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One of the main advantages of Artificial Neural Networks (ANN) approach to pattern 

recognitio11 task is the ability to learn from a few examples and generalize to give correct 

output for new examples. This propertjv, known as generalization, is the focus of this 

work. There are various types of pattern recognition tasks. Generalization is possible 

in these pattern recognition tasks because of the presence of features in input data. In 

this thesis, we focus on the generalization capability of feedforward neural networks for 

pattern association tasks. 

Although we expect good generalization performance of feedforward neural networks, 

it is not always possible to realize it. Analytical studies on the generalization studies make 

use of a model of learning from examples of synthetic data, which may not contain any 

features. Thus, the results obtained have limited application to many real world pattern 

recognition problems. 

Practical in~plementations of learning from examples minimize certain objective func- 

tions in order to achieve better generali~~ation. Methods to improve the generalization 

capability of neural networks involve mailipulation of the parameters of the network so 

that better minimization of the objective function is achieved. The use of vaxiable block 

sizes of data is suggested to improve the minimization of the objective function. But 

convergence to low value of the objective function does not always guarantee good gen- 

eralization, as it may result in overtraining. To overcome this problem use of weight 

perturbation method and an alternative stopping criterion to error minimization are sug- 

gested. In all these methods, no importance is given to the features present in the data, 

and hence, there can only be a marginal improvement in the generalization. Apart from 

this, an objective function obtained from theoretical studies is used to evaluate the gener- 

alization capability of the network. An alternative method to quantify the generalization, 

called fuzzy generalization index, is proposed. 

Generalization capability of a neural network can be significantly improved by ap- 

proaches which incorporate knowledge about the problem into the neural network. Incor- 

poratioil of kricwledge into the network enables us to take care of the presence of features 

in the input data. 'The resultirig generalization behavior is then comparable to the case 

of modeling of a, systeril represented by data. This kind of behavior is presel ' ; some 



extent in Radial Basis Functioii Neural Networks (RBFNN). The closeness property is 

incorpi>rat,ed, as knowledge about the problem, into the first layer of the RBFNN for 

classificatio~~ tasks. When RBFNN is used for function approximation, the knowledge in 

the forrn of smoothness property of the filnctio~~ is incorporated into the networli using a 

regularization term. 

Knowledge about the problem can also be used for obtaining proper representation 

of data, to  achieve good generalization. Here the data representation has to be chosen 

such that the networli is able to capture the features present in the data rather than 

memorizing the data. 'This is illustrated by considering speech data. It is observed that the 

generalization performance is better wheG features that primarily represent the vocal tract 

system are used rather than when features that primarily represent the signal are used. 

Thus, the need to adopt a problem dependent approach to  obtain good generalization in 

neural networks is brought out in this study. 
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Chapter 1 

INTRODUCTION 

1.1 Concept of Generalization 

Generalization is an intuitive concept unique to human learning. For example, we learn 

the concept of addition of numbers by looking at  several examples of addit,ion dong with 

some explanation provided by the teacher. Likewise, we learn the concept embedded in 

the written character, by observing and by writing several examples of the same character. 

We also learn the concept of a curve or a surface by observing several samples (sometimes 

noisy) of the points on the curve or the surface and with the additional knowledge of 

the class or classes of the objects to which the curve or surface belong. Thus learning 

from examples with additional knowledge many times forms the basis of the concept of 

generalization. 

Generalization in learning from examples is possible because of some inherent features 

embedded in the input patterns or because of some constraints inherent in the mapping 

function. Learning and hence generalization, is not possible if we are presented with a set 

of random data  as our examples. Thus, all problem situations are not generalizable. 

Once we have learnt, that means we are capable of dealing with new situations such 

as a new addition problem or a new sample of character or a new point on the curve or 

surface. Our ability to  deal with new situations can be evaluated by testing ourselves with 

several new examples, for which we know the answers for comparison. If our performance 

with this so called test data is better then we can say that out ability to generalize is 

better. 

In most pat tern recognition tasks, the performance of the pattern recognition systlenl 

depends on its ability to generalize from training examples. Generalization concept is in- 

volved in all pattern recognition tasks, such as classification, mapping, storage, clustering, 

etc. 



Generalization in Pattern Recognition Tasks 

I'altern recognition has been an active area of research over the past few decades [GI ,  

[13]. Pattern recognition is a key element of many engineering solutions [4], e.g., speech 

recogtlition i43], image processing 1531, [46], diagnostic application, seismic studies. Pat- 

tern recognition has been extensively studied because of this wide range of applicability. 

Pat tern recogili lion tasks are broadly categorized into three different types [5S], [1 91 . 
namely: 

1.  Clustering: Data Clustering aims at  discovering and emphasizing structure which 

is hidden in a data set [7], [28]. The structural relationships among iiidividuai data 

vectors are detected in an unsupervised method. In clustering the patter:ls of thz 

same cluster possess some characteristics that make them exhibit some structure 

spatially. Generalization is possible here because new patterns have features sirrlilar 

to some known patterns, thus enabling the assignment to an existing cluster. 

2. Pattern Storage/Retrieval: The task here is to store the patterns, and retrieve 

the corresponding original pattern when a partial/distorted pattern is given [19], 

[20]. This process by which an original pattern is recovered from a partial/distorted 

pattern can be viewed as generalization. Here it is possible to recover the original 

pattern because of features present in the given partial/distorted pattern. 

3. Pattern Association: Here we associate with each pattern a correspondillg re- 

sponse which may be interpreted as another pattern. Generalization is possible in 

these tasks because of presence of features in the data or because of certain charac- 

teristics in the mapping function between input and output patterns. Generalization 

for these kinds of problems forms the focus of this work. 

1.3 Generalization Capability of Neural Networks 

Various approaches to solve pattern recognition problems are investigated in 1itera.ture 

[6] ,  [53], [32]. Machines are still not able to  perform pattern recognition tasks as efi- 

ciently as human beings do. This led to the development of the field of artificial neural 

networks that make use of mathematical models inspired by the functioning of the bio- 

logic

a

l neural networks. An artificial neural network (ANN)  can be defined as a syst,em of 



interconnected processors ( p i )  or nodes [3 I ] .  The network has n inputs, which correspond 

to the elements of an n-dimensional input vector x E %", and one or inore output nodes. 

Each processor or node p, has associated with it a vector of weights w, having real valued 

elements. Various types of neural network architectures have been developed to solvc dif- 

ferent pattern recognition problems [58], [33]. Fig. 1.1 illustrates a typical neural network 

with both feedback and feedforward connections. The A N N  approach to pat tern recogni- 

tion problems has many advantages, namely, ability to deal with a wide variety of data 

(probabilistic, fuzzy and noisy data), fault tolerance, parallel processing, ability lo learii 

from examples and 'generalization'capability [25]. Most pattern recognition problems are 

too complex to solve entirely by handcrafted algorithms to take care of all the variatiziis 

in data explicitly. Therefore, the ability of neural networks to learn from exaillples i:: a 

promising alternative [32]. Generalization capability of an ANN refers to its ability to 

learn from a few examples and give the desired output for samples that were not used in 

its learning phase [25]. Generalization is an important property in the context of learn- 

ing from examples or modeling from examples, where we use a few examples to develop 

a model, that is able to give the desired output for patterns that were not used in the 

learning or modeling phase. This property is important because most pattern recognitioii 

tasks involve a variety of data, and it is not possible to train the neural network on all 

the examples. 

ANNs offer promising results in a wide variety of recognition tasks. In this ~hesis 

we investigate the generalization capability of feedforward neural networks for pattern 

association tasks. In the following section we describe various kinds of pattern association 

tasks. 

Pattern Association by Neural Networks 

Pattern association problems involve association of input vectors with output. vectors. 

The neural networks that are used to solve the pattern association problems capt,ure :,he 

input-output relation. Pattern association problems are of two major types: 

1. Problems where it is possible to list all input-output pairs, for example, XOR prolj- 

lem. 



feed forward 
connect ion 

connect ion 
P4 

Figure 1.1: Typical neural network: with three inputs to xs and three 

outputs yl to y3. The processors or nodes are denoted by p1 to ps. 

2. Problems where it is not possible to list all the input-output pairs, for example, a 

large dimension parity problem. 

In the first case all the patterns and the corresponding outputs can be stored and recalled, 

whereas it  is not possible to do so in the second case. In the latter case, we require 

the neural network to give the desired output for inputs, without actually learning all 

possible input-output pairs. The network should capture the desired characteristics of all 

inputs from a few examples so that it can perform the desired association, i.e., it should 

generalize. 

It is not always possible t,o generalize from a few examples [25]. Some examples of the 

problems where it is not possible to generalize are: 



An unsmooth mapping fu~lct io~l  where there is no apparent method to interpolate 

between given examples of the function. 

A large dimension parity problein where bhe feature is deep and hidden due to many 

surface features. 

Inpu t-output associations like names and numbers in the telephone directory where 

there is no common property to capture froill examples in the training set ant1 

generalize to yield the desired output for examples not present in the training set. 

There exist various types of pattern association problems, where generalization is 

essential. In this thesis we focus on two types of pattern association tasks, namely, 

pattern classification and pattern mapping/function approximation, where generalizatioil 

is possible. These tasks are described in the following two subsections. 

1.4.1 Pattern Classificatio~i 

In this type of pattern association problems we learn a many-to-one mapping from a 

training set consisting of input-output .pairs. The grouping of inputs is done based on 

some underlying similarity in the example. Here generalization is possible because of the 

common features in the patterns of the same class which are transformed into proxiinity 

in some feature space. 

1.4.2 Pat tern Mapping/Function Approximation 

In these problems, we are given a training set consisting of examples of an unknown 

function f ( x )  in the form of input values of x  and corresponding output y. A pattern 

association sysbem is required to approximate this function based on the training set, 

such that it gives the desired output for samples not present in the training set. That is, 

generalize from a few examples to find the desired function f ( x ) .  This is possible if the 

function f ( x )  exhibits smoothness. It shouid be noted that, the roughness of the function 

being approximated determines the scope for generalization. 

Table 1.1 summarizes the properties which enable neural networks to  generalize in the 

context of various pattern recognition tasks. 



Pattern Recognit ion Tasks 

, I .  P a t t e r n  Clus ter ing 

2. P a t t e r n  StorageIRetr ieval  

3. Pat t e r n  Association 

Tasks where generaliza ti011 

is not possible 

Tasks where generalization 

is possible 

- Pattern Classification 

- Pattern Mapping/Function 

Approximation 

Reason why Generalization is Possible 

Common structure in data belonging 

to same cluster. 

Features in the partial/distorted pattern. 

Random zssociations wit.h no features 

involved or tasks where the features 

are deeply hidden. 

Similar features in the patterns oi same class. 

Smoothness in the mapping function. 

Table 1.1: Properties which enable neural networks to generalize in the context 

of various pattern recognition tasks. 

Scope of this Thesis 

In this thesis we address the issues of generalization in feedforward neural networks for 

pattern recognition tasks. First a conceptual understanding of generalization in the con- 

text of various pattern recognition tasks is provided. 

The property of generalization is discussed from the point of view of learning from 

examples. The model of learning from examples is discussed along with results of some an- 

alytica.1 studies on generalization. Limitations of the current implementations of learning 

from examples with respect to the issue of generalization are discussed. 

Some methods of improving generalization capability are studied. Limitations of 

problem-independent methods for improving generalization are discussed. It is shown 

that an intuitively good generalization can be obtained only if knowledge of the problem 

is incorporated into the network. Methods for improving generalization in pattern map- 

ping and pattern classification tasks are presented. The results are discussed with special 

reference to problems in speech recognition. 



Fig.1.2 gives a. brief overview of the work presented in this thesis. 

Organization of the Thesis 

In this chapter we have presented the conceptual understanding of generalization in the 

case of pattern re~ogilit~ioil tasks. 

In chapter 2 we present the theoretical studies on generalization. A model of learn- 

ing from examples and some theoretical results are reviewed. Limitations in practical 

application of the theoretical studies on generalization are discussed. 

In chapter 3 we propose problem-independent methods for improving generalizatioil 

capability of neural networks. A new method of quanlifying generaiization capability 

that makes use of fuzzy set theory is proposed. Limitations of the suggested method are 

discussed. 

In chapter 4 the problem dependence of the generalization phenomenon is described. 

The desired generalization behavior of neural networks is discussed by considering a.11 

analogy with modeling of a system represented by data. We focus on the pattern mapping 

and pattern classification problems. 

Chapter 5 illustrates studies on problem-dependence of generalization with examples 

from speech recognition problems. 

We summarize the work in chapter 6 and propose suggestions for future work. 



Gelleralizatioll in Feedforward Neural Networks 
for Pattern Recogiiit ion Tasks 

1. C o n c e p t  of General izat ion in P a t t e r n  Recognit ion Tasks: Clustering, 

Pattern Storage/Retrieval and Pattern Association 

2. Analyt ica l  Studies:  Computational learning and Statistical approach 

Consider synthetic data and artificial pattern associations 1 

1 3. Genera l iza t ion  i n  Feedforward Neura l  Networks: I 
I 

Problem independent approaches to improve generalization: 

- Multiple block update mode 

- Weight perturbation approach 

- Alternative stopping criterion 

Alternative method to quantify generalization 

- Fuzzy generalization index 

I 4. P r o b l e m  Dependence  of Generalization: 

Analogy with modeling of a system represented by data 

Problem-dependent methods of improvement of generalization 

- Pattern Classification: Radial Basis Functions for classification 

- Pattern Mapping: Regularization 

1 5. Appl ica t ion  t o  Speech: 

I Pattern Classification: Vowel classification I 
I 

Pattern Mapping: Voice Conversion 

Figure 1.2: Overview of the ideas described in this thesis. 



Chapter 2 

GENERALIZATION: REVIEW OF SOME 

ANALYTICAL STUDIES 

2.1 Introduction 

In this chapter some analytical studies on the property of generalization are reviewed. 

Although a relatively small fraction of the overall work done on neural networks is on 

theoretical analysis of generalization, these studies are marked by a variety of approaches. 

