal.
Various methods of estimation of the parameters, ax, for 1 < k < p exist and are given
in the tutorial review by Makhoul [37]. Here we briefly discuss the influence of the order

of model chosen on the modeling of the signal.

It isobserved that the prediction of signal isgood irrespectivedf theorder of prediction
(p), aslong as p > p,,, where p,, istheorder of linear prediction for that particular signal.
In the case of linear prediction, the modeling of the signal usually improves with increase
in n, where n is the number of samplesof'thesignal used for minimization of error energy
for estimation of LP coefficients. The equivalents o p in neural networks are the number
of weights and of p,, is the number of weights that are sufficient to solve the problem.
The equivalence of n in neural networks is the number of examples used to train the
network. Therefore, once the network isof sufficient size and the input data set is a good
representation of theinput domain, it isdesirablethat a network converges to the solution

with high generalization capability.

In the LP analysis better estimation of the model parameters can be viewed as better
generalization, as it results in the model giving a response closer to the actual system in
all cases, including the situations where the actual system behavior was not given in the
form of data used to estimate the parameters of model. Thus, an analogy from modeling
of system represented by data is used to definea generalization behavior that is desirable

in the case of neural networks.

Modeling of signals can be broadly categorized into deterministic and statistical mod-
els. The LP model discussed above is a deterministic model. In the following discussion
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we consider the Hidden Markov Model (HMM) which is a statistical model. The underly-
ing assumption of statistical model is that a signal can be characterized by a parametric
random process of which the parameters can be estimated in a precise, well-defined man-
ner unlike the deterministic models where some specific property of the signal isexploited.
A HMM is a doubly stochastic process with an underlying stochastic process that is not
observable, but can only be observed through another set of stochastic processes that

generates the sequence of observed symbols [42].

An HMM is characterized by [44]:

1. A finite number of states.

2. A finite number of distinct observation symbols per state.
3. A transition probability distribution.

4. Observation symbol probability distribution.

5. Aninitial state probability distribution.

The parameters of the HMM are estimated by making use of examples generated by
thesystem that it is modeling. Once the above characteristics of the HMM are estimated,
it can be used as a generator to give a sequence o symbols. Thus, it is able to model
the'behavior of the system that generated the examples. It isobserved that the modeling
of the system is better when a larger number of examples are available to estimate the
parametersof the HMM. This kind of behavior is desirable in the case of neural networks.
Thus in modeling, it is observed that as the number of examples available to evaluate
parameters of the system increase, the model behavior approaches closer and closer to
the actual system. In contrast to the above, we find that thisis generally not truein the
case of neural networks. The main reasons for this are:

e When the network is smaller than the required size, it is found that the learning
algorithm should ensure that the neural network arrives at a soiution that gives the
best possible generalization given its limitations due to its size. The problem witl
present neural networks learning procedures is that the network does not converge
to a solution when it is not of sufficient size, and hence, there is apparently ro
solution when the network is smaller than the required size.



e When the network is larger than the required size, it should be possible to ensure
that all the weights are involved in determining the desired output. The key issues

in this case include:

1. Lack of sufficient training data leads to:

— Overfitting: the problem of overfitting has already been discussed in sec-
tions 3.3 and 3.4, and therefore, it is not elaborated here.

— Unconstrained Weights: When thetraining set issmall, all the weights are
not involved in the training process resulting in high variance in output
of the network. This happens usually when very large networks are used
because of the weights do not contributeto the output of the network. The
weights balance each others effect on the output for the training set. This
has been mentioned in section 2.5. This results because most learning al-
gorithms do not ensure that all the weights take part in the approximation
o the function. Such free weights result in the variability of the function

for test examples [51].

2. Bias Vs Variance Dilemma:. When a neural network is large, it can realize
many kinds of functions to fit a given set of data. Henceit becomes necessary
to include some knowledge about problem being solved to limit the number
o functions to the more feasible ones with respect to the problem. This is
done by incorporating constraints into the neural network. But incorporating
constrains into the neural network limits the function realization capability
of the network. Sometimes incorporation of constraints may be to an extent
that it introducesa bias in the output of the network for all training examples.
Thus, thereis a trade off between bias and variance when the available training
set is limited. In the ideal case both bias and variance o the network can be

made low when large amount of data is available to train it.

In this chapter we do not provide solutions to these issues but we discuss some existing
models in the context of the ideas presented here. In the following section we discuss
Radial Basis Function Neural Networks (RBFNN) highlighting the advantages that result
from problem-dependent design o the network.
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4.4 Neural Networks with Problem-Specific
Knowledge

In this section we discuss some neural networks that have been developed taking into con-
sideration problem-dependent knowledge. First, we present the RBFNN that are designed
specifically for classification tasks. We then consider the RBFNN using regularization
which is used for pattern mapping tasks [41].

441 Radial Basis Function Neural Networks for Pattern
Classification

An RBFNN is a two layer network consisting of a layer of hidden nodes and an output
layer. Fig.4.2 givesan exampled an RBFNN. The hidden nodes use radial basisfunctions
to compute the input to the node and a Gaussian is used to evaluate the output. The

calculation performed at the hidden node is given by the following equation:
hi = (Y (2 — p1)")?) (42)
i=1 N

where h; represents the output of hidden node j, ¢ represents a Gaussian, =; 1 <1< n
are the components of an input vector x € £ and y;j; is the ith component in the weight
vector of the jth hidden node. The calculation performed by the output layer node is
given by:

yi =D i ks (4.3)

where H is the number of hidden nodes and Jj; is the weights from the ith hidden node

to the jth output node.