Some of the significant approaches are the computational learning theory approach [lG], 

[5 ]  and the statistical approach [27], [49]. These studies consider synthetic models of 

pattern recognition tasks and analyze the behavior of learning models for such tasks. The 

learning models optimize certain objective criteria formulated with respect to the synthetic 

data. The studies on generalization try to predict the generalization performance of the 

learning model. In this chapter we review some analytical results on generalization which 

give us an idea of the factors on which generalization capability depends in the existing 

approaches of learning from examples. 

In section 2.2 we review some measures of generalization which are necessary for 

studies on generalization. A model of learning from examples is presented in section 2.3. 

Theoretical results obtained from computational learning theory approach and statistical 

theory approach are reviewed in section 2.4. A discussion on these results and their 

limitations, including reasons for the lack of direct applicability of the results to  rea.1 

world pattern recognition tasks is presented in section 2.5. Section 2.6 gives a summary 

of this chapter. 



2.2 Overview of some Measures of Generalization 

In order to  study generaiizaiion capability we should be able to qua.ntify it, that is, it 

should be possible to evaluate a network and decide when its generalization is 'good'. 

However, the notion of 'good' or 'reasonable7 is itself not well defined. It varies from 

person to person and is problem dependent. For example, when the desired output is 

obtained on rl~ost occa.sions it is considered as 'good' generalization certain times, while 

in certain other types of problems generalization is considered to be 'good' if the network 

gives the desired output for a very rare situation which never occurred before. Various 

methods of measuring generalization are used in practice [34], [38]. 

In this section we give a brief overview of some of the measures that are used to quantify 

generalization. The subsection 2.2.1 is on Kullback-Leibler Measure, which is difficult to 

implement as it requires prior knowledge about the actual function being realized. In 

subsection 2.2.2, the Cross-Validation measure is described which can be implemented in 

practice but is computationally expensive. The generalization measures that are used in 

theoretical studies are presented in the section 2.2.3. 

2.2.1 Kullback-Leibler Measure 

The measure discussed in this subsection is defined for networks used for classification 

purpose. When a neural network is analyzed as a classifier we can view it as a probabilistic 

model which captures the probabilistic behavior of the system that generates the examples 

used for training. From this point of view, a measure of generalization is defined which 

measures the difference between the actual probabilistic system parameters and the system 

obtained by training the neural networks on the training examples [18]. This method of 

measuring generalization is called I<ullback-Leibler measure and is defined as follows: 

The class conditional probability distribution of the sample space is given by .rr(y(x), 

the probability distribution of x is ~ ( x )  and the joint probability distribution is ~ ( x ,  y )  = 

n(ylx).rr(x). It is assumed that y given x is identically independently distributed (2.i.d). 

The function approximated by the neural network, after training, is given by f,(ylx), 

where w is the weight vector of the neural network that is available to adjust and min- 

imize the error function according to the training set Tk = {(xl ,  yl),  . . . , (xk, y k ) )  con- 

sisting of k examples. The Kullback-Leibler measure gives the distance between the two 



functions n(ylx)  and fw(ylx) .  This can be exploited as a measure of generalization error 

because i t  gives how well the actual system generating the examples is approximated. 

Mathematically, the I<ullback-Leibler measure (ekl) is given by tlie following equation: 

where the integral is over the input-output space. The equation (2 . l j  can be written as. 

in which the expectation is with respect to (x, y) .  

The value of ek, is eqi~al  to  zero when the function approximated by thc ncura! net- 

work is equal t o  the actual function, i.e., fw(ylx)  = ~ ( y l x ) .  As the weights w are 

adjusted according to a, training set Tk which has examples selected at random, the term 

-E[log( fw(ylx))] is a random variable. Therefore, the first term in equation (2.2) can be 

used to  define the generalization error ( E r )  as follows: 

with expectation taken over (x, y )  in Tk. 

The Kullback-Leibler measure requires us to know the underlying probability distri- 

bution n(x ,  y) ,  which is unknown in most cases. Therefore an alternative method of 

measuring generalization is needed. One such measure, the cross-validation measure is 

discussed in the following subsection. 

2.2.2 Cross-Validat ion MeasureIError Rate 

Cross-validation is a method of estimating the generalization error by making use of the 

training/test data [34]. In this method, generalization error, E r ,  given by equation (2.3), 

can be estimated as follows: 

Notation Er,,, is used because it gives an empirical estimate of Er .  In the equation 

(2.4), w-; is the weight vector obtained by learning a. training set Tk with its i th sample 



deleted. Here Iwl indicates number of adjustable parameters, i.e., weights ] w (  E M where 

M is a set of all models under consideration. The weight vector w-; is called jack knife 

estimator. The above formula gives an estimate of the average predictive error on all 

examples, and -log( fw-, (y;lx;)) is the estimate of the predictive error on the ith sample 

by the rest of the samples in the training set, which are used to calculate the optimal 

weights w-;. It can be shown that Ere,, is an unbiased estimate of the generalization 

error Er as follows: 

In equation (2.5) the expectation is taken with respect to ( x , y )  in Tk. Equation (2.7) 

is obtained by using equation (2.4) and equation (2.3). For test data S, = {(xi, y;), i = 

1, .  . . , n,) we have the expectation of error on test data set as, 

which is the expectation taken with respect to (x,  y )  in Tk, S,. Thus, Eremp is also 

an unbiased estimate of the expectation of the error on the test data set. Due to  these 

properties we can use Er,,, as an unbiased estimator of the generalization error. 

But this method of cross validation to estimate generalization error involves training 

the network again. and again by deleting different data examples from the training set. 

This is a time consuming and a computationally expensive procedure. 

The most commonly used measure of generalization for pattern classification task 

is the percentage misclassification of the test samples or the error rate measure. It is 

assumed that the test samples are not used for the training of the network. This measure 

is extensively used because it is simple and easy to implement. It can be viewed as a 

variation of the cross validation measure. 

In the following subsection we define some of the measures of generalization that are 

used in theoretical studies. 



2.2.3 Other Measures of Generalization 

Generalization error can be measured by considering it as the probability that the network 

trained on k examples of the training set gives the output for the ( I ;  + 1)th sample 

incorrectly 121, [23]. If we represent this error by eg(w, k) then it is given by the following 

equation: 

where f, is the function output calculated by the neural network with weights equal to 

w. When the probability of misclassification is high the generalization error value given 

by the above equation is high and vice versa. 

Another method of generalization measure is to  consider the entropic error or entropic 

loss [26]. It is defined as the negative logarithm of the probability of correct classification 

of (k + 1)th pattern. That is, if entropic error is denoted by ei(w, k) then, 

e i (w ,  k) = -log(Probability of correct classification) 

= -log(l - Probability of wrong classification) 

= -log(l - eg(w, k)) (2.10) 

It is clear that when the probability of correct classification is one, the value of the entropic 

error is zero. 

As methods to  quantify generalization are known, we give a learning model in the 

following section which abstracts the process of learning and makes it possible to  theoret- 

ically study the concept of generalization. The model of learning from examples makes 

it possible to  theoretically study the process of learning by using some of the measures 

discussed in this section. 

2.3 Model of Learning from Examples 

Learning from examples is a complex process which is not easy to  understand. In order to 

analyze it ,  a rnodel of iearning from examples is used. One of the main results of learning 

from examples is the ability to generalize to give desired output for examples not used 

for learning. Thus, studies of generalization make use of a model of lea.rning, and the 



key idea is to compute the ~ r o b a b i l i t ~  that the network gives the correct output for new 

samples after learning from a training set. 

The concept of learning from examples is modeled through three components: 

1. A system which generates random vectors on some fixed unknown probability dis- 

tribution n(x) .  

2. A supervisor that returns an output vector y for every input vector x according 

to  a conditional probability distribution function n ( y ) x ) ,  which is also fixed but 

unknown. This includes the case when the supervisor uses a function y = f (x ) .  

3. A learning machine capable of implementing a set of functions f (x ,  w), w E A, 

where A is the parameter space of learning machine. 

Learning consists of selecting a function from a set of functions the learning ma- 

chine can implement, such that the response of the machine is similar to the super- 

visor's response. This selection is done by using a training set of k i.i.d observations 

Tk = {(x,, y l ) ,  . . . , (xk,  y k ) )  drawn according to x(x ,  y )  = x(x)x(ylx). 

In order to choose the best approximation to the supervisor's response the difference 

between the output of the learning machine and the supervisor is minimized. Let n(z) 

represent the probability distribution on input-output space 2. Consider a set of functions 

Q(z, w),  w E A. The goal is to minimize the risk functional, 

If the probability measure ~ ( z )  is unknown, the minimization is done on a set of 2.i.d 

examples zl ,  z2, .  . . , zk where z is an example from the input-output space, i.e., (x,y).  

All learning problems are particular cases of this general problem of minimizing the 

risk functional on the basis of empirical data. Learning theory addresses the following 

issues with regard to the model of learning from examples given above, 

1. Consistency of learning process. 

2. Rate of convergence of learning process. 

3. Generalization ability of learning process. 



4. Development of learning algorithms. 

Details about issues 1, 2 and 4 can be found in [55] and references thereof. In this work 

we concentrate 011 the third issue. Variations of the model of learning from examples 

presented in ihis section are analyzed to obtain results on generalization. Some analytical 

results on generalization are reviewed in the following section. 

2.4 Some Results from Theoretical Studies on Gen- 

eralizat ion 

At present there is no single complete theory of generalization, because the interpretatio~s 

given to the functioning of the neural network vary. In the following two subsections we 

state results obtained from theoretical studies of networks using different approaches of 

analyses. 

2.4.1 Results from Computational Learning 

The discussion in this section makes use of the following intuitive idea of generalization 

[21]: Consider a network which has been satisfactorily trained using a sequence of training 

examples from a particular problem. If there is a 'high enough', probability that the actual 

error of the network for future samples drawn from the same problem is 'small enough' 

then we say that the network generalizes. 

This idea of the concept of generalization is used in the Probably Approximately 

Correct (PAC) learning theory [16], which is based on the learning model introduced 

by Valiant [54]. In this section we define some terms that are essential to understand 

the theoretical results obtained in PAC theory. We give the definitions that follow in 

the context of neural networks for easier understanding. In the following definitions, F 

denotes the class of functions that can be implemented by a neural network, and fw 

represents one of the members of this class for a particular value of weight vector w. S is 

the input space. 

Definition 1: (Dichotomy) Given a finite set S C 92" and some function tw E F, we 

define the dichotomy (S+, S-)  of S, where S+ and S- are disjoint subsets of S, such that, 

S+ U S- = S and x E S+ if f,(x) = 1, whereas, x E S- if f, = 0. 



Definition 2: The hypothesis h ,  associated with a fu~lnction fw is the subset of 92" for 

which j, (x)=l, tha.t is, 

The hypothesis space H computed by the neural network is the set given by, 

It is the set of all hypothesis, where Iwl is the total number of weights in the network. 

Definition 3: Given a hypothesis space H and a finite set S C %", we define AH(S)  as 

the set, 

We say that S is shattered by H, if AH(S) = 21'1 where IS1 is the number of elements of 

the set S. 

Definition 4: (Growth  Function) The growth function, AH(i),  is defined on the set 

of positive integers as, 

The growth function gives the maximum number of distinct dichotomies induced by H 

for any set of i points. 

Definition 5: (Vapnik-Chervonenkis Dimension) The Vapnik-Chervonenkis dimen- 

sion or VC dimension of the hypothesis space H, denoted by VCdim(H),  is the largest 

integer i such that AH(i) = 2'. In the case when no such i exists VCdim(H) is infinity. 

A hypothesis space, H, is directly related to a class of functions, 3, so we can apply 

the definitions of growth function and VC dimension to  3. 

Fig. 2.1 illustrates the shattering of 3 noncolinear points by straight lines. A set of 3 

noncolinear points is the largest set of points that can be shattered in 2 dimensional space 

by straight lines, therefore the VC di~nension of the set of straight lines with respect to  a 

set of noncolinear points in 2 dimensional space is 3. 

VC dimension is a combinatorial parameter which measures the expressive power of 

the network. VC dimension has been used extensively to obtain results that tell us about 



Figure 2.1: Shattering of three noncolinear points by straight. lines. Thus 

VC dimension is three for straight lines in two dimensional space on a set of 

noncolinear points [25] 

the ability of a classifier to generalize after it has been trained [5], [50], [3]. It has been 

shown [5] that it is not the size of the set of computable functions but the VC dimensioil 

of the functions that is crucial for good generalization, in the context of PAC learning 

model [5]. The results that follow use probabilistic definition of generalization error, given 

by equation (2.8), and give the worst case bounds of this error. The following key results 

on the bounds of the generalization error are given by Haussler, et al. [17]: 

where E is the expectation, L is the class of target functiorls and k is the number of 

training patterns. 

The bound given in the equation (2.16) has been further ixnproved and is given by 

The results given by equation (2.16) and equation (2.17) are tighter bounds on the gen- 

eralization error than the more powerful results obtained previously by Haussler et nl. 



[15] where fewer assumptions are made. It should be noted that the results given above 

are obtained by assuming that the neural networks performailce is optimum when it im- 

plements a Bayes Optimal Classification algorithm [13]. The Bayes optimal classificatioil 

algorithm makes use of finite training set t,o give an optimal prediction for a new sample. 

and it is different from a Bayes classifier that requires complete statistics of a classification 

problem. The use of C, a class of target functions, models the fact that the classifier can 

be applied to a selection of different problems. 

These results have been compared with the ~erformance of neural networks on a classi- 

fication task and the second bound has been found to be a moderately good approximation 

of the worst case generalization error [22]. The experirrlents conducted by Holden and 

Niranjan [22] were performed on Pet,erson/Barney Data which is sea! datzi iinlike the 

synthetic data which is considered for analysis. 

The main problem with the results given above is that the VC dimension of the function 

that we are approximating, is required. But this function is unknown. Consequently, the 

value of the bound cannot be calculated correctly. Apart from this, the calculation of VC 

dimension of various classes of functions is not easy. VC dimensions of some classes of 

functions are given in [2], [50], [57]. 

2.4.2 Theoretical Results on Asymptotic Behavior of Learning 

Curves 

When the performance of the neural network is plotted against the training patterns 

then the resulting curve is known as a learning curve. The learning curve shows how 

quickly a learning network improves behavior that is evaluated by the generalization error 

[27]. Thus, study of the behavior of the curves gives us an idea about the generalization 

capability. 

A universal result on the behavior of the entropic error ei(w, k )  with increase in the 

training examples in the training set is given by Amari [26]. According to this result, when 

every weight of a neural network is contributing to the performance of the neural net.work, 

that is under the condition of regularity, the entropic learning curve is asymptotically given 



lw I (ei(w, b)) -. - 
k 

where J w J  stands for number of weights, k is the number of patterns the network is trained 

on and (ei(w, b)) indicates the average over all training with different training sets. I t  

should be noted that this result is independent of the architecture of the neural network 

and the learning algorithm used to train it. 

2.4.3 Discussion 

In the above two subsections we gave two results on the behavior of generalization error. 

In this section we bring out some similarities in the results which were obtained from 

different approaches of analysis. 

The VC dimension of a network can be regarded as a measure of capacity or expressive 

power of a neural network. The number of weights also indicates the capacity of a neural 

network. So both the results show that the generalization error is directly proportional 

to the capacity of the network. Moreover, both results show that the generalization error 

is inversely proportional to the number of patterns used to train the neural network. 

It has been shown that, in case of Radial Basis Functions Neural Networks (RBFNN), 

I w I  - 1 -< VCdim(3)  _< IwI, where 3 is the family of functions that a network can 

approximate and Iwl is the number of weights [2]. In the case of polynomial basis networks, 

VCdim(3)  = Iwl. Based on the above results on VC dimension one can see.that, the 

bounds of the generalization error obtained from computational learning and the behavior 

of the learning curves essentially give similar results. But, in computational learning the 

worst case behavior of the error is studied while in the latter case the average behavior is 

analyzed [21]. 

Relationship between these theoretical methods are discussed by Sueng et al. 1491. In 

the following sections we present the limit,ations of the theoretical studies with respect to 

real world pattern recognition problems. 



2.5 Limitations of Theoretical Studies 

As generalization capability of a neural network is an important property, it is useful to 

have analytical results which can be utilized as tools in the design of neural networks for 

practical applications. But the analytical results presented in this chapter are not directly 

applicable for this purpose because of the following reasons: 

They are obtained by considering synthetic data generated by a model or by con- 

sidering random data associations that do not model actual pattern recognitioll 

problems which exhibit some features that can be generalized in them. All bounds, 

on the number of training examples needed to  guarantee good gener

a

lization are 

found to be large compared to the number of examples that are usually required 

in practice. This is mainly because random associations of data are also consid- 

ered while finding the bounds. Apart from this, theoretical studies usually make an 

assumption of noise free data which is an unlikely situation in real world pattern 

recognition problems. 

The learning process is tailored to the synthetic data. Usually such data does not 

exhibit features. Consequently, the objective functions which are minimized during 

the selection of the parameters for the learning machine are not designed to capture 

the features in the data, that enable generalization. 

One of the key assumptions, that is made in analytical studies of generalization 

in neural network, is that every weight contributes to the approximation of the 

function. But when large networks are considered, one cannot ensure that every 

weight is contributing to  the function approximation. Some weights may have values 

that negate the effect of each other during the calculation of the output, so they just 

balance each other, and thus do not contribute to the function approximation. Such 

weights contribute to the variability of the output of the neural network for samples 

not encountered during the training phase. Hence, theoretical studies cannot give 

accurate results with regard to such networks. 

Thus, it can be concluded that the theoretical studies make several assumptions. that 

are not usually accurate in practice, to obtain results. Also, another main reasoli for 

their pessimistic prediction of bounds on the geileralization error, is due to considering 



simulated/synthetic random pattern associations which cannot be generalized without a. 

large number of examples. 

2.6 Summary and Conclusions 

In this chapter we have briefly reviewed some of the recent theoretical results on the 

generalization capability of neural networks. 

Since it is not possible to study theory on generalization without quantifying general- 

ization, we initially gave an overview of some measures of generalization. 

Then we described a model of learning from examples used in theoretical studies. 

Some attempts to provide a theoretical framework for the concept of generalization were 

discussed. To provide a theoretical framework for the study of generalization in pattern 

recognition tasks, synthetic models of pattern recognition tasks are assumed. The train- 

ing data is generated from these models with some assumed characteristics. Measures of 

generalization are proposed based on some objective criteria, and the performance of gen- 

eralization has been obtained in stochastic sense as closed form expressions as a function 

of parameters of the model as well as the training set. All these studies are made us- 

ing theoretical formulations without actually training the pattern recognition system and 

testing it for its performance. Some results obtained from computational learning theory 

and behavior of learning curves were reviewed. The relation of generalization ability of a 

network to the capacity of the network and the size of the training set used to train the 

network is given. 

Reasons for the limited applicability of the analytical results as tools while design- 

ing neural networks to solve pattern recognition problems are discussed. The difference 

between real world pattern recognition problems and pattern associations with synthetic 

data used in analytical studies is one of the main reasons for this drawback. Despite these 

limitations, the theoretical results give us some idea about the extent of influence of size 

and architecture of neural networks and size of training set on generalization. 



Chapter 3 

GENERALIZATION IN FEEDFORWARD 

NEURAL NETWORKS 

3.1 Introduction 

Many models of neural networks have come into existence over the past few decades [58], 

[33], [25]. Most of these models have evolved from basic models like the Hopfield net- 

work [19] and perceptron [l8] which were adapted to solve specific problems. The neural 

network models can be classified into feedforward and feedback models. In this thesis 

we concentrate on feedforward models of neural networks that use supervised learning. 

Fig.3.1 illustrates a typical feedforward neural network with 3 inputs, 3  output.^ and 4 

hidden nodes. The weights of the network are adjusted using supervised learning. 

Supervised learning is a method of learning in which the training set consists of input- 

output pairs. These input-output pairs may be any arbitrary association of some input 

with an output. These pairs of examples may correspond to a mapping function, or a set 

of patterns and the classes to which they belong. In supervised learning the error between 

the network output and the target output is reduced in order to obtain desired output 

for the corresponding input. 

Formally, the training set of size k can be represented as T k  = {(x*, y l ) ,  . . . , (xk, yk)) 

where x; E 9" are the input vectors of dimension n and yi E %" are the output vectors 

of dimension m, and % represents the set of real numbers. Let fw represent the function 

realized by a neural network with weights w, then our aim in supervised learning is to  

adjust the weights such thal,  f w ( x i )  = y; V(x;,y;) E Tk, under the assumption that the 

training examples are noise free. If the examples are not noise free, then the error between 

f , ( x ; )  and y; for all the training examples is minimized. 

This kind of learning process is especially useful in the case of pattern association 



Figure 3.1: Typical feedforward neural network with 3 inputs x l  to x3 and 3 

outputs yl to  y3. The processors or nodes are denoted by pl to  p l .  

problems, where inputs and corresponding desired outputs are known. 

From the above discussion we observe that objective function proposed for theoret.ica.1 

study has been applied to learning in neural networks from examples of data. In this case, 

only the training data is available and no model is assumed for the pattern recognition 

system. A criterion based on the objective function is used to fix the weights of the neural 

networks during the training phase. A cross validation measure is used for testing the gen- 

eralization ability of the neural net-work from the given training data. The generalization 

performance is poor for training samples consisting of purely random data. Even when 

the training data belongs to the generalizable problem, the ability of a neural network to  

generalize depends critically on the nature of the problem, the number of parameters in 

the network, the number of training examples, the objective criterion used in training, the 

manner of presentation of examples in training, etc. Moreover, cross validation measure 

itself may not be adequate to evaluate the generalization behavior of the network. In this 

chapter we study generalization capability in feedforward neural networks. VJe conom- 



trate on the property of generalization of the network without taking into consideration 

the problem that is being solved by the network. 

In the section 3.2 we discuss the issues related to generalization capabilit,~ of feed- 

forward neural networks. Generalization ca.11 be improved using a problem-independent 

approacl~ or by taking into consideration knowledge about the problem. We discuss the 

problem-independent approaches to improve generalization in section 3.3. Some problern- 

independent methods for improving generalization are presented in section 3.4. ' The lim- 

itations of problem-independent approaches to improve generalization are also discussed 

in this section. Issues in quantifying generalization are described in section 3.5 and a 

new measure of generalization which makes use of fuzzy theory is proposed. We give a 

summary of this chapter in section 3.6. 

3.2 Feedforward Neural Networks - Limitations in 

the Context of Generalization 

Pattern recognition tasks are usually complex, and cannot be solved by designing a single 

algorithm that takes care of all the vaiiations in the patterns [32]. Therefore, methods 

of learning from examples have developed. Learning algorithms generally perform better 

in lower dimensional space. Thus, it is important that the patterns can be transformed 

to lower dimensional space so that the learning can be performed well. This enables 

us to view the pattern recognitions tasks as consisting of two parts, namely, a feature 

extraction part and a pattern association parts. Feature extraction is problem-dependent. 

The performance of the pattern associator depends on how well the features are chosen by 

the designer. The neural network approach to pattern recognition tasks tries to overcome 

this dependence on a designer for selection of features from the patterns. For this purpose 

a learning algorithm is used to adjust the weights of a feedforward neural network using 

training examples. It is hoped that the neural network is able to extract certain features by 

itself (without aid from a designer), from the training examples as a result of learning, and 

generalizes to give the desired output for new samples. But in most of the inlplementations 

of learning, the goal of the learning process is to minimize an objective function which 

has been obtained from analytical studies on synthetic data (551. Thus, the method does 

not take into consideration extraction of features. This is one of the major linljtation of 



generalization in most neural network methods used for pattern association. 

Despite the above limitation, neural networks perform reasonably well for ya.ttern asso- 

ciation problems because of their ability to learn complex mappings in higher dimensional 

space. This generalization performance of a neura! network is improved by manipulating 

parameters of the network, which include: 

Architecture of a neural network 

Training set - size and quality 

Learning algorithm 

Criterion for stopping training 

These approaches to  improve generalization are discussed in detail in the following section. 

3.3 Approaches to Improve Generalization 

Even though ANNs have the limitmatinn of r,st being specifira1l:l Jp~igned to  capture fea- . 
tures and to  generalize, several efforts have been made to improve generalization perfor- 

mance of neural networks using an objective criterion for training data, and error rate on 

test da ta  for measuring the generalization capability of the network. The generalization 

performance is evaluated by varying the free parameters of the neural network and the 

learning algorithms. In this section we discuss some approaches to  improve generalization 

considering the key issues in generalization that they try to overcome. 

The  methods suggested to  improve generalization in neural networks may be of two 

types: 

Problem-Independent: These methods deal with the functioning of a neural 

network, method of presentation of data, etc. 

Problem-Dependent: These methods include special design of a neural network 

taking into consideration available knowledge about the problem [14], [45]. 

In this chapter we concentrate on the problem-independent approaches to  improve gen- 

eralization. The  problem-independent methods manipulate the parameters of the network 

as follows: 



Architecture of Neural Networks: Neural networks can be thought of as non- 

para.metric estimators of functions from a given set of values of the functions, namely, 

the training set. Nonparametric estimators do not make assumptions of a model for 

the tra.ining da.ta. To be truly nonparametric, we should use large networks that 

give more flexibility t o  the functions realizable by learning from examples. Many 

training examples are required to achieve good generalization when a large network 

is used. But it is not always possible to obtain a large number of examples to  train 

the network. Hence, there is a need to reduce the number of parameters of the 

network such that the available training set is sufficient for good generalization. 

The  architecture of the neural network controls the number of parameters. Hence, 

choice of an optimum architecture is one of the major approaches to  improve gener- 

alization. One of the key existing methods of optimizing the architecture is pruning 

which is discussed in detail in the survey paper by Reed [47]. 

Training Set - Size and Quality: As discussed above it is advantageous to  have a 

large number of training examples to  train the network. Methods, that manipulate 

the training set such that more data is available to  train a network, a.re extensively 

studied for improving generalization. One such method is introduction of noise into 

the training examples to  generate new training examples which can be used to  train 

the network [24]. It has also been shown that the training set has to be a good 

representation of the examples that occur in the problem being addressed to  ensure 

good generalization [36]. 

Learning Algorithm: In many existing models of neural networks it is not possible 

t o  train the neural network when the number of examples is large. The time required 

t o  train the network becomes very large. So, methods to accelerate the learning 

algorithm are studied in an effort to  train the network with large number of examples 

in finite t ime [29]. 

Criterion for Stopping Training: Decrease in error on the training set during 

learning phase does not always ensure good performance on a test set. The  phe- 

nomenon by which decrease in training error results in increase in generalization 

error is termed as overtraining. Fig.3.2 gives generic graphs that show the behavior 

of training and test error with number of training iterations. Overtraining occurs be- 



error 

optinlunl 
training 

number of training iterations 

Figure 3.2: Graph depicting overtraining. There is an increase in general- 

ization/test error even though the'error on training set decreases with larger 

number of training iterations. 

yond the optimum point indicated. Overtraining is attributed to the memorization 

of training examples by the neural network due to overfitting of function realized by 

the network to the noisy training data examples. Finding of a criterion for stopping 

training when generalization is the best, and thus avoiding overtraining, is a key 

issue of the generalization in feedforward neural networks. 

In the following section we propose some methods to improve generalization which are 

independent of the problem to which the network is being applied. 

Suggested Met hods for Improving Generalization 

As already discussed in the previous section, we can improve generalization by manipu- 

lating certain parameters of the network. In this section we study the effects of different 

stopping criterion and also the manner of presentation of data on the performance of 



generalization. We show that the proposed stopping criterion and methods of presenta- 

tion of training data may sometimes inlprove the performance. But in such cases the 

improvement is marginal. 

In subsection 3.4.1 we propose a new stopping criterion for training. In subsection 

3.4.2 we give a method of using multiple blocks of data for weight updation during the 

training phase. The use of two training sets, one to train the network and another to 

perturb the weights once the network is trained, improves generalization capability of the 

neural network. This method is discussed in subsection 3.4.3. 