The RBFNN performs the required classification by forming clustersof the input data
[11]. The structure exhibited by the data is exploited for clustering at the hidden nodes,
and the class labeling task is done by the output layer. This method o classification is
not like classification method in MLP, which performs the classification by constructing
class boundaries using separating hyperplanes. Thus, in the case of RBFNN the emphasis
ison regions of input space where data exist whilein MLLP the emphasis is on regions of

input space where data does not exist so that class boundaries may be placed there. This
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Figure 4.2. Radial Basis Function Neural Network (RBFNN). The nodes p,
and p, are the hidden nodes which use the radial basis function, (3 ;(x: —
uﬁ)z)%, to evaluate the input to the node. A Gaussian function is used in
these nodes to obtain the outputs. The usual scalar product is used by the
output nodes ps and p4.

distinction of processing at the first hidden layer nodes of RBFNN and MLP are given in
Fig.4.3 and 4.4.

Fig.4.3 illustrates of the modeling of input space by the hidden layer of an RBFNN.
The midpoints of the clusters of data in input space form the weight vectors, u,, of the
hidden nodes. The scatter of the data points o a cluster in input space determines the
variance, a; ,of the Gaussians of the hidden nodes. The outputs of the hidden layer are
passes to the final layer through linear basis function [35]. Fig.4.4 illustrates the class
boundaries that are constructed by the first layer of an MLP. We summarize by noting
that in RBFNNs the classification is done by using the closeness property o datain the
same class, whereas, in MLPs the classification is done by difference between data.



4.4.2 Radia Basis Function Neural Networks for Pattern
M apping

In the case df pattern mapping/function approximation it is possible to obtain good gen-
eralization when many training examples are known throughout therange o the function.
But this may not always be possible. Alsodue to presenced noise in the training data the
problem may be ill-posed [18]. The method o regularization was proposed to overcome
this problem. In this method a nonnegative functional, that makes use o prior knowledge
about the function being approximated, is optimized aong with the minimization of the
risk functional [18], [56].

In the context o neural networks the introduction o the regularization term can bein
theform of a smoothness constraint on the possible weight values. The magnitude o this
extra term in the cost function governs the amount of smoothness applied to the surface

being fit into the data points during the learning process [18].

The principle of regularization can be stated as follows: Find the function fw that
minimizes the cost function £( fw ), defined by

E(fw) = Es(fw) + /\gc(fw) (44)

where &( fw) is the standard error term, &.(fw) is the regularization term, and A is the
regularization parameter. This regularization term can be used to incorporate the smooth-

ness constraint into the network. The parameter A can then be called the smoothness

parameter.

4.5 lllustrationswith Synthetic Data

In this section we give a comparative study of the performanced an RBFNN which is a
network that incorporates knowledge about the problem and an MLP where there is no
scope to incorporate prior knowledge about the problem. We consider performance on a
classification task in section 4.5.1, and in section 4.5.2 we consider a function approxima-

tion task.
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Figure 4.3: Illustration of the input space d the RBFNN as modeled by the
input space. Here three clusters d data points in a 2 dimensional space are
present. Each cluster is modeled by one hidden node o the RBFNN with
"range o influence”, a, equal to the spread o the data points. The approxi-
mate center d the cluster forms the input weights, g, to the hidden node.
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Figure 4.4: lllustration o the input space o a multilayer perceptron neural
network as modeled by the input space. Here there are three clusters of data
points in a 2 dimensional space. Each node in the first layer of the MLP

realizes a straight line in input space that attempts to separate the clusters.

4.5.1 Classification with Prior Knowledge

In this case we consider classification of two dimensional data consisting of clusters of
points. In the example considered, the input space has five clusters of points that are

classified into three classes. Fig.4.5 illustrates the input data set.

Table 4.1 gives the generalization performance o the RBFNN on the classification
problem. RBFNN o different sizes are trained on a training set consisting of 25 examples
and the generalization performance is evaluated by considering the percentage correct
classification of a test set consisting of 750 samples. It is observed from fourth row of

the table that there is a steep increase in the performance of the network when the



number of nodes in the hidden layer becomes equal to the number of clusters of data
in the input space. With further increase in the number o nodes in the hidden layer
the generalization performance of the network remains high, unlike the cases generally
discussed in the context of other network models where there is memorization when size
o the network is large. Similar observations are made from table 4.2 which gives the
performance of RBFNN when 100 examples are used to train it. It isinferred that the
performance improves marginally because moredata isavailable to perform the clustering

at the hidden units.
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fonle)
o e g, K
oooé *
15 |- % B+, .
[ ]
o
— ( ]
10 4 ° ‘. [ (o]
K o o
k‘( o 8oy °
5 Ko oass® .
0 | 1 | |
0 5 10 15 20 25

Figure 4.5: The set o 2-dimensional data used to compare the generalization
capability of RBFNN and MLP for classification task. There are 5 clusters of

data in the input space which are classified into 3 classes as shown.

Table 4.3 gives the generalization performanced different sizesof MLPs trained on 25
examples, and generalization is evaluates by performance on 750 test samples. It should
be observed that the generalization performance is not asgood asthe RBFNN. Also, there
is no specific trend exhibited in the variation of the generalization ability with increase in
number of nodes. Table 4.4 gives the generalization performance of MLPs trained with
100 examples. It isfound that the performance improves drastically when 7 hidden nodes
are present in the network. But no specific reason can be given for this behavior. It should
be noted that, there is no general trend in the way in which generalization capability is
affected by increasing the number of hidden nodes.
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Sl. Number o | Percentage o Correct
No. | Hidden Nodes Classification

1 2 40.0%

2 3 60.3%

3 4 59.5%

4 ) 90.0%

) 6 93.3%

6 7 92.8%

7 8 93.2%

Table 4.1: Performance d an RBFNN for classification on synthetic 2-
dimensional data. The network is trained on 25 examples and tested on 750

samples.