In this section we consider the feedforward neural network trained using backpropa- 

gation algorithm to study the effectiveness of the approaches to improve generalization 

in the context of a classification problem. The problem of classification of vowels 'a', 'e', 

'i', '0' and 'u' uttered by three different speakers is addressed. We use formants which 

are resonances of the vocal tract as features. The input is a three dimensional vector 

consisting of the first three formants. We train the neural network on a training set con- 

sisting of three hundred examples. The generalization capability of the neural network is 

evaluated based on its performance on a test set which consists of examples that did not 

occur in the training set. In the experiinents conducted in this section we used a test set 

consisting of 1800 examples. 

3.4.1 Stopping Criterion for Training 

The method of updating weights does not ensure that there is an improvement in gener- 

alization. That is why overtraining occurs. In literature we find various stopping criteria. 

used to stop the learning process [25]. Some of the criteria used are: 

1. Magnitude of gradient: This method is used in gradient descent approaches of learn- 

ing. Here the learning algorithm is terminated when the magnitude of gradient is 

sufficiently small, since by definition the gradient is zero a t  the minima. 

2. Cost function below certain minimum value: When the cost function is minimized 

during the training process, a certain threshold value is chosen, and training is 

stopped when the cost function value is below this value. However this requires the 

knowledge about the minimal value that the cost function can reach, which is not 

usually known. In pattern recognition ~roblems one can stop training as soon as all 



the training data are classified correctly. Many times the network may not manage 

to classify all the examples in the training set. correctly, and even i i  it does, this 

does not ensure that it will give its best performance on the test set. 

3. Fixed number of iterations: Kere tlic: training is sl;opped after a fixed number of 

iterations. This method does not guarantee that the algorithm terminates when the 

best solution is reached. 

4. Perfornzance on test set: Here the data is split into two sets: a training set which is 

used to  train the network and a test set which is used to measure the generalization 

performance of the network. During learning the performance of the network on 

the training set continuously improves but its performance on test set improves to a 

certain point, beyond this point it starts degrading. At this stage the network begins 

to overfit the training data, and so training is stopped. This method is sometimes 

called cross validation, but it should not be confused with the actual cross validation 

which has already been discussed in section 2.2.2. 

The first three criteria are sensitive to the choice of parameters, and if not chosen properly 

the results can be very poor due to termination of training. The fourth method, 

however, does not suffer from this kind of premature termination, but results in good 

generalization performance of the network. However, checking performance on a test set. 

is computationally intensive. Further, if the number of data samples is limited, it reduces 

size of the training set. 

In this section we propose an alternative stopping criterion for feedforward networks 

used for pattern classification. It can be shown that when the least square error is min- 

imized during training, the outputs of the network tend to converge to the a posteriori 

class probability x(c tx)  [39]. The proof of this result is given in Appendix A. It is also 

observed that although there is no explicit constrain imposed on the sum of the outputs of 

the neural network, its value tends to become close to  unity when error between network 

output and desired output is small. In the proposed stopping criterion we make use of 

this observation and stop training when the surn of the outputs of the network is within 

a 'small' closed interval [ar,a2] around 1, instead of the error between network output 

and desired output tending towards zero. An example of a typical values of the interval 

[ a l ,  a21 is [0.95,1.05]. 



-- . 
The use of this method does not force the network function to fit all the data points .-. 

exactly. Therefore it helps to  alleviate the problem of overfitting. The performance of a 

network that uses this stopping criterion is given in Table 3.1. It can be observed that it' 

does gives only a marginal improvement in the performance on the test set. Especiall~. 

when the network is small, there is no improvement as there is no scope for overtraining. 

But in the case of large networks there is comparatively more improvement in general- 

ization. This method may be suitable when there are a large number of outliers in tlie 

training set., which if learned till the network gives low error, cause the generalization to 

be poor. 

I I I Percentage Correct I 
S1. 

Table 3.1 : Comparison of error reduction stopping criterion with suggested 

stopping criterion. 

No. 

1 

2 

3 

3.4.2 Variable Block Size Update Mode 

Number of 

There are two modes of updating weights in the feedforward networks that use grsdi- 

Hidden Nodes 

5 

10 

40 

ent descent algorithms for learning, namely, the pattern mode and the block mode [ lS].  

Classification 

In the following discussion we restrict our attention to the backpropagation learning al- 

gorithm. In the pattern mode the weights are updated after the presentation of each 

Error Reduction 

Stopping Criterion 

86.3% 

87.2% 

88.S% 

- 

Suggested Stopping 

Criterion 

86.3% 

81 -2% 

90.7% 



pattern, whereas in the block mode the weight changes are accumulated till the end of 

one cycle through all the training examples and then the weights are updated. These two 

methods have been studied extensively, and each of these methods has its advantages and 

disadvantages [19]. The pa.ttern mode requires less memory and, since the patterns are 

presented in random to the network, the search for the solutioil is stochastic and there 

is less chance of the network getting stuck a t  a local minima. On the other hand, in 

the block update mode the estimate of the gradient vector is better; so each updation of 

weights generally results in decrease in error without much oscillation. 

In the proposed method we combine the advantages of both these methods by using 

blocks of da ta  to update the weights. In the normal block update method the whole 

training set is treated as a single block and, updating of weights is done after the whole 

training set is presented to  the network and weight changes are accumulated. In the 

proposed method we treat the training set as consisting of blocks, and the weight updation 

is done a t  the  end of each block by considering all the changes in weights for that  block. 

The behavior of neural networks, after training them with varying size of blocks of input 

data,  is investigated here. In this approach, a t  each stage a better estimate of the gradient 

is made and also the updation retains its random nature because the blocks of data  are 

still random as they consist of a few ~ a t t e ~ n s .  

It has been reported that when presentation of the data  is in random from the data  

set, there is an improvement in the generalization performance. Here we investigate use 

of the same patterns in each block for repeated training iterations and also the use of 

different patterns in each block for repeated iterations. We call the former method as 

fixed block mode and the latter as random block mode. 

Table 3.2 gives the comparative performance of the fixed block and random block 

modes of weight update. Column one gives the performance of fixed block mode and 

column two gives the performance of random block mode for various sizes of the blocl<s of 

training da ta  set consisting of 300 examples. When pattern by pattern mode of update is 

used, the  network classifies 87.7% of the test set samples. From the table it can be inferred 

that when blocks of da ta  are used to train the network, the performance on the test set 

improves. This can be seen from the first six rows of the table. But as the size of blocks 

increase the generalization, as evaluated by error rate on test set, decreases. Also, it is 

observed that  use of the random blocks of data  to update weights results in marginally 



Table 3.2: Comparison between the fixed bock and random block modes of 

update of weights. Training was done for 5000 iterations on a training set 

consisting of 300 examples. The performance for pattern by pattern update is 

87.7%. The test set consisted of 1800 examples. 

better generalization than the fixed blocks of data. However, it should be noted that,  as 

the size of blocks increases the performance of the random block mode decreases compared 

to that of fixed block mode for the same number of training iterations. 

S1. 

No. 

3.4.3 Weight Perturbation with Training Examples 

Size of 

Block 

Percentage Correct 

Classification 

One of the main issues of generalization in feedforward neural networks is overtraining. 

In this situation the network constructs a curve that passes through most of the data 

samples, and this results i11 poor generalization because the data is usually noisy. Fig.3.3 

illustrates poor generalization due to overfitting. This problem of overfitting, that occurs 

when error on training set reduces, has motivated the suggestion of using two sets of 

Fixed Block 

Mode 

Random Block 

Mode 



(a)  correct fit 
of noisy data 

(b) overfitting of 

noisy data 

Figure 3.3: Illustration of overfitting. (a) Actual function that fits the noisy 

data. (b)  The curve that fits the data well, but is a poor approxin~ation of the 

actual function. 

examples to train the network. In this method the network is trained on one set of 

examples till low error is reached, and the second set of examples is used to train the 

network for a few number of iterations. The reason for performing a few iterations on 

the second set of training examples is to the weights that have been obtained by 

training on the first training set. This perturbation will disturb the function learned by 

the network which may be overfitting for the first training set. Since the perturbation is 

done according to the examples of the function being approximated, it is hoped that the 

resulting disturbed function approximates the actual function in a better way. 

Table 3.3 illustrates the performance of the network for which this method of presen- 

tation of data is implemented. The first row of the table gives the performance of the 

network when it is tra.ined on a single training sets. The successive rows indicate the 

performance for various sizes of the first and second training set. It has been observed 

that the performance is usually better when the second training set is small. Moreover, 

the performance usually decreases with increased number of training iterations on the 

second training set. In the table the performance value has been obtained by performing 

about 20 training iterations on the second training set. It should be observed from the 



Table 3.3: Performance of neural network trained with two training sets. The  

first row of the table indicates the performance when a single training set is 

used. Successive rows indicate the performance for different sizes of the first 

and second training set. 

third, fourth, fifth and sixth rows of the table that a better performance is achieved by 

the network trained by the ~ roposed  method even though a small training set is used. For 

example, we achieve 91.8% classification by using 150 examples as indicated by the sixth 

row 'entry of the table as against the 87.7% classification achieved by using 300 examples 

as a single training set. 

S1. 

No. 

3.5 Quantification of Generalization 

Size of second 

training set 

Size of first 

training set 

In section 2.2 some limitations of measuring generalization were stated and a brief overview 

of some measures of generalization was given. In this section we look a t  some of the de- 

ficiencies in the existing approaches t o  evaluate the performance of generalization. We 

discuss an  intuitively appealing approach to  judge the generalization behavior of a net- 

work, although the proposed approach has limitations to  apply in practice. The approach 

is based on using the concepts of fuzzy sets and also the newness of test samples. A brief 

overview of relevant fuzzy set concepts is given in Appendix B. 

performance 

of network 



3.5.1 Issues in Measure of Generalization 

The difficulties that arise during thc measure of generalization are: 

Lack of Proper Definition of Generalization: We come across two definitions 

of generalization [25] that are used in related studies, namely: 

1. Ability to produce accurate results on new examples not present in the training 

set. 

2. How well the network performs on the actual ~ r o b l e m  once the training is 

complete. 

There is a subtle difference between these two definitions. This difference ca.n be 

highlighted by considering the case when generalization is considered to reach a high 

value in by each of these definitions. In the case of generalization given by the first 

definition, the value is high when the network gives desired output for samples that 

did not occur in the training set. Here it is independent of probability of occurrence 

of the samples. In contrast to this, generalization given by the second definition is 

high if the network is able to  yield,the desired output for the most frequent examples 

that occur in the problem being addressed. It indicates the ability of the network 

to  give the desired output for any input from the input domain. This quality is 

influenced by probability of occurrence of the sample. 

Need to Consider Quality of Training Set: Generalization in neural networks 

depends on how well the training set represents the input domain. ~ u r t h e r  the 

output error is minimized during the training phase of the network so that the 

network gives the desired output for the training examples. Consequently, if the 

test set contains samples similar to the training examples, then the network is 

able to  classify them properly. Thus, the generalization capability of the network 

appears to  be high if we measure generalization using methods which do not take 

into consideration quality of the training set. Therefore, there is a need to  consider 

the quality of training set used to  train the network, and accordingly interpret the 

performance on test set, 

Inherent Fuzzy Nature of Generalization Measure: When a trained neural 

network is tested on new samples, its output may not, be exactly what is desired 



or completely different from the required output, instead it may be correct to some 

extent, i.e., partially correct. All existing approaches to measure of generalization 

capability do not make allowance for the partial correctness, they only consider 

whether a sample gives the desired output or not. The suggested measure t,akes 

partial correctness into consideration by the use of fuzzy approach. 

In the following section we propose a method of quantifying generalization that tries to 

take into account these limitations of measuring generalization. 

3.5.2 Fuzzy Generalization Index 

The generalization index developed in this section quantifies the ability of a neural net- 

work to produce the desired results on test samples not used in the training set. The 

formulation of this index takes into consideration both the fuzzy nature of generalization 

and the influence of the size and quality of the training set. The objective of measuring 

generalization capability of a network is to determine the extent to which we can rely on 

the output of the network for all the samples in the input domain of a given problem, 

once the training is complete. Since the number of patterns of the input domain is usually 

large, we try to evaluate generalization based on a finite set of test samples. In order to 

accomplish this task, we compute the network output for each test sample and compare 

it with the desired output. 

Based on the information obtained from each test sample, an estimate is made about 

the generalization capability of the network. Fusion of evidence obtained from.each test 

sample is achieved using a fuzzy aggregation operator. To derive an index for generaliza- 

tion (G) ,  there is a need to calculate the extent of generalization (9;) for each test input 

( x i ) .  

Before presenting the proposed method of measuring generalization, some elementary 

properties that should be satisfied are stated. The following notations are used for stating 

the properties: 

Z = set of all possible input-output pairs 

Tk = { (x ; ,~ ; ) ,  i = 1,2 , .  . . , k) is the training set, Tk C Z 

S, = set of n test input-output pairs, S, 5 Z 



gi = generalization value attributed to the it11 test sample pair (xi, y i )  

G = generalization index 

1. G=O if a.nd only if no test samples other than the exa,mples in the training set giiye 

the desired output. That is, 

2. G = 1. if and only if gi=l for every new test sample. Hence, 

3. There are no constraints on accuracy of learning on the training set imposed by G. 

4. G is not influenced by the probability of occurrence of the examples. 

The first property substantiates the fact that the generalization index quantifies the 

ability of the neural network to classify new samples. Therefore, i t  states that when no 

new sample gives the desired result, the index is zero. An interesting implication of this 

property is that G = 0 when Tk = Z, because there is no test sample (x,, y , )  @ Tk. 

This is intuitively appealing, because, when all possible examples are used in training the 

network, there is no need for generalization. The second property states that every new 

example should give a value 1 for the generalization index. The third property highlights 

the fact that the performance on training set can not significantly affect the index G. The 

final property requires that G is independent of the frequency of occurrence of samples. 

The proposed method of measuring generalization in now presented. First, the value 

g; for each test sample is determined. The generalization value g; attributed to the i th  test 

sample depends on two factors, namely, "how new the test sample is" and the "degree of 

correctness". Degree of correctness makes allowance for the fact. that the output may be 

partially correct. The second factor enables us to account for the quality of the training 

set. The factor "how new the test sample is" also indirectly accciunts for the size of the 

training set. It enables distinguishing between a network that requires large number of 

training examples to perform well and a network that requires a few training examples for . 
similar performance. The concept of newness of a test, sample is fuzzy in nature, becau~e 



there is a gradual change from similar pattern to "more or less new" type of pattern. 

Consequently, fuzzy membership can be used to model the neivness concept. We define 

newness of a, patt,ern by pnew, where /in,, : 91 + [Q: I ] .  Here newness of an example 

is represented by considering the Euclidian distance in the input space from the nearest 

training example belonging to the same class. This distance is normalized so that its 

value is always in [0, 11. The membership value pneW is transformed to p,,~ new (nzol 

new represents more or less new) using a fuzzy hedge [40] operator to accommodate the 

fact that certain patterns are "more or less" new. The fuzzy hedge is modeled using the 

function [4Cl], 

1 

Pmol new = (pnew)g 

where p E N, here N is the set of natural numbers. 

Similarly, we can express the output of a test sample as a fuzzy membership. Let K 

represents the normalized output error of the neural network. Then (1 - K )  represents the 

correctness of the examples. This membership function can be transformed, if necessary, 

using a fuzzy hedge operator, to a membership function (pmd co,,ect). We observe that 

the generalization value of the network for a test sample should be high when both the 

degree of correctness and the newness of the test sample are high. In all other cases, 

generalization value for an example should be low. A fuzzy AND operator is used to 

combine pmol correct and pmol ,,,. This ANDing is realized by a multiplication operation. 

From the above discussion, it is clear that g; is in [0, 11. Hence g; can be viewed as a 

fuzzy membership function with domain S ,  [lo]. 

To determine the generalization of the network (G), we combine the information ob- 

tained from 9;s of each test sample. We accomplish this task by using a fuzzy operat,or 

h, [30]. Thus, G is given by, 

where cr E X (a + 0). The parameter cr can be used to control the softness of the operator. 

It is important to note that h is not a T-norm [9], [12], because, it does not satisfy 

a property of the T-norm, namely, h(a, 1) = a. In our case, it is essential that h(a, 1) > a 

a when a + 1 because 1 indicates perfect generalization of a particular test sample and 
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by combining this information with a, the generalization value obtained from another test 

sample, we should be able to infer that the generalization of the network is better than 

tl1a.t inferred from a single test sample with generalization value a. 

In the rerna.ining part of this section we give a measi.lre of generalization that. quantifies 

how well the network performs on the actual problem once the training is complete. In 

this case, the distinction between training set and test set vanishes once the training is 

over. 

We represent this generalization measure by M and input space by S.  The following 

are the fundamental properties of the measure: 

1. It is minimum, i.e., zero, when no example is approximated correctly. Thus, 

f (%)  f y i  Vxi E S =+ M  = O  (3.5) 

2. The measure M is 1  when all examples are approximated correctly. Thus, 

f ( x i ) = y ;  Vx; E S =+ M = l  (3.6) 

3. Generalization measure is influenced by accuracy of training on the training set. 

Most measures of generalization that occurs in literature satisfy these properties. One 

such measure that we find in literature is defined as follows, 

If input sample x occurs with probability ~ ( x )  in the input domain, fw represents 

the function approximated by the trained neural network and Z = ( ( x , y ) )  is the input 

domain, it follows that, 

The major difference between generalization index and generalization measure is that 

in the former case the error in output space is weighted by the "newness of samplen 

whereas in the latter case the error in output space is weighted by the "PI-obability of 

occurrence" of the sample. 



3.5.3 Results and Discussion 

It  is observed that  the error rate does not consider the quality of test samples, therefore 

unless a large test set is used, there is a higher influence of bias of the test set on this 

measure. For exa.niple, if the test set consists of only test samples similar to  the examples 

in the training set, the error rate measure gives a large value for generalization, and it 

gives s low value if the test samples are very differelit frorri the training examples, and 

thus do not result in the desired output for the network. There is no method tliat takes 

into account the bias induced by the type of test set being used to  test the network. 

Unlike this, the generalization measure G takes into account the possible bias in the test 

set by weighting the contribution of each test sample in it by a measure that depends 

on how different it is from the training examples. This also makes the measure more 

realistic. However, lower absolute value of generalization index may result. The  lower 

absolute value of generalization is because the scope to  generalize is lowered when the 

network is trained on many examples. This enables distinguishing a network, that is able 

t o  classify correctly after being trained on a few examples, from a network which gives 

the same performance after being trained on many examples. 

Apart form this, when there are training examples in the test set used for the measure 

of generalization, the gis for these examples are zero, because newness of the test samples 

is zero. As a result, when there are a large number of training examples in the test set the 

value of G calculated by aggregating the gis decreases, and in the case when the number of 

training examples in test set reduces the value of G increases. This is because the test set 

with a large number of training examples is biased towards giving high generalization value 

for the network, though no training example can be used to evaluate the generalization 

capability of the network because the nature of training ensures good performance on 

training examples. This is unlike the error rate calculated on the test set, where if training 

set is used as test set then it results in high value of generalization capability. But we 

know tha t  we can not conclude anything about the generalization capability of network 

by checking its performance on training set only. Although, it is not always correct that' 

the generalization value is low when test set consists of training examples, we feel that  it 

may be a better alternative t o  consider it low than to  be misled into the belief that the 

network generalizes well a.fter testing with a set of examples biased towards the training 

set. 



Experimental observations from an iinplernentation of the generalization measure de- 

veloped in this section, for the problem of Opening Bid in Contract Bridge game are given 

in Appendix C. 

In the following s~ibsection we give some limitations of t>he proposed generalization 

index. 

3.5.4 Limitations of Geileralization Index 

Although the proposed generalization measure apparently takes care of the limitations 

of generalization measures discussed in subsection 3.5.1, its application to real world 

problems is very limited because it assumes that newness of examples can be measured. 

In our implementation of the measure we have used Euclidian distance in input space as a 

measure of newness. As a result, this measure of newness is applicable only in cases when 

similarity of patterns is reflected as closeness of examples in terms of Euclidian distance 

in input space. This limits the applicability of the proposed measure, and as a result, we 

do not apply it into the pattern recognition problems discussed in the later chapters. 

3.6 Summary 

In this chapter we presented the current view of generalization in feedforward neural net.- 

works. We have identified the limitations of generalization in feedforward neural networks 

and suggested some methods for improving generalization. We have mentioned briefly the 

disadvantage of not considering the problem specific knowledge to improve generalization. 

A measure for generalization is proposed which takes into account the fuzzy nature of 

generalization and quality of training set used to train the network. The application of 

the measure is limited to the tasks where the closeness of samples in space reflects their 

similarity. Hence, it has limited application in real world pattern recognition tasks. 



Chapter 4 

GENERALIZATION AS A PROBLEM 

DEPENDENT PHENOMENON 

4.1 Introduction 

Methods to improve generalization can be viewed as either problem-independent or problem- 

dependent. Problem-independent methods make use of a general structure of neural net- 

works and manipulate the parameters of the network to obtain improved generalization. 

Such methods have been discussed in chapter 3. 

On the other hand, neural networks that use knowledge about the problem can be 

developed to achieve good generalization performance. In this case, knowledge about the 

problem is incorporated into the network.in the form of constrains on the parameters of 

the network. Examples of such networks developed in a problem specific way are found 

in [45], [14], [59]. 

In this chapter we focus on problem-dependent approaches to improve generalization. 

Section 4.2 discusses the problem-dependent nature of the generalization phenomenon. 

In section 4.3, we describe the desirable generalization behavior due to incorporation of 

knowledge into the neural network by analogy with modeling a system represented by data. 

In section 4.4, we discuss how knowledge is incorporated into the network by considering 

Radial Basis Function Neural Networks (RBFNN). Experimental observations regarding 

the comparative performance of RBFNN and MLP in the context of classification and 

function approximation are given in section 4.5. We summarize the chapter and state t l x  

conclusions in section 4.6. 



4.2 Generalization in the Context of Specific 

Problems 

Problem-independent methods of improvement of generaliza.t.ion do  not take into con- 

sideration the problem specific knowledge that may improve generalization significantly. 

For example, one of the methods by which generalization is improved in a problem- 

independent way, is by manipulating the data by adding noise, so that there is apparently 

more data available for the training process. But it is not always possible or meaningful, 

to obtain more data for training by adding noise. This can be illustrated by considering 

a pattern mapping/function approximation problem where a few scattered training ex- 

amples are given. In this case it is not possible to obtain a better approximation of the 

function by using more training examples created by adding noise. This is because, it does 

not give us insight into the behavior of the function at points where training examples 

are not given. But if we have some additional knowledge about the function behavior, 

then we can get a good approximation of the function by incorporating this knowledge 

into the network. This is illustrated in Fig.4.1. 

Thus, we note that many approaches to improve generalization do not correspond to 

the human concept of generalization. Most methods dealing with data attempt to  load 

the data into the neural network, rather than capturing the pattern behavior in the input 

data, leading to a tendency to memorize the input data by the neural network. This 

drawback can be overcome by considering ~rob lem specific knowledge. Application of 

problem knowledge along with data should bring out a trained system whose behavior is 

analogous to other problems involving stochastic or deterministic modeling. 

The following section substantiates the problem-dependent approach with an analogy 

from modeling a system represented by data. 

4.3 Analogy with Modeling a System Represented by 

Data 

Modeling a system, based on data obtained from it, is one of the most common problems 

encountered in engineering control systems [52] and pat tern recognition. I11 many real 
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Figure 4.1: Illustration of better generalization obtained by incorporating 

knowledge about the problem. 

world situations we have access only to the data generated by the system and, attempts 

are made to model the system from the data and analyze the system characteristics. 

In the case of modeling, a model is first assumed based on some knowledge about 

a system that is being modeled. Then the data obtained from the system is used to 

determine the parameters of the model. It is observed that the modeling of the system is 

good when the model selected is a good representation of the system, and a large number 

of examples, obtained from the system, are used to evaluate the parameters of the model. 

Such a system is usually better than a model whose parameters are evaluated by using 

less data obtained from the system. 

We take the examples of Linear Prediction (LP) analysis [37] and Hidden Markov 

Model (HMM) [44] to discuss the above observation. 



Linear Prediction (LP) analysis is one of the aspects of time series (signal) analysis. 

The goal of this analysis is to model the system that generated the signal. The  model 

that is developed can be used for prediction or forecasting, control, etc. In this method of 

modeling, t,he signal s,, is considered as the output of some unknown system with some 

input 1 1 ,  such that the following relation holds [37]: 

where ak, 1 5 k _< p and the gain G are the parameters of the hypothesized system. 

The above equa,tion implies that the signal s, is predictable from a linear combination of 

past p outputs s,-~ to  s,-, and input u,. The order oi  the model is said to be p, where 

p is the number of previous signal samples that are used to predict the piesent signal. 

Various methods of estimation of the parameters, ak, for 1 5 k 5 p exist and are given 

in the tutorial review by Makhoul [37]. Here we briefly discuss the influence of the order 

of model chosen on the modeling of the signal. 

It is observed that the prediction of signal is good irrespective of the order of prediction 

(p), as long as p > p,, where p,  is the order of linear prediction for that particular signal. 

In the case of linear prediction, the modeling of the signal usually improves with increase 

in n,, where n is the number of samples of'the signal used for minimization of error energy 

for estimation of LP coefficients. The equivalents of p in neural networks are the number 

of weights and of p, is the number of weights that are sufficient to solve the problem. 

The equivalence of n in neural networks is the number of examples used to trail1 the 

network. Therefore, once the network is of sufficient size and the input data set is a good 

representation of the input domain, it is desirable that a network converges to the solutioii 

with high generalization capability. 

In the LP analysis better estimation of the model parameters can be viewed as bettes 

generalization, as it results in the model giving a response closer to  the actual system in 

all cases, inc!uding the situations where the actual system behavior was not given in the 

form of data used to  estimate the parameters of model. Thus, an analogy from modeling 

of system represented by data is used to define a generalization behavior that is desirable 

in the case of neural networks. 

Modeling of signals can be broadly categorized into deterministic and statistical mod- 

els. The LP model discussed above is a deterministic model. In the following discussion 



we consider the Hidden Markov Model (HMM) which is a statistical model. The underly- 

ing assumption of statistical model is that a signal can be characterized by a parametric 

random process of which the parameters can be estimated in a precise, well-defined man- 

ner unlike the deterministic ~nodels where some specific property of the signal is exp!oited. 

A HMM is a doubly stochastic process with an underlying stochastic process that is not 

observable, but can only be observed through another set of stochastic processes that 

generates the sequence of observed symbols [42]. 

An HMM is characterized by [44]: 

1. A finite number of states. 

2. A finite number of distinct observation symbols per state. 

3. A transition probability distribution. 

4. Observation symbol probability distribution. 

5. An initial state probability distribution. 

The  parameters of the HMM are estimated by making use of examples generated by 

the system that it is modeling. Once the above characteristics of the HMM are estimated, 

it can be  used as a generator to give a sequence of symbols. Thus, it is able to model 

the'behavior of the system that generated the examples. It is observed that  the modeling 

of the system is better when a larger number of examples are available t o  estimate the 

parameters of the HMM. This kind of behavior is desirable in the case of neural networks. 

Thus in modeling, it is observed that as the number of examples available t o  evaluate 

parameters of the system increase, the model behavior approaches closer and closer t o  

the actual system. In contrast to  the above, we find that this is generally not true in the 

case of neural networks. The  main reasons for this are: 

When the network is smaller than the required size, it is found that the learning 

algorithm should ensure that the neural network arrives a t  a soiution that  gives the 

best possible generalization given its limitations due to  its size. The  problem with 

present neural networks learning procedures is that the network does not converge 

t o  a solution when it is not of sufficient size, and hence, there is apparently co 

solution when the network is snlaller than the required size. 



When the network is larger than the required size, it should be possible to ensure 

tliat all the weights are i~lvolved in determining the desired output. The key issues 

in this case include: 

1. Lack of sufficient trainiug da'ta leads to: 

- Overfitting: the ~>roblen~ of overfitting has already been discussed in sec- 

tions 3.3 and 3.4, and therefore, it is not elaborated here. 