Table 4.5 gives the performance d an MLP that has two layers of nodes. The choice
of number o nodes is arbitrary, and uses the heuristic that the number o nodes in
the second hidden layer should be equal to the number o clusters in the input space
[19]. Apart from the above, we also apply the heuristic that the number o nodes in
the-second hidden layer should be haf o the number d nodes in the first hidden layer.
The generalization performance o such networks is tested. Although the generalization
performance of two layered MLPs is good for combination o nodes given in rows 3; 6, 7,
9, 10 and 11 o table, yet no specific rule can be evolved for the choice o correct size o
neural network. Though this does not seem to be a serious drawback in the case o this
simple synthetic data, it is a major disadvantage when trying to design MLPs to solve
real world problems. In many casesit may not be possible to arrive at the optimum size
of a network by trial and error approach.

Thus, it can beinferred that in thecased RBFNN asystematic procedured designing
the network can be used to obtain good generalization. In the case when number of clusters
in input space are known, we can expect good generalization, by choosing the number o
hidden units equal to or greater than the number o clusters. Unlike the MLPs where the
procedure for choicedf number of hidden nodes in the neural network is arbitrary.



Sl Number of Percentage of Correct
No. | Hidden Nodes Classification

1 2 40.0%

2 3 50.4%

3 4 61.8%

4 5 94.5%

5 6  94.5%

6 7 94.9%

7 8 97.2%

Table 4.2: Performance o an RBFNN for classification on synthetic 2-
dimensional data. The network is trained on 100 examples and tested on

750 samples.

SL. Number of Percentage of Correct
No. | Hidden Nodes Classification

1 2 75.6%

2 3 76.3%

3 4 76.0%

4 5 75.3%

5 6 75.5%

6 7 76.5%

7 g 76.4%

Table4.3: Performance of an ML P for classification on synthetic 2-dimensional
data. The network is trained on 25 examples and tested on 750 samples.

95



Thus, it can be concluded that inclusion o knowledge results in better generalization,
when the size of the network chosen is sufficient for a given problem. Moreover, it alows

systematic design o the networks.

Sl. Number o Percentage o Correct
No. | Hidden Nodes Classification

1 2 77.1%

2 3 77.2%

3 4 76.3%

4 5 66.4%

) 6 75.3%

6 7 96.5%

7 8 73.3%

Table 4.4: Performance o MLP for classification on synthetic 2-dimensional
data. The network is trained on 100 examples and tested on 750 samples.

4.5.2 Function Approximation with Prior Knowledge

In this section we compare the generalization capability o the RBFNN ‘and MLP. We
consider the problem o approximating the function illustrated in the Fig.4.6. Different
sizesof RBFNNs and MLPs are trained on training sets consisting o 50, 100 and 200
training examples. The examples are generated by adding noise to the function eval uated
at random points. Fig.4.7a gives training set o 50 examples and Fig.4.7b illustrates
the training set of 100 examples. The performance is evaluated by plotting the function

realized by the network and observing how similar it isto the original function.

Fig.4.8a shows the function obtained by an MLP with 5 hidden nodes trained on 50
examples. Thirty thousand iterations are required for it to converge. The variation o
output error with number of iterations is given in the Fig.4.8b. Although it. appears as
a good approximation, by comparison with Fig.4.6 we observe that the approximation
is poor when the input x varies from 4 to 8. Fig.4.9a shows the function obtained by
an MLP with 10 hidden nodes trained on 50 examples. The variation o output error



SI. Number of | Percentage of Correct
No. | Hidden Nodes Classification
L H1,H2
1 5,2 77.1%
2 5,5 76.8%
3 6,3 97.1%
4 6,5 77.6%
5 7,3 77.1%
6 7,4 96.7%
7 7,5 96.7%
8 8,4 74.0%
9 10,5 98.4%
10 12,5 96.7%
11 12,6 97.2%

Table 45 Performance of the MLP for classification on synthetic 2-
dimensional data. The network is trained on 100 examples and tested on
750 samples. The number of hidden nodes in the network is given by H1,H?2,
where H1 is number o nodes in first hidden layer, and H?2 is number of nodes

in second hidden layer.
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witll training iterations is depicted in Fig.4.9b. The functions obtained by using 50 and
100 hidden nodes in the MLP are given in Fig.4.10a and Fig.4.11a, respectively. From
these figures it can be observed that how thefunction approximation is better, and hence,
generalization capability improves with increase in hidden nodes. But at the same time
there are excessive variations in the function in some regions, for example, thisisobserved
from Fig.4.11awhen x variesin [1, 3]. Variation of theoutput error with training iterations
for the MLPs with 50 hidden nodes and with 100 hidden nodes are given in Fig.4.10b
and Fig.4.11b, respectively. It should be observed that the output error should be about
0.05 on the whole training set for convergence to occur. This is because the output varies
between 0 to 1, and hence, error values should be less that 0.05 for the function to be

approximated closely.

When 100 examples are used for training the network, it is found that the network
does not converge to a low error value. Fig.4.12a shows the function the neural network
with 100 hidden nodes realizes after thirty thousand training iterations. The function
is very different from the actual function that is being approximated. From Fig.4.12b it
is seen that the output error is more than 0.972 even after thirty thousand iterations.
Fig.4.13a illustrates the function realized by a network with 150 hidden nodes trained on
100 examples. In this case we see that the function approximation is not as good as it

should have been due to the availability of a large number of examples for training.

Thefunctions realized by an RBFNN trained on 100 examples are shown in Fig.4.14a,
Fig.4.15a and Fig.4.16a. These figures are obtained by choosing the smoothness parame-
ter to be 0.3, 0.6 and 1.0, respectively. It isobserved that the realized functions become
closer to the actual function given in Fig. 4.6 with the use of higher smoothness pa-
rameter. Apart from this, it is observed from Fig 4.14b, Fig.4.15b and Fig.4.16b that
the convergence to low error value takes place in a few iterations in the case of RBFNN.
Unlike the case of MLP, in RBFNN there is no problem for convergence, and also fewer
nodes are sufficient to realize the function. Fig.4.17a, Fig.4.18a and Fig.4.19a give the
functionsrealized by RBFNN trained on 200 examples. These figures are obtained by us-
ing smoothness parameter 0.3, 0.6 and 1.0, respectively. It isobserved from the Fig.4.17b,
Fig.4.18b and Fig.4.19b that the convergence to low error value takes place within 100
iterations. The MLP does not converge to a low error value when trained on the training
set with 200 examples. Table 4.6 summarizes the observations from Fig.4.8 to Fig.4.19.
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Fig. No. Observations Remarks
41.8a
, . . lo- -
4.9a, Curve (.)bFa| neq ' smooth,.but ® | MLPs trained on 50 examples are
ca variations in the function are .
4.10a. able to generalize to some extent.
not captured.
L 4.11a _
When 50 training examples are
used, the network with 100 nodes | The generalization by the MLP
4.12a converges to a solution asobserved | with 100 hidden nodes and trained
from Fig.4.11a. But, it failstocon- | on 100 examples is poor.
verge for 100 training examples.
Tlhe network trained oln 1_00 ex::rrf- The generalization by MLP with
4135 | PIES converges to a solution Whemt | 15 oo hen nodes trained with 100
the number of hidden nodes is in- .
examples is good.
creased from 100 to 150
The generaizaiion performed by
4.14a, RBFNNs —converge fasFer than RBFNN trained on 100 examples
4.15a, _ML!DS' When'thesmooth.| ng fact(?r is good. The behavior of the func-
is high, function approximation is | .. .
4.16a tion is captured wdl when many
better. .
training examples are present.
The generalization is good. Here
417 _ the network converges to the solu-
4.18a, RBFNNs trained O_n 200 examples tion, without getting stuck at local
18a, c.aptures the behavior of the func- minima. The approximation of the
4.19a tion well. function improves with increase in
number of training examples.

Table 4.6: Summary of observations from Fig.4.8 to Fig.4.19 on comparison
between MLP and RBFNN for function approximation.

Unlike the ML Ps where the number of iterations required for convergenceand the size
of network increase, the RBFNNsconvergeto asolution even when thesize of training set
is large. Also, the variations of the function are captured better in the case of RBFNN.
However, it should be noted that it is necessary to use a large number of examples in
the case of RBFNN to achieve good approximation. When more examples are provided
for training we achieve better approximation of the function, and this behavior isin fact

similar to the example of modeling of system represented by data.



Figure 4.6: Function that is to be approximated by the neura networks.
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Figure 4.7. Set of training examples obtained by adding noise to the function evaluated at
-random points. (a) Training set of 50 examples. (b) Training set of 100 examples. Where each
‘4’ indicates a training example. Different values of ‘z’ are used as inputs to the network and
corresponding values of 'y' corrupted by noise are used asdesired outputs.
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Figure 4.8. Function approximation by an MLP trained using backpropagation algorithm.

Fifty training examples are used to train the network which hasfive hidden nodes. (a) Function

realized by the network, where each ‘+’ indicates a training example. (b) Graph of output error

reduction with number of training iterations.
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Figure 4.9: Function approximation by an MLP trained using backpropagation algorithm.

Fifty training examples are used to train the network which has ten hidden nodes. (a) Function

realized by the network, where each ‘4’ indicates a training example. (b) Graph of output error

reduction with number of training iterations.
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Figure 4.10: Function approximation by an MLP trained using backpropagation algorithm.
Fifty training examples are used to train the network which hasfifty hidden nodes. (&) Function
realized by the network, where each ‘+' indicates a training example. (b) Graph of output error

reduction with number of training iterations.
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Figure 4.11: Function approximation by an MLP trained using backpropagation algorithm.

Fifty training examples are used to train the network which has hundred hidden nodes. (a)
Function redlized by the network, where each ‘4’ indicates a training example. (b) Graph of

output error reduction with number of training iterations.
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Figure 4.12: Function approximation by a MLP trained using backpropagation algorithm.
Hundred training examples are used to train the network which has hundred hidden nodes. (a)
Function realized by the network, where each ‘+’ indicates a training example. (b) Graph of

output error reduction with number of training iterations.

Figure 4.13: Function approximation by a MLP trained using backpropagation algorithm.
Hundred training examples are used to train the network which has hundred and fifty hidden
nodes. (a) Function realized by the network, where each ‘+’ indicates a training example. (b)
Graph o output error reduction with training iterations.
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Figure 4.14. Function approximation by an RBFNN that has 34 hidden nodes and is trained

on 100 examples. The value of the smoothing parameter used is 0.3. (a) Function realized by

the network, where each ‘+’ indicates a training example. (b) Graph of error reduction with

number of training iterations.
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Figure 4.15:. Function approximation by an RBFNN that has 38 hidden nodes and is trained
on 100 examples. The vaue of the smoothing parameter used is 0.6. (@) Function redized by

the network, where each ‘+’ indicates a training example. (b) Graph o error reduction with

number of training iterations.
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Figure 4.16: Function approximation by an RBFNN that has 90 hidden nodes and is trained
on 100 examples. The value of the smoothing parameter used is 1.0. (a) Function realized by
the network, where each ‘+’ indicates a training example. (b) Graph of error reduction with

number of training iterations.
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Figure 4.17: Function approximation by an RBFNN that has 100 hidden nodes and is trained
on 200 examples. The value of the smoothing parameter used is 0.3. (a) Function realized by
the network, where each ‘+’ indicates a training example. (b) Graph of error reduction with

training iterations.
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Figure 4.18: Function approximation by an RBFNN that has 100 hidden nodes and is trained
on 200 examples. The value of the smoothing parameter used is 0.G. (a) Function realized by
the network, where each ‘4’ indicates a training example. (b) Graph of error reduction with

training iterations.
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Figure 4.19: Function approximation by an RBFNN that has 100 hidden nodes and is trained
on 200 examples. The value of the smoothing parameter used is 1.0. (&) Function realized by
the network, where each ‘4 indicates a training example. (b) Graph of error reduction with

training iterations.
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4.6 Summary

in this chapter we discussed the problem-dependent nature of the generalization phe-

nomenon.