- Unconstrained Weights: When the training set is small, all the weights are 

not involved in the training process resulting in high variance in output 

of the network. This happens usually when very large networks are used 

because of the weights do not contribute to  the output of the network. The 

weights balance each others effect on the output for the training set. This 

has been mentioned in section 2.5. This results because most learning al- 

gorithms do not ensure that all the weights take part in the approximation 

of the function. Such free weights result in the variability of the functioli 

for test examples [51]. 

2. Bias Vs Variance Dilemma:. When a neural network is large, it can realize 

many kinds of functions to fit a given set of data. Hence it becomes necessary 

to  include some knowledge about problem being solved to limit the number 

of functions to the more feasible ones with respect to the problem. This is 

done by incorporating constraints into the neural network. But incorporating 

constrains into the neural network limits the function realization capalbility 

of the network. Sometimes incorporation of constraints may be to an extent 

that it introduces a bias in the output of the network for all training examples. 

Thus, there is a trade off between bias and variance when the available training 

set is limited. In the ideal case both bias and variance of the network can be 

made low when large amount of data is available to train it. 

In this chapter we do not provide solutions to these issues but we discuss some existing 

models in the context of the ideas presented here. In the following sectioil we discuss 

Radial Basis Function Neural Networks (RBFNN) highlighting the advantages that result 

from problem-dependent design of the network. 



4.4 Neural Networks with Problem-Specific 

Knowledge 

In this section we discuss some neural networks that have been developed tzking into con- 

sideration problem-dependent knowledge. First, we present the RBFNN that are designed 

specifically for classificat,ion tasks. We then consider the RBFNN using regularizatioli 

which is used for pattern mapping tasks [41]. 

4.4.1 Radial Basis Function Neural Networks for Pattern 

Classification 

An RBFNN is a two layer network consisting of a layer of hidden nodes and an output 

layer. Fig.4.2 gives an example of an RBFNN. The hidden nodes use radial basis-functions 

to compute the input to the node and a Gaussian is used to  evaluate the output. The 

calculation performed at  the hidden node is given by the following equation: 

where h j  represents the output of hidden node j, 4 represents a Gaussian, x i  1 5 i 5 n 

are the components of an input vector x E Rn and pj; is the ith component in the weight 

vector of the j th  hidden node. The calculation performed by the output layer node is 

given by: 

where H is the number of hidden nodes and Xji is the weights from the i th hidden node 

to the j t h  output node. 

The RBFNN performs the required classification by forming clusters of the input data 

[ll].  The structure exhibited by the data is exploited for clustering at the hidden nodes, 

and the class labeling ta.sk is done by the output layer. This method of classification is 

not like classification method in MLP, which performs the classification by constructing 

class boundaries using separating hyperplanes. Thus, in the case of RBFNN the emphasis 

is on regions of input space where data exist while in MI,P the emphasis is on regions of 

input space where data does not exist so that class boundaries may be placed there. This 



Figure 4.2: Radial Basis Function Neural Network (RBFNN). The nodes pl 

and p~ are the hidden nodes which use the radial basis function, (Ci(x;  - 
C j i ) 2 ) ~ ,  to evaluate the input to the node. A Gaussian function is used in 

these nodes to  obtain the outputs. The usual scalar product is used by the 

output nodes 113 and p4. 

distinction of processing at the first hidden layer nodes of RBFNN and MLP are given in  

Fig.4.3 and 4.4. 

Fig.4.3 illustrates of the modeling of input space by the hidden layer of an RBFNN. 

The midpoints of the clusters of data in input space form the weight vectors, pi, of the 

hidden nodes. The scatter of the data points of a cluster in input space determines the 

variance, a;, of the Gaussians of the hidden nodes. The outputs of the hidden layer are 

passes to the final layer through linear basis function [35]. Fig.4.4 illustrates the class 

boundaries that are constructed by the first layer of an MLP. We summarize by noting 

that in RBFNNs the classification is done by using the closeness property of data in the 

same class, whereas, in MLPs the classification is done by difference between data. 



4.4.2 Radial Basis Furlctio~i Neural Networks for Pattern 

Mapping 

111 the case of pattern mapping/function approximation it is possible to obtain good gen- 

eralization when many t,raining examples are known throughout the range of t,he function. 

But this may not always be possible. Also due to presence of noise in the training data the 

problem may be ill-posed [IS]. The method of regularization was proposed to overcome 

this problem. In this method a nonnegative functional, that makes use of prior knowledge 

about the function being approximated, is optimized along with the minimization of the 

risk functional [IS], [56]. 

In the context of neural networks the introduction of the regularization term can be in 

the form of a smoothness constraint on the possible weight values. The magnitude of this 

extra term in the cost function governs the amount of smoothness applied to the surface 

being fit into the data points during the learning process [IS]. 

The principle of regularization can be stated as follows: Find the function fw that 

minimizes the cost function £( f,), defined by 

where E3(fW) is the standard error term, EC(fw) is the regularization term, and X is the 

regularization parameter. This regularization term can be used to incorporate the smooth- 

ness constraint into the network. The parameter X can then be called the smoothness 

parameter. 

4.5 Illustrations with Synthetic Data 

In this section we give a comparative study of the performance of an RBFNN which is a 

network that incorporates knowledge about the problem and an MLP where there is no 

scope to incorporate prior knowledge about the problem. We consider perfgrmance on a 

classification task in section 4.5.1, and in section 4.5.2 we consider a function approxima- 

tion task. 
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Figure 4.3: Illustration of the input space of the RBFNN as modeled by the 

input space. Here three clusters of data points in a 2 dimensional space are 

present. Each cluster is modeled by one hidden node of the RBFNN with 

"range of influence", a, equal to the spread of the data points. The approxi- 

mate center of the cluster forms the input weights, p, to the hidden node. 
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Figure 4.4: Illustration of the input space of a multilayer perceptron neural 

network as modeled by the input space. Here there are three clusters of data 

points in a 2 dimensional space. Ea.ch node in the first layer of the MLP 

realizes a straight line in input space that attempts to separate the clusters. 

4.5.1 Classification with Prior Knowledge 

In this case we consider classification of two dimensional data consisting of clusters of 

points. In the example considered, the input space has five clusters of points that are 

classified into three classes. Fig.4.5 illustrates the input data set. 

Table 4.1 gives the generalization performance of the RBFNN on the classification 

problem. RBFNN of different sizes are trained on a training set consisting of 25 examples 

and the generalization performance is evaluated by considering the percentage correct 

~lassificat~ion of a test set consisting of 750 samples. It is observed from fourth row of 

the table that there is a steep increase in the performance of the network when the 



number of nodes in the hidden layer becomes equal to the number of clust,ers of data 

in the input space. With further increase in the number of nodes in the hidden layes 

the generalization performance of the network remains high, unlike the cases generally 

discussed in the context of other network models where there is memorization when size 

of the network is large. Similar observations are made from table 4.2 which gives t,he 

performance of RBFNN when 100 examples are used to train it. It is inferred that t,he 

performance improves marginally because more data is available to perform the clustering 

at the hidden units. 

Figure 4.5: The set of 2-dimensional data used to compare the generalizat,ion 

capability of RBFNN and MLP for classification task. There are 5 cliisters of 
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Table 4.3 gives the generalization performance of different sizes of MLPs trained on 25 

examples, and generalization is evaluates by performance on 750 test samples. It should 

0 5 10 15 20 25 

be observed that the generalization performance is not as good as the RBFNN. Also, there 

is no specific trend exhibited in the variation of the generalization ability with increase in 

number of nodes. Table 4.4 gives the generalization performance of MLPs trained with 

100 examples. It is found that the performance improves drastically when 7 hidden nodes 

are present in the network. But no specific reason can be given for this behavior. It should 

be noted that, there is no general trend in the way in which generalization capability is 

affected by increasing the number of hidden nodes. 



Table 4.1: Performance of an RBFNN for classification on synthetic 2- 

dimensional data. The network is trained on 25 examples and tested on 750 

samples. 

S1. 

Table 4.5 gives the performance of an MLP that has two layers of nodes. The choice 

of number of nodes is arbitrary, and uses the heuristic that the number of nodes in 

the second hidden layer should be equal to the number of clusters in the input space 

[19]. Apart from the above, we also apply the heuristic that the number of nodes in 

the.second hidden layer should be half of the number of nodes in the first hidden layer. 

The generalization performance of such networks is tested. Although the generalization 

performance of two layered MLPs is good for combination of nodes given in rows 3; 6, 7, 

9, 10 and 11 of table, yet no specific rule can be evolved for the choice of correct size of 

neural network. Though this does not seem to be a serious drawback in the case of this 

simple synthetic data, it is a major disadvantage when trying to design MLPs to solve 

real world problems. In many cases it may not be possible to arrive at the optimum size 

of a network by trial and error approach. 

Thus, it can be inferred that in the case of RBFNN a systematic procedure of designing 

c usters the network can be used to obtain good generalization. In the case when number of 1 

in input space are known, we can expect good generalization, by choosing the number of 

hidden units equal to or greater than the number of clusters. Unlike the MLPs where thc 

procedure for choice of number of hidden nodes in the neural network is arbitrary. 

No. Hidden Nodes Classification 

Number of Percentage of Correct 



Table 4.2: Performance of an RBFNN for classification on synthetic 2- 

dimensional data. The network is trained on 100 examples and tested on 

750 samples. 

SI. 

No. 

Table 4.3: Performance of an MLP for classification on synthetic 2-dimensional 

data. The network is trained on 25 examples and tested on 750 samples. 

Number of 

Hidden Nodes 

S1. 

No. 

Percentage of Correct 

Classification 

Number of 

Hidden Nodes 

Percentage of Correct 

Classification 



Thus, it can be concluded that inclusion of knowledge results in better generalization, 

when the size of the network chosen is sufficient for a given problem. Moreover, it allows 

systematic design of the networks. 

Table 4.4: Performance of MLP for classification on synthetic 2-dimensional 

data. The network is trained on 100 examples and tested on 750 samples. 

S1. 

No. 

4.5.2 Function Approximation with Prior Knowledge 

In this section we compare the generalization capability of the RBFNN'ind MLP. We 

consider the problem of approximating the function illustrated in the Fig.4.6. Different 

sizes of RBFNNs and MLPs are trained on training sets consisting of 50, 100 and 200 

training examples. The examples are generated by adding noise to the function evaluated 

at random points. Fig.4.7a gives training set of 50 examples and Fig.4.7b illustrates 

the training set of 100 examples. The performance is evaluated by plotting the function 

realized by the network and observing how similar it is to the original function. 

Fig.4.8a shows the function obtained by an MLP with 5 hidden nodes trained on 50 

examples. Thirty thousand iterations are required for it to converge. The variation of 

output error with number of iterations is given in the Fig.4.8b. Although it. appears as 

a good approximation, by comparison with Fig.4.6 we observe that the approximation 

is poor when the input x varies from 4 to 8. Fig.4.9a shows the function obtained by 

an MLP with 10 hidden nodes trained on 50 examples. The variation of output error 

Number of 

Hidden Nodes 

Percentage of Correct 

Classification 



Table 4.5: Performance of the MLP for classification on synthetic 2; 

dimensional data. The network is trained on 100 examples and tested on 

750 samples. The number of hidden nodes in the network is given by H I ,  H 2 ,  

where H 1  is number of nodes in first hidden layer, and H 2  is number of nodes 

in second hidden layer. 
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wit11 training iterations is depicted in Fig.4.9b. The functions obtained by using 50 and 

100 hidden nodes in the MLP are given in Fig.4.lOa and Fig.4.lla1 respectively. From 

these figures it can be observed that how the function approximation is better, and hence, 

gei~eralization capability iillproves with increase in hidden nodes. But at the same time 

there are excessive variations in the function in some regions, for example, this is observed 

fro111 Fig.4.1 l a  when x varies in [I ,  31. Variation of the output error with training iterations 

for the MLPs with 50 hidden nodes and with 100 hidden nodes are given in Fig.4.lOb 

and Fig.4.llb1 respectively. It should be observed that the output error should be about 

0.05 on the whole training set for convergence to occur. This is because the output varies 

between 0 to 1, and hence, error values should be less that 0.05 for the function to be 

approximated closely. 

When 100 examples are used for training the network, it is found that the network 

does not converge to a low error value. Fig.4.12a shows the function the neural network 

with 100 hidden nodes realizes after thirty thousand training iterations. The function 

is very different from the actual function that is being approximated. From Fig.4.12b it 

is seen that the output error is more than 0.972 even after thirty thousand iterations. 

Fig.4.13a illustrates the function realized by a network with 150 hidden nodes trained on 

100 exa,mples. In this case we see tha,t the function approximation is not as good as it 

should have been due to the availability of a large number of examples for training. 

The functions realized by an RBFNN trained on 100 examples are shown in Fig.4.14a1 

Fig.4.15a and Fig.4.16a. These figures are obtained by choosing the smoothness parame- 

ter to be 0.3, 0.6 and 1.0, respectively. It is observed that the realized functions become 

closer to the actual function given in Fig. 4.6 with the use of higher smoothness pa- 

rameter. Apart from this, it is observed from Fig 4.14b1 Fig.4.15b and Fig.4.16b that 

the convergence to low error value takes place in a few iterations in the case of RBFNN. 

Unlike the case of MLP, in RBFNN there is no problem for convergence, and also fewer 

nodes are sufficient to realize the function. Fig.4.17a1 Fig.4.18a and Fig.4.19a give the 

functions realized by RBFNN trained on 200 examples. These figures are obtained by us- 

ing smoothness parameter 0.3, 0.6 and 1.0, respectively. It is observed from the Fig.4.l7b1 

Fig.4.18b and Fig.4.19b that the convergence to low error value takes place within 100 

iterations. The MLP does not converge to a low error value when trained on the training 

set with 200 examples. Ta.ble 4.6 summarizes the observations from Fig.4.8 to Fig.4.19. 



I 4.12a I converges to a solution as observed I with 100 hidden nodes and trained I 
I I from Fig.4.lla. But, it fails to con- ( on 100 examples is poor. I 

Remarks 

MLPs trained on 50 examples are 

able to  generalize to some extent. 