An analogy with inodeling of a system represented by data is presented, and extending
this idea a concept for ideal behavior of generalization is provided where the pi-oblem of

overtraining should not occur.

The advantages o incorporating problem-specific knowledge into the neural network
is presented with respect to reduction in variance and bias of the function. We have
also presented some models in which the knowledge of the problem is included, namely
the RBFNN which is used for classification and pattern mapping tasks. Comparisens
between the performance of RBFNNs and MLPs for pattern classification and function
approximation problems were given using synthetic data. The advantages o inclusion
of problem-dependent knowledge into the RBFNN is brought out. However. it is to be
noted that the MLP does not always perform worse than the RBFNN, but there are

certain kinds of problems in which the RBFNN gives significantly better results.
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Chapter 5

ILLUSTRATIONS OF GENERALIZATION
STUDIES WITH SPEECH DATA

51 Introduction

An important property of real world pattern recognition tasks is the presence of features
in the data. Any data of pattern recognition tasks consists of features and redundant
information. The choice of suitable features that represent patterns in the data and
suppress the redundant information, determinesthe possibility to generalize. Thus, proper
choice of features enable the neural network to generalize well. Selection of features to
represent the data is problem dependent, and hence, it is necessary to adopt a problem

dependent approach to improve generalization significantly.

In this chapter we illustrate the significance of a priori knowledge about the nature
d data, in improving generalization by a neural network for real data. We consider the
case of speech data, which is the output of a time varying vocal tract system excited
by time varying excitation. For most speech recognition studies, the shape of the vocal
tract system represents the type of sound being produced. But the shape information
is embedded in the speech data through a complex transformation of the excitation into
the speech signal. In general, speech signal is processed to extract some spectral parame-
ters which reflect indirectly the vocal tract shapes. Since most o the time the extracted
parameters from speech data use standard signal processing methods, the parameters
represent primarily the signal information rather than the voca tract system informa-
tion. On the other hand, if we use a model for speech production and then extract the
model parameters from speech, then the model represents our knowledge of the speech
production. If the model is good, then the model parameters represent the system better.

Therefore, for recognition studies, such as vowe recognition, generalization by the neural



network is better if the parameters represent the vocal tract system rather than thesignal
data. Since the vocal tract, featuresare embedded deep in the signal data, unless they are
extracted explicitly the neural network cannot capture the vowd characteristics from the
parameters representing the data only. The next section shows the significance of proper

feature extraction for vowe classification.

We also illustrate the significance of feature representation for a pattern mapping
task using speech data. We discuss the task of capturing the transformation of vocal
tract systems between two speakers during production of continuous speech. It isshown
that the transformation is captured effectively using features representing the vocal tract

system.

Speech recognition is one of the most extensively studied pattern recognition tasks
[43], [1]. It isa very challenging problem as data is naturally occurring and exhibits large
variations in patterns, that is, the same words in speech can be uttered in several different.
ways. There is a need to capture features from a finite number of examples and use the
features to recognize new patterns; therefore generalization capability is essential here.
Speech exhibits embedded features, lience the effect of choice of features on generalization

can be illustrated well with speech data.

Apart from this, speech recognition problems involve several types of pattern recog-
nition tasks, namely, pattern clustering, pattern storage/retrieval, pattern classification
and pattern mapping. This makes speech recognition problems interesting for studying
pattern recognition tasks. In this work we concentrate on pattern mapping and pattern

classification tasks.

5.2 Generalization in Vowd Recognition Task

5.2.1 The Vowsed Classification Tak

We consider the task of vowel recognition for the analysis of generalization in pattern
classification. Vowels are speech sounds that are produced by a steady vocal tract system
excited by the vibrating vocal cords. Different vowes are produced by cnanging the
shape of the vocal tract. For our study we consider the vowels 'd, '€, ‘i’, ‘o’ and 'U.

The data required for training is collected from vowd part of utterances of consonant
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vowel pairs of three different speakers. The raw speech signal cannot be used directly
for training the neural network because the features are deep hidden. Therefore, we
extract features from the speech signal and use them for training the network. The goal
o the experiment is to find out what kind of features are a better representation of
the data for the classification task. For this purpose we consider formants and cepstral
coefficientsobtained from the utterances of speech as the extracted features. Formants are
the resonances of the vocal tract and represent the characteristics of the system producing
thesignal. On theother hand, cepstral coefficients are obtained from the spectrum of the

signal, and hence, represent characteristics of the signal more rather than the system.

We train a feedforward neural network using the backpropagation algorithm for real-
izing the classification. We train the network on thefirst three formants extracted from
the speech signal of each utterance. The formants are extracted by taking the LPC and
finding the frequencies at which the spectrum reaches peaks. The cepstral coefficients are
calculated from the LPCs using the following formula [43]:

k-1

ke, = —kay — Z(k — N)Ckon@n (5.1)

n=]

where axs are the LPCs and ¢;s are the cepstral coefficients. In this work we have consid-

ered thefirst 12 cepstral coefficientsof each utteranceof vowels asinput for classification.

We train neural networksof different sizeson the formants and cepstral data extractecl
from the utterances of various speakers. The neural network trained on formants has 3
inputs and 5 outputs. The target patterns are5 dimensional vectors containing 1 in one
location and 0 in all others. In the case of cepstral coefficients the network has 12 inputs
and 5 outputs. The targets are similar to the targets used in formant classification. The
neural networks are trained on 300 examples and tested on 1800 samples of test data
to evaluate their generalization capability. The error rate measure is used to quantify
the generalization capability. We discuss the results of the experiment in the following

section.

5.2.2 Results and Discussion

Table 5.1 gives the classification performance of neural networks trained on formants.
Table 5.2 gives the performance o different sizes of neural networks trained on cepstral



S1. No. Number o Percentage Correct
Hidden Nodes | Classification o Test Set
1 40 88.8%
2 50 89.4%
3 60 89.4%
4 70 89.2%
5 80 88.7%
6 0] 88.2%

Table 5.1: Results of vowd classification using fromant data for different sizes
of networks.

coefficients. We find that the generalization performance is better in the case when
formant datais used for training. Apart from this, it isfound that the sized the network
required for formant dataissmaller and also the number o iterations required to converge
to a given low error is less in the case d formant data compared to the case of cepstral
data.

Thus, it. is observed that generalization is better when features related to the vocal
tract system are used. We demonstrate this using formants, the resonances o the vocal
tract, to represent the speech information for vowd recognition task. The generalization
is poor if parameters are not directly related to the vocd tract system. This shows
the importance o considering problem-dependent information in order to achieve good
generalization, as no amount o tuning d the parameters d the network can improve
generalization when the input to the network does not represent the relevant featurein
the context o the problem being solved.

5.3 Generalization in VVoice Converson

The pattern mapping tasks involve transforniation o afunction in input space to a func-
tion in output space. The input space and output space may be d high dimension and
individual pointsin the space may exhibit features. Here we discuss some resultsfrom the



Sl. No. | Number o Percentage Correct
Hidden nodes | Classification of Test Set
1 40 61.3%
2 50 58.3%
3 60 65.3%
4 70 62.4%
5 80 61.7%
6 90 63.2%

Table 5.2: Results of vowel classification using cepstral data for different sizes

of networks.

problem of voice conversion [8] to bring out the importance of proper selection o feature
representation in order to achieve good generalization.

Voiceconversion involvestransformingone speaker's voiceinto that of another speaker's
voice. In any voice conversion system, it.is necessary to capture the nonlinear vocal tract
transformation between the two speakers using sample utterances from the speakers. The
corresponding sound segments are taken in both the utterances, and a neural network
is trained using information from segments of one speaker as input and that from the
other speaker as output. It was shown [36] that if the information of the segments was
represented using formants, then the complex nonlinear transformation of the vocal tract
system could be captured effectively even for segments corresponding to dynamic situ-
ations not used in training. This study clearly illustrates the need for proper feature
representation in order to achieve good generalization.

5.4 Summary

In this chapter we discussed the importance of using the correct features to represent
the data in a pattern recognition task, in order to achieve good generalization. We have

illustrated this by considering examples from speech recognition tasks.

We have addressed the issue of vowd recognition as an example of classification task.
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We note that the generalization performance of the neural network is significantly better
when formants are used as input data than when cepstral coefficients are used.

To illustrate generalization in the case of pattern mapping we discussed the case of
voice conversion. In this case it is necessary to capture the vocal tract transformation
between two speakers. It isfound that this transforrnation of vocal tract can be captured
well by using formants to represent the input data. Thus, in both cases the importance

of using system related features rather than signal related features is brought out.

It is shown in this chapter that the choice of suitable data representation for a given
task can result in significant improvement in generalization. Thus, the importance of
adopting a problem-dependent approach to study and improve generalization is empha-
sized in this chapter.
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Chapter 6

SUMMARY AND CONCLUSIONS

6.1 Summary and Conclusions

In this work we first described, at the conceptual level, generalization in the pattern clus-
tering and pattern association tasks. Wefocused on pattern association and discussed the
nature of some association tasks where generalization is possible and where generalization

is not possible.

A brief overview of some existing measures o generalization were given. Some the-
oretical results were briefly reviewed. Theoretical studies of generalization consider an
abstract model of learning from examples. In this kind of model synthetic data is used,
and learning from examples is performed by minimizing an objective criterion. The ob-
jective criterion in general does not take into account the presence of features in the
data.. Thislimits the applicability of theoretical results to real world pattern recognition

problems.

Generalization in the context of feedforward neural networks was discussed. The feed-
forward neural networks are commonly used for learning pattern associations. . Learning
isimplemented by minimization of an objective function. Generalization is measured by
evaluating the performance of the network on a test set. For real data the use of the
objective criterion leads to overtraining, and hence, lack o generalization. We discussed
methods for improving generalization in the feedforward neural networks that involve:
varying the number o parameters in the network, modifying the method of adjustment

of parameters in the learning procedure and manipulating the training data.

We examined alternative methods for improving the generalization which included:

e Using a stopping criterion to overcome the problem of overtraining. Here we made

use of the probabilistic interpretation of the outputs o the neural network. It is



realized by considering the result that the sum of a posteriori probabilities of al

classes is unity.

e Modifying the methods of presentation of data using various block sizes of the

training data in the block update method.

¢ Using two sets of training data, the first set is to train the network till near zero
error, and thesecond set is to perturb the weights in order to overcomethe problem

of memorization.

We also discussed the limitations of the generalization measure adopted in these stud-
ies. Normally generalization is quantified by evaluating the performance of network on a
test set using an objective measure. A measure called generalization index was introduced
which takes into account thefuzzy nature dof the concept of generalization. We illustrated
the significance of this measure for some applications. We also brought out the limitations
of the index due to the difficulty in measuring newness of a sample of test set.

We considered an analogy with modeling of system represented by data to state the
desired feature of the generalization. Here the number of training samples merely deter-
mine the bias and variance of the estimated parameters of the model. Larger bias and
variance result in poorer generalization. The question of overtraining does not arise in
the modeling problems. Extending this concept to the case of neural networks, it was
shown that it is necessary to incorporate the problem specific knowledge in the network
and learning so that training with examples progressively captures the characteristics of
the system with smaller bias and variance. We discussed these issues with special refer-
ence to pattern classification and pattern mapping tasks. We showed that incorporation
of closeness property of features in the input patterns for each class results in improved
generalization capability. Likewise taking into consideration the smoothness property of
mapping function enhances the generalization capability of a network model, used for

function approximation/pattern mapping.