The generalization by the MLP 

Fig. No. 
4 .84  

4.9a, 

4.lOa. 

Observations 

Curve obtained is smooth, but lo- 

cal variations in the function are 

not captured. 

When 50 training examples are 

used, the network with 100 nodes 

4.13a 

Table 4.6: Summary of observations from Fig.4.8 t o  Fig.4.19 on  comparison 

between MLP and RBFNN for function approximation. 

4.17a, 

4.18a, 

4.19a 

Unlike the  MLPs where the  number of iterations required for convergence and  t he  size 

of network increase, the  RBFNNs converge t o  a solution even when t he  size of training set  

is large. Also, the  variations of the  function a re  captured better in the  case of RBFNN. 

However, it should be  noted tha t  it is necessary t o  use a large number of examples in 

the  case of RBFNN to  achieve good approximation. When more exa.mples a re  provided 

for training we achieve better approximation of the  function, and this behavior is in fact 

similar t o  t h e  example of modeling of system represented by data. 

verge for 100 training examples. 
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ples converges to a solution wteil 
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The generalization by MLP with 
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150 hidden nodes trained with 100 
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RBFNNs trained on 200 examples 

captures the behavior o i  the func- 
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'l'he generalization performed by 

RBFNN trained on 100 examples 

is good. The behavior of the func- 

tion is captured well when many 

training examples are present. 
'I'he generalization is good. Here 
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the network converges t o  the solu- 

tion, without getting stuck a t  local 

minima. The approximation of the 

function improves with increase in 

number of training examples. 

RBFNNs converge faster than 

MLPs. When the smoothing factor 

is high, function approximation is 

better. 



Figure 4.6: Function that is to be approximated by the neural networks. 

Figure 4.7: Set of training examples obtained by adding noise to  the function evaluated at 

.random points. (a) Training set of 50 examples. (b) Training set of 100 examples. Where each 

'+' indicates a training example. Different values of 'z' are used as inputs to the network and 

corresponding values of 'y' corrupted by noise are used as desired outputs. 



Figure 4.8: Function approximation by an MLP trained using backpropagation algorithm. 

Fifty training exa~nples are used to train the network which has five hidden nodes. (a) Function 

realized by the network, where each '+' indicates a training example. (b) Graph of output error 

reduction with number of training iterations. 

Figure 4.9: Function approximation by an MLP trained using ba.ckpropagation algorithm. 

Fifty training examples are used to  train the network which ha5 ten hidden nodes. (a) Function 

realized by the network, where each '+' indicates a training example. (b) Graph of output error 

reduction with number of training iterations. 



Figure 4.10: Function approximation by an MLP trained using backpropagation algorithm. 

Fifty training examples are used to train the network which has fifty hidden nodes. (a) Function 

realized by the  network, where each '+' indicates a training example. (b) Graph of output error 

reduction with number of training iterations. 

Figure 4.11: Function approximation by an MLP trained using backpropagation algorithm. 

Fifty training examples are used to train the network which has hundred hidden nodes. (a) 

Function realized by the network, where each '+' indicates a training example. (b) Graph of 

output error reduction with number of training iterations. 



Figure 4.12: Function approximation by a MLP trained using backpropagation algorithm. 

Hundred training examples are used to train the network which has hundred hidden nodes. (a) 

Function realized by the network, where each '+' indicates a training example. (b) Graph of 

output error reduction with number of training iterations. 

Figure 4.13: Function approximation by a MI,P trained using backpropagation algorithm. 

Hundred training examples are used to train the network which has hundred and fifty hidden 

nodes. (a) Function realized by the network, where each '+' indicates a training example. (b) 

Graph of output error reduction with training iterations. 



Figure 4.14: Function approximation by an RBFNN that has 34 hidden nodes and is trained 

on 100 examples. The value of the smoothing parameter used is 0.3. (a) Function realized by 

the network, where each '+' indicates a training example. (b) Graph of error reduction with 

number of training iterations. 

Figure 4.15: Function approximation by an RBFNN that has 38 hidden nodes and is trained 

on 100 examples. The value of the smoothing parameter used is 0.6. (a) Function realized by 

the network, where each '+' indicates a training example. (b) Graph of error reduction with 

number of training iterations. 



Figure 4.16: Function approximation by an RBFNN that has 90 hidden nodes and is trained 

on 100 exarr~ples. The value of the smoothing parameter used is 1.0. (a) Function realized by 

the network, where each '+' indicates a training example. (b) Graph of error reduction with 

number of training iterations. 

Figure 4.17: Function approximation by an RBFNN that has 106 hidden nodes and is trained 

on 200 examples. The value of the smoothing parameter used is 0.3. (a) Function realized by 

the network, where each '+' indicates a training example. (b) Graph of error reduction wit.h 

training iterations. 



Figure 4.18: Function approximation by an RBFNN that has 100 hidden nodes and is trained 

on 200 examples. The value of the smoothing parameter used is O.G. (a) Function realized by 

the network, where each '+' indicates a training example. (b) Graph of error reduction with 

training iterations. 

Figure 4.1 9: Function approximation by an RBFNN that has 100 hidden nodes and is trained 

on 20!) examples. The value of the sn~ootlling parameter used is 1.0. (a) Fr:nction realized by 

the network, where each '+' indicates a training example. (b) Graph of error reduction with 

training iterations. 



Summary 

i n  this chapter we discussed the t)roblem-de~,endelit nature of the generalization phe- 

nomenon. 

An analogy with modeling of a system represented by data is presented, and extending 

this idea a concept for ideal behavior of generalization is provided where the pi-oblem of 

overtraining should not occur. 

The advantages of incorporating problem-specific knowledge into the neural network 

is presented with respect to reduction in variance and bias of the function. We have 

also presented some models in which the knowledge of the problem is included, naiiiely 

the RBFNN which is used for classification and pattern mapping tasks. Compariscns 

between the performance of RBFNNs and MLPs for pattern classification and function 

approximation problems were given using synthetic data. The advantages of inclusion 

of problem-dependent knowledge into the RBFNN is brought out. However. it is to be 

noted that the MLP does not always perform worse than the RBFNN, but t.here are 

certain kinds of problems in which the RBFNN gives significantly better results. 



Chapter 5 

ILLUSTRATIONS OF GENERALIZATION 

STUDIES WITH SPEECH DATA 

5.1 Introduction 

An important property of real world pattern recognition tasks is the presence of features 

in the data. Any data of pattern recognition tasks consists of features and redundant 

information. The choice of suitable features that represent patterns in the data and 

suppress the redundant information, determines the possibility to generalize. Thus, proper 

choice of features enable the neural network to generalize well. Selection of features to  

represent the data is ~rohlenl  dependent, and hence, it is necessary to adopt a problem 

dependent approach to improve generalization significantly. 

In this chapter we illustrate the significance of a priori knowledge about the nature 

of data, in improving generalization by a neural network for real data. \Ve consider the 

case of speech data, which is the output of a time varying vocal tract system excited 

by time varying excitation. For most speech recognition studies, the shape of the vocal 

tract system represents the type of sound being produced. But the shape information 

is embedded in the speech data through a complex transformation of the excitation into 

the speech signal. In general, speech signal is processed to extract some spectral parame- 

ters which reflect indirectly the vocal tract shapes. Since most of the time the extracted 

parameters from speech data use standard signal processing methods, the parameters 

represent primarily the signal information rather than the vocal tract system informa- 

tion. On the other hand, if we use a model for speech production and then extract the 

rnodel parameters from speech, then the model represents our knowledge of the speech 

production. If the model is good, then the model parameters represent the system better. 

Therefore, for recognition studies, such as vowel recognition, generalization by the neural 



network is better if the parameters represent the vocal tract system rather bhan the signal 

data. Since the vocal tract, features are embedded deep in the signal data, unless they are 

extracted explicitly the neural network cannot capture the vowel characteristics from the 

parameters representing the da,ta only. The next section shows the significance of prciper 

feature extraction for vowel classification. 

We also illustrate the significance of feature representation for a pattern ma.pping 

task using speech data. We discuss the task of capturing the t,ransformatiori of vocal 

tract systems between two speakers during production of continuous speech. It is shown 

that the transformation is captured effectively using features representing the vocal tract 

system. 

Speech recognition is one of the most extensively studied pattern recognition tasks 

[43], [I]. I t  is a very challenging problem as data is naturally occurring and exhibits large 

variatioils in patterns, that is, the same words in speech can be uttered in several different. 

ways. There is a need to capture features from a finite number of examples and use the 

features to  recognize new patterns; therefore generalization capability is essential here. 

Speech exhibits embedded features, lience the effect of choice of features on generalization 

can be illustrated well with speech data. 

Apart from this, speech recognition problems involve several types of pattern recog- 

nition tasks, na,mely, pattern clustering, pattern storagelretrieval, pattern classification 

and pattern mapping. This makes speech recognition problems interesting for studying 

pattern recognition tasks. In this work we concentrate on pattern mapping and pattern 

classification tasks. 

5.2 Generalization in Vowel Recognition Task 

5.2.1 The Vowel Classification Task 

We consider the task of vowel recognition for the analysis of generalization in pattern 

classification. Vowels are speech sourids that are produced by a steady vocal tract system 

excited by the vibrating vocal cords. Different vowels are produced by cnanging the 

shape of the  vocal tract. For our study we consider the vowels 'a', 'e', 'i', '0' and 'u'. 

The data  required for training is collected from vowel part of utterances of consonant 



vowel pairs of three different speakers. The raw speech signal cannot be used directly 

for training the  neural network because the features are deep hidden. Therefore, we 

extract features from the speech signal and use them for training the network. The goal 

of the experi~nent is to  find out what kind of features are a better representation of 

tlie data for t he  classification task. For this purpose we consider formailts and cepstral 

coefficients obtained from the utterances of speech as the extracted features. Formants are 

the resonances of the vocal tract and represent the characteristics of the systerrl producing 

the signal. On the other hand, cepstral coefficients are obtained from the spectrum of the 

signal, and hence, represent characteristics of the signal more rather than the system. 

We train a feedforward neural network using the backpropagation algorithm for reai- 

izing the classification. We train the network on the first three formants extracted frofii 

the speech signal of each utterance. The formants are extracted by taking the LPC and 

finding the frequencies at which the spectrum reaches peaks. The cepstral coefficients are 

calculated from the LPCs using the following formula [43]: 

where aks are the LPCs and cks are the ce.pstra1 coefficie~its. In this work we have consid- 

ered the first 12 cepstral coefficients of each utterance of vowels as input for classification. 

We train neural networks of different sizes on the formants and cepstral data extractecl 

from the utterances of various speakers. The neural network trained on formants has 3 

inputs and 5 outputs. The target patterns are 5 dimensional vectors containing 1 in one 

location and 0 in all others. In the case of cepstral coefficients the network has 12 inputs 

and 5 outputs. The  targets are similar to the targets used in formant classification. The 

neural networks are trained on 300 examples and tested on 1800 sanlples of test da ta  

t o  evaluate their generalization capability. The error rate measure is used to quantify 

the generalization capability. We discuss the  result,^ of the experiment in the following 

sect ion. 

5.2.2 Results and Discussion 

Table 5.1 gives the classification performance of neural networks trained on formants. 

Table 5.2  gives the performance of different sizes of neural networks trained on cepstral 



Table 5.1: Results of vowel classification using fromant data for different sizes 

of networks. 

coefficients. We find that the generalization performance is better in the case when 

formant data is used for training. Apart from this, it is found that the size of the network 

required for formant data is smaller and also the number of iterations required to converge 

to a given low error is less in the case of formant data compared to the case of cepstral 

data. 

Percentage Correct 

Classification of Test Set 

88.8% - 
89.4% 

89.4% 

89.2% 

88.7% 

88.2% 

S1. No. 

1 

2 

3 

4 

5 

6 

Thus, it. is observed that generalization is better when features related to the vocal 

tract system are used. We demonstrate this using formants, the resonances of the vocal 

tract, to represent the speech information for vowel recognition task. The generalization 

is poor if parameters are not directly related to the vocal tract system. This shows 

the importance of considering problem-dependent information in order to achieve good 

generalization, as no amount of tuning of the parameters of the network can improve 

generalization when the input to the network does not represent the relevant feature in 

the context of the problem being solved. 
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90 

5.3 Generalization in Voice Conversion 

The pattern mapping tasks involve transforniation of a function in input space to a func- 

tion in output space. The input space and output space may be of high dimension and 

individual points in the space may exhibit features. Here we discuss some results from the 



of 1 Percentagecorrect I 
I I Hidden nodes I Classification of Test Set ( 

Table 5.2: Results of vowel classification using cepstral data for different sizes 

of networks. 

problem of voice conversion [8] to bring out the importance of proper selection of feature 

representation in order to achieve good generalization. 

Voice conversion involves transforming one speaker's voice into that of another speaker's 

voice. In any voice conversion system, it.is necessary to capture the nonlinear vocal tract 

transformation between the two speakers using sample utterances from the speakers. The 

corresponding sound segments are taken in both the utterances, and a neural network 

is trained using information from segments of one speaker as input and that from the 

other speaker as output. It was shown [36] that if the information of the segments was 

represented using formants, then the complex nonlinear transformation of the vocal tract 

system could be captured effectively even for segments corresponding to dynamic situ- 

ations not used in training. This study clearly illustrates the need for proper feature 

representation in order to achieve good generalization. 

5.4 Summary 

In this chapter we discussed the importance of using the correct features to represent 

the data in a pattern recognition task, in order to achieve good generalization. We have 

illustrated this by considering examples from speech recognition tasks. 

We have addressed the issue of vowel recognition as an example of classification task. 



We note that  the generalization performance of the neural network is significantly better 

when formailts are used as input data than when cepstral coefficients are used. 

To illustrate generalization in the case of pattern mapping we discussed the case of 

voice conversion. In this case it is necessary t.o capture the vocal tract transformatien 

between two speakers. It is found that this transforrnation of vocal tract can be captured 

well by using formants to represent the input data. Thus, in both cases the importance 

of using system related features rather than signal related features is brought out. 