We investigated the use of problem specific improvements in generalization capabil-
ity of neural networks by considering speech data. Speech data was used because it is
naturally occurring, exhibits features embedded in data, and speech recognition involves
all pattern recognition tasks, namely, pattern clustering, storage/retrieval and classifica-
tion/mapping. We focused on the classification and mapping tasks.



Recognition of isolated utterances df vowels was considered for pattern classification
task. We showed that better generalization is possible when features related to the vocal
tract svstem were used. We demonstrated this using formants, the resonances d the vocal
tract to represent the speech information for vowe recognition task. The generalization
was poor when parameters, not directly related to the vocal tract system, are used to
train the network. This illustrated the problem dependent nature o the generalization

phenomenon.

We examined the problem o transformation o the vocal tract shape from one speaker
to another as an illustration o the pattern mapping task. Formants extracted from
continuous speech d corresponding segments of two speakers were used to train a neural
network. The resulting transformation was found to be continuous and natural even in
the transition regions. Also, it was found that the performance was good for the vocal
tract shapes not used in training the network.

Thus it can be concluded that, the phenomenon of generalization is dependent on the
features present in the data for most pattern recognition tasks. Generalization capability
cannot be studied independent of the problem being addressed. Theoretical results have
to consider problem specific knowledge in order to be applicable to practical situations. In
addition to this, methods of improving géneralization need to be tailored to the problem

being addressed to achieve significant improvement.

6.2 Suggestions for Future Research

While many o issues have been discussed in this thesis, many more challenging problems
remain in thefield of generalization for pattern recognition tasks. Thefollowing are certain
problems that can he further investigated for improving generalization in feedforward

networks:

o Development of a systematic way of problem dependent design of neural networks:
Most existing approaches to obtain solutions to pattern recognition problems using
neural networks are ad hoc and rely on trial and error methods to find a network
that performs well. So there is a need to define a procedure for designing neural
networks for specific tasks.
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o Development of continuous learning algorithm: Most real world pattern recognition
tasks involve a iarge variety of data and, it is not possible to collect all the data
and train the network to take care o dl possible situations. Therefore. methods
that enable updation of weights when network is unable to give tlie target output

are desirable.

e Methods of problem dependent design of cost function: As discussed: one of the
major limitation of feedforward networks is that the cost function is not tailored to
the problem. Hence, formulation o the cost function, which has to be minimized
during the learning process taking into consideration knowledge of the problem, is

an issue that can be further investigated.

Some the problems that can beinvestigated in thecontext of quantifying generalization

measure are:

e Alternative methods of combining individual generalization values of individual test
samples: In the proposed method of measuring generalization, the generalization
value that we get from individual samples were combined using fuzzy set theoretic
methods. Alternative methods using fuzzy measure theory [30] can be investigated.

e Measure of newness of sample: The newness o samples of a test set were calculated
in the implementation of the proposed generalization index by considering Euclidian
distance. This limits the scope of the measure. Other measures of newness can be

investigated based on different distance concepts.



Appendix A

Proof of Convergence to A Posteriori Class
Probability

In this appendix we show that by training through minimization of least square error
results in the outputs converging to the a posteriori class probability =(c|x) [39]. This

result was used in proposing the alternativestopping criterion for training in section 3.4.1.

Let, 7(x, c) be the underlying probability distribution of thetraining set T, = {(x1,y1),

., (X, ¥&)}. The training criterion to be optimized is denoted by F and it depends on

the mapping fw; therefore, we write F(fw) to express the dependence on f.. For the

squared error criterion, we use F( fw) as a training criterion where F( fw) is expressed as

follows:
1 k. C .

fw) =+ ; Z_;[t(yn — fw(xi )] (A.1)

where t(y;,c) is the Kronecker delta function, used as a class indicator function that

denotes the ideal target outputs and C is the number of classes. In the limit of large

number of training samples, the sampleaverage approximates theensembleaverage. Thus.

by taking the expectation over the joint distribution =(x,y), the training criterion F( fw)
isexpressed as,

/ dx o m(x,3) Llly,) = fulo ) (A2)

Note that the index y stands for class membership, whereas, the index c denotes the
output nodes. Here we want to understand what the output of the network fw(x,c)

denotes. Therefore we interchange the sums over y and c to obtain,

Fifw) = [dxX T rxy)[Hy,e) = fulx,c)] (4.3)
X cy
- /dee(x,c;fw(x,c)) (A.4)



where e(x, c; fw(x,c)) is defined asthe loca error contribution at point X and output,

node c:
e(x,¢: fulX,0)) = Y1 (%, Yy, ) = Fulx,0)]° (A5)
Y

The local contribution e(x, C; fw(x,c)) is caused by the training samples from al the
classesy = 1,...,C and is thus obtained by weighting the squared error with the joint'
probability density function and summing over al classesy =1,...,C. Thesum over the
index y can be rearranged by separating the index y = ¢, i.e., the correct output node
with t(y,c) = 1 from all other indicesy with t(y,c) = 0 and by considering the following

relations:
m(X,c) : density of the samples with desired output 1

m(x) — m(x,c) : density of the samples with desired output 0
Using the identity =(x,c) = 7(x)r(c|x) we can rewrite the local error as,
e(x, 6 fw(x,¢)) = m(X,¥)[1 = fw(x,c)]* + [r(x) = 7(x, €)][0 — fu(x,c)]’
= m(x)[r(c[x)[1 = fwlx, )] + [1 = 7(c[x)][0 = fw(x,)]’]
= m(x)[[7(clx) = fw(x, )] + m(c[x)[1 — 7(c|x)]

The above function shows that the network output fy(x,c) isidentical to the class prob-
ability 7(¢[x), when the minimum value of the training criterion, F, is reached.



Appendix B

Overview o Some Fuzzy Set Concepts

In this appendix we give a brief overview of some fuzzy set concepts that are used in

section 3.5 for proposing the fuzzy generalization index to quantify generalization [4].

B.1 Fuzzy Sets

In classical set theory, when a set of A is defined, any element of the universal set X
can either be a member or not be a member of the set. This property o whether or not
an element X o universal set belongs to set, A can be defined by a function ga. This
function takes the value 1 if the element belongs to the set A and 0 if the element does
not belong to it. Thisfunction is known as characteristic function. Therefore, for the set

A, the characteristic function ga : X — {0,1} isgiven by

\ 1 : ifandonlyif XeA
na(x) = _ _
0 : ifandonlyif X¢A

But in many real life situations it is uncertain whether an element belongs totally to
theset A, i.e., the element may belong to the set with a certain degree of belongingness.
Fuzzy set theory has been developed in order to take care d such situations. In a fuzzy
set the characteristic function of a set A can take values in [0, 1]. Thisfunction is known
as membership function, because larger value of the function denotes more membership
of the element to the set under consideration. Thus, the membership function pga is
expressed as

ra : X — [0, 1]

Therefore, any concept that uses fuzzy sets requires the membership function to be de-
fined. Thisfunction is usually designed by taking into consideration the requirementsand
constraints of the problem.



B.2 Aggregation Operator

An aggregation operator is defined by a function,
ho: [0,1]" — [0,1) (B.1)

for somen > 2. One class d aggregation operators consists of generalized means. These

are defined by the formula,

ha(al, ag, ...

o a ay l/a
a) = (AT T ) (B.2)

n

wherea € R (a# 0). The parameter a can be used to control the softness of the operator.

This operator satisfies the following properties:

1. Commutative : h(a,b) = h(b, a);
2. Associative : h(h(a,b),c)= h(a, h(b,c));
3. h(a,b) < h(c,d) whena<c and b<d;



Appendix C

Experimental Observations for
Generalization I ndex

In this appendix we present some observations of the experimental studies of the gener-

alization index proposed in section 3.5.

The behavior of the generalization index proposed is studied by applying to the prob-
lem of Opening Bid in Contract Bridge game. Here the problem is to train a neural
network to give the same bid as a human bidder for a given hand. Input of the net-
work, is a hand pattern of a player, the pattern is represented as a 52 dimensional binary
pattern, where a ‘1’ represents the presence and a ‘0’ represents the absence of a card.
The input layer o the network consists of 52 nodes. The target output of the network
is the first. level opening bid corresponding to the input hand. A fully connected three
layer feedforward network with backpropagation [48] learning is used here. Fifty hidden
nodes and five output nodes (corresponding to the bids: 1 Club, 1 Diamond, 1 Heart.,
1 Spade and 1 Notrump) are used in this network. The network is trained with a set
o input(hand)-output(bid) pairs. In this experiment, the Standard American bidding
convention is used. The data for this experiment was collected from an Open Bridge

Tournament.

In this experiment, we determine the newness of a test input (X;) by finding its Eu-
clidian distance from the nearest training input example which has the same output bid.
This normalized distance lies between 0 and 1; and hence it is treated as the member-
ship value for newness. This membership value is transformed to another membership
value to signify more or less new by using a fuzzy hedge operator. This transformation
is required to reduce the influence of newness of the example on y,. Here, we choose the
value of B (the parameter in hedge operator) and « (the parameter in the aggregation

operator) as 2 and 16, respectively. We compare our measure with the most commonly



used error rate measure. Table C.i gives the generalization value obtained by running
the network on various test. sets, once it is trained on a fixed training set,. Observe that
the value of fuzzy generalization index, G. varies iess than ihe value o the er which is
(1-Error Rate), asit, can be seen frem the values of variance {o2) given in the last row
d the table. Figure C.1 shows a graph o variation o generalization error with increase
in number of training examples used to train the network. Here, it is observed that, G
reduces with increase in the number of training examples reflecting the fact that scope
for generalization decreases. Note that the error rate measure does not take into account

the decrease in scope for generalization due to increase in number of training examples.

Data Set €7 g
1 0.680 | 0.747
2 0.840 | 0.733
3 0.786 | 0.744
4 0.780 | 0.736
3 0.620 | 0.756
6 0.780 | 0.742
7 ©0.720 | 0.731
8 0.800 | 0.741
9 0.760 | 0.753
10 0.720 | 0.708
o? 0.0641 | 0.0135

Table C.1: Comparison of Generalization Index, G, with (1-Error Rate), er,
for different test sets. The last row of the table gives the value of variance o

measure over the different test sets.
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Figure C.l: Graph dof variation of generalization error with increase in training
examples. G indicates the proposed generalization index and er denotes (1-

Error Rate).
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3rGAT U WETHA, aEET 1 At

gl 3yd THA |
374 - from untruth, &% - truth, 7@€1- from darkness, wdifd - light, J&i1
- from death, 31d- immortality, 792 - lead (us).

Lead (us) from untruth to truth, from darkness to light, from death to
immoraiity.

3% quifire quitag quiteuingg=aa |
yute quinTera quidarafyred i
3% _ auspicious sound, 9u - whole, #%: - that (God), T - whole, 3& -
this (world), qufg - from that whole, U - this whole, 3T=4d - mani-
fests, quie - of this whoie, gf - wholeness, €@ - retaining. 9ot -
whole, T@ _ alone, 3@fyrerd - remains (ever).
That (God) is whole. This (world) is whole. From that whole this

whole manifests. Retaining the wholeness cf this whole that whole ever
remains.

or

That (Godj is unmanifest Brahman. This (the world) is manifest Brah-
man. From that unmanifest Brahman arises this manifest Brahman ie
world is manifest God. The unmanifest Brahman ever remains the same
as the heart of the constantly changing manifest world.