It is shown in this chapter that the choice of suitable data representation for a given 

task can result in significant improvement in generalization. Thus, the importance of 

adopting a problem-dependent approach to study and improve generalization is empha- 

sized in this chapter. 



Chapter 6 

SUMMARY AND CONCLUSIONS 

6.1 Summary and Conclusions 

In this work we first dzscribed, at the conceptual level, generalization in the pattern clils- 

tering and pattern association tasks. We focused on pattern assnciatien and discnssed the 

nature of some association tasks where generalization is possible and where generalization 

is not possible. 

A brief overview of some existing measures of generalization were given. Some the- 

oretical results were briefly reviewed. Theoretical studies of generalizatioil consider an 

abstract model of learning from examples. In this kind of model synthetic data is used, 

and learning from examples is performed by minimizing an objective criterion. The ob- 

jective criterion in general does not take into account the presence of features in the 

data.. This limits the applicability of theoretical results to real world pattern recognition 

problems. 

Generalization in the context of feedforward neural networks was discussed. The feed- 

forward neural networks are commonly used for learning pattern associations. . Learning 

is implemented by minimization of an objective function. Generalization is measured by 

evaluating the performance of the network on a test set. For real data the use of the 

objective criterion leads to overtraining, and hence, lack of genera.lization. We discussed 

methods for improving generalization in the feedforward neural networks that involve: 

varying the number of parameters in the network, modifying the method of adjustment 

of parameters in the learning procedure and manipulating the training data. 

We examined alternative methods for improving the generalizat.ion which included: 

Using a stopping criterion to overcome the problem of overtraining. Here we made 

use of the probabilistic interpretation of the outputs of the  neural network. It is 



realized by considering the result that the sun1 of a posteriori probabilities of all 

classes is unity. 

Modifying the methods of presentation of data using various block sizes of the 

training data in the block updatle 1-net1iol-l. 

o '  Using two sets of training data, the first set is to train the network till near zero 

error, and the second set is to perturb the weights in order to overcome the problem 

of nlemorization. 

We also discussed the limitations of the generalization measure adopted in these stud- 

ies. Normally generalization is quantified by evaluating the performance of network on a 

test set using an objective measure. A measure called generalization index was introduced 

which takes into account the fuzzy nature of the concept of generalization. We illustrated 

the significance of this measure for some applications. We also brought out the limitations 

of the index due to the difficulty in measuring newness of a sample of test set. 

We considered an analogy with modeling of system represented by data to state the 

desired feature of the generalization. Here the number of training samples merely deter- 

mine the bias and variance of the estimated parameters of the model. Larger bias and 

variance result in poorer generalization. The question of overtraining does not arise in 

the modeling problems. Extending this concept to the case of neural networks, it was 

shown that it is necessary to incorporate the problem specific knowledge in the network 

and learning so that training with examples progressively captures the characteristics of 

the system with smaller bias and variance. We discussed these issues with special refer- 

ence to pattern classification and pattern mapping tasks. We showed that incorporation 

of closeness property of features in the input patterns for each class results in improved 

generalization capability. Likewise taking into consideration the smoothness property of 

mappiiig function enhances the generalization capability of a network model, used for 

function approximation/pattern mapping. 

We investigated the use of problem specific improvements in generalization capabil- 

ity of neural networks by considering speech data. Speech data was used because it is 

naturally occurring, exhibits features embedded in data, and speech recognition involves 

all pattern recognition tasks, namely, pattern clustering, storage/retrieval and classifica- 

tionjmapping. We focused on the classification and mapping tasks. 



Recognition of isolated utterances of vowels was considered for pa.ttern classificat~ioll 

task. We showed that better generalization is possible when features related to the vocal 

t,ract svstem were used. We demonstrated this using fornla.nts, the resonances of the vocal 

tract to represent the speech information for vowel recognition task. The generalization 

was poor when parameters, not directly related to t.he vocal tract system, are used to 

train the network. This illustrated the problem dependent nature of the generaliza.tion 

phenomenon. 

MJe examined the problem of transformation of the vocal tract shape from one spea.ker 

to another as an illustration of the pattern mapping task. Formants extracted from 

continuous speech of corresponding segments of two speakers were used to train a neural 

network. The resulting transformation was found to be continuous and natiii-a! even in 

the transition regions. Also, it was found that the performance was good for the vocal 

tract shapes not used in training the network. 

Thus it can be concluded that, the phenomenon of generalization is dependent on the 

features present in the data for most pattern recognition tasks. Generalization capability 

cannot be studied independent of the problem being addressed. Theoretical results have 

to consider problem specific knowledge tn order to be applicable to practical situations. In 

addition to this, methods of improving generalization need to be tailored to the problem 

being addressed to achieve significant improvement. 

Suggestions for Future Research 

MJhile many of issues have been discussed in this thesis, many more challenging problems 

remain in the field of generalization for pattern recognition tasks. The following are certtain 

problems that can he further investigated for improving generalization in feedforward 

networks: 

Developnient of a systematic way ofproblern dependent design of neural networks: 

Most existing approaches to obtain solutions to pattern recognition problems using 

neural networks are ad hoc and rely Gn trial and error methods to find a netwo:.k 

that performs well. So there is a need to define a procedure for designing neura,l 

networks for specific tasks. 



Det:eloprnent of continuous learning nlgorithin: Most real world pattern recogllitioli 

tasks in~yolve a iarge variety of data and, it is not possible to collect all the data 

and train the network to take care of all 1,ossiblo ~it~uations. Therefore. metliods 

that enable updation of weights v;h~n network is unal~le to give tlie target output 

are desirable. 

Methods of problem dependent design of cost function: As discussed: one ot thc 

major limitation of feedforward networks is that the cost function is not tailored to 

the problem. Hence, formulation of the cost function, which has to be n~illirnizetl 

during the learning process taking into consideration knowledge of the problem, is 

an issue that can be further investigated. 

Some the problems that can be investigated in the context of qua,ntifying generalization 

measure are: 

Alternative methods of combining individual generalization z~alues of in,di~!idual test 

samples: In the proposed method of measuring generalization, the generalizatioli 

value that we get from individual samples were combined using fuzzy set theoretic 

methods. Alternative methods using fuzzy measure theory [30] can be investigated. 

Measure of newness of sample: The newness of samples of a test set were calculatetl 

in the implementation of the proposed generalization index by considering Euclidiari 

distance. This limits the scope of the measure. Other measures of newness can be 

investigated based on different distance concepts. 



Appendix A 

Proof of Convergence to A Posteriori Class 

Probability 

In this appendix we show tha,t by training through minimization of least square error 

results in the outputs converging to the a posteriori class probability ~ ( c l x )  [39]. This 

result was used in proposing the alternative stopping criterion for training in section 3.4.1. 

Let, ~ ( x ,  c) be the underlying probability distribution of the training set Tk = {(xl,  y l ) ,  

. . . , (xk, yk)). The training criterion to be optimized is denoted by F and it depends on 

the mapping f,: therefore, we write F(f,) to express the dependence on f,. For the 

squared error criterion, we use F( f,) as a training criterion where F( f,) is expressed as 

follows: 

where t (y i l  c) is the Kronecker delta function, used as a class indicator function that 

denotes the ideal target outputs and C is the number of classes. In the limit of 1a.rge 

number of training samples, the sample average approximates the ensemble average. Thus. 

by taking the expectation over the joint distribution ~ ( x , y ) ,  the training criterion F (  f,) 

is expressed as, 

Note that the index y stands for class membership, whereas, the index c denotes the 

output nodes. Here we want to understand what the output of the network f,(x, c )  

denotes. Therefore we interchange the sums over y and c to obtain, 



where e(x ,  c; J , (x ,  c))  is defined a.s the local error contribution at point x and output, 

ilode c: 

The local contribution e(x, c; fw(x,  c ) )  is caused by the training sanlples from all tlie 

cla.sses y = 1, . . . , C and is thus obtained by weighting the squared error wit.h the joint' 

probability density function and summing over all classes y = 1, .  . . , C. The sum over the 

index y can be rearranged by separating the index y = c, i.e., the correct output node 

with t (y ,  c) = 1 from all other indices y with t (y ,  c) = 0 and by considering the following 

relations: 

4x7 C) : density of the samples with desired output 1 

n (x )  - n(x,  c) : density of the samples with desired output 0 
Using the identity n(x, c) = n(x)n(clx) we can rewrite the local error as, 

The above function shows that the network output .fw(x, c) is identical to the class prob- 

ability n(c(x) ,  when the minimum value of the training criterion, F ,  is reached. 



Appendix B 

Overview of Some Fuzzy Set Concepts 

In this appendix we give a brief overview of some fuzzy set concepts that are used in 

section 3.5 for proposing the fuzzy generalization index to quantify generalization [4]. 

B.1 Fuzzy Sets 

In classical set theory, when a set of A is defined, any element of the universal set X 

can either be a member or not be a member of the set. This property of whether or not 

an element x of universal set belongs to set, A can be defined by a function PA.  This 

function takes the value 1 if the element belongs to the set A and 0 if the element does 

not belong to it. This function is known as characteristic function. Therefore, for the set 

A ,  the characteristic function PA : X -+ {0,1) is given by 

1 : if and only if x E A 
f l A ( x j  = 

0 : if and only if x f A 

But in many real life situations it is uncertain whether an element belongs totally to 

the set A ,  i.e., the element may belong to the set with a certain degree of belongingness. 

Fuzzy set theory has been developed in order to take care of such situations. In a fuzzy 

set the characteristic function of a set A can take values in [O, 11. This function is known 

as membership function, because larger value of the function denotes more membership 

of the element to the set under consideration. Thus, the membership function PA is 

expressed as 

Therefore, any concept that uses fuzzy sets requires the membership function to be de- 

fined. This function is usually designed by taking into consideratior1 the requirements and 

constraints of the problem. 



B.2 Aggregation Operator 

An aggregatio~l ope~*at,or is defir~ed by a function, 

for some rz 2 2. One class of aggregation operators consists of generalized means. These 

are defined by the formula, 

where o E !R ( a  # 0). The parameter a can be used to control the softness of the operator. 

This operator satisfies the following properties: 

1. Commutative : h(a ,  b)  = h(b ,a ) ;  

2. Associative : h(h.(a,  b ) ,  c )  = h(a ,  h(b,  c ) ) ;  

3. h(a ,  b )  5 h(c ,d )  when a  5 c  and b 5 d  ; 



Appendix C 

Experimental Observations for 

Generalization Index 

In this appendix we present some observations of the experimental studies of the gener- 

alization index proposed in section 3.5. 

The behavior of the generalization index proposed is studied by applying to the prob- 

lem of Opening Bid in Contract Bridge game. Here the problem is to  train a neural 

network to  give the same bid as a human bidder for a given hand. Input of the net- 

work, is a hand pattern of a player, the pattern is represented as a 52 dimensional binary 

pattern, where a '1' represents the presence and a '0' represents the absence of a card. 

The input layer of the network consists of 52 nodes. The target output of the network 

is the first. level opening bid corresponding to  the input hand. A fully connected three 

layer feedforward network with backpropagation [48] learning is used here. Fifty hiddell 

nodes and five output nodes (corresponding to the bids: 1 Club, 1 Diamond, 1 Heart., 

1 Spade and 1 Notrump) are used in this network. The network is trained with a set 

of input(hand)-output(bid) pairs. In this experiment, the Standard American bidding 

convention is used. The data for this experiment was collected from an Open Bridge 

Tournament. 

In this experiment, we determine the newness of a test input (x;) by finding its Eu- 

clidian distance from the nearest training input example which has the same output bid. 

This normalized distance lies between 0 and 1; and hence it is treated as the member- 

ship value for newness. This membership value is transformed to another membership 

value to signify more or less ~ z e c ~ i  by using a fuzzy hedge operator. This transformation 

is required to reduce the influence of newness of the example on y,. Iiere, we choose the 

value of p ( the parameter in hedge operator) and ct (the parameter in the aggregation 

operator) as 2 and 16, resl~ectively. We compare our measule with the most commonly 



used error rate nleasure. Table C.i gives the generalization value ol>tai~ied by ruliniilg 

the network on va.rious test. sets, once it is t.sained on a. fixed training set,. Observe tha.t 

the value of fuzzy generaliza.t,ion index, 6: varies iess tha.n ihe va!ue of t,he er which is 

(1-Error Rate), a.s it, ca11 be seen frclrl the v:alues of vasizi~cc. ( 1 ~ ~ )  give!, in  ihe last so~v 

of the table. Figure C.1 shows a graph of varia.tion of ge~~esalization error \rritli incseasc: 

in number of training examples used to t,rain the network. Here, it is ohserved that, G 

reduces with increase in the number of training examples reflecting the fact t,ha.t scope 

for generalization decreases. N0t.e tl hat the error rate measure does not t,ake into accou~l t 

the decrease in scope for generalizatiorl due to increase in number of training examples. 

I ) Data Set 1 tr I E 1 

Table C. 1: Comparison of Generalization Index, 6, with (1-Error Rate), er ,  

for different test sets. The last row of t,he table gives the value of variance of 

measure over the difierent test sets. 



Figure C.l:  Graph of variation of generalization error with increase in training 

examples. G indicates the proposed generalization index and e r  denotes (1- 

Error Rate).  
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m: - from untruth, -- truth, Tmrif- from darkness, - light, qd 
- from death, q- immortality, lmzr - lead (us). 

Lead (us) from untruth to truth, from darkness to light, from death to 
immofiaiity. 

G - auspicious sourld, $ - whole, w: - that (God), F: -- whole, ?& - 

this (world), m, - from that whole, @ - this whole, --?i -- mani- 
fests, p,.fPi .- of this whoie, yfof - wholeness, m -- retaining. -\nf - 

whole, v - alone, mf$mfl - remains (ever). 

That (God) is whole. This (world) is whole. From that whole this 
whole manifests. Retaining the wholeness cf this whole that whole ever 
remains. 

That (Godj is unmanifest Brahman. This (the world) is manifest Brah- 
man. From that unmanifest Brahman arises this manifest Brahman ie 
world is manifest God. The unmanifest Brahman ever remains the same 
as the heart of the constantly changing manifest world. 


